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High order finite difference methods for the wave

equation with non–conforming grid interfaces
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Abstract

We use high order finite difference methods to solve the wave equation

in the second order form. The spatial discretization is performed by finite

difference operators satisfying a summation–by–parts property. The focus

of this work is on the numerical treatment of non–conforming grid inter-

faces. The interface conditions are imposed weakly by the simultaneous

approximation term technique in combination with interface operators,

which move the discrete solutions between the grids on the interface. In

particular, we consider interpolation operators and projection operators.

A norm–compatibility condition, which leads to stability for first order

hyperbolic systems, does not suffice for second order wave equations. An

extra constraint on the interface operators must be satisfied to derive an

energy estimate for stability. We carry out eigenvalue analyses to inves-

tigate the additional constraint and how it is related to stability, and

find that the projection operators have better stability properties than

the interpolation operators. In addition, a truncation error analysis is

performed to study the convergence property of the numerical schemes.

In the numerical experiments, the stability and accuracy properties of

the numerical schemes are further explored, and the practical usefulness

of non–conforming grid interfaces is presented and discussed in two effi-

ciency studies.
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1 Introduction

For wave propagation problems, the computational domain is often large com-
pared with the wavelength, and waves travel for a long time. It has been shown
that high order accurate discretizations in time and space are more efficient to
solve these problems on smooth domains [7, 11]. Although it is straightforward
to derive high order finite difference schemes in the interior of the computational
domain, it is challenging to derive the boundary closures in a stable and accu-
rate way. For long time simulations, it is also desirable that the discretization
is strictly stable [8, pp. 129]. A successful candidate of high order finite dif-
ferences is the summation–by–parts simultaneously approximation term (SBP–
SAT) method [3, 26]. An SBP operator [13] approximates a spatial derivative,
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and mimics integration–by–parts via its associated norm. The SAT method [2]
is used to impose boundary conditions and grid interface conditions weakly.

Traditionally, the wave equation is written as a first order hyperbolic system,
and is then solved by the well–developed methods for such systems. However,
there are various drawbacks in doing so [12]. Therefore, it is desirable to solve
directly the wave equation in the second order form. In [27], an SBP–SAT
method for the wave equation in the second order form is developed and the
numerical treatment of conforming grid interfaces is discussed. Stability of the
numerical scheme is proved by the energy method, and the convergence property
is investigated in the numerical experiments.

For a wave that travels in an inhomogeneous medium, the wave speed varies
in space. Since the wavelength is proportional to the wave speed, a reduction
in the wave speed confined to a subset of the physical domain yields a wave
with a shorter wavelength localized in that subset. In [11], the accuracy of a
numerical solution to a Cauchy problem is stated in terms of the number of grid
points per wavelength. For computational efficiency it is important that a fine
mesh is used in the subset that constitutes the slower media, and a coarse mesh
elsewhere.

To achieve this, one approach is to partition the computational domain into
blocks, where the mesh sizes are constant in each block but differ in differ-
ent blocks. In more than one space dimension, the partition results in non–
conforming grid interfaces with hanging nodes. Suitable interface conditions
are then imposed to couple adjacent mesh blocks and yield a well–posed prob-
lem. Many techniques for the numerical treatment of interface conditions have
been proposed. In [24], an energy conserving discretization of the elastic wave
equation in the second order formulation is presented. The finite difference op-
erators satisfy the principle of SBP, and the grid interface with a 1:2 refinement
ratio is handled by ghost points. Stability is proved by the energy method, but
the convergence rate of the numerical scheme is limited to two.

In [16] the norm–compatible interpolation operators are constructed to han-
dle non–conforming grid interfaces, and the Euler equations are used as the
model problem. The norm–compatibility condition leads to an energy estimate
for first order hyperbolic systems and the Schrödinger equation [22]. The inter-
polation error is of the same magnitude as the error due to the derivative ap-
proximations by the SBP operators. In the numerical experiments, it is shown
that the convergence rate of the numerical scheme applied to the Euler equa-
tions is not lowered by using the interpolation operators, compared with the
case with only conforming grid interfaces. To use the interpolation operators
presented in [16], the mesh refinement ratio is fixed to 1 : 2 and the mesh blocks
must be conforming.

Recently, a general purpose methodology for coupling mesh blocks with non–
conforming interfaces was developed in [10]. This technique uses projection
operators to move a discrete finite difference solution to piecewise polynomial
functions in a subspace of a Hilbert space where the coupling is done. The
wave equation in the first order system formulation is used as the model prob-
lem. Stability is proved by the energy method, and the numerical experiments
demonstrate that the convergence rate is the same as if conforming grid inter-
faces were used. The projection operators allow for a very flexible configuration
of meshing in the sense that the interfaces as well as the mesh blocks do not
need to be conforming. Similarly to the interpolation operators, the projec-



3

tion operators satisfy norm–compatibility conditions that are essential for the
stability proof to hold.

In this paper, we focus on the numerical treatment of non–conforming grid
interfaces for the wave equation in the second order form in the framework of the
SBP–SAT methodology. In particular, the stability and accuracy properties are
investigated. We have found that in contrast to first order hyperbolic systems
for which the norm–compatibility condition leads to stability, an extra condition
on the interface operator is needed to derive an energy estimate for the second
order wave equation. This condition is satisfied for the second and fourth order
accurate interpolation operators constructed in [14] and the projection operators
in [10]. We prove stability by the energy method for those cases. For higher
order accurate schemes the extra condition is not satisfied, and we cannot prove
stability. With an eigenvalue analysis, we have found that the violation of the
stability condition is very weak for the projection operators, and in all the
numerical experiments we have conducted no unphysical growth is observed
for the schemes with the projection operators. In certain cases the SBP–SAT
schemes with the sixth and eighth order accurate interpolation operators are
not stable.

Local mesh refinement reduces the number of grid points significantly in
computations. To achieve full efficiency, the numerical scheme must also be
accurate enough. It is desirable that the convergence rate is not depressed by
using non–conforming grid interfaces. Even though this is in most cases true
for first order hyperbolic systems, the situation for second order equations is
less favourable. By a truncation error analysis, we show that the truncation
error near the edge of the non–conforming grid interfaces is two orders larger
than that with conforming grid interfaces. The large truncation error is only
localized at a few grid points in a two dimensional space, and its effect to the
convergence rate may be weakened. In fact, the numerical experiments show
that the convergence rate with a non–conforming grid interface is only one order
lower than the corresponding case with a conforming grid interface. In addition,
an efficiency study is carried out by a comparison of the numerical schemes with
interpolation operators and projection operators. We have found that in certain
cases it is beneficial to use non–conforming grid interfaces, albeit the accuracy
reduction.

The structure of this paper is as follows. In §2, the SBP–SAT methodology is
introduced. We then discuss stability and accuracy properties of the numerical
coupling based on interpolation operators in §3, and projection operators in §4.
Numerical experiments are carried out in §5 including the eigenvalue analyses
for stability, convergence verifications for accuracy and studies on computational
efficiency. We conclude and mention future work in §6.

2 Preliminaries

We begin with the preliminaries that will be used in the discussion of the SBP–
SAT method. Let w1(x) and w2(x) be two real–valued functions in L2[0, 1]. The

inner product is defined by (w1, w2) =
∫ 1

0 w1w2dx. The corresponding norm is
‖w1‖2 = (w1, w1). The computational domain [0, 1] is discretized by N + 1
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equidistant grid points

xi = ih, i = 0, 1, · · · , N, where h =
1

N
.

With any fixedN , a grid function can be represented by a vector and an operator
can be represented by a matrix. Throughout this paper, we use an operator and
a matrix interchangeably when there is no ambiguity.

2.1 The SBP operators

We need the following definitions:

Definition 2.1 A difference operator D1 = H−1Q approximating first deriva-
tive ∂/∂x is a narrow diagonal first derivative SBP operator, if H is diagonal
and positive definite, Q+QT = B = diag(−1, 0, ..., 0, 1) and the interior stencil
width of D1 is minimal.

Definition 2.2 A difference operator D
(b)
2 = H−1(−M (b)+B(b)S) approximat-

ing second derivative ∂/∂x(b(x)∂/∂x) with b(x) > 0 is a narrow diagonal vari-
able coefficient second derivative SBP operator, if H is diagonal and positive def-
inite, M (b) is symmetric positive semidefinite, B(b) = diag(−b(x0), 0, ..., 0, b(xN)),
the first and last row of S is a one sided approximation of ∂/∂x at the boundary

and the interior stencil width of D
(b)
2 is minimal.

The diagonal positive definite matrix H defines the SBP norm, and it has
the interior weight h and special boundary weights. To solve the wave equation
on a curvilinear grid, even if the original equation has only constant coefficients,
the transformed equation has second derivative terms with variable coefficients,

and mixed derivative terms. Therefore, it is important that D1 and D
(b)
2 are

based on the same normH . In addition, D1 andD
(b)
2 must be compatible for the

energy method to be applicable for proving stability. Compatibility [20] means
that M (b) can be written as M (b) = DT

1 HB(b)D1+R(b) where R(b) is symmetric

positive semidefinite. In this case, D
(b)
2 is essentially equal to applying D1 twice

plus a small dissipative term.
The accuracy of the SBP operators are often termed as 2p, meaning that

the approximation error of D1 and D
(b)
2 is O(h2p) in the interior, while near

the boundary the approximation error increases to O(hp). For S ≈ d
dx at the

boundary, the approximation error is O(hp+1). 2pth order accurate SBP oper-
ators D1 are constructed in [25] for p = 1, 2, 3, 4, and in [15] for p = 5. In [14],

2pth order accurate D
(b)
2 are constructed for p = 1, 2, 3, and they are compatible

with D1 constructed in [25]. The construction of D
(b)
2 requires to solve a large

system of nonlinear equations, which makes it very involved when the accuracy
order is high. In certain cases, we only need an SBP operator D2 that approxi-
mates second derivative ∂2/∂x2, and these operators are constructed in [19] for
p = 1, 2, 3, 4 and in [15] for p = 5.

The following lemma, which is often referred to as the borrowing trick [17],
describes an important property of the SBP operator D2 constructed in [15, 19]:
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2p 2 4 6 8 10

α2p 0.4 0.2508560249 0.1878715026 0.0015782259 0.0351202265

Table 1: α2p values

Lemma 2.3 The matrix M in D2 constructed in [19] can be written as

M = hα2p(BS)TBS + M̃,

where M̃ is symmetric positive semidefinite and α2p is a constant independent
of h. The values of α2p are listed in Table 1 for different accuracy orders.

A similar lemma for D
(b)
2 constructed in [14] is presented in [27].

There are other types of SBP operators as well. It is possible to increase
the accuracy by using a block norm H , meaning that H is diagonal in the
interior and has a symmetric–block–structured boundary closure. In this case,
the approximation error in the interior and near the boundary are O(h2p) and
O(h2p−1), respectively. The drawback of the block norm SBP operators is that
the energy method is not applicable to prove stability for the wave equation with
variable coefficients and/or solved on a curvilinear grid, and unphysical growth
is indeed observed in numerical experiments. This has limited the practical
usage of the block norm SBP operators. In [15], artificial dissipation is added
to stablize the scheme.

3 Non–conforming grid interfaces handled by in-

terpolation operators

The numerical coupling of conforming grid interfaces by the SAT method for
the wave equation is discussed in [27]. Our aim in this section is to generalize
the scheme to also couple non–conforming grid interfaces by using the interpo-
lation operators constructed in [16]. To begin with, we consider the two–block–
structured mesh Ω shown in Figure 1a: a coarse mesh ΩL in the left block with
nxL × nyL grid points and a fine mesh ΩR in the right block with nxR × nyR

grid points. The equality nyR = 2nyL − 1 yields a 1:2 mesh refinement ratio
across the interface.

In [16], the interpolation operators are denoted by IF2C and IC2F , where the
subscripts F2C and C2F refer to fine to coarse and coarse to fine, respectively.
Though only interpolation operators for the grid interface with mesh refinement
ratio 1:2 are reported, the construction of the interpolation operators with some
other refinement ratios (1:4, 1:8, · · · ) is possible by the same technique. To
handle a multi–block–structured mesh shown in Figure 1b, even though the
interface between the left–up block and the left–down block is conforming, it is
necessary to treat it as an interface to make the energy method applicable to
prove stability. In other words, the mesh blocks must be conforming.

It is important that the interpolation operators preserve the SBP property.
To this end, the following norm–compatibility condition is essential:

HyRIC2F = (HyLIF2C)
T , (1)
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(a) Two mesh blocks (b) Four mesh blocks

Figure 1: Non–conforming grid interfaces

where HyL and HyR are SBP norms in the left block and right block, both in
the y direction.

The interpolation operators do not interpolate exactly, instead they mimic
the accuracy properties of the diagonal norm SBP operators. The interpolation
error is O(h2p) in the interior of the interface and O(hp) near the edge of the
interface. We call them 2pth order accurate interpolation operators, and when
used together with the 2pth order accurate SBP operators the scheme is also
termed as 2pth order accurate, though the truncation error of the semidiscretized
equation may not be O(h2p) or O(hp). Here, h is used to denote the magnitude
of the mesh sizes for the sake of a simplified notation, though at most four
different mesh sizes could be present in the mesh Ω.

With the above accuracy requirement and the norm–compatibility condition
(1), 2pth order accurate interpolation operators are constructed for p = 1, 2, 3
and 4 in [16]. Though the accuracy is reduced near the edge of the interface, the
number of grid points with the large interpolation error O(hp) is independent
of h.

As will be seen later, when the interpolation operators are used to solve
the wave equation an extra condition is posed on the interpolation operators in
order to apply the energy method to prove stability:

ΞL := HyL(IyL − IF2CIC2F ) ≥ 0, ΞR := HyR(IyR − IC2F IF2C) ≥ 0, (2)

where Ξ ≥ 0 means that the matrix Ξ is symmetric positive semidefinite, and
IyL, IyR are identity matrices. It is straightforward to show that ΞL and ΞR

are symmetric, but the positive semidefiniteness is not a built–in constraint
in the construction process of the interpolation operators in [16]. In §5, an
eigenvalue analysis is performed to show that (2) is satisfied for the second and
fourth order accurate interpolation operators. Negative eigenvalues are present
with the sixth and eighth order accurate interpolation operators. However, the
scheme with sixth other accurate interpolation operators seems stable in some
of the numerical experiments conducted in §5, indicating that (2) is a sufficient
but not necessary condition for stability.
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Matrix Size Nonzero

E0L nxL × nxL (nxL, nxL)

E0R nxR × nxR (1, 1)

ELR nxL × nxR (nxL, 1)

ERL nxR × nxL (1, nxR)

Table 2: Matrices
that are used to
pick up solutions
on the interface.

3.1 The wave equation with a non–conforming grid inter-

face

The wave equation in the second order form in two space dimensions is

Utt = Uxx + Uyy, (3)

where −∞ < x < ∞, 0 ≤ y ≤ 1 and 0 ≤ t ≤ tf . We assume that the
initial conditions and boundary conditions are compatible smooth functions
with compact support. As a consequence, the true solution U is also smooth.
To solve the equation on the mesh Ω shown in Figure 1a, continuity of the
solution and continuity of first normal derivative across the grid interface are
required.

In the numerical coupling scheme, we frequently pick up solutions along the
interface by using the matrices defined in the first column of Table 2. In each
of those matrices, all elements are zero except one element that is equal to one.
The sizes along with the positions of the nonzero element are listed in the second
and third column of Table 2. Note that ELR = ET

RL.
Bold letters are used to denote the operators in two space dimensions, which

are obtained from the corresponding one dimensional operators through the
Kronecker product Ax = Ax ⊗ Iy and Ay = Ix ⊗ Ay, where Ix and Iy are
identity matrices.

Next, Equation (3) is discretized by the SBP operators on Ω and the grid
interface conditions are imposed weakly by the SAT method and interpolation
operators. The semidiscretized equation corresponding to (3) reads:

utt = D2Lu + SATu1 + SATu2 + SAT∂u, (4a)

vtt = D2Rv + SATv1 + SATv2 + SAT∂v, (4b)

where

SATu1 =
1

2
H

−1

xLST
xL(E0Lu− (ELR ⊗ IF2C)v),

SATu2 = −τ H
−1

xL (E0Lu− (ELR ⊗ IF2C)v),

SAT∂u = −1

2
H

−1

xL (E0LSxLu− (ELR ⊗ IF2C)SxRv),

and

SATv1 = −1

2
H

−1

xRST
xR(E0Rv− (ERL ⊗ IC2F )u),

SATv2 = −τ H
−1

xR(E0Rv− (ERL ⊗ IC2F )u),

SAT∂v =
1

2
H

−1

xR(E0RSxRv− (ERL ⊗ IC2F )SxLu).
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Here, u and v are grid functions in ΩL and ΩR, respectively. D2L and D2R

are SBP operators approximating second derivatives. In (4) the penalty terms
for the boundary conditions are omitted as the focus here is the numerical
treatment of the grid interface. Both SATu1 and SATu2 impose weakly the
continuity of the solution across the grid interface. The term ST

xL in SATu1

makes the semidiscretization symmetric with respect to the SBP norms. The
penalty parameter τ in SATu2 controls the strength of the weak enforcement,
and its value is determined by the energy method. The penalty term SAT∂u

imposes weakly the continuity of the first normal derivative across the grid
interface. The penalty terms in Equation (4b) are constructed in a similar way.

In the following, the stability of (4) is proved by the energy method.

3.1.1 Stability analysis by the energy method

Multiplying Equation (4a) by uT
t HL and Equation (4b) by vT

t HR, and using
the equality ELR = ET

RL and relation (1),

d

dt
(uT

t HLut + vT
t HRvt)

=
d

dt
(−uT (MxL ⊗HyL)u+ uT (E0LSxL ⊗HyL)u− τuT (E0L ⊗HyL)u

−vT (MxR ⊗HyR)v − vT (E0RSxR ⊗HyR)v − τvT (E0R ⊗HyR)v

− uT (ST
xLELR ⊗HyLIF2C)v + vT (ST

xRERL ⊗HyRIC2F )u

+ 2τuT (ELR ⊗HyLIF2C)v).

(5)

Next, the following equality is obtained by moving all terms on the right hand
side of (5) to the left

d

dt
EW

H = 0, (6)

where

EW
H =uT

t HLut + vT
t HRvt

+ uT (MxL ⊗HyL)u− uT (E0LSxL ⊗HyL)u+ τuT (E0L ⊗HyL)u

+ vT (MxR ⊗HyR)v + vT (E0RSxR ⊗HyR)v + τvT (E0R ⊗HyR)v

+ uT (ST
xLELR ⊗HyLIF2C)v − vT (ST

xRERL ⊗HyRIC2F )u

− 2τuT (ELR ⊗HyLIF2C)v.

(7)

Then, an energy estimate exists if EW
H ≥ 0 for any u and v, and in this case

EW
H is a discrete energy of the semidiscretized equation (4). To achieve this,

we need relation (2) to obtain

uT (E0L ⊗HyL)u ≥ uT (E0L ⊗HyLIF2CIC2F )u

= uT (E0L ⊗ ITC2FHyRIC2F )u

= ((E0L ⊗ IC2F )u)
T (IxL ⊗HyR)((E0L ⊗ IC2F )u).

It then follows for u:

uT (E0L⊗HyL)u ≥ 1

2
uT (E0L⊗HyL)u+

1

2
((E0L⊗IC2F )u)

T (IxL⊗HyR)((E0L⊗IC2F )u),

(8)
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and for v:

vT (E0R⊗HyR)v ≥ 1

2
vT (E0R⊗HyR)v+

1

2
((E0R⊗IF2C)v)

T (IxR⊗HyL)((E0R⊗IF2C)v).

(9)
In addition, Lemma 2.3 gives:

MxL = M̃xL + hxLα2p(E0LSxL)
T (E0LSxL),

MxR = M̃xR + hxRα2p(E0RSxR)
T (E0RSxR),

(10)

where M̃xL and M̃xR are symmetric positive semidefinite matrices.
Next, we plug in (2.3), (8) and (9) to (7), and obtain

EW
H = Q1 + Q2 + Q3,

where

Q1 =uT
t HLut + vT

t HRvt + uT (M̃xL ⊗HyL)u+ vT (M̃xR ⊗HyR)v,

Q2 =hxLα2p(E0LSxLu)
T (IxL ⊗HyL)(E0LSxLu)

− (E0LSxLu)
T (IxL ⊗HyL)(u− (ELR ⊗ IF2C)v)

+
τ

2
(u− (ELR ⊗ IF2C)v)

T (IxL ⊗HyL)(u− (ELR ⊗ IF2C)v),

Q3 =hxRα2p(E0RSxRv)T (IxR ⊗HyR)(E0RSxRv)

− (E0RSxRv)T (IxR ⊗HyR)((ERL ⊗ IC2F )u − v)

+
τ

2
((ERL ⊗ IC2F )u− v)T (IxR ⊗HyR)((ERL ⊗ IC2F )u− v).

Since M̃xL and M̃xR are positive semidefinite, we have Q1 ≥ 0. To ensure
Q2 ≥ 0 and Q3 ≥ 0, we need

2
√

hxLα2p

√

τ/2 ≥ 1 and 2
√

hxRα2p

√

τ/2 ≥ 1.

⇒ τ ≥ max

(

1

2α2phxL
,

1

2α2phxR

)

.

In the mesh shown in Figure 1a, the mesh refinement ratio across the grid
interface is 1 : 2, i.e. hxR = 1

2hxL. Thus,

τ ≥ 1

α2phxL
(11)

is the condition for EW
H to be a discrete energy. Therefore, an energy estimate

is obtained if (1), (2) and (11) hold.
As shown above, in order to apply the energy method (2) must be satisfied,

which means that the energy estimate is only valid for the second and fourth
order accurate schemes. The same interpolation operators are used for the
Schrödinger equation in [22] but (2) is not needed for stability. For the Euler
equations, (2) is not needed when the standard SBP operators are used for the
discretization, but needed when upwind SBP operators are used [16].
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3.1.2 Convergence rate

We discuss the accuracy properties of (4) by analyzing the truncation error
of (4a). Equation (4b) can be analyzed in a similar way. The approximation
error of the SBP operator D2L is O(h2p) in the interior and O(hp) near the
interface, with the latter one being the dominant source of error. In the first
penalty term SATu1, a large interpolation error O(hp) is located near the
edge of the grid interface. Due to the h−1 factor in both H−1

x and ST
xL, the

localized truncation error of SATu1 is O(hp−2). Similarly, we find that the
localized truncation errors of SATu2 and SAT∂u are O(hp−2) and O(hp−1),
respectively. Therefore, the localized truncation error of the semidiscretization
(4a) is O(hp−2).

In [28], the convergence of the SBP–SAT discretization of the second order
wave equation in one space dimension with a grid interface is analyzed. The
result is that if the penalty parameter is chosen strictly larger than the limit
value required for stability, the localized truncation error O(hp) near the grid
interface results in an error O(hp+1) in the solution for p = 1, and an error
O(hp+2) for p ≥ 2. In other words, we gain one order in convergence if p = 1
and two orders if p ≥ 2.

In our case, the spatial dimension is two and there is the possibility of another
gain in convergence. That is, the number of grid points with truncation error
O(hp−2) is finite and independent of h. Hence, the L2 norm of this truncation
error is O(hp−1), and is one order higher than the pointwise truncation error.
Therefore, we can hope to get an extra gain in convergence comparing with the
corresponding one dimensional case.

By a convergence test in §5, we find that the extra gain is one order, which
gives a total gain of two orders for p = 1 and three orders for p ≥ 2. That is,
the localized truncation error O(hp−2) results in an error O(hp) in the solution
for p = 1, and an error O(hp+1) for p ≥ 2. To obtain this convergence rate,
it is important to choose the penalty parameter strictly larger than the value
required for stability.

Comparing with the case of conforming grid interfaces, the convergence rate
is one order lower. Even though a non–conforming grid interface allows for a lo-
cal mesh refinement, the loss of accuracy may attenuate its efficiency in practice.
To overcome the accuracy reduction by the non–conforming grid interfaces, we
have tried to build interpolation operators with error O(h2p) in the interior and
error O(hp+1) near the edge of the interface, based on both diagonal and block
norm SBP operators by using the symbolic software MAPLE and the approach
presented in [16]. However, we could not find a solution to the resulting system
of equations.

3.2 An extension to T–junction interfaces

In Figure 1b, the interface between the two blocks on the left is conforming. It is
then in many cases desirable not to consider it as a grid interface, but to use the
mesh shown in Figure 2a instead, where the interface there forms a T–junction.
This is because SBP operators have a larger approximation error near the grid
interface than that in the interior. The usage of redundant grid interfaces results
in additional errors in the solution. Moreover, avoiding T–junction interfaces
may end up in a bad partitioning of the computational domain with many un-
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(a) (b) (c)

Figure 2: T–junction interfaces

necessary mesh blocks. With a straightforward application of the interpolation
operators, instability occurs around the T–junction interface intersection point.
The reason is that near the interface intersection point in Figure 2a, the SBP
norm in the vertical direction has the interior weights in the left domain, and
the boundary weights in the two domains on the right. As a consequence, the
norm–compatibility condition is violated and no energy estimate can be derived.

In [21], the T–junction operators are constructed to handle T–junction in-
terfaces and are applied to the advection equation and the Schrödinger equation
in the SBP–SAT framework. Stability is proved by the energy method, but it
comes with the cost that the T–junction operators introduce an error O(h2p)
in the interior of the interface and O(hp) near the edge of the interface. The
T–junction operators can also be used together with the interpolation operators
to handle non–conforming grid interfaces. One constraint for the T–junction
operators is that the interface intersection point must be a grid point in all
involved mesh blocks, for example a close-up T–junction interface in Figure 2b.
It is not straightforward to handle the T–junction interface shown in Figure 2c
by the same technique.

4 Non–conforming grid interfaces handled by pro-

jection operators

In [10], a new methodology of handling grid interfaces is introduced. In contrast
to the interpolation operators which are based on a direct interpolation tech-
nique, the new methodology is based on a projection method. The highlights
are that there is no strict requirement on the mesh refinement ratio, and the
mesh blocks do not need to be conforming.

To illustrate how the projection method works, we consider again the mesh
Ω shown in Figure 1a, and denote yL in ΩL and yR in ΩR the grids on the
interface. In addition, zL and zR denote the discrete finite difference solutions
on yL and yR. In a general setting, eight projection operators are used to move
zL and zR between the two grids on the interface. Firstly, the discrete finite
difference solution zL is projected by a projection operator PL

f2p to a piecewise

continuous function based on the grid yL. The associated mass matrix ML on
yL is diagonal positive definite since Jacobi polynomials are used as the basis
functions. Next, the glue grid y with the mass matrix Mg is defined as the grid
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that consists of the grid points on both yL and yR. The projection operator
PL
p2g is used to project the piecewise continuous function from yL to y, and is

viewed as a basis transformation between polynomial spaces. Similarly, PL
p2f

and PL
g2p are projection operators in the reversed direction corresponding to

PL
f2p and PL

p2g, respectively. PR
f2p, P

R
p2f , P

R
p2g and PR

g2p are the corresponding

projection operators for the grid yR.
Similar to the interpolation operators, there are norm–compatibility condi-

tions for the projection operators:

HyLP
L
p2f = (MLPL

f2p)
T , HyRP

R
p2f = (MRPR

f2p)
T , (12)

and
MgPL

p2g = (MLPL
g2p)

T , MgPR
p2f = (MRPR

g2p)
T . (13)

Define
IpL2R = PR

p2fP
R
g2pP

L
p2gP

L
f2p and IpR2L = PL

p2fP
L
g2pP

R
p2gP

R
f2p, (14)

the operator IpL2R moves zL from yL to yR, and IpR2L moves zR from yR to yL.

For the projection operators P
L/R
f2p and P

L/R
p2f which move the discrete finite

difference solution to the subspace of piecewise continuous functions and back,
the projection error is O(h2p) in the interior and O(hp) near the edge, where

p = 1, 2, 3, 4, 5. P
L/R
p2g and P

L/R
g2p can be viewed as basis transformation operators

between grids. As a consequence, the projection error of IpL2R and IpL2R is also
O(h2p) in the interior and O(hp) near the edge, where p = 1, 2, 3, 4, 5. In other
words, IpL2R and IpL2R have the same accuracy properties as the diagonal norm
SBP operators and the interpolation operators in [16].

4.1 Interface treatment with the projection operators

If no T–junction interface is present in the mesh, for example in Figure 1a
and 1b, the operators IpL2R and IpR2L in (14) are used to impose grid interface
conditions in the same way as the interpolation operators discussed in §3. IpL2R

and IpR2L satisfy an analogue of relation (1) up to tenth order accuracy, and
relation (2) up to fourth order accuracy. The stability analysis and accuracy
properties of the interpolation operators in §3 are still valid for IpL2R and IpR2L.

If a T–junction interface is present in the mesh, for example in Figure 2,
we cannot use IpL2R and IpR2L in a direct way. Instability occurs around the
junction point if on one side the SBP norm has the interior weights while on the
other side it has the boundary weights, and no energy estimate can be obtained.
To overcome the instability, the coupling is done on the glue grid. That is, we
project finite difference solutions to the glue grid, compute the penalty terms
there, and project them back to the finite difference grids. In this way, we avoid
the instability caused by the SBP norms since the penalty terms are computed
on the common glue grid.

The projection technique is very flexible to handle grid interfaces in the sense
that we are free to choose the interface structure, the mesh refinement ratio
and the accuracy of the diagonal norm SBP operators. In [10], the authors
also couple the SBP finite difference method with the discontinuous Galerkin
method, inspired by the relation between the discontinuous Galerkin spectral
element method and the SBP–SAT finite difference method [5].
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Finally, we remark that even with the mesh in Figure 1a where both inter-
polation technique and projection technique are applicable, the interpolation
operators IC2F (IF2C) are not the same as IpL2R(I

p
R2L) in (14). The latter one

has a wider stencil. In the construction procedure of these operators, one gets a
system of linear equations after imposing stability and accuracy requirements.
The solution of the linear system has a few free parameters. There are different
ways to tune those free parameters. In [16], the free parameters are used to
minimize the coefficients of the leading interpolation error in L2 norm, while
in [10] the free parameters are used to minimize the distance between nearest
eigenvalues of Pp2fPf2p for a finite difference grid of size 64. The choice of tun-
ing free parameters has no influence on the theoretical order of accuracy, but
may have an impact on condition (2) and the practical accuracy. This is studied
in more detail in the numerical experiments in §5.

5 Numerical experiments

In this section, numerical experiments are performed to compare the schemes
with the interpolation operators and the projection operators, and verify their
stability and accuracy properties. Moreover, we also conduct two numerical
experiments to study the efficiency of local mesh refinement by solving the wave
equation on a domain with a complex geometry.

The L2 error and maximum error are computed as the norm of the difference
between the exact solution uex and the numerical solution uh according to

‖uh − uex‖L2
=

√

hd(uh − uex)T (uh − uex),

‖uh − uex‖∞ = max |uh − uex|/amp,

where d is the dimension of the equation and amp is the maximum amplitude
of the solution. The convergence rate is computed by

q = log

( ‖uh − uex‖
‖u2h − uex‖

)/

log

(

1

2

)

.

5.1 Stability study

We begin with an eigenvalue analysis for condition (2). The computational
domain is x ∈ [−1, 1] and y ∈ [0, 1] with a grid interface at x = 0. In the left
domain the number of grid points is 26 in both x and y directions, while in the
right domain the number of grid points is 51 in both x and y directions. The
mesh refinement ratio is 1 : 2 across the grid interface, which enables both the
interpolation operators and projection operators applicable. The matrices ΞL

and ΞR are symmetric, so they have real eigenvalues. We denote kL and kR the
smallest eigenvalue of ΞL and ΞR in (2), scaled by the mesh size:

kL = min(eig(ΞL))/hyL kR = min(eig(ΞR))/hyR.

The reason for the scaling is that the elements in ΞL/ΞR are proportional to
hyL/hyR.

In Table 3, we list kL and kR for the interpolation operators and the pro-
jection operators in Column three and four, respectively. For the interpolation
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2p IO PO IO PO

2
kL −6.2 · 10−17 −7.7 · 10−16

−5.0 · 10−3 −5.0 · 10−3

kR −1.0 · 10−16 −8.5 · 10−16

4
kL −6.7 · 10−17 −8.3 · 10−16

−5.0 · 10−3 −5.0 · 10−3

kR −1.4 · 10−16 −6.3 · 10−16

6
kL −6.9 · 10−1 −7.5 · 10−5

−5.0 · 10−3 −5.0 · 10−3

kR −8.0 · 10−1 −8.6 · 10−5

8
kL −3.1 · 101 −4.4 · 10−4

8.7 · 103 −5.0 · 10−3

kR −7.4 · 101 −4.8 · 10−4

10
kL —— −4.8 · 10−4

—— −5.0 · 10−3

kR —— −1.1 · 10−3

Table 3: IO: interpolation operators, PO: projection operators. Column 3 and
4 correspond to the numerical study of relation (2), and Column 5 and 6 corre-
spond to the eigenvalue analysis of (15).

operators, (2) holds for both the second and fourth order accurate cases with
errors up to machine precision. For the second order accurate case, we can prove
that kL, kR ≥ 0 independent of h, because ΞL is diagonally dominant and ΞR

can be transformed to a diagonally dominant matrix without changing the signs
of the eigenvalues. For the sixth and eighth order cases, (2) no longer holds.
The difference between these two cases is that kL and kR are close to zero for
the sixth order case, but far away from zero with the eighth order case. When
increasing the number of grid points, the values of kL and kR remain unchanged.

For the projection operators, (2) also holds also for the second and fourth
order accurate cases. For the sixth, eighth and tenth order cases, (2) does not
hold anymore but the values of kL and kR are close to zero, and they become
slightly closer to zero as the mesh is refined.

Another way of analyzing stability through numerical experiments is to write
the semidiscretized equation (4) as a system of ordinary differential equations

ztt = Qz + F . (15)

It is stable if the eigenvalues of Q are real and non–positive. Otherwise, the
numerical scheme is unstable. We have computed the eigenvalues of Q by using
the same mesh as for the computation of kL and kR. All the eigenvalues are real.
In Table 3, the largest eigenvalue of Q is shown in Column five and six for the
schemes with the interpolation operators and projection operators, respectively.
For the numerical scheme with the interpolation operators, it is stable for the
second, fourth and sixth order cases, and unstable for the eighth order case. For
the numerical scheme with the projection operators, it is stable for up to tenth
order cases even though relation (2) only holds for up to fourth order scheme.
The eigenvalue analysis indicates that (2) is sufficient but not necessary for
stability.
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5.2 Accuracy study

In this section, the convergence of the SBP–SAT method applied to the wave
equation (3) with a non–conforming grid interface is investigated. The analytical
solution to (3) is manufactured, which means that a closed form is chosen and is
used to obtain the initial and boundary data. At the outer boundaries, Dirichlet
boundary condition is imposed weakly by the SAT method as described in [18].

5.2.1 A non–conforming grid interface

In the first numerical experiment, the computational domain is [−1, 1] × [0, 1]
where a grid interface is located at x = 0, y ∈ [0, 1]. In the grid refinement
level r = 0, the numbers of grid points in the left block and right block are
26× 26 and 51× 51. The mesh sizes are halved in both x and y directions when
r is increased by one. In this setting, the grid refinement ratio is 1 : 2, and
both the interpolation operators and the projection operators are applicable for
the numerical treatment of interface conditions. The fourth order Runge–Kutta
method is used as the time integrator with the step size in time chosen so small
that the temporal error is negligible compared with the spatial error.

The manufactured solution to (3) is chosen to be

U(x, y, t) = cos(5x+ 1) cos(5y + 2) cos(5
√
2t+ 3). (16)

The computational results are shown in Table 4, where 2p and r in the
first two columns denote the order of accuracy and the mesh refinement level,
respectively. In Column 3, 4 and 5 the errors in L2 norm, the convergence rates
in L2 norm and maximum norm are shown for the numerical schemes with the
interpolation operators, whereas in Column 6, 7 and 8 the corresponding results
obtained by the schemes with the projection operators are shown.

For the scheme with the interpolation operators and time step ∆t = 0.1h,
the convergence rates in L2 norm are 1, 3 and 4 for the second, fourth and
sixth order schemes, respectively. This agrees with our accuracy discussion in
§3. Though stability cannot be proved by the energy method for the sixth order
accurate case, it seems that for this particular setting the scheme is stable and
exhibits the expected convergence rate. Instability occurs when using the eighth
order accurate scheme.

With the projection operators, the convergence rate in L2 norm is one for
the second order accurate scheme, and p + 1 for the fourth, sixth, eighth and
tenth order accurate schemes, which agrees with the accuracy discussion in §4.
We note that though an energy estimate does not exist for the sixth, eighth and
tenth order accurate cases, the schemes are stable and converge as expected.
The time step is ∆t = 0.1h for 2p = 2, 4, 6. With this time step, the tenth order
accurate scheme yields slightly lower convergence rate than expected, and the
result shown in Table 4 is obtained with ∆t = 0.05h. The eighth order accurate
scheme is a special one, since with ∆t = 0.05h it is even unstable. To obtain the
results in Table 4, ∆t = 0.025h is used as the time step, which indicates that
the eighth order accurate semidiscretized equation is stiff. Moreover, the error
obtained with the eighth order accurate scheme is larger than the error obtained
with the sixth order accurate scheme, except for the finest mesh refinement level.

From Table 4, it is also observed that the errors are similar to each other
for the schemes of the same order of accuracy with interpolation operators and
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2p r L2 error qL2
qM L2 error qL2

qM

2 0 1.28 · 10−2 —— —— 3.76 · 10−2 —— ——

1 7.05 · 10−3 0.87 0.85 2.02 · 10−2 0.90 0.83

2 3.70 · 10−3 0.93 0.89 1.04 · 10−2 0.95 0.91

3 1.90 · 10−3 0.96 0.95 5.31 · 10−3 0.98 0.95

4 0 8.41 · 10−4 —— —— 1.22 · 10−3 —— ——

1 1.18 · 10−4 2.83 2.57 1.15 · 10−4 3.40 3.46

2 1.52 · 10−5 2.96 2.86 1.31 · 10−5 3.14 2.42

3 1.91 · 10−6 2.99 2.69 1.61 · 10−6 3.03 1.49

6 0 7.65 · 10−5 —— —— 1.10 · 10−4 —— ——

1 6.91 · 10−6 3.47 2.92 8.94 · 10−6 3.62 2.62

2 5.02 · 10−7 3.78 2.56 5.88 · 10−7 3.93 3.97

3 3.33 · 10−8 3.91 3.01 3.85 · 10−8 3.93 3.01

8 0 7.21 · 10−4 —— ——

1 1.53 · 10−5 5.56 4.73

2 3.97 · 10−7 5.27 4.16

3 1.05 · 10−8 5.25 4.95

10 0 3.39 · 10−5 —— ——

1 5.12 · 10−7 6.05 5.08

2 1.19 · 10−8 5.43 4.54

3 2.27 · 10−10 5.71 4.94

Table 4: Convergence of the SBP–SAT scheme for the wave equation with a grid
interface. The interface conditions are handled by the interpolation operators
(Column 3,4,5) and the projection operators (Column 6,7,8).
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2p r L2 error qL2
Maximum error qM

2 0 1.07 · 10−1 —— 1.40 · 10−1 ——

1 5.83 · 10−2 0.87 8.21 · 10−2 0.77

2 3.04 · 10−2 0.94 4.47 · 10−2 0.88

3 1.55 · 10−2 0.97 2.35 · 10−2 0.93

4 0 3.03 · 10−3 —— 9.39 · 10−3 ——

1 3.08 · 10−4 3.29 2.13 · 10−3 2.14

2 3.68 · 10−5 3.07 5.34 · 10−4 1.99

3 4.37 · 10−6 3.07 1.33 · 10−4 2.01

6 0 3.00 · 10−4 —— 2.04 · 10−3 ——

1 1.63 · 10−5 4.20 2.23 · 10−4 3.19

2 9.47 · 10−7 4.11 3.26 · 10−5 2.77

3 6.22 · 10−8 3.93 4.49 · 10−6 2.86

8 0 1.04 · 10−2 —— 1.46 · 10−2 ——

1 6.06 · 10−5 7.43 3.52 · 10−4 5.38

2 1.36 · 10−6 5.48 5.74 · 10−6 5.94

3 3.83 · 10−8 5.15 3.92 · 10−7 3.87

10 0 1.12 · 10−4 —— 8.56 · 10−4 ——

1 1.51 · 10−6 6.23 2.15 · 10−5 5.31

2 2.31 · 10−8 6.03 1.14 · 10−6 4.24

3 3.20 · 10−10 6.17 1.95 · 10−8 5.86

Table 5: Convergence for the wave equation with a T–junction interface handled
by the projection operators.

projection operators.

5.2.2 A T–junction interface

Next, we consider the computational domain [−1, 1]2 that is divided into three
mesh blocks as shown in Figure 2a. The interfaces are located at x = 0, y ∈
[−1, 1] and y = 0, x ∈ [0, 1]. In the grid refinement level r = 0, the numbers of
grid points in Block 1 (left), Block 2 (right–up) and Block 3 (right–down) are
28 × 51, 27 × 25 and 51 × 50, respectively. The mesh sizes are halved in both
x and y directions when r is increased by one. This partitioning and meshing
result in a highly non–conforming grid interface with a close-up shown in Figure
2c. The interface conditions are imposed weakly by the SAT method with the
projection operators. To test convergence, (16) is used as the analytical solution.
The computational results are shown in table 5.

Clearly, (p + 1)th convergence rate in L2 norm is obtained for p = 2, 3, 4, 5
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Figure 3: An example of an acoustic time–harmonic plane wave impinging on
a circular inclusion, where the wavelength is much smaller inside the circular
inclusion than that outside.

and first order convergence rate is obtained for p = 1. Here, we observe again
that the schemes higher than fourth order accuracy are stable though no energy
estimate can be obtained.

5.3 Efficiency study

In many applications, the frequencies of the present waves are given by initial
and boundary data, and internal forcing functions. The wavelength of a wave
is determined by the ratio between the wave speed of the material in which the
wave is traveling and the frequency of the wave. The accuracy of a numerical
solution can be stated in terms of how many grid points per wavelength are used
to resolve the present waves [11]. A reduction in wave speed confined to a subset
of the physical domain yields waves of a shorter wavelength localized in that
subset. For accuracy it is therefore necessary to refine the grid to compensate
for the shorter present wavelengths. For computational efficiency it is important
that this refinement is done only in the subset that constitutes the slower media,
since it is only in the slower media that wavelengths are reduced. As an example
Figure 3 shows the scattering and diffraction of an acoustic time–harmonic plane
wave impinging on a circular region of a slower material, the wavelength is seen
to be reduced inside the circular region.

Geometrical features of the physical domain such as a complex boundary or
an internal cavity introduce a local radius of curvature. A small local radius of
curvature compared with the present wavelengths can imply difficulties when
generating a computational grid. As an example Figure 4a shows the scattering
of an acoustic time-harmonic plane wave impinging on a circular cavity of a
radius of curvature smaller than the wave length of the incoming and scattered
waves. A part of the grid used to represent the wave field is shown as an inset,
where it is seen in Figure 4b that the quality of the grid is impaired as the grid
spacing gets unnecessarily small close to the cavity.

In the preceding experiments it has been verified that using interpolation and
projection operators to patch together the computational grid in a multi–block
fashion yields a stable discretization, the convergence rate, however, was seen to
be reduced. In the following experiments we investigate the practical benefit of
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(a) A circular cavity (b) A close-up of the mesh near the cavity

Figure 4: An examples of an acoustic time–harmonic plane wave impinging on
a circular inclusion cavity with a grid close to the cavity where the grid size in
the azimuth direction is much smaller than that in the radial direction.

using interpolation operators and projection operators in a region with a slower
wave speed or a geometrical feature of a small radius of curvature albeit the order
reduction. In particular, we will consider experiments involving acoustic waves
impinging on a circular cavity and a circular inclusion of a differing material.

The numerical method used to solve the acoustic wave equation in the fol-
lowing experiments is based on the SBP-SAT scheme described in [27]. The
geometrical features are handled by using a multi-block strategy to decompose
the physical domain into blocks, where each block allows for a mapping to curvi-
linear coordinates. In [27] the blocks that constitute the domain are discretized
by using conforming grids and patched together by the SAT method. In this pa-
per we allow for non–conforming grids by implementing interpolation operators
as well as projection operators into the handling of the multi-block interfaces.

The following numerical experiments use two different two dimensional do-
mains:

• D1: An acoustic plane with a circular cavity of radius a.

• D2: An acoustic plane with a circular inclusion of radius a.

The geometries of the domains are handled by decomposing each domain in a
multi–block fashion. The blocks are then patched together to compound the
entire domain. A detailed description of how these two grids are constructed is
presented in the Appendix.

5.3.1 A circular cavity

In this numerical experiment, we consider a domain of an infinite homogeneous
medium with a circular cavity of radius a = 1. Let a plane harmonic wave
ui = ei(ωt−γx) propagate in that domain and impinge on the cavity. A scat-
tered wave us is generated when the incident wave hits the cavity, and the
total displacement ui + us satisfies the wave equation. Homogeneous Neumann
boundary condition is imposed at the cavity boundary. A detailed derivation of
an analytical solution is found in [6, §7].
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Figure 5: Computational domain of the circular cavity experiment

We take ω = 2π and c = 2.5, which give a wavelength 2.5. The compu-
tational domain D1 is chosen to be the rectangular [−25.5, 11.7]× [−11.7, 11.7]
and the cavity is centred at the origin. Two ways of partitioning the domain are
considered, namely the N–partitioning and the T–partitioning shown in Figure
5a and 5b, respectively. In the N–partitioning approach, we only use conforming
gird interfaces and conforming mesh blocks. The cavity is surrounded by four
blocks that constitute the square [−11.7, 11.7]2, which is attached by a rectan-
gular domain to the left. The numbers of grid points on each edge are shown in
the figure, and are chosen so that approximately 20 grid points per wavelength
are used in the discretization. In this setting, the mesh is of bad quality since
the mesh size near the cavity is significantly smaller than that near the outer
boundaries. To overcome this drawback, we propose the T–partitioning where
the cavity is surrounded by a small square block [−1.3, 1.3]2. Here, all the grid
interfaces are also conforming but a T–junction interface is present at x = −11.7
with the intersection points marked by the dots. Again we choose the mesh size
so that there are approximately 20 grid points per wavelength, and here it is
only over–resolved in the small block [−1.3, 1.3]2. The T–partitioning results in
a mesh of 54903 grid points. The number of grid points with the N–partitioning
is about doubled to 109867.

We employ the fourth and sixth order SBP–SAT method to propagate the
wave for ten periods, and show the recorded maximum errors in Figure 6a and
6b. In both cases, the maximum error with the T–partitioning is about three
times larger than that with the N–partitioning. The is not surprising because
the mesh with the T–partitioning has less grid points than the mesh with the
N–partitioning, and the corresponding scheme with the T–partitioning has one
order lower convergence rate than that of the N–partitioning. It does not seem
to improve the efficiency by using T–junction interfaces for this case.

Although using T–junction interfaces introduces a larger error in the solu-
tion, it could be beneficial for a problem with a more complex geometry. For
example, if there are several cavities in the domain, an N–partitioning that only
allows conforming mesh blocks would produce a large number of small mesh
blocks. With a higher order accurate scheme, the boundary stencil gets wider
and the number of grid points in each direction must be large enough in every
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Figure 6: Maximum error of the numerical experiment with the circular cavity

mesh block. It is therefore over–resolved in those small mesh blocks and results
in a suboptimal performance of the numerical scheme, and T–junction interfaces
could be desirable.

5.3.2 A circular inclusion

Consider a circular domain of radius a = 1 embedded in an infinite surrounding
medium of differing material with wave speed c. Let the wave speed c′ of the
circular domain be such that c′ < c and let an incoming time–harmonic plane
wave uI(x, y, t) = ei(ωt−γx), γ = ω

c travel in the x–direction and impinge on the
circular inclusion. The resulting field consists of the incoming wave uI , as well
as the scattered and diffracted waves uS and uD, respectively. The conditions
at the interface of the circular inclusion are

uI + uS = uD,

c
∂

∂n
(uI + uS) = c′

∂

∂n
uD,

on x2 + y2 = 1, (17)

where ∂
∂n denotes the normal derivative on the interface. Since c′ < c, the short

wavelength occurs inside the circular domain. An analytical expression for the
solution is given in [1, pp. 667].

In the numerical experiments we take ω = 2π, c = 1 and c′ = 1/10, which
give a wavelength of 1 and 1/10 outside and inside the circular inclusion, re-
spectively. To resolve the geometric features, the computational domain is de-
composed into 10 conforming blocks as shown in Figure 7. We take the side
length 2D = 2.6 for the square block outside the circular inclusion, and the side
length 2d = 0.7

√
2 for the square block inside the circular inclusion. Both square

blocks are centered at the origin. The Cartesian block [−5.9,−1.3]× [−1.3, 1.3]
is then attached to the left of this representation. Firstly, we only use conform-
ing grid interfaces with the numbers of grid points in each block given in Table
6. The resolution outside the circular inclusion is about 16 and 51 points per
wavelength in the horizontal and vertical direction, respectively. Inside the cir-
cular inclusion the waves are resolved by about 10 grid points per wavelength in
both directions. Hence, the waves are significantly over–resolved in the vertical
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Figure 7: Computational domain of the circular inclusion experiment

Block Nξ Nη

B0 51 101

B(1)
1 –B(1)

4 101 26

B(2)
1 –B(2)

4 101 51

B(2)
5 101 101

Table 6: Number of grid points with
conforming grid interfaces

Block Nξ Nη

B0 51 51

B(1)
1 –B(1)

4 51 26

B(2)
1 – B(2)

4 101 51

B(2)
5 101 101

Table 7: Number of grid points with
non–conforming grid interfaces

direction outside the inclusion, which leads to a suboptimal efficiency of the
numerical scheme.

To amend the over–resolution, we partition the computational domain in
the same way as above but use non–conforming interfaces denoted by the small
red circles in Figure 7. The non–conforming grid interfaces are handled by the
interpolation and projection operators. The numbers of grid points in each
block are chosen as in Table 7. Now the resolution is reduced to about 26 grid
points per wavelength in the vertical direction outside the circular inclusion.
The interface conditions (17) are imposed numerically with the SAT technique
and at outer boundaries the exact solution is injected at all times. In [4], the
SBP finite difference method applied to the wave equation with the injection
method to impose the Dirichlet boundary condition is proved to be stable.

The solution is propagated numerically for 10 temporal periods by the SBP–
SAT method and the relative maximum error is recorded at each time step. In
Figures 8a and 8b we plot the recorded relative maximum error as functions of
time. Here we see that the errors are similar in both cases. The grid with con-
forming interfaces has 46460 grid points, whereas the grid with non–conforming
interfaces has 38710 grid points. The smallest grid size is determined by the res-
olution inside the circular inclusion, for this reason the time step ∆t = 4× 10−4

for the sixth order SBP-SAT method and ∆t = 5 × 10−4 for the fourth order
SBP-SAT method are the same for both grids. We conclude that even though
the formal order of accuracy is lowered by using blocks with non-conforming
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Figure 8: Maximum error of the numerical experiment with the circular inclu-
sion

interfaces it can be a beneficial strategy within the SBP-SAT framework when
the physical domain contains regions that require a higher density of grid points.
We also note that for more complex multi–block domains consisting of a larger
number of blocks the benefits of using blocks with non–conforming grid inter-
faces are expected to increase.

In the experiment with the sixth order SBP–SAT scheme with the interpola-
tion operators, the numerical solution blows up quickly, which indicates that the
scheme is unstable. The corresponding scheme with the projection operators is
stable. According to the stability analysis in §5.1, for the sixth order accurate
scheme condition (2) holds for neither the interpolation operator nor the pro-
jection operator. If the smallest eigenvalue of ΞL/R is non–negative, then an
energy estimate exists that ensures stability. The smallest eigenvalue of ΞL/R

scaled by the mesh size is in the magnitude of −10−1 for the sixth order accu-
rate interpolation operators, and −10−5 for the sixth order accurate projection
operators. The violation of (2) is much weaker for the projection operator than
for the interpolation operator, which explains the observation in the numerical
experiments.

6 Conclusion and outlook

In this work, high order accurate SBP finite difference operators are used to
discretize the wave equation in the second order form on a block–structured
mesh. Adjacent mesh blocks are patched together by imposing suitable interface
conditions via the SAT technique. The emphasis is placed on the numerical
treatment of non–conforming grid interfaces by the interpolation operators and
projection operators, which are also compared in terms of the stability and
accuracy properties. In contrast to first order hyperbolic equation, stability of
the scheme for the second order wave equation introduces an extra condition on
the numerical treatment of non–conforming grid interfaces. This condition is
satisfied for the second and fourth order accurate cases, and an energy estimate
is derived to ensure stability. For higher order accurate schemes, the extra
stability condition is violated. We show by the eigenvalue analysis that the
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violation is stronger with interpolation operators than with projection operators.
Unphysical growths are observed in the numerical experiments with high order
interpolation operators, whereas with projection operators the scheme is stable
in all the experiments we have conducted.

We have also performed a truncation error analysis and an investigation of
the convergence property for the scheme, which indicates that the convergence
rate is one order lower than that in the corresponding case with conforming
grid interfaces. This is verified in numerical experiments. The efficiency studies
show that for a problem with a very complex geometry, it could be beneficial
to use non–conforming grid interfaces.

For high order accurate interpolation operators and projection operators,
there are free parameters left in the construction process. It is desirable to tune
the free parameters so that the extra stability condition is satisfied. However,
the resulting nonlinear problem seems difficult to solve. To overcome the accu-
racy reduction, more accurate interpolation operators or new ways of imposing
interface conditions are needed.

Appendix

We give a detailed description for the construction of the two grids used in
the efficiency studies in §5.3. A general block Bi of a decomposition has four
boundaries defined by the parametrized curves

CiS = (xiS(ξ), yiS(ξ)) , CiN = (xiN (ξ), yiN (ξ)) ,

CiW = (xiW (η), yiW (η)) , CiE = (xiE(η), yiE(η)) ,

where 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1. CiS and CiN describe one pair of opposing sides
and CiW and CiE the other pair. Let PiSW denote the point of intersection
between the curves CiS and CiW e.t.c. A bijection (x, y) = Ti(ξ, η) from the
unit square S = [0, 1]2 to the block Bi of the decomposition is given by the
transfinite interpolation [9] as

Ti(ξ, η) = (1− η)CiS + ηCiN + (1 − ξ)CiW + ξCiE
− ξηPiNE − ξ(1− η)PiSE − η(1 − ξ)PiNW − (1 − ξ)(1− η)PiSW .

The unit square S is discretized by the points

ξj = jhξ, hξ = 1/(Niξ − 1), j = 0, . . . , Niξ − 1,

ηk = khη, hη = 1/(Niη − 1), k = 0, . . . , Niη − 1,

where Niξ and Niη are integers determining the number of grid points in the
spatial directions of the discretization of the block Bi. The corresponding grid
points are computed as

(xj , yk) = Ti(ξj , ηk).
We now give details on how the grids in D1−D2 are constructed. D1 represents a
circular cavity in an infinite surrounding media. We construct the computational
grid such that the cavity of radius a is centered inside a square of side 2D. This

is done by introducing four blocks B(1)
1 –B(1)

4 . The bounding curves of block B(1)
1
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are given by

C(1)
1S = a

(

ξ
√
2− 1/

√
2,

√

1− (ξ
√
2− 1/

√
2)2

)

,

C(1)
1N = (D, 2Dξ −D) ,

C(1)
1W =

(

−η(D − a/
√
2)− a/

√
2, η(D − a/

√
2) + a/

√
2
)

,

C(1)
1E =

(

η(D − a/
√
2) + a/

√
2, η(D − a/

√
2) + a/

√
2
)

.

The bounding curves of the remaining blocks B(1)
2 –B(1)

4 that constitute the
square with the cavity at the center are obtained via rotation by a factor π/2,

C(1)
ij = C(1)

i−1j

[

cosπ/2 − sinπ/2
sinπ/2 cosπ/2

]

, i = 2, 3, 4, j = S,N,W,E. (18)

The domain D1 can now be represented by attaching the grid representing the
cavity to one or more Cartesian blocks.

The circular inclusion of D2 is decomposed into five blocks B(2)
1 –B(2)

5 . The

block B(2)
1 is a square at the center of the circular inclusion with corners at the

points (±ad,±ad), 0 < d <
√
2/2 defined by the bounding curves,

C(2)
1S = a (2dξ − d,−d) , C(2)

1N = a (2dξ − d, d) ,

C(2)
1W = a (−d, 2dη − d) , C(2)

1E = a (d, 2dη − d) .

Here a is the radius of the circular inclusion. The block B(2)
2 is defined by its

bounding curves,

C(2)
2S = C(2)

1N ,

C(2)
2N = C(1)

1S ,

C(2)
2W = a

(

−η(
√
2/2− d)− d, η(

√
2/2− d) + d

)

,

C(2)
2E = a

(

η(
√
2/2− d) + d, η(

√
2/2− d) + d

)

.

The bounding curves of the remaining blocks B(2)
3 –B(2)

5 that constitute the cir-
cular inclusion of D2 are obtained via rotations by a factor π/2 as in (18). The
inclusion is then centered inside a square of side 2D by attaching it to the blocks

B(1)
1 –B(1)

4 above. The circular inclusion is now the union of the nine blocks B(1)
1 –

B(1)
4 and B(2)

1 –B(2)
5 . The domain D2 can now be represented by attaching the

grid representing the inclusion to one or more Cartesian blocks.
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