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Abstract

In this paper, we analyze the streamline diffusion finite element method (SDFEM) for a

model singularly perturbed convection-diffusion equation on a Shishkin triangular mesh

and hybrid meshes. Supercloseness property of uI −uN is obtained, where uI is the inter-

polant of the solution u and uN is the SDFEM’s solution. The analysis depends on novel

integral inequalities for the diffusion and convection parts in the bilinear form. Further-

more, analysis on hybrid meshes shows that bilinear elements should be recommended

for the exponential layer, not for the characteristic layer. Finally, numerical experiments

support these theoretical results.

1. Introduction

We consider the singularly perturbed boundary value problem

(1.1)
−ε∆u+ bux + cu = f in Ω = (0, 1)2,

u = 0 on ∂Ω,

where ε ≪ |b| is a small positive parameter, the functions b(x, y), c(x, y) and f(x, y) are

supposed sufficiently smooth. We also assume

b(x, y) ≥ β > 0, c(x, y)− 1

2
bx(x, y) ≥ µ0 > 0 on Ω̄,
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where β and µ0 are some constants. The solution of (1.1) typically has an exponential

layer of width O(ε ln(1/ε)) near the outflow boundary at x = 1 and two characteristic (or

parabolic) layers of width O(
√
ε ln(1/ε)) near the characteristic boundaries at y = 0 and

y = 1.

Because of the presence of layers, standard finite element methods suffer from non-

physical oscillations unless meshes are taken sufficiently fine which are useless for prac-

tical purposes. Thus, stabilized methods and/or a priori adapted meshes (see [15, 12])

are widely used in order to get discrete solutions with satisfactory stability and accuracy.

Among them, the streamline diffusion finite element method (SDFEM) [7] combined with

the Shishkin mesh [14] presents good numerical performances and has been widely studied,

see [17, 5, 3, 18].

In this work, we will analyze supercloseness property of the SDFEM for problem

(1.1). Here “supercloseness” means the convergence order of uI − uN in some norm is

greater than one of u − uI . This property in the case of rectangular meshes has been

analyzed in [17, 5] by means of integral identities [10] and it is helpful to derive optimal

L2 estimates, L∞ bounds and postprocessing procedures. Unfortunately, on triangular

meshes few results of supercloseness property could be found up to now. In this article,

we present it in Theorem 4.1 by means of novel integral inequalities, i.e., Lemmas 3.1 and

3.2. Furthermore, the SDFEM is analyzed on Shishkin hybrid meshes which consist of

rectangles and triangles. Theorem 5.1 shows that rectangles are strongly recommended

for the exponential layer and not necessary for the characteristic layer.

Here is the outline of this article. In §2 we give some a priori information for the

solution of (1.1), then introduce a Shishkin mesh and a streamline diffusion finite element

method on the mesh. In §3 we present integral inequalities and the interpolation errors.

In §4 we analyze the supercloseness property on the Shishkin triangular mesh. In §5 we

obtain supercloseness property again on hybrid meshes. Finally, some numerical results

are presented in §6.
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Throughout the article, the standard notations for the Sobolev spaces and norms will

be used; and generic constants C, Ci are independent of ε and N . An index will be

attached to indicate an inner product or a norm on a subdomain D, for example, (·, ·)D
and ‖ · ‖D.

2. Regularity results, Shishkin meshes and the SDFEM

2.1. Regularity results

As mentioned before the solution u of (1.1) possesses an exponential layer at x = 1

and two characteristic layers at y = 0 and y = 1. For our later analysis we shall make the

following assumption.

Assumption 2.1. The solution u of (1.1) can be decomposed as

(2.1a) u = S + E1 + E2 + E12, ∀(x, y) ∈ Ω̄.

For 0 ≤ i+ j ≤ 3, the regular part satisfies

(2.1b)

∣

∣

∣

∣

∂i+jS

∂xi∂yj
(x, y)

∣

∣

∣

∣

≤ C,

while for 0 ≤ i+ j ≤ 3, the layer terms satisfy

(2.1c)

∣

∣

∣

∣

∂i+jE1

∂xi∂yj
(x, y)

∣

∣

∣

∣

≤ Cε−ie−β(1−x)/ε,

(2.1d)

∣

∣

∣

∣

∂i+jE2

∂xi∂yj
(x, y)

∣

∣

∣

∣

≤ Cε−j/2(e−y/
√
ε + e−(1−y)/

√
ε),

and

(2.1e)

∣

∣

∣

∣

∂i+jE12

∂xi∂yj
(x, y)

∣

∣

∣

∣

≤ Cε−(i+j/2)e−β(1−x)/ε(e−y/
√
ε + e−(1−y)/

√
ε).

Remark 2.1. In [8, 9] Kellogg and Stynes presented sufficient compatibility conditions

on f for constant functions b, c that ensure the existence of (2.1a)–(2.1e).
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Fig.1: Dissection of Ω and triangulation TN .

  (xi,yj)

  K1
i,j

  K2
i,j

Fig.2: K1

i,j and K
2

i,j

2.2. Shishkin meshes

When discretizing (1.1), first we divide the domain Ω into four(six) subdomains as

Ω̄ = Ωs ∪ Ωx ∪ Ωy ∪ Ωxy(see Fig. 1), where

Ωs := [0, 1− λx]× [λy, 1− λy] , Ωy := [0, 1− λx]× ([0, λy] ∪ [1− λy, 1]) ,

Ωx := [1− λx, 1]× [λy, 1− λy] , Ωxy := [1− λx, 1]× ([0, λy] ∪ [1− λy, 1]) .

Two parameters λx and λy are used here for mesh transition from coarse to fine and are

defined by

λx := min

{

1

2
, ρ

ε

β
lnN

}

and λy := min

{

1

4
, ρ
√
ε lnN

}

.

For technical reasons, we set ρ = 2.5. Moreover, we assume ε ≤ min{N−1, ln−6N} and

λx = ρεβ−1 lnN ≤ 1

2
and λy = ρ

√
ε lnN ≤ 1

4

as is typically the case for (1.1).

Next, we introduce the set of mesh points
{

(xi, yj) ∈ Ω̄ : i, j = 0, · · · , N
}

defined by

xi =

{

2i(1− λx)/N, for i = 0, · · · , N/2,

1− 2(N − i)λx/N, for i = N/2 + 1, · · · , N
and

yj =















3jλy/N, for j = 0, · · · , N/3,

(3j/N − 1)− 3(2j −N)λy/N, for j = N/3 + 1, · · · , 2N/3,

1− 3(N − j)λy/N, for j = 2N/3 + 1, · · · , N .
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By drawing lines through these mesh points parallel to the x-axis and y-axis, the domain

Ω is partitioned into rectangles and triangles by drawing the diagonal in each rectangle

(see Fig. 1). This yields a piecewise uniform triangulation of Ω denoted by TN .

We define hx,i := xi+1 − xi and hy,j := yj+1 − yj which satisfy

N−1 ≤hx,i =: Hx, hy,j =: Hy ≤ 3N−1, 0 ≤ i < N/2, N/3 ≤ j < 2N/3,

C1εN
−1 lnN ≤ hx,i =: hx ≤ C2εN

−1 lnN, N/2 ≤ i < N,

C1

√
εN−1 lnN ≤ hy,j =: hy ≤ C2

√
εN−1 lnN, j = 0, . . . , N/3− 1; 2N/3, . . . , N − 1.

For mesh elements we shall use some notations: K1
i,j for the mesh triangle with vertices

(xi, yj), (xi+1, yj) and (xi, yj+1); K
2
i,j for the mesh triangle with vertices (xi, yj+1), (xi+1, yj)

and (xi+1, yj+1) (see Fig. 2); K for a generic mesh triangle.

2.3. The streamline diffusion finite element method

The variational formulation of problem (1.1) is:

(2.2)







Find u ∈ V such that for all v ∈ V

ε(∇u,∇v) + (bux + cu, v) = (f, v),

where V := H1
0 (Ω). Note that the weak formulation (2.2) has a unique solution by means

of the Lax-Milgram Lemma.

Let V N ⊂ V be the finite element space of piecewise linear elements on the Shishkin

mesh TN . The SDFEM consists in adding weighted residuals to the standard Galerkin

method in order to stabilize the discretization. It reads:

(2.3)











Find uN ∈ V N such that for all vN ∈ V N ,

aSD(u
N , vN) = (f, vN) +

∑

K⊂Ω

(f, δKbv
N
x )K ,

where

aSD(u
N , vN) = aGal(u

N , vN) + astab(u
N , vN)
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and

aGal(u
N , vN) = ε(∇uN ,∇vN) + (buN

x + cuN , vN),

astab(u
N , vN) =

∑

K⊂Ω

(−ε∆uN + buN
x + cuN , δKbv

N
x )K .

Note that ∆uN = 0 in K for uN |K ∈ P1(K) and δK = δ(x, y)|K. In this article, the

stabilization parameter δ is chosen to be constant on each subdomain of Ω. Denote by δs

the restriction of δ in Ωs and similar δx, δy and δxy.

The SDFEM satisfies the following orthogonality

(2.4) aSD(u− uN , vN) = 0, ∀vN ∈ V N .

Moreover, as shown in [12], if the stabilization parameter satisfies

(2.5) 0 ≤ δK ≤ µ0

2‖c‖2L∞(K)

,

the SDFEM is coercive with respect to the streamline diffusion norm

(2.6) aSD(v
N , vN) ≥ 1

2
‖vN‖2SD, ∀vN ∈ V N

where

(2.7) ‖vN‖2SD := ‖vN‖2ε +
∑

K⊂Ω

δK‖bvNx ‖2K

and ‖vN‖2ε := ε|vN |21 + µ0‖vN‖2. Note that existence and uniqueness of the solution to

(2.3) is guaranteed by the coercivity (2.6).

3. Integral inequalities and interpolation errors

In this section we present integral inequalities for the diffusion and convection parts

in the bilinear form and some interpolation bounds for our later analysis. For notation

convenience, we set

∂l
x∂

m
y v :=

∂l+mv

∂xl∂ym
.

The following lemma will be used to obtain sharp estimates of the diffusion part in

the bilinear form aSD(·, ·).
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Lemma 3.1. Assume that w ∈ C3(Ω̄) and vN ∈ V N . Let wI be the standard nodal linear

interpolation on TN and l, m be nonnegative integers. If hy,j−1 = hy,j , then we have

∣

∣

∣

∣

∣

∫

Qi,j

(w − wI)xv
N
x dxdy

∣

∣

∣

∣

∣

≤ C
∑

l+m=2

hl
x,ih

m
y,j‖∂l+1

x ∂m
y w‖L∞(Qi,j)‖vNx ‖L1(Qi,j),

where Qi,j := K1
i,j ∪K2

i,j−1. If hx,i−1 = hx,i, then we have

∣

∣

∣

∣

∣

∫

Si,j

(w − wI)yv
N
y dxdy

∣

∣

∣

∣

∣

≤ C
∑

l+m=2

hl
x,ih

m
y,j‖∂l

x∂
m+1
y w‖L∞(Si,j)‖vNy ‖L1(Si,j)

where Si,j := K2
i−1,j ∪K1

i,j.

Proof. Note that vNx is a constant on the set Qi,j. First we expand (w−wI)x by Taylor’s

formula at (xi, yj) with Lagrange form of the remainder. After integration on Qi,j, we

can offset terms involving low derivatives of w. Then the first inequality is obtained. The

second inequality can be proved similarly . See [19, Lemma 2.1] for more details.

The following integral inequalities provide sharp estimates of the convection part in

the bilinear form aSD(·, ·).

Lemma 3.2. Assume that w ∈ C3(Ω̄) and let wI be the piecewise linear interpolation of w

on TN . Set α = 1 or α = 2 and p, q, l,m are nonnegative integers satisfying 0 ≤ p+ q ≤ 1.

Suppose hx,i−1 = hx,i, then we have

∣

∣

∣

∣

∣

∫

Kα
i−1,j

∂p
x∂

q
y(w − wI)dxdy −

∫

Kα
i,j

∂p
x∂

q
y(w − wI)dxdy

∣

∣

∣

∣

∣

(3.1)

≤C
∑

l+m=3

hl+1−p
x,i hm+1−q

y,j

∥

∥∂l
x∂

m
y w
∥

∥

L∞(Kα
i−1,j∪Kα

i,j)
.

Suppose hy,j−1 = hy,j , then we have

∣

∣

∣

∣

∣

∫

Kα
i,j−1

∂p
x∂

q
y(w − wI)dxdy −

∫

Kα
i,j

∂p
x∂

q
y(w − wI)dxdy

∣

∣

∣

∣

∣

(3.2)

≤C
∑

l+m=3

hl+1−p
x,i hm+1−q

y,j

∥

∥∂l
x∂

m
y w
∥

∥

L∞(Kα
i,j−1∪Kα

i,j)
.
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Proof. We just prove (3.1) for α = 1 and p = q = 0. The other estimates can be obtained

similarly.

Expanding (w − wI)x by Taylor’s formula at (xi, yj), we have

(w − wI)|K1
i,j

= w(x, y)− (w(xi, yj)λ1 + w(xi+1, yj)λ2 + w(xi, yj+1)λ3)

= w(xi, yj) + (wx(xi, yj)(x− xi) + wy(xi, yj)(y − yj))

+

(

wxx(xi, yj)
(x− xi)

2

2
+ wxy(xi, yj)(x− xi)(y − yj) + wyy(xi, yj)

(y − yj)
2

2

)

− (w(xi, yj) + wx(xi, yj)hx,iλ2 + wy(xi, yj)hy,jλ3)

−
(

wxx(xi, yj)
h2
x,i

2
λ2 + wyy(xi, yj)

h2
y,j

2
λ3

)

+Ri,j ,

where λ1 = 1− λ2 − λ3, λ2 =
x−xi

hx,i
, λ3 =

y−yj
hy,j

are the area basis functions and

(3.3) ‖Ri,j‖L∞(K1
i,j)

≤ C
∑

l+m=3

hl
x,ih

m
y,j

∥

∥∂l
x∂

m
y w
∥

∥

L∞(K1
i,j)

.

Direct calculations yield

∫

K1
i,j

(w − wI)dxdy =wxx(xi, yj)

(

−
h3
x,ihy,j

24

)

+ wxy(xi, yj)

(

h2
x,ih

2
y,j

24

)

(3.4)

+ wyy(xi, yj)

(

−
hx,ih

3
y,j

24

)

+

∫

K1
i,j

Ri,jdxdy.

Similarly, we have

∫

K1
i−1,j

(w − wI)dxdy =wxx(xi, yj)

(

−
h3
x,ihy,j

24

)

+ wxy(xi, yj)

(

h2
x,ih

2
y,j

24

)

(3.5)

+ wyy(xi, yj)

(

−
hx,ih

3
y,j

24

)

+

∫

K1
i−1,j

Ri−1,jdxdy

and

(3.6) ‖Ri−1,j‖L∞(K1
i−1,j)

≤
∑

l+m=3

hl
x,ih

m
y,j

∥

∥∂l
x∂

m
y w
∥

∥

L∞(K1
i−1,j)

where the condition hx,i−1 = hx,i has been used in (3.5).

Combining (3.3)—(3.6), we obtain (3.1) for α = 1 and p = q = 0.
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For analysis on Shishkin meshes, we need the following anisotropic interpolation error

bounds given in [6, Lemma 3.2].

Lemma 3.3. Let K ∈ TN and p ∈ (1,∞] and suppose that K is K1
i,j or K2

i,j. Assume

that w ∈ W 2,p(Ω) and denote by wI the linear function that interpolates to w at the

vertices of K. Then

‖w − wI‖Lp(K) ≤ C
∑

l+m=2

hl
x,ih

m
y,j‖∂l

x∂
m
y w‖Lp(K),

‖(w − wI)x‖Lp(K) ≤ C
∑

l+m=1

hl
x,ih

m
y,j‖∂l+1

x ∂m
y w‖Lp(K),

‖(w − wI)y‖Lp(K) ≤ C
∑

l+m=1

hl
x,ih

m
y,j‖∂l

x∂
m+1
y w‖Lp(K),

where l and m are nonnegative integers.

The following local estimates will also be frequently used.

Lemma 3.4. Let uI and EI denote the piecewise linear interpolation of u and E, respec-

tively, on the Shishkin mesh TN , where E can be any one of E1, E2 or E12. Suppose that

u satisfies Assumption 2.1, then

‖u− uI‖L∞(K) ≤







CN−2, if K ⊂ Ωs

CN−2 ln2N, otherwise
,

‖EI‖L∞(Ωs) + ‖∇EI‖L1(Ωs) ≤ CN−ρ,

‖EI
1‖L∞(Ωy) + ‖EI

12‖L∞(Ωy) ≤ CN−ρ,

‖(EI
12)y‖L1(Ωy) ≤ CN−(1+ρ),

‖∇EI
1‖L1(Ωy) + ‖(EI

12)x‖L1(Ωy) ≤ Cε1/2N−ρ lnN.

Proof. The first inequality can be obtained in a similar way as [16, Theorem 4.2]. Here

we only prove the second inequality for E = E1 and the others can be proved similarly.

Recalling EI
1 is the piecewise linear interpolation of E1, we have

(3.7) ‖EI
1‖L∞(Ωs) ≤ ‖E1‖L∞(Ωs) ≤ CN−ρ

9



and

(EI
1)y|K1

i,j
=

E1(xi, yj+1)− E1(xi, yj)

hy,j
= (E1)y(xi, ηj)

where ηj ∈ (yj, yj+1). Similarly, we have (EI
1)y|K2

i,j
= (E1)y(xi+1, η̃j) with η̃j ∈ (yj, yj+1)

and

(3.8) (EI
1)x|K1

i,j
= (E1)x(ξi, yj), (EI

1)x|K2
i,j

= (E1)x(ξ̃i, yj+1)

where ξi, ξ̃i ∈ (xi, xi+1). Recalling Assumption 2.1, we obtain

∣

∣(EI
1)y|K

∣

∣ ≤ C‖(E1)y‖L∞(Ωs) ≤ CN−ρ, ∀K ⊂ Ωs.

Then we have

(3.9) ‖(EI
1)y‖L1(Ωs) ≤ CN−ρ.

Setting Ωs,r := ∪2N/3−2
j=N/3 ∪2

m=1 K
m
N/2−1,j . Recalling (3.8) and Assumption 2.1, we obtain

‖(EI
1)x‖L1(Ωs\Ωs,r) =

N/2−2
∑

i=0

2N/3−1
∑

j=N/3

2
∑

m=1

‖(EI
1)x‖L1(Km

i,j)
(3.10)

≤ C

N/2−2
∑

i=0

N−1ε−1e−β(1−xi+1)/ε

≤ C

N/2−2
∑

i=0

∫ xi+1

xi

ε−1e−β(1−x)/εdx

≤ C

∫ xN/2

x0

ε−1e−β(1−x)/εdx ≤ CN−ρ.

Note that meas(Ωs,r) ≤ CN−1, then we have

‖(EI
1)x‖L1(Ωs,r) ≤ CN‖EI

1‖L1(Ωs,r)(3.11)

≤ CN‖EI
1‖L∞(Ωs,r)meas(Ωs,r)

≤ CN−ρ

where inverse estimates [2, Theorem 3.2.6] have been used.

Now collecting (3.7), (3.9), (3.10) and (3.11), we prove the inequality ‖EI
1‖L∞(Ωs) +

‖∇EI
1‖L1(Ωs) ≤ CN−ρ.
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4. Supercloseness property on triangular meshes

In this section, we will estimate each term in aSD(u − uI , vN) to derive the bound of

‖uI − uN‖SD on the Shishkin triangular mesh TN .

Lemma 4.1. Let u be the solution of (1.1) that satisfies Assumption 2.1, and uI ∈ V N

be the linear interpolation of u on the Shishkin mesh. Then for all vN ∈ V N , we have

∣

∣ε(∇(u− uI),∇vN)
∣

∣ ≤ C(ε1/4N−3/2 +N−3/2) ln3/2 N ‖vN‖SD.

Proof. Recalling the decomposition (2.1a), we set E = E1 + E2 + E12. Then we have

(∇(u− uI),∇vN) = I + II + III,

where

I :=
(

∇(E2 − EI
2),∇vN

)

Ωy
+
(

∇(E −EI),∇vN
)

Ωxy
+
(

∇(S − SI),∇vN
)

Ωs∪Ωy
,

II :=
(

∇(E −EI),∇vN
)

Ωs
+
(

∇(E1 −EI
1),∇vN

)

Ωy
+
(

∇(S − SI),∇vN
)

Ωxy

+
(

∇(E12 − EI
12),∇vN

)

Ωy
,

III :=
(

∇(S − SI),∇vN
)

Ωx
+
(

(E1 −EI
1)y, v

N
y

)

Ωx
+
(

∇(E2 −EI
2),∇vN

)

Ωx

+
(

∇(E12 − EI
12),∇vN

)

Ωx
+
(

(E1 −EI
1)x, v

N
x

)

Ωx

=:III1 + . . .+ III4 + III5.

The estimates of I depend on Lemma 3.1. Here we just present the detailed analysis

for ((E2 − EI
2)y, v

N
y )Ωd

y
where Ωd

y := [0, 1 − λx] × [0, λy], since the other terms can be

analyzed in a similar way. First, we have

11



((E2 −EI
2)y, v

N
y )Ωd

y
=

N/2−1
∑

i=0

N/3−1
∑

j=0

2
∑

m=1

((E2 − EI
2)y, v

N
y )Km

i,j

=

N/3−1
∑

j=0

((E2 −EI
2)y, v

N
y )K1

0,j
+

N/3−1
∑

j=0

((E2 −EI
2)y, v

N
y )K2

N/2−1,j

+

N/2−1
∑

i=1

N/3−1
∑

j=0

((E2 − EI
2)y, v

N
y )K2

i−1,j∪K1
i,j

=: T1 + T2 + T3.

Considering vN |∂Ω = 0, we have

(4.1) T1 = 0.

Hölder inequalities and Lemma 3.3 yield

|T2| ≤ C‖(E2 − EI
2)y‖L∞(Ωy,r) · ‖vNy ‖L1(Ωy,r)(4.2)

≤ Cε−1/2N−1 lnN · ε1/4N−1/2 ln1/2N‖vNy ‖Ωy

≤ Cε−3/4N−3/2 ln3/2 N · ε1/2‖vNy ‖Ωy ,

where Ωy,r =
⋃N/3−1

j=0 K2
N/2−1,j and we have used meas(Ωy,r) ≤ Cε1/2N−1 lnN . Using

Lemma 3.1, we obtain

|T3| ≤ Cε−1/2N−2 ln2N · ‖vNy ‖L1(Ωd
y)

(4.3)

≤ Cε−1/2N−2 ln2N · ε1/4 ln1/2N‖vNy ‖Ωy

≤ Cε−3/4N−2 ln5/2N · ε1/2‖vNy ‖Ωy .

From (4.1)—(4.3), we obtain

|((E2 −EI
2)y, v

N
y )Ωy | ≤ Cε−3/4N−3/2 ln3/2 N ‖vN‖SD.

Similarly, we can estimate the remained terms in I and obtain

(4.4) |I| ≤ Cε−3/4N−3/2 ln3/2 N ‖vN‖SD.
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Analysis of II depends on Lemmas 3.3, 3.4 and/or smallness of layer functions and

layer domains. For example, inverse estimates [2, Theorem 3.2.6] and Lemma 3.4 yield

|
(

∇(E − EI),∇vN
)

Ωs
| ≤‖∇(E − EI)‖L1(Ωs)‖∇vN‖L∞(Ωs)

≤CN−ρ ·N‖∇vN‖Ωs

≤Cε−1/2N1−ρ‖vN‖SD.

Thus we obtain

(4.5) |II| ≤ C(ε−1/2 + ε−1/4 ln1/2 N + ε−3/4N−1 ln1/2N)N1−ρ‖vN‖SD.

The analysis of III1–III4 is similar to one of II and the estimate of III5 is similar to

one of I. Thus we have

|III1|+ . . .+ |III4| ≤ C(N−1 ln3/2 N + ε−1N−ρ ln1/2 N)‖vN‖SD,(4.6)

|III5| ≤ Cε−1N−3/2 ln3/2 N‖vN‖SD.(4.7)

Collecting (4.4)–(4.7), the proof is done.

Lemma 4.2. Let u be the solution of (1.1) that satisfies Assumption 2.1, and uI ∈ V N

be the linear interpolation of u on the Shishkin mesh. Then for all vN ∈ V N , we have

(4.8)
∣

∣(b(u− uI)x + c(u− uI), vN)
∣

∣ ≤ C(As + Ay + (1 + ε1/4 lnN)N−2 ln5/2 N)‖vN‖SD,

where

As := min{N−ρδ−1/2
s , N1−ρ}, Ay := ε1/4 min{N−ρδ−1/2

y , N1−ρ} ln1/2N.

Proof. Integration by parts yields

(b(u− uI)x + c(u− uI), vN) = −(b(u − uI), vNx ) + ((c− bx)(u− uI), vN).

Lemma 3.4 yields

(4.9) |((c− bx)(u− uI), vN)| ≤ CN−2 ln2N‖vN‖ ≤ CN−2 ln2N‖vN‖SD.
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Recalling the decomposition (2.1a) and setting E = E1 + E2 + E12, we have

(b(u− uI), vNx ) = I + II ,

where

I :=(b(E − EI), vNx )Ωs + (b(u− uI), vNx )Ωx∪Ωxy

+ (b(E1 + E12 − (EI
1 + EI

12), v
N
x )Ωy ,

II :=(b(S − SI), vNx )Ωs + (b(S − SI), vNx )Ωy + (b(E2 − EI
2), v

N
x )Ωy .

The analysis of I is similar to one of II in Lemma 4.1. For example,

|(b(E − EI), vNx )Ωs | ≤ CN−ρ‖vNx ‖L1(Ωs) ≤ CN−ρ‖vNx ‖Ωs

≤







CN−ρδ
−1/2
s · δ1/2s ‖vNx ‖Ωs

CN1−ρ · ‖vN‖Ωs

.

Thus, we have

(4.10) |I| ≤ C(As + Ay +N−2 ln5/2 N)‖vN‖SD,

where As := min{N−ρδ
−1/2
s , N1−ρ}, Ay := ε1/4min{N−ρδ

−1/2
y , N1−ρ} ln1/2 N.

Next we are to analyze II. Lemmas 3.2 and 3.3 yield

∣

∣

∣
(S − SI , w)Km

i−1,j−(m−1)
− (S − SI , w)Km

i,j−(m−1)

∣

∣

∣
(4.11)

≤
∣

∣

∣
(S − SI , w(xi, yj))Km

i−1,j−(m−1)
− (S − SI , w(xi, yj))Km

i,j−(m−1)

∣

∣

∣

+

i
∑

k=i−1

∣

∣

∣
(S − SI , w − w(xi, yj))Km

k,j−(m−1)

∣

∣

∣
≤ CN−5,

where m = 1 or 2, 1 ≤ i ≤ N/2 − 1 and N/3 ≤ j − (m − 1) ≤ 2N/3 − 1. Also

we have used w ∈ C1(K), ‖w‖C1(K) ≤ C and ‖w − w(xi, yj)‖L∞(K) ≤ CN−1 where
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K = Km
k,j−(m−1) ⊂ Ωs. We decompose the first term of II as follows:

(b(S − SI), vNx )Ωs =

N/2−1
∑

i=0

2N/3−1
∑

j=N/3

2
∑

m=1

(S − SI , bvNx )Km
i,j

=
1

Hx

N/2−1
∑

i=0

2N/3−1
∑

j=N/3

2
∑

m=1

(

S − SI , b(vN(xi+1, yj+m−1)− vN(xi, yj+m−1))
)

Km
i,j

=− 1

Hx

2N/3−1
∑

j=N/3

2
∑

m=1

(S − SI , bvN(x0, yj+m−1))Km
0,j

+
1

Hx

2N/3−1
∑

j=N/3

2
∑

m=1

(S − SI , bvN (xN/2, yj+m−1))Km
N/2−1,j

+
1

Hx

2N/3−1
∑

j=N/3

N/2−1
∑

i=1

2
∑

m=1

vN(xi, yj+m−1)
(

(S − SI , b)Km
i−1,j

− (S − SI , b)Km
i,j

)

=:T1 + T2 + T3.

Considering wN |∂Ω = 0, we have

(4.12) T1 = 0.

Note that xN/2 = 1− λx, we have

|T2| ≤ CN−3

2N/3−1
∑

j=N/3

|vN(xN/2, yj)| ≤ CN−3

2N/3−1
∑

j=N/3

∣

∣

∣

∣

∣

∫ 1

xN/2

vNx (x, yj)dx

∣

∣

∣

∣

∣

(4.13)

≤ CN−3

2N/3−1
∑

j=N/3

N−1
∑

i=N/2

∫ xi+1

xi

∣

∣vNx (x, yj)
∣

∣ dx

≤ CN−3 ·H−1
y

2N/3−1
∑

j=N/3

N−1
∑

i=N/2

2
∑

m=1

‖vNx ‖L1(Km
i,j)

≤ CN−2‖vNx ‖L1(Ωx)

≤ CN−2 · ε1/2 ln1/2 N‖vNx ‖Ωx ≤ CN−2 ln1/2N‖vN‖SD.
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Using (4.11), we obtain

|T3| ≤ C
1

Hx

N/2−1
∑

i=1

2N/3−1
∑

j=N/3

2
∑

m=1

N−5|vN(xi, yj+m−1)|(4.14)

≤ CN−2‖vN‖L1(Ωs) ≤ CN−2‖vN‖SD.

Collecting (4.12),(4.13) and (4.14), we have

(4.15) |(b(S − SI), vNx )Ωs| ≤ CN−2 ln1/2 N‖vN‖SD.

Similarly, using Lemma 3.2 we have the estimates of the other terms of II:

|(b(S − SI), vNx )Ωy | ≤ Cε1/4N−2 lnN‖vN‖SD,

|(b(E2 −EI
2), v

N
x )Ωy | ≤ Cε1/4N−2 ln7/2 N‖vN‖SD.

Thus, we have

(4.16) |II| ≤ CN−2(1 + ε1/4 ln3N) ln1/2 N‖vN‖SD.

Collecting (4.9), (4.10) and (4.16), the proof is done.

Lemma 4.3. Let Assumption 2.1 hold true. Suppose the stabilization parameter δ sat-

isfies (2.5), then

∣

∣astab(u− uI , vN)
∣

∣ ≤C(δsε ln
1/2 N + δ1/2s N−3/2)‖vN‖SD(4.17)

+ Cε1/4(δy + δ1/2y N−3/2 ln1/2 N) lnN‖vN‖SD

+ Cε−1δx ln
1/2N‖vN‖SD + Cε−3/4δxy lnN‖vN‖SD.

Proof. We have

astab(u− uI , vN) = (−ε∆u+ b(u− uI)x + c(u− uI), δbvNx ).

For (ε∆u, δbvNx ), the reader is referred to [5, Theorem 5]. Its bound is

|(ε∆u, δbvNx )| ≤C(εδs ln
1/2 N + δ1/2s N−3/2)‖vN‖SD(4.18)

+ Cε1/4(δy lnN + δ1/2y N−3/2 ln1/2N)‖vN‖SD

+ C(ε−1δx ln
1/2N + ε−3/4δxy lnN)‖vN‖SD.
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We can analyze (b(u − uI)x, δbv
N
x ) in a similar way as in Lemma 4.1 and deal with b

as in (4.11). Then we have

|(b(u− uI)x, δbv
N
x )| ≤C(δ1/2s N−3/2 + δ1/2y ε1/4N−3/2 ln3/2N)‖vN‖SD(4.19)

+ C(δxε
−1N−1 ln3/2 N + δxyε

−3/4N−1 ln2N)‖vN‖SD.

According to the bounds of (b(u− uI), vNx ) in Lemma 4.2, we obtain

|(c(u− uI), δbvNx )| ≤C(δ1/2s N−ρ + δsN
−2 ln1/2N)‖vN‖SD(4.20)

+ ε1/4(δ1/2y N−ρ ln1/2N + δyN
−2 ln7/2 N)‖vN‖SD

+ (δx + δxy)N
−2 ln5/2N‖vN‖SD.

Collecting (4.18), (4.19) and (4.20), we are done.

Theorem 4.1. Let Assumption 2.1 hold true. Suppose the stabilization parameter δ

satisfies (2.5) and

(4.21) δs ≤ C∗N−1/2, δy ≤ C∗ε−1/4N−3/2, δx ≤ C∗εN−3/2, δxy ≤ C∗ε3/4N−3/2,

where C∗ is a positive constant independent of ε and the mesh. Then we have

‖uI − uN‖ε ≤ ‖uI − uN‖SD ≤ CN−3/2 ln3/2 N.

Proof. Considering the coercivity (2.6) and orthogonality (2.4) of aSD(·, ·), we have

1

2
‖uI − uN‖2ε ≤

1

2
‖uI − uN‖2SD ≤ aSD(u

I − u, uI − uN).

Taking vN = uI − uN in Lemmas 4.1, 4.2 and 4.3, the proof is finished.

Remark 4.1. The convergence order of ‖uI − uN‖ε is only 3/2, as also appears in the

following numerical tests (see §6). Note that this convergence order is different from one

in the case of rectangular meshes, which is almost 2 (see [5, Theorem 5] and [17, Theorem

4.5]).

Remark 4.2. Theorem 4.1 allows the construction of a simple postprocessing as in [17,

Section 5.2]. A local postprocessing of uN will yield a piecewise quadratic solution PuN

for which in general ‖u− PuN‖ε ≪ ‖u− uN‖ε.
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5. Supercloseness property on hybrid meshes

In this section, we will study an interesting problem which has been discussed in [11]

and [5]: Where the use of bilinears has to be strongly recommended so that the bound

‖uI − uN‖SD is of almost order 2 ? Careful observations of the proofs of Lemmas 4.1, 4.2

and 4.3, we find that in the case of triangles, only the term III5 in Lemma 4.1 and the

stabilization parameter δ limit the order of ‖uI − uN‖SD.

Theorem 5.1. Suppose that Assumption 2.1 holds true. Take δs = C∗N−1, δy ≤
C∗max{N−3/2, ε−1/4N−2} and δx = δxy = 0 where C∗ is a positive constant indepen-

dent of ε and the mesh such that δ satisfies (2.5). For problems (1.1), if we use bilinear

elements in Ωx and linear elements in Ω \ Ωx, we have

(5.1) ‖uI − uN‖SD ≤ C(ε1/4N−3/2 ln3/2 N +N−2 ln2N).

Proof. Note that we use bilinear elements in Ωx and linear elements in Ω \ Ωx. Now we

consider

aSD(u− uI , vN) = aSD;Ω\Ωx(u− uI , vN) + aSD;Ωx(u− uI , vN)

where aSD;Ωx(·, ·) and aSD;Ω\Ωx(·, ·) mean the integrations in aSD(·, ·) are restricted to Ωx

and Ω \ Ωx respectively.

According to Lemmas 4.1, 4.2 and 4.3, we have

|aSD;Ω\Ωx(u− uI , vN)| ≤Cε1/4N−3/2 ln3/2 N‖vN‖SD

+ C(As + Ay + (1 + ε1/4 ln3N)N−2 ln1/2N))‖vN‖SD

+ C(δsε ln
1/2N + δ1/2s N−3/2)‖vN‖SD

+ Cε1/4(δy + δ1/2y N−3/2 ln1/2 N) lnN‖vN‖SD

+ Cε−3/4δxy lnN‖vN‖SD,

where As and Ay are defined as in Lemma 4.2. Considering the definitions of δs, δy and

δxy and ε ln6N ≤ 1, we obtain

(5.2) |aSD;Ω\Ωx(u− uI , vN)| ≤ C(ε1/4N−3/2 ln3/2 N +N−2 lnN)‖vN‖SD.
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Note that δx = 0. According to [4, Theorem 5], we have

(5.3) |aSD;Ωx(u− uI , vN)| ≤ CN−2 ln2N‖vN‖SD.

Collecting (5.2) and (5.3), we are done.

Remark 5.1. Once we use linear elements in Ωx, similar analysis shows that ‖uI −
uN‖SD is of almost order 3/2 again. Theorem 5.1 shows that bilinear elements should be

recommended for exponential layers to preserve 2nd convergence of ‖uI − uN‖SD, and in

the remained domain linear or bilinear elements could be used.

6. Numerical results

In this section we give numerical results that appear to support our theoretical results.

Errors and convergence rates of uI−uN on Shishkin triangular meshes and hybrid meshes

are presented. For the computations we set

δs = N−1, δy = N−3/2, δx = δxy = 0.

All calculations were carried out by using Intel Visual Fortran 11. The discrete problems

were solved by the nonsymmetric iterative solver GMRES(c.f. e.g.,[1, 13]).

We will illustrate our results by computing errors and convergence orders for the

following boundary value problems

−ε∆u+ (2− x)ux + 1.5u = f(x, y) in Ω = (0, 1)2,

u = 0 on ∂Ω

where the right-hand side f is chosen such that

u(x, y) =

(

sin
πx

2
− e−(1−x)/ε − e−1/ε

1− e−1/ε

)

(1− e−y/
√
ε)(1− e−(1−y)/

√
ε)

1− e−1/
√
ε

is the exact solution.
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The errors in Tables 1–4 are measured as follows

eNSD : = max
ε=10−6,10−8,...,10−16

(

∑

K⊂Ω

‖uI − uN‖2SD,K

)1/2

,

eNε : = max
ε=10−6,10−8,...,10−16

(

∑

K⊂Ω

‖uI − uN‖2ε,K

)1/2

.

The corresponding rates of convergence pN are computed from the formula

(6.1) pN =
ln eN − ln e2N

ln 2
,

where eN could be eNSD or eNε .

Table 1: Errors and convergence orders on Shishkin triangular meshes

N ‖uI − u
N‖ε Rate ‖uI − u

N‖SD Rate

12 6.008× 10−2 1.14 6.019× 10−2 1.14

24 2.727× 10−2 1.27 2.729× 10−2 1.27

48 1.134× 10−2 1.33 1.134× 10−2 1.33

96 4.511× 10−3 1.36 4.511× 10−3 1.36

192 1.757× 10−3 1.37 1.758× 10−3 1.37

384 6.788× 10−4 −−− 6.788× 10−4 −−−

In Table 1, the errors and convergence rates for ‖uI − uN‖ε and ‖uI − uN‖SD on

the Shishkin triangular mesh are displayed. We observe ε-independence of the errors

and convergence rates. These numerical results support Theorem 4.1: almost 3/2 order

convergence for ‖uI − uN‖ε and ‖uI − uN‖SD on Shishkin triangular meshes. Also, Fig.

3 shows that the behavior of ‖uI − uN‖SD is similar to N−3/2 ln3/4 N in the case of

ε = 10−6, 10−8, · · · , 10−16, as to some extent supports Theorem 4.1.

Tables 2, 3 and 4 present errors and convergence orders of ‖uI−uN‖ε and ‖uI−uN‖SD
on the hybrid mesh I, II and Shishkin rectangular mesh respectively. Among them, the

hybrid mesh I consists of rectangles in Ωx and triangles in Ω \Ωx, while the hybrid mesh

II consists of triangles in Ωx and rectangles in Ω \ Ωx. Numerical results in Table 2 are
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Fig.3: Error ‖uI − u
N‖SD on the Shishkin triangular mesh.

similar with ones in Table 4 and support Theorem 5.1: almost 2 order convergence for

‖uI−uN‖ε and ‖uI−uN‖SD. Besides, if we use linear elements in Ωx and bilinear elements

elsewhere, Table 3 presents almost 3/2 order convergence again and shows similarity with

Table 1.

Table 2: Errors and convergence orders on the hybrid mesh I

N ‖uI − u
N‖ε Rate ‖uI − u

N‖SD Rate

12 4.226× 10−2 1.24 4.251× 10−2 1.25

24 1.786× 10−2 1.40 1.789× 10−2 1.40

48 6.753× 10−3 1.51 6.758× 10−3 1.51

96 2.368× 10−3 1.59 2.369× 10−3 1.59

192 7.886× 10−4 1.64 7.887× 10−4 1.64

384 2.531× 10−4 −−− 2.531× 10−4 −−−
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Table 3: Errors and convergence orders on the hybrid mesh II

N ‖uI − u
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Table 4: Errors and convergence orders on Shishkin rectangular mesh

N ‖uI − u
N‖ε Rate ‖uI − u

N‖SD Rate
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