
ar
X

iv
:1

50
4.

02
20

6v
2 

 [
m

at
h.

O
C

] 
 1

2 
Fe

b 
20

16

Journal of Scientific Computing manuscript No.
(will be inserted by the editor)

A Multiphase Image Segmentation Based on Fuzzy

Membership Functions and L1-norm Fidelity

Fang Li · Stanley Osher · Jing Qin ·

Ming Yan

Received: date / Accepted: date

Abstract In this paper, we propose a variational multiphase image segmen-
tation model based on fuzzy membership functions and L1-norm fidelity. Then
we apply the alternating direction method of multipliers to solve an equivalent
problem. All the subproblems can be solved efficiently. Specifically, we propose
a fast method to calculate the fuzzy median. Experimental results and com-
parisons show that the L1-norm based method is more robust to outliers such
as impulse noise and keeps better contrast than its L2-norm counterpart. The-
oretically, we prove the existence of the minimizer and analyze the convergence
of the algorithm.

Keywords Image segmentation; fuzzy membership function; L1-norm;
ADMM; segmentation accuracy.

1 Introduction

As a fundamental step in image processing, image segmentation partitions an
image into several disjoint regions such that pixels in the same region share
some uniform characteristics such as intensity, color, and texture. During the
last two decades, image segmentation methods using variational methods and
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partial differential equations are very popular due to their flexibility in problem
modeling and algorithm design. There are two key ingredients of variational
segmentation models. One is how to describe the regions or boundaries between
these regions, and the other is how to model the noise and describe the uniform
characteristics of each region.

The Mumford-Shah model [35], a well-known variational segmentation
model, penalizes the combination of the total length of the segmentation
boundaries and the L2-norm error of approximating the observed image with
an unknown piecewise smooth approximation. In other words, the Mumford-
Shah model seeks an optimal piecewise smooth function with smooth bound-
aries to approximate the observed image.

However, the Mumford-Shah model is hard to implement in practice be-
cause the discretization of the unknown set of boundaries is very complex.
Therefore, a parametric/explicit active contour method is used to represent the
segmentation boundaries [49]. In addition, the special Mumford-Shah model
with a piecewise constant approximation is studied by Chan and Vese [15], and
the level set method [37] is applied to solve this problem. Using an implicit
representation of boundaries, the level set method has many advantages over
methods using explicit representations of boundaries. For instance, the level
set method handles the topological change of zero level set automatically [8,
2,22]. Both the parametric/explicit active contour method and the level set
method assume that each pixel belongs to a unique region. An alternative
way to represent various regions is to use fuzzy membership functions [14,6,
34,25], which describe the levels of possible membership. Fuzzy membership
functions assume that each pixel can be in several regions simultaneously with
probability in [0,1]. These probabilities satisfy two constraints: (i) nonnegativ-
ity constraint, i.e., the membership functions are nonnegative at all pixels; (ii)
sum-to-one constraint, i.e., the sum of all the membership functions at each
pixel equals one. Then the length of boundaries can be approximated by the
Total Variation (TV) of fuzzy membership functions. The main advantages of
using fuzzy membership functions over other methods include: i) the energy
functional is convex with respect to fuzzy membership functions, guarantee-
ing the convergence and stability of many numerical optimization methods. ii)
fuzzy membership function has a larger feasible set, and it is possible to find
better segmentation results.

For two-phase segmentation, where there are only two regions, we only need
one level set function or one fuzzy membership function. Multiphase segmenta-
tion is more challenging than two-phase segmentation since more variables and
constraints are involved in representing multiple regions and their boundaries
effectively. The two-phase Chan-Vese model [15] has been generalized to multi-
phase segmentation by using multiple level set functions to represent multiple
regions [44]. Partitioning an image into N disjoint regions requires log2 N level
set functions. The advantage of using multiple level set functions is that it au-
tomatically avoids the problems of vacuum and overlap of regions. However,
the implementation is not easy, and special numerical schemes are needed to
ensure stability [32,33,42,27]. For fuzzy membership functions, the sum-to-one
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constraint is not satisfied automatically in multiphase segmentation. However,
this constraint is easy to deal with in many cases, e.g., Fuzzy C-Mean (FCM)
and its variants have closed-form solutions for the membership functions and
are widely used in data mining and medical image segmentation [4,1,38,16,
29,31,30,24,7]. Variable splitting schemes are used in both [30] and [31] to
get efficient numerical algorithms. The Alternating Direction Method of Mul-
tipliers (ADMM) method is used in [24] to derive the algorithm with two sets
of extra variables. Primal-dual type algorithm is derived in [10] to solve the
TV regularized FCM segmentation model. Both [24] and [10] use projection
to simple to handle the constraints of membership functions. Other segmen-
tation approaches include a convex approach [9], two-stage methods [11,43],
one single level set function approach [18], et.al.

Noise is unavoidable in images, and it is important to develop segmentation
methods that work on noisy images. Among many types of noise, the Gaus-
sian white noise is frequently assumed, and the L2-norm fidelity is adopted.
However, when images are corrupted by non-Gaussian noise, in order to obtain
a faithful segmentation, one has to model the noise according to its specific
type [40,36,12,23,47,48,7]. Particularly, the L1-norm fidelity is used for both
salt-and-pepper impulse noise and random-valued impulse noise in image pro-
cessing [36,12,23]. In addition, it is robust to outliers and able to preserve
contrast because the denoising process of L1-norm models is determined by
the geometry such as area and length rather than the contrast in the L2-norm
case [13].

Inspired by the fact that L1-norm is more robust to impulse noise and
outliers and can better preserve contrast, in this paper, we propose a vari-
ational multiphase fuzzy segmentation model based on L1-norm fidelity and
fuzzy membership functions. This model can also deal with missing data in
images. When there are missing pixels in an image, we randomly assign 0 or
255 at these pixels by considering these pixels as corrupted by salt-and-pepper
impulse noise. ADMM [20,19], which was rediscovered as split Bregman [21]
and found to be very useful for L1 and TV type optimization problems, is
applied to solve this nonconvex optimization problem. By introducing two
sets of auxiliary variables, we derive an efficient algorithm with all the sub-
problems having closed-form solutions. In the theoretical aspect, we prove the
existence of the minimizer and analyze the convergence of the algorithm. We
note that the proposed method is closely related to the method in [24] since
both methods use TV regularization and ADMM algorithm. The difference is
that L1-norm fidelity is considered in the proposed method, while L2-norm
fidelity is used in [24].

The outline of this paper is as follows. In Section 2, we review some closely
related existing works. In Section 3, the proposed model is described in detail,
and the existence of the minimizer to the model is proved. In Section 4, a
numerical algorithm is derived, and its convergence analysis is presented. In
Section 5, experimental results and comparisons are presented to illustrate
the effectiveness of the proposed method. Finally, the paper is concluded in
Section 6.
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2 Related works

Let Ω ⊂ R
2 be a bounded open subset with Lipschitz boundary, and let

I : Ω → R
s be the given clean or noisy image. Let s = 1 for grayscale images

and s = 3 for color images. Our goal is to find an N -phase “optimal” partition
{Ωi}N

i=1 such that Ωi

⋂

Ωj = ∅ for all i 6= j and
⋃N

i=1 Ωi = Ω. Define the set
of N -phase fuzzy membership functions as

∆ :=

{

(u1, ..., uN)
∣

∣

∣ui ∈ BV (Ω), ui(x) ≥ 0,

N
∑

i=1

ui(x) = 1, ∀x ∈ Ω

}

,

where BV (Ω) is the space of functions with bounded variation [2]. The closely
related works are listed in the following and will be compared with our pro-
posed method in Section 5. For the sake of simplicity, we use the notations
U = (u1, · · · , uN) and C = (c1, · · · , cN ) ∈ R

sN , where ci ∈ R for grayscale
images and ci ∈ R

3 for color images.

– FCM [4]– Fuzzy c-means clustering method that solves

min
(U,C)∈∆×RsN

N
∑

i=1

∫

Ω

|I(x) − ci|
2 up

i (x) dx

using the alternating minimization algorithm. Though p can be any number
no smaller than 1, it is commonly set to 2.

– FCM S2 [16] – A variant of FCM that solves

min
(U,C)∈∆×RsN

N
∑

i=1

{∫

Ω

|I(x) − ci|
2
up

i (x) dx+ α

∫

Ω

∣

∣Ī(x) − ci

∣

∣

2
up

i (x) dx

}

,

where Ī is obtained by applying the median filter on I and α > 0 is a
weight parameter. It can also be solved by the alternating minimization
algorithm, and it is more robust to impulse noise than FCM.

– FLICM [29] – Fuzzy Local Information C-Means clustering method that
solves

min
(U,C)∈∆×RsN

N
∑

i=1

{∫

Ω

|I(x) − ci|
2 up

i (x) dx

+α

∫

Ω

∫

y∈N (x)

(1 − ui(y))p |I(y) − ci|
2
up

i (x)dydx

}

,

where N (x) is a neighborhood of x. FLICM is more robust to both Gaus-
sian noise and impulse noise than FCM.

– L2FS [24] – L2-norm fidelity based Fuzzy Segmentation method that solves

min
(U,C)∈∆×RsN

N
∑

i=1

{∫

Ω

‖∇ui(x)‖ dx+ λ

∫

Ω

|I(x) − ci|
2 ui(x) dx

}

, (1)
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by ADMM. Here λ > 0 is a parameter and
∫

Ω
‖∇ui(x)‖ dx denotes the TV

of ui with ‖∇ui(x)‖ :=
√

(∇x1
ui(x))2 + (∇x2

ui(x))2 for x = (x1, x2). For
fixed C, [24] is related to the popular TV denoising method [39]. Note that
the similar model is solved by other fast numerical methods in [30].

– L1SS [26] – L1-norm fidelity based Soft Segmentation method, in which
log2 N soft functions are introduced to representN phases. Since the model
for multiphase segmentation is complicated for more than four phases, we
show the four-phase model as follows:

min
u1,u2∈[0,1],C∈RsN







2
∑

i=1

∫

Ω

‖∇ui(x)‖ dx+ λ
4
∑

j=1

∫

Ω

|I(x) − cj |Mj(x)dx







,

where the membership functions Mj, j = 1, · · · , 4, are represented by soft
functions u1(x), u2(x) ∈ [0, 1] in the following way:

M1(x) = u1(x)u2(x), M2(x) = u1(x)(1 − u2(x)),

M3(x) = (1 − u1(x))u2(x), M4(x) = (1 − u1(x))(1 − u2(x)).

– L2L0 [43] – L2-norm fidelity and L0-norm regularization based image par-
tition model:

min
u

‖∇u‖0 + λ‖u− I‖2
2.

This model seeks a piecewise constant approximation of the original image
I. Since this model can not specify the number of classes, a second step
is applied to combine some classes if this model returns more classes than
required. Here we apply FCM on the piecewise constant approximation u
to obtain the final segmentation result.

Remark: There are two advantages of our proposed method over L1SS. Firstly,
we use fuzzy membership functions to represent regions, where N fuzzy mem-
bership functions are required for an N -phase segmentation. Hence, the solu-
tion space is much larger than L1SS, which ensures the higher possibility to
obtain optimal segmentation. Secondly, the proposed method can take use of
other commonly used segmentation methods such as FCM to gain good initial-
ization of fuzzy membership functions. Multiphase segmentation is sensitive
to initialization, and a good initialization is very important for a successful
segmentation. However, it is hard to use the existing segmentation methods
to get a good initialization for soft membership functions in L1SS.

3 The proposed model

In this paper, we assume that the given image can be approximated by a
piecewise constant function, i.e.,

I(x) =
N
∑

i=1

ciχΩi
(x) + n(x).
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Here χΩi
denotes the indicator function of region Ωi, i.e.,

χΩi
(x) =

{

1, if x ∈ Ωi;
0, otherwise,

ci is a constant that represents the given data in region Ωi, and n can be
outliers, impulse noise or other mixture types rather than Gaussian noise.

Instead of using the L2-norm fidelity to measure the approximation error
when the noise is the Gaussian white noise, we use the L1-norm fidelity. Same
as in the Mumford-Shah model, we require the segmentation boundaries to be
smooth. Then we have the following model

min
{Ωi},C

N
∑

i=1

∫

Ω

‖∇χΩi
(x)‖dx + λ

∫

Ω

∣

∣

∣

∣

∣

I(x) −
N
∑

i=1

ciχΩi
(x)

∣

∣

∣

∣

∣

dx, (2)

where λ > 0 is a tuning parameter. Note that the TV of χΩi
in the first term

is equal to the length of boundary ∂Ωi. An equivalent form of model (2) is

min
{Ωi},C

N
∑

i=1

{∫

Ω

‖∇χΩi
(x)‖dx + λ

∫

Ω

|I(x) − ci|χΩi
(x)dx

}

. (3)

Because χΩi
can take values 0 and 1 only and {χΩi

} is a partition, (χΩ1
, . . . , χΩN

)
belongs to the set

∆0 :=

{

(u1, ..., uN )
∣

∣ui ∈ BV (Ω), ui(x) ∈ {0, 1},
N
∑

i=1

ui(x) = 1, ∀x ∈ Ω

}

.

At any point x ∈ Ω, there is only one function having value 1, and all the
other functions have value 0. Thus set ∆0 is not continuous, which leads to
difficulties and instabilities in numerical implementations. However, we can
relax binary indicator functions {χΩi

} to fuzzy membership functions {ui},
which satisfy the nonnegativity constraint and the sum-to-one constraint, i.e.,
(u1, ..., uN ) belongs to the set ∆ defined in (2). It is obvious that ui(x) ∈ [0, 1]
and ∆ is a simplex at any x ∈ Ω. So ui(x) can be understood as the probability
of pixel x to be in the ith class. Then we can rewrite our model (3) as

min
(U,C)∈∆×RsN

E(U,C) =
N
∑

i=1

{∫

Ω

‖∇ui(x)‖ dx + λ

∫

Ω

|I(x) − ci|ui(x) dx

}

.

(4)
Note that model (4) is convex with respect to U and C separately but not
jointly. The difference between (4) and (1) is that the L2 fidelity term in (1)
is replaced by the L1 fidelity term. The existence of a minimizer for E(U,C)
in (4) is stated in Theorem 1.

Theorem 1 (Existence of a minimizer) Given an image I ∈ L∞(Ω), there
exists a minimizer of E(U,C) in ∆× R

sN for any parameter λ > 0.
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Proof Since E(U,C) is positive and proper, the infimum of E(U,C) must be
finite. Let us pick a minimizing sequence (Un,Cn) ∈ ∆ × R

sN that satisfies
E(Un,Cn) → infU,C E(U,C) as n → ∞. Then there exists a constant M > 0
such that

E(Un,Cn) =

N
∑

i=1

{∫

Ω

‖∇un
i (x)‖ dx+ λ

∫

Ω

|I(x) − cn
i |un

i (x) dx

}

≤ M.

Then each term in E(Un,Cn) is bounded, i.e., for each i = 1, · · · , N ,

∫

Ω

‖∇un
i (x)‖dx ≤ M,

∫

Ω

|I(x) − ci|u
n
i (x)dx ≤ M. (5)

Since un
i (x) ∈ [0, 1], we have

∫

Ω
un

i (x)dx ≤ |Ω|, where |Ω| is the area of Ω.
Together with the first equality in (5), we have that un

i is uniformly bounded
in BV (Ω) for all i = 1, ..., N . By the compactness property of BV (Ω) and the
relative compactness of BV (Ω) in L1(Ω), up to a subsequence also denoted
by {ui}n after relabeling, there exists a function u∗

i ∈ BV (Ω) such that

un
i → u∗

i strongly in L1(Ω),

un
i → u∗

i a.e. x ∈ Ω,

∇un
i ⇀ ∇u∗

i in the sense of measure.

Then by the lower semicontinuity of the TV semi-norm,
∫

Ω

‖∇u∗
i (x)‖dx ≤ lim inf

n→∞

∫

Ω

‖∇un
i (x)‖dx. (6)

Meanwhile since Un = (un
1 , ..., u

n
N) ∈ ∆, we have U∗ = (u∗

1, ..., u
∗
N) ∈ ∆.

It is easy to derive the first order optimality condition about cn
i , which is

0 ∈

∫

Ω

∂|I(x) − cn
i |un

i (x)dx,

where ∂| · | is the subdifferential of | · |. Since un
i (x) ≥ 0 and

∫

Ω
un

i (x)dx > 0,
the above equation implies that the constant cn

i satisfies

|cn
i | ≤ ‖I‖∞.

By the boundedness of sequence {cn
i }, we can extract a subsequence also de-

noted by {cn
i } such that for some constant c∗

i

cn
i → c∗

i , as n → ∞.

Finally, since un
i (x) → u∗

i (x), a.e. x ∈ Ω and cn
i → c∗

i as n → ∞, Fatou’s
lemma yields

∫

Ω

|I(x) − c∗
i |u∗

i (x)dx ≤ lim inf
n→∞

∫

Ω

|I(x) − cn
i |un

i (x)dx. (7)
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Combining inequalities (6) and (7) for all i, on a suitable subsequence, we
established

E(U∗,C∗) ≤ lim inf
n→∞

E(Un,Cn) = inf
U,C

E(U,C),

and hence (U∗,C∗) must be a minimizer of the energy E. This completes the
proof. ⊓⊔

The minimizer of E(U,C) is not unique due to the following hidden sym-
metry property. Denote SN as the permutation group of {1, ..., N}, i.e., each
permutation σ ∈ SN is defined as a one-to-one map σ : {1, ..., N} → {1, ..., N}
such that {σ(1), ..., σ(N)} is a rearrangement of {1, ..., N}. Denote Uσ =
(uσ(1), ..., uσ(N)), Cσ = (cσ(1), ..., cσ(N)). It is straightforward to show the fol-
lowing theorem.

Theorem 2 (Symmetry of minimizer) For any (U,C) ∈ ∆ × R
N and

any σ ∈ SN ,
E(Uσ,Cσ) = E(U,C).

In particular, suppose that (U∗,C∗) is a minimizer of E(U,C), i.e.,

(U∗,C∗) = arg min
(U,C)∈∆×RN

E(U,C).

Then, for any σ ∈ SN , we have

(U∗
σ ,C

∗
σ) = arg min

(U,C)∈∆×RN

E(U,C).

4 The numerical algorithm and its convergence analysis

In this section, we provide an efficient algorithm based on ADMM and discuss
its convergence.

4.1 The algorithm

ADMM is applied, in this subsection, to solve the proposed fuzzy segmentation
model (4). We introduce two sets of auxiliary variables D = (d1, ..., dN ),W =
(w1, ..., wN ) such that ∇ui = di, ui = wi. Then the model (4) is equivalent to
the following minimization problem with equality constraints:

min
D,W,C,U

N
∑

i=1

{∫

Ω

‖di(x)‖dx+ λ

∫

Ω

|I(x) − ci|wi(x) dx

}

+ δ∆(W),

subject to ∇ui = di, ui = wi, ∀i = 1, . . . , N,

(8)

where δ∆ is the indicator function of the set ∆, i.e.,

δ∆(W) =

{

0, if W ∈ ∆,
+∞, otherwise.
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The augmented Lagrangian function for problem (8) is:

L (D,W,C,U; ΛD,ΛW)

=

N
∑

i=1

{∫

Ω

‖di(x)‖ dx + λ

∫

Ω

|I(x) − ci|wi(x) dx

}

+ δ∆(W)

+

N
∑

i=1

{

〈λdi
,∇ui − di〉 +

r

2

∫

Ω

‖∇ui(x) − di(x)‖2
dx

}

+

N
∑

i=1

{

〈λwi
, ui − wi〉 +

r

2

∫

Ω

|ui(x) − wi(x)|2 dx

}

,

where ΛD = (λd1
, ..., λdN

), ΛW = (λw1
, ..., λwN

) are the Lagrangian multipliers
and r is a positive constant. Here 〈λdi

,∇ui−di〉 =
∫

Ω
λT

di
(x)(∇ui(x)−di(x))dx,

and 〈λwi
, ui − wi〉 =

∫

Ω
λwi

(x)(ui(x) − wi(x))dx.
The ADMM solves the primal variables one by one in the Gauss-Seidel

style and then updates the dual variables (Lagrangian multipliers). It can be
summarized as follows:

Dk+1 = arg min
D

L (D,Wk,Ck,Uk;Λk
D, Λ

k
W),

Wk+1 = arg min
W

L (Dk+1,W,Ck,Uk;Λk
D
, Λk

W
),

Ck+1 = arg min
C

L (Dk+1,Wk+1,C,Uk;Λk
D, Λ

k
W),

Uk+1 = arg min
U

L (Dk+1,Wk+1,Ck+1,U;Λk
D
, Λk

W
),

λk+1
di

= λk
di

+ r
(

∇uk+1
i − dk+1

i

)

,

λk+1
wi

= λk
wi

+ r
(

uk+1
i − wk+1

i

)

.

In the following, we show how to solve each subproblem and then give the
algorithm.

D-subproblem

The subproblem for D is equivalent to

Dk+1 = arg min
D

N
∑

i=1







∫

Ω

‖di(x)‖dx +
r

2

∫

Ω

∥

∥

∥

∥

∥

di(x) − ∇uk
i (x) −

λk
di

(x)

r

∥

∥

∥

∥

∥

2

dx







.

This is separable and the optimal solution of dk+1
i can be explicitly expressed

using shrinkage operators. We simply compute

dk+1
i (x) = S

(

∇uk
i (x) +

λk
di

(x)

r
,

1

r

)

,
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where S is the shrinkage operator defined as

S(v, τ) :=
v

‖v‖
∗ max (‖v‖ − τ, 0) .

For the sake of simplicity, we denote this step as

Dk+1 = S

(

∇Uk +
Λk

D

r
,

1

r

)

.

W-subproblem

The subproblem for W is equivalent to

min
W

N
∑

i=1







r

2

∫

Ω

∣

∣

∣

∣

∣

wi(x) − uk
i (x) −

λk
wi

(x)

r
+
λ|I(x) − ck

i |

r

∣

∣

∣

∣

∣

2

dx







+ δ∆(W).

Since ∆ is a convex simplex at any x ∈ Ω, the solution is given by

Wk+1 = Π∆





[

uk
i +

λk
wi

r
−
λ|I − ck

i |

r

]N

i=1



 ,

where Π∆ is the projection onto the simplex ∆, for which more details can be
found in [17]. We denote the step as

Wk+1 = Π∆

(

Uk +
Λk

W

r
− λ

|I − Ck|

r

)

.

C-subproblem

The subproblem for C is

Ck+1 = arg min
C

N
∑

i=1

∫

Ω

|I(x) − ci|w
k+1
i (x) dx.

It is separable, and ck+1
i can be solved independently. The optimality condition

for each ck+1
i is

0 ∈ −

∫

Ω

∂|I(x) − ck+1
i |wk+1

i (x)dx. (9)

Because the right-hand side of (9) is maximal monotone [3], the bisection
method and ADMM are applied to solve it [28,26]. The next lemma provides
a new way to find an optimal solution for discrete cases.
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Lemma 1 Given a finite non-decreasing sequence {I[j]}
n
j=1, i.e.,

I[1] ≤ I[2] ≤ ... ≤ I[n],

and a non-negative sequence {w[j]}
n
j=1 with A =

∑n
j=1 w[j] > 0, the optimal

solution set for

min
c

n
∑

j=1

∣

∣I[j] − c
∣

∣w[j], (10)

is
[

I[j∗], I[j∗+1]]
]

, where j∗ and j∗ satisfy

A− 2

j∗

∑

j=1

w[j] ≤ 0 < A− 2

j∗−1
∑

j=1

w[j],

A− 2

j∗+1
∑

j=1

w[j] < 0 ≤ A− 2

j∗
∑

j=1

w[j].

The fuzzy median of {Ij}n
j=1 with respect to the weight {w[j]}

n
j=1 [28], which

is defined as (I[j∗] + I[j∗+1]])/2, is an optimal solution. If, in addition, there
exists j∗ such that

A− 2

j∗

∑

j=1

w[j] < 0 < A− 2

j∗−1
∑

j=1

w[j],

then j∗ = j∗ − 1, and the optimal solution is unique.

Proof The optimality condition of (10) is

0 ∈ h(c) :=

n
∑

j=1

∂|I[j] − c|w[j].

We can see that h(c) is non-increasing and it can be expressed as

h(c) =















































A, c < I[1],
[A− 2w[1], A], c = I[1],
A− 2w[1], c ∈ (I[1], I[2]),
· · ·

[A− 2
∑s

j=1 w[j], A− 2
∑s−1

j=1 w[j]], c = I[s],

A− 2
∑s

j=1 w[j], ci ∈ (I[s], I[s+1]),

· · ·
−A, c > I[n].

The range of h is [−A,A], and h(c) can take multiple values when c = I[j] for
any j with w[j] 6= 0. Therefore, we can always find j∗ such that

A− 2

j∗

∑

j=1

w[j] ≤ 0 < A− 2

j∗−1
∑

j=1

w[j].
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Thus 0 ∈ h(I[j∗]) =
[

A− 2
∑j∗

j=1 w[j], A− 2
∑j∗−1

j=1 w[j]

]

, and I[j∗] is an opti-

mal solution. In addition, we have that h(c) > 0 when c < I[j∗]. Similarly, we
can find j∗ such that

A− 2

j∗+1
∑

j=1

w[j] < 0 ≤ A− 2

j∗
∑

j=1

w[j],

and I[j∗+1] is an optimal solution. In addition, we have that h(c) < 0 when
c > I[j∗+1]. Then h(c) being non-increasing gives us that the set of optimal

solutions for (10) is
[

I[j∗], I[j∗+1]

]

. When j∗ = j∗ + 1, the optimal solution is
unique. ⊓⊔

Remark: When there are missing pixels in images, we can put a mask on
the data fidelity term as in image inpainting problems [41] or assign a value
to each missing pixel. In [24], the missing pixels are assigned with zero, and C
changes based on the percentage of missing pixels. While, this lemma tells us
that assigning 0 or 255 (for grayscale images) randomly to these missing pixels
will not change the value of c with a high probability because ci is a weighted
median. Also, by assigning 0 or 255 randomly, this algorithm is able to deal
with cases where more than half of the pixels are missing. See the numerical
experiments in Section 5.

Assume that I and wk+1
i are vectors in R

n, where n is the total number
of pixels. We can reorder the components of I and wk+1

i such that the mono-
tonicity of I in Lemma 1 is satisfied. If there are multiple optimal solutions
for ci, we choose the smallest one. We denote this step as

Ck+1 = ψ(Wk+1).

U-subproblem

The subproblem for U is equivalent to

Uk+1 = arg min
U

N
∑

i=1

∫

Ω

∥

∥

∥

∥

∥

∇ui(x) − dk+1
i (x) +

λk
di

(x)

r

∥

∥

∥

∥

∥

2

dx

+

∫

Ω

∣

∣

∣

∣

∣

ui(x) − wk+1
i (x) +

λk
wi

(x)

r

∣

∣

∣

∣

∣

2

dx.

It is separable for uk+1
i , and, from the following first order optimality condition

for each uk+1
i :

∇T

(

∇uk+1
i (x) − dk+1

i (x) +
λk

di
(x)

r

)

+

(

uk+1
i (x) − wk+1

i (x) +
λk

wi
(x)

r

)

= 0,
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we can derive the closed-form solution of uk+1
i from the equation:

(

∇T ∇ + I
)

uk+1
i (x) = ∇T dk+1

i (x) + wk+1
i (x) −

∇Tλk
di

(x)

r
−
λk

wi
(x)

r
.

A diagonalization trick can be applied to find uk+1
i efficiently [45]. We denote

this step as

Uk+1 =
(

∇T ∇ + I
)−1

(

∇T Dk+1 + Wk+1 −
∇TΛk

D

r
−
Λk

W

r

)

.

Updating dual variables. We denote the steps as

Λk+1
D

=Λk
D + r

(

∇Uk+1 − Dk+1
)

,

Λk+1
W

=Λk
W + r

(

Uk+1 − Wk+1
)

.

Combining all these steps together, we obtain the proposed L1 Fuzzy Seg-
mentation algorithm (L1FS) in Algorithm 1 for solving (4).

Algorithm 1 The proposed L1FS algorithm

– Initialization: U0 and C0 are specified, Λ0
D

= 0, Λ0
W

= 0.
– For k = 0, 1, 2, · · · , repeat until the stopping criterion is reached.

Dk+1 = S

(

∇Uk +
Λk

D

r
,

1

r

)

,

Wk+1 = Π∆

(

Uk +
Λk

W

r
−
λ|I − Ck|

r

)

,

Ck+1 = ψ(Wk+1),

Uk+1 =
(

∇T ∇ + I
)−1

(

∇T Dk+1 + Wk+1 −
∇TΛk

D

r
−
Λk

W

r

)

,

Λk+1
D

= Λk
D

+ r
(

∇Uk+1 − Dk+1
)

,

Λk+1
W

= Λk
W

+ r
(

Uk+1 − Wk+1
)

.

– Output: Ck+1,Uk+1.

Remark: Though there are four variables D, W, C and U, they can be
grouped into two variables (D,W) and (C,U) and the subproblems for these
two variables can be decoupled into the four subproblems. So it is essentially
a two block ADMM applied on a nonconvex optimization problem.

Because problem (4) is nonconvex, a good initial guess of U0 and C0,
which can be obtained from other methods using fuzzy membership functions,
is helpful for the stability of L1FS. Thus we update D1 and W1 first because
both of them can use the initial guess of U0.
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4.2 Convergence analysis

If C is given, problem (4) is convex. Then, the algorithm is a standard ADMM
by considering (D,W) together, and its convergence is guaranteed [5]. In this
section, we give a convergence result of Algorithm 1 for unknown C. To sim-
plify notations, let us define the sextuples:

Z := (D,W,C,U, ΛD, ΛW).

A point Z is a KKT point of (8) if it satisfies the following KKT conditions:

∂‖d∗
i (x)‖ − λ∗

di
(x) ∋ 0, (11a)

λ|I − C| − ΛW + ∂δ∆(W) ∋ 0, (11b)
∫

Ω

∂|I(x) − c∗
i |w∗

i (x)dx ∋ 0, (11c)

∇Tλdi
(x) + λwi

(x) = 0, (11d)

∇ui(x) − di(x) = 0, (11e)

ui(x) − wi(x) = 0. (11f)

where ∂‖ · ‖ and ∂δ∆(·) are subdifferentials of ‖ · ‖ and δ∆(·), respectively.

Theorem 3 (Convergence to stationary points of L1FS) Let
{

Zk
}∞

k=1
be a sequence generated by Algorithm 1 that satisfies the condition

lim
k→∞

(

Zk+1 − Zk
)

= 0.

Then any accumulation point of
{

Zk
}∞

k=1
is a KKT point of problem (8).

Consequently, any accumulation point of
(

Ck,Uk
)

is a stationary point of
problem (4).

Proof From the updating formulas in Algorithm 1, we obtain the following
inequalities related to the subsequent iteration:

Dk+1 − Dk = S

(

∇Uk +
Λk

D

r
,

1

r

)

− Dk, (12a)

Wk+1 − Wk = Π∆

(

Uk +
Λk

W

r
−
λ|I − Ck|

r

)

− Wk, (12b)

Ck+1 − Ck = ψ(Wk+1) − Ck, (12c)
(

∇T ∇ + I
) (

Uk+1 − Uk
)

= ∇T (Dk+1 − ∇Uk) + (Wk+1 − Uk) (12d)

−
∇TΛk

D

r
−
Λk

W

r
, (12e)

Λk+1
D

− Λk
D

= r
(

∇Uk+1 − Dk+1
)

, (12f)

Λk+1
W

− Λk
W

= r
(

Uk+1 − Wk+1
)

. (12g)
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By the assumption lim
k→∞

(

Zk+1 − Zk
)

= 0, the left-hand side and right-

hand side of each equality in (12) go to zero as k → ∞. Then we have

S

(

∇Uk +
Λk

D

r
,

1

r

)

− Dk → 0, (13a)

Π∆

(

Uk +
Λk

W

r
−
λ|I − Ck|

r

)

− Wk → 0, (13b)

ψ(Wk+1) − Ck → 0, (13c)

∇T (Dk+1 − ∇Uk) + (Wk+1 − Uk) −
∇TΛk

D

r
−
Λk

W

r
→ 0, (13d)

∇Uk+1 − Dk+1 → 0, (13e)

Uk+1 − Wk+1 → 0. (13f)

Assume Z∗ = (D∗,W∗,C∗,U∗, Λ∗
D
, Λ∗

W
) is an accumulation point of Zk.

(13) gives us

S

(

∇U∗ +
Λ∗

D

r
,

1

r

)

− D∗ = 0, (14a)

Π∆

(

U∗ +
Λ∗

W

r
−
λ|I − C∗|

r

)

− W∗ = 0, (14b)

ψ(W∗) − C∗ = 0, (14c)

∇TΛ∗
D + Λ∗

W = 0, (14d)

∇U∗ − D∗ = 0, (14e)

U∗ − W∗ = 0. (14f)

By (14a), it follows that D∗ is a solution of the minimization problem

min
D

N
∑

i=1

{

∫

Ω

‖di(x)‖dx+
r

2

∫

Ω

∥

∥

∥

∥

di(x) − ∇u∗
i (x) −

λ∗
di

(x)

r

∥

∥

∥

∥

2

dx

}

.

Thus D∗ satisfies the first order optimality condition

0 ∈ ∂‖d∗
i (x)‖ + r

(

d∗
i (x) − ∇u∗

i (x) −
λ∗

di
(x)

r

)

.

Using (14e), we simplify the above condition as

0 ∈ ∂‖d∗
i (x)‖ − λ∗

di
(x). (15)

By (14b), W∗ is a solution of the following minimization problem:

min
W

N
∑

i=1

{

r

2

∫

Ω

∣

∣

∣

∣

wi(x) − u∗
i (x) −

λ∗
wi

(x)

r
+
λ|I(x) − c∗

i |

r

∣

∣

∣

∣

2

dx

}

+ δ∆(W).
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Hence W∗ satisfies the optimality condition

0 ∈ ∂δ∆(W∗) + r(W∗ − U∗) − Λ∗
W + λ|I − C∗|.

Together with the equality in (14f), the above equation can be simplified as

0 ∈ ∂δ∆(W∗) − Λ∗
W + λ|I − C∗|. (16)

The equation (14c) implies that C∗ is a solution of the minimization problem

min
C

N
∑

i=1

∫

Ω

|I(x) − ci|w
∗
i (x) dx,

and the optimal condition is

0 ∈

∫

Ω

∂|I(x) − c∗
i |w∗

i (x)dx. (17)

The equivalence of equations (14a)-(14c) with (15)-(17), together with
equations (14d)-(14f) shows that the accumulation point Z∗ satisfies the KKT
condition in equations (11a)-(11f), thus Z∗ is a KKT point of problem (8).

Since problem (8) and problem (4) are equivalent, the convergence of
(

Ck,Uk
)

in the statement follows directly. ⊓⊔

The convergence analysis is motivated by [46]. This theorem implies that
whenever

{

Zk
}∞

k=1
converges, it converges to a KKT point of problem (8).

However, since the minimization problem (8) is nonconvex, the KKT point is
not necessary to be an optimal solution.

5 Experimental results

In order to demonstrate the effectiveness of the proposed method, we compare
our method with some existing methods on both synthetic and real images.
These methods (FCM, FCM S2, FLICM, L2FS, L2L0, and L1SS) are discussed
in Section 2. Since the segmentation models in these methods are not jointly
convex, and they are easy to get stuck in local minima, “good” initialization
is crucial for all algorithms, especially when the given image is noisy. For
FCM, FCM S2, and FLICM, the initial U is uniformly distributed in [0, 1] and
normalized to satisfy the sum-to-one constraint. While for TV based methods
L2FS and L1FS, one can also use the results of FCM and FCM S2 as the initial
U and C. Here we consider three ways for choosing the initial U and C: the
result of FCM, the result of FCM S2, and U as functions uniformly distributed
in [0, 1] and C as the result of FCM. In all the experiments, we choose the one
with the highest performance among all the three initializations. For L1SS, we
use the initialization method as described in the original paper. The stopping
criterion, which is the same for all the methods except L1SS, is defined as

‖Uk+1 − Uk‖2

‖Uk‖2
< ǫ
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where ǫ is a very small number. For L1SS, this stopping criterion does not work
since L1SS leads to contrast loss due to the error in calculating class centers
{ci}N

i=1 at early iterations. However, the contrast of L1SS will be enhanced
gradually if the number of iterations increases. To gain satisfactory results, we
choose to stop L1SS by setting the maximum number of iterations to be 1000.

The parameters of the methods being compared are set as follows. In FCM,
we set p = 2. In FCM S2, we set p = 2, α = 5, and the window size for the
median filter as 5 × 5. In FLICM, we set p = 2 and the window size of the
neighborhoods as 3×3 or 5×5, which depends on the noise level. However, the
weight parameter λ for L2FS, L1SS, and L1FS are tuned for each experiment
to achieve optimal results. In all experiments, the range of λ for L2FS is
[0.00005, 0.0005], for L1SS is [0.03, 1], and for L1FS is [0.001, 0.05]. For all
methods, ǫ = 10−6 for the two-phase segmentation and ǫ = 10−4 for the
multiphase segmentation. We use the default parameters in L2L0 except that
we set λ = 10.

The clustering results of all methods are obtained by checking the max-
imum value of their membership functions. Then we display the recovered
piecewise constant image as the final result. To compare segmentation results
quantitatively, we consider the Segmentation Accuracy (SA) defined by

SA =
#correctly classified pixels

#all pixels
.

(a) (b) (c)

Fig. 1 Synthetic piecewise constant test images. (a) A two-phase grayscale image with
intensities 20 and 128, size 128 × 128; (b) A five-phase grayscale image with intensities 0,
63, 127, 192, and 255, size 235 × 237; (c) A six-phase color image with color vectors (12 11
242), (242 12 11), (242 241 242), (243 241 12), (12 12 12), and (12 242 12), size 100 × 100.

The synthetic piecewise constant test images are displayed in Fig. 1. The
noisy images are contaminated by three types of noise: Gaussian Noise (GN)
with zero mean and standard deviation varying from 10 to 80, Salt-and-Pepper
Impulse Noise (SPIN) with 10% to 60% pixels contaminated, and Random-
Valued Impulse Noise (RVIN) with 10% and 60% pixels contaminated.

5.1 Test on Fig. 1a

Tab. 1 provides the SA comparison of these six algorithms, and Figs. 2-4 show
some of the corresponding results.
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Table 1 SA performance of different methods applied on Fig. 1a contaminated by dif-
ferent levels of GN, SPIN, and RVIN.

GN (σ) 10 20 30 40 50 60 70 80

FCM 1 0.9970 0.9642 0.9146 0.8627 0.8162 0.7811 0.7524
FLICM 1 0.9999 0.9996 0.9990 0.9975 0.9968 0.9960 0.9954
L2FS 1 1 1 1 1 1 0.9999 0.9998

L1SS 1 1 1 0.9998 0.9996 0.9984 0.9975 0.9965
L1FS 1 1 1 1 1 1 1 0.9998

SPIN (%) 10% 20% 30% 40% 50% 60%

FCM 0.9480 0.8983 0.8478 0.7979 0.7486 0.6980
FLICM 0.9984 0.9921 0.9738 0.8002 0.7313 0.6554
L2FS 0.9999 0.9998 0.9982 0.9983 - -
L1SS 0.9998 0.9990 0.9977 0.9967 0.9956 0.9953
L1FS 1 1 1 1 1 0.9995

RVIN (%) 10% 20% 30% 40% 50% 60%

FCM S2 0.9985 0.9972 0.9945 0.9862 0.9630 0.9042
FLICM 0.9987 0.9985 0.9970 0.9958 0.9948 0.9919
L2FS 1 1 1 0.9998 0.9995 0.9974
L1SS 1 0.9995 0.9985 0.9979 0.9966 0.9891
L1FS 1 1 1 1 1 0.9976

(a) GN σ=30 (b) 0.9642 (c) 0.9996 (d) 1 (e) 1 (f) 1

(g) GN σ=60 (h) 0.8162 (i) 0.9968 (j) 1 (k) 0.9984 (l) 1

Fig. 2 Two-phase segmentation on the synthetic image Fig. 1a with Gaussian noise. First
column: images contaminated by Gaussian noise with standard deviations 30 and 60, re-
spectively; Second column to last column: results of FCM, FLICM, L2FS, L1SS, and L1FS,
respectively. The SA values are reported below each segmentation result.

For GN, all methods being tested give correct segmentation results for
small standard deviations (e.g., σ = 10). As the standard deviation increases,
the SA value of FCM decays very fast. All the other algorithms have very
large SA values even when the standard deviation is 80. L1FS has the best
performance for all cases, and it is able to give correct segmentation results
even when σ ≤ 70. L2FS is the second best algorithm, and it is able to give
correct segmentation results when σ ≤ 60.

The results of all methods when σ = 30 and 60 are displayed in Fig. 2. The
results of FCM are relatively “noisy” (the second column). For FLICM (the
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(a) SPIN 20% (b) 0.8983 (c) 0.9921 (d) 0.9998 (e) 0.9990 (f) 1

(g) SPIN 40% (h) 0.7979 (i) 0.8002 (j) 0.9983 (k) 0.9967 (l) 1

Fig. 3 Two-phase segmentation on the synthetic image Fig. 1a with SPIN. First column:
images contaminated by 20% and 40% SPIN, respectively; Second column to last column:
results of FCM, FLICM, L2FS, L1SS, and L1FS, respectively. The SA values are reported
below each segmentation result.

(a) RVIN 20% (b) 0.9972 (c) 0.9985 (d) 1 (e) 0.9995 (f) 1

(g) RVIN 40% (h) 0.9862 (i) 0.9958 (j) 0.9998 (k) 0.9979 (l) 1

Fig. 4 Two-phase segmentation on the synthetic image Fig. 1a with RVIN. First column:
images contaminated by 20% and 40% RVIN, respectively; Second column to last column:
results of FCM S2, FLICM, L2FS, L1SS, and L1FS, respectively. The SA values are reported
below each segmentation result.

third column) and L1SS (the fifth column), the segmentation error occurs on
the middle edge.

For SPIN, Tab. 1 shows that FLICM performs much better than FCM for
noise levels 10%-30%. However, if the noise level is higher than 30%, both
FCM and FLICM have very poor performance. L1SS achieves much better
performance than FLICM, even when the noise level is higher than 30%. L2FS
is slightly better than L1SS. Meanwhile, if the noise level is higher than 50%,
L1SS fails to give a satisfactory result. L1FS has the highest SA among all
methods. It gives completely correct segmentation results for noise levels 10%-
50%. Fig. 3 shows the results of all methods for noise levels 20% and 40%,
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respectively. For L2FS and L1SS, the segmentation errors occur along the
middle edge. We also observe that for high noise levels such as 40%, both L2FS
and L1SS suffer from slight contrast loss, e.g., Fig. 3j and Fig. 3k. However,
L1FS is still able to preserve contrast, e.g., Fig. 3f and Fig. 3l.

For RVIN, FCM S2 is used to initialize U and C for TV based methods
L2FS and L1FS. Tab. 1 shows that FCM S2 has the worst performance among
all. L1SS is much better than FCM S2 especially for high noise levels. FLICM
performs slightly better than FCM S2. L1FS achieves the best performance
which is slightly better than L2FS. L2FS gives correct segmentation results at
noise levels 10%-30%, while our method L1FS can give the correct segmenta-
tion results at noise levels 10%-50%. Fig. 4 shows the results for noise levels
20% and 40%. Again, we find that most of the errors occur along the middle
edge for FLICM and L1SS. Moreover, the results of L2FS in Fig. 4j, L1SS in
Fig. 4e and Fig. 4k lose some contrast.

Next we analyze the contrast problem for TV based methods. For L2FS,
the estimated intensity ci in each segmented region roughly equals the mean
value of the intensities in that region. In the Gaussian noise case, the noise
has zero mean and therefore it has almost no impact on the estimation of ci.
However, for both impulse noise cases, the noise has a significant influence
on the estimation of ci by taking the average. More specifically, assuming
that the impulse noise follows the uniform distribution, its impact on the
estimation of ci is like this. Given an image with intensity range [0, 255], for
the region Ωi with true intensity β ≤ 128, if there are more noisy pixels with
intensity greater than β than those with intensity less than β, then ci ≥ β
after taking the average and vice versa. Hence, the range of the image will be
shrunk by applying L2FS even when the segmentation is correct, and thereby
the recovered image will suffer from contrast loss. Note that the contrast loss
problem has also been reported for the TVL2 restoration model in impulse
noise removal [12]. For L1SS algorithm, one step of ADMM is used to solve
the C-subproblem approximately. Thus ci is not accurate for the first few
iterations. However, since L1SS uses the L1-norm fidelity, the loss of contrast
becomes more and more subtle as the number of iterations increases. In L1FS,
we solve the C-subproblem exactly. Thus, L1FS can preserve contrast well in
the segmentation process.

5.2 Test on Fig. 1b

The performance comparison for the multiphase synthetic piecewise constant
gray image Fig. 1b is shown in Tab. 2 and Fig. 5.

As shown in Tab. 2, FCM performs poorly for GN, while L2FS and L1FS
perform relatively well with similar SA. For the noise level σ = 10, both L2FS
and L1FS give a correct segmentation result. For SPIN, FCM also gives the
worst performance in terms of SA, while L1FS achieves the best performance.
L2FS fails to yield a correct segmentation result when noise levels σ ≥ 50. For
RVIN, FCM S2 achieves high SA values since it can smooth out some noise
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Table 2 SA comparison of different methods applied on Fig. 1b with different levels of GN,
SPIN, and RVIN.

GN (σ) 10 20 30 40 50 60 70 80

FCM 0.9987 0.8191 0.6634 0.5849 0.5233 0.4718 0.4319 0.4017
L2FS 1 0.9999 0.9994 0.9978 0.9959 0.9950 0.9931 0.9918

L1FS 1 0.9999 0.9993 0.9980 0.9964 0.9950 0.9931 0.9905

SPIN (%) 10% 20% 30% 40% 50% 60% - -

FCM 0.9202 0.8431 0.7638 0.6847 0.6096 0.5296 - -
L2FS 0.9926 0.9877 0.9713 0.9673 - - - -
L1FS 0.9977 0.9948 0.9923 0.9894 0.9848 0.9782 - -

RVIN (%) 10% 20% 30% 40% - - - -

FCM 0.9922 0.9809 0.96672 0.9248 - - - -
L2FS 0.9949 0.9923 0.9880 0.9731 - - - -
L1FS 0.9976 0.9957 0.9922 0.9868- - - -

Table 3 SA comparison of different methods applied on Fig. 1c with different levels of GN,
SPIN, and RVIN.

GN (σ) 10 20 30 40 50 60 70 80

FCM 1 1 0.9998 0.9958 0.7927 0.7772 0.7488 0.7205
L2FS 1 1 1 1 0.9996 0.9992 0.9989 0.9978

L2L0 1 1 1 0.9999 0.9996 0.9991 0.9983 0.9967
L1FS 1 1 1 1 0.9998 0.9994 0.9985 0.9973

SPIN (%) 10% 20% 30% 40% 50% 60% - -

FCM 0.8498 0.7294 0.6128 0.5092 0.4248 0.3501 - -
L2FS 0.9960 0.9925 0.9883 0.9822 0.9772 - - -
L2L0 0.9951 0.9880 0.9819 0.9740 0.9401 0.8752 - -
L1FS 0.9973 0.9937 0.9897 0.9854 0.9810 0.9732 - -

RVIN (%) 10% 20% 30% 40% 50% 60% - -

FCM 0.8971 0.7992 0.6967 0.6085 0.5196 0.4294 - -
L2FS 0.9974 0.9957 0.9899 0.9853 0.9841 0.8988 - -
L2L0 0.9971 0.9955 0.9906 0.9856 0.9727 0.9488 - -
L1FS 0.9988 0.9963 0.9939 0.9906 0.9881 0.9777 - -

in the segmentation process. L2FS performs much better than FCM S2, and
L1FS performs the best among all methods.

Fig. 5 shows some results corresponding to Tab.2. The first row is the noisy
images being tested. The second row shows the results of FCM (Fig. 5g-5j)
and FCM S2 (Fig. 5k-5l). Most of them looks very “noisy” except Fig. 5k.
L2FS and L1FS give very clean results in the third row and last row, respec-
tively. Comparing the results by L2FS and L1FS for Gaussian noise, both
of them have high visual qualities. However, for SPIN and RVIN, it is obvi-
ous that L1FS preserves the contrast much better than L2FS and has better
segmentation results.
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(a) GN σ=30 (b) GN σ=60 (c) SPIN 20% (d) SPIN 40% (e) RVIN 20% (f) RVIN 40%

(g) 0.6634 (h) 0.4718 (i) 0.8431 (j) 0.6847 (k) 0.9809 (l) 0.9248

(m) 0.9994 (n) 0.9950 (o) 0.9877 (p) 0.9673 (q) 0.9923 (r) 0.9731

(s) 0.9993 (t) 0.9950 (u) 0.9948 (v) 0.9894 (w) 0.9957 (x) 0.9868

Fig. 5 Multiphase segmentation on the synthetic image Fig. 1b with different levels of GN,
SPIN, and RVIN. First row: images contaminated different types of noise with different
levels. Second row to last row: results of FCM, L2FS and L1FS, respectively. The SA values
are reported below each segmentation result.

5.3 Test on Fig. 1c

In Tab. 3 and Fig. 6, we test the multiphase synthetic piecewise constant color
image Fig. 1c with various levels of GN, SPIN, and RVIN.

From Tab. 3, in the GN case, when the standard deviation of noise σ ≤ 20,
all the four methods, including FCM, L2FS, L2L0 and L1FS, give correct seg-
mentation results. Moreover, both L2FS and L1FS yield correct segmentation
results when σ ≤ 40. When σ ≥ 50, the performance of FCM decreases rapidly,
while L2FS, L2L0, and L1FS still achieve very large SA values. Note that we
initialize U randomly for GN in this test. For SPIN and RVIN, FCM has the
worst performance which is far lower than that of the other three methods. It
is also obvious that L1FS outperforms L2L0 and L2FS.

Fig. 6 shows some results corresponding to Tab. 3. The first row shows
the tested noisy images. The results of FCM in the second row seems to be
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GN σ=30 GN σ=60 SPIN 20% SPIN 40% RVIN 20% RVIN 40%

0.9998 0.7772 0.7294 0.5092 0.7992 0.6085

1 0.9992 0.9925 0.9822 0.9957 0.9853

1 0.9991 0.9880 0.9740 0.9955 0.9856

1 0.9994 0.9937 0.9854 0.9963 0.9906

Fig. 6 Multiphase segmentation on the synthetic color image Fig. 1c with different levels of
GN, SPIN, and RVIN. First row: images contaminated different types of noise with different
levels. Second row to last row: results of FCM, L2FS, L2L0, and L1FS, respectively. The SA
values are reported below each segmentation result.

“noisy” in most cases. The results of L2FS (the third row), L2L0 (the fourth
row), and L1FS (the last row) are very clean. However, in terms of contrast, it
is obvious that L1FS outperforms L2L0 and L2FS particularly for SPIN and
RVIN.



24 Fang Li et al.

5.4 Test on real images

We test some real images including two medical images and six natural images
in Fig. 7 without artificial noise. However, the images can be regarded as con-
taining some types of noise due to the acquisition and transmission processes.

The results of FCM and L1FS are displayed for comparison. One can see
that FCM tends to produce some tiny components and irregular segmenta-
tion boundaries. By contrast, L1FS tends to smooth out tiny components to
generate large ones and smooth boundaries between regions, which is more
natural for human vision system and good for postprocessing. This smoothing
effect is mainly achieved by total variation regularization in the L1FS model.
Moreover, L1FS preserves slightly better contrast in the piecewise constant ap-
proximation than FCM, which is mainly achieved by the use of the L1-norm
fidelity.

In Figs. 7j-7l, FCM and L1FS give quite different segmentation results. Ob-
viously, FCM fails to segment the blue color part of the clothes in the original
image, while the proposed L1FS works well. To illustrate the difference of these
two methods, we display, in Fig. 8, the corresponding six segmented regions
of FCM and L1FS for the women image Fig. 7j, respectively. We find that the
segmented regions of FCM in Fig. 8a-8e are somehow “noisy”. In particular, the
background lattice pattern is partitioned into five regions as shown in Fig. 8a-
8e. Compared with FCM, the proposed L1FS gives quite clean segmented
regions in the second row in Fig. 8. Especially, the background lattice pattern
are classified into only two classes as shown in Fig. 8g-8h. We further compare
the blue parts of the clothes corresponding to Fig. 8c and Fig. 8i. In Fig. 8c,
some background pattern heavily affects the estimation of C, and therefore
the color is not blue any more. However, in Fig. 8i, since the background is
clean, the correct color can be obtained. To sum up, Fig. 8 demonstrates that
the proposed L1FS gives smoother segmentations than FCM.

6 Conclusion

This paper presents a novel piecewise constant image segmentation model
based on fuzzy membership functions and L1-norm fidelity. ADMM is applied
to derive an efficient numerical algorithm, in which each subproblem has a
closed-form solution. In particular, an efficient algorithm is proposed to find
the fuzzy median. The numerical results on both synthetic and real piecewise
constant images demonstrate that the proposed method is superior to some
existing state-of-the-art methods since it is more robust to impulse noise and
can preserve better contrast. Even in the case of Gaussian noise, the proposed
method can achieve similar results as its L2-fidelity counterpart. In this work,
we assume that the image to be dealt with is piecewise constant, which works
well on images with homogeneous image features. The future work is to extend
this framework to piecewise smooth image segmentation.
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(a) N=2 (b) (c) (d) N=4 (e) (f)

(g) N=2 (h) (i) (j) N=6 (k) (l)

(m) N=8 (n) (o) (p) N=4 (q) (r)

(s) N=3 (t) (u) (v) N=6 (w) (x)

Fig. 7 Segmentation on real images. First column and fourth column: real color images;
Second column and fifth column: results of FCM; Third column and last column: results of
L1FS.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 8 Detailed comparison of FCM and L1FS on the woman image. First row: six seg-
mented regions of FCM. Second row: six segmented regions of L1FS.
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non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation
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