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Abstract

In this paper, we present numerical methods to implement the probabilistic repre-
sentation of third kind (Robin) boundary problem for the Laplace equations. The
solution is based on a Feynman-Kac formula for the Robin problem which employs
the standard reflecting Brownian motion (SRBM) and its boundary local time aris-
ing from the Skorohod problem. By simulating SRBM paths through Brownian
motion using Walk on Spheres (WOS) method, approximation of the boundary lo-
cal time is obtained and the Feynman-Kac formula is calculated by evaluating the
average of all path integrals over the boundary under a measure defined through
the local time. Numerical results demonstrate the accuracy and efficiency of the
proposed method for finding a local solution of the Laplace equations with Robin
boundary conditions.

Key words: Skorohod problem, boundary local time, Feynman-Kac formula,
Reflecting Brownian Motion, Brownian motion, Laplace equation, WOS, Robin
boundary problem

1 Introduction

Partial differential equations (PDEs) have been widely used to describe a
variety of phenomena such as electrostatics, electrodynamics, fluid flow or
quantum mechanics. Traditionally, finite difference, finite element and bound-
ary element methods are the mainstream numerical approaches to solve the
PDEs. Recently, using the Feynman-Kac formula [5][6][7] which connects solu-
tions of differential equations of diffusion and heat flow and random processes
of Brownian motions, numerical methods based on random walks or Monte
Carlo diffusions have been explored for solving parabolic and elliptic PDEs
[11][25].

The Feynman-Kac formula represents the solutions of parabolic and ellip-
tic PDEs as the expectation functionals of stochastic processes (specifically
Brownian motions), and conversely, the probabilistic properties of diffusion
processes can be obtained through investigating related PDEs characterized
by corresponding generators [22]. The formula involves the path integrals of the
diffusion process starting from an arbitrarily prescribed location, and this en-
ables us to find a local numerical solution without constructing space and time
meshes as in traditional deterministic numerical methods mentioned above,
which incur expensive costs in high dimensions. In many applications it is
also of practical importance and necessity to seek a local solution of PDEs at
some interested points. If the sample paths of a diffusion process are simulated,
then by computing the average of path integrals we can obtain approxima-
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tions to the exact solutions of the PDEs. For second order elliptic PDEs with
Dirichlet and Neumann boundaries, the average of path integrals is reduced
to the average of boundary integrals under certain measure where the detailed
trajectories of the diffusion process have no effect on the averages except the
hitting locations on the boundaries.

Simulations of diffusion paths can be done by random walks methods [3][8]
[11] [13] either on lattice or in continuum space. In some cases such as for the
Poisson equation, the Feynman-Kac formula has a pathwise integral requiring
the detailed trajectory of each path. Moreover, one may need to adopt ran-
dom walks on a discrete lattice in order to incorporate inhomogeneous source
terms. As for the continuum space approach, the Walk on Spheres (WOS)
method is preferred where the path of diffusion process within the domain
does not appear in the Feynman-Kac formula. For both approaches, the ge-
ometry of the boundaries need special care for accurate results [14]. In our
previous work on Laplace equation with Neumann boundary conditions [4],
we proposed a numerical method to simulate the standard reflecting Brown-
ian motion (SRBM) path using WOS and obtained the boundary local time
of the SRBM. As a result, a local numerical solution of the PDE is achieved
by using the Feynman-Kac formula. Other literatures [9][10][13][14] have also
explored similar problems. Especially, in [13] schemes based on the WOS, Eu-
ler schemes and kinetic approximations are proposed to treat inhomogeneous
Neumann problems. It turns out that the pointwise resolution is much harder
due to the choice of the truncation of time. However, the local time was not
handled explicitly in [13]. On the other hand, Monte Carlo simulations were
discussed in [14] where the positive part of the boundary needs to be identified
first. In this paper, following [4] we continue the use of SRBM to solve Robin
boundary problems for the Laplace operator, which has many applications in
heat transfer and impedance tomograph. Our goal again is to obtain a local
approximation to the exact solution of the Robin problem.

The rest of paper is organized as follows. Firstly, the Skorohod problem is in-
troduced in section 2, where both the concepts of standard reflecting Brownian
motion and boundary local time will be reviewed briefly. This lays the founda-
tion for the underlying diffusion process of the Robin boundary problem and
the sampling of the diffusion paths. Secondly, an overview of the Feynamn-
Kac formula is given in section 3. Thirdly, the probabilistic representation of
the solution for the Robin boundary value problem proposed in [2][12] is dis-
cussed in section 4, and we will see the relation between the Neumann and
Robin problems and gain a new perspective. Section 5 presents the numerical
approaches and test results. Finally, conclusions and future work are given in
section 6.
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2 Skorohod problem, SRBM and boundary local time

Assume that D is a domain with a C1 boundary in R3. The generalized Sko-
rohod problem is stated as follows:

Definition 1 Let f ∈ C([0,∞), R3), a continuous function from [0,∞] to R3.
A pair (ξt, Lt) is a solution to the Skorohod equation S(f ;D) if

(1) ξ is continuous in D̄;
(2) L(t) is a nondecreasing function which increases only when ξ ∈ ∂D,

namely,

L(t) =
∫ t

0
I∂D(ξ(s))L(ds); (2.1)

(3) The Skorohod equation holds:

S(f ;D) : ξ(t) = f(t)− 1

2

∫ t

0
n(ξ(s))L(ds), (2.2)

where n(x) denotes the outward unit normal vector at x ∈ ∂D.

The Skorohod problem was first studied in [1] by A.V. Skorohod in addressing
the construction of paths for diffusion processes with boundaries, which results
from the instantaneous reflection behavior of the processes at the boundaries.
Skorohod presented the result in one dimension in the form of an Ito integral
and Hsu [12] later extended the concept to d-dimensions (d ≥ 2).

In the simple case that D = [0,∞), the solution to the Skorohod problem
uniquely exists and can be explicitly given by

ξ(t) =







f(t), if t ≤ τ ;

f(t)− inf
τ≤s≤t

f(s), if t > τ ; (2.3)

where τ = inf {t > 0 : f(t) < 0}. In general, solvability of the Skorohod prob-
lem is closely related to the smoothness of the domain D. For higher dimen-
sions, the existence of (2.2) is guranteed for C1 domains while uniqueness can
be acheived for a C2 domain by assuming the convexity for the domain [15].
Later, it was shown by Lions and Sznitman [16] that the constraints on D can
be relaxed to some locally convex properties.

Next we introduce the concept of SRBM and boundary local time which
play important roles in solving Robin boundary problem by probabilistic ap-
proaches.

Suppose that f(t) is a standard Brownian motion (SBM) starting at x ∈ D̄
and (Xt, Lt) is the solution to the Skorohod problem S(f ;D), then Xt will be
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the standard reflecting Brownian motion (SRBM) on D starting at x. Because
the transition probability density of the SRBM satisfies the same parabolic
differential equation as that by a BM, a sample path of the SRBM can be
simulated simply as that of the BM within the domain. However, the zero
Neumann boundary condition for the density of SRBM implies that the path
be pushed back at the boundary along the inward normal direction whenever
it attempts to cross the latter. The full construction of a SRBM from a SBM
can be found in our previous work [4].

The boundary local time Lt is not an independent process but associated with
SRBM Xt and defined by

L(t) ≡ lim
ǫ→0

∫ t
0 IDǫ

(Xs)ds

ǫ
, (2.4)

where Dǫ is a strip region of width ǫ containing ∂D and Dǫ ⊂ D. Here Lt is
called the local time of Xt, a notion invented by P. Lévy [23]. This limit exists
both in L2 and P x-a.s. for any x ∈ D.

It is obvious that Lt measures the amount of time that the standard reflect-
ing Brownian motion Xt spends in a vanishing neighborhood of the boundary
within the time period [0, t]. Besides, it is the unique continuous nondecreasing
process that appears in the Skorohod equation. An interesting part of (2.4) is
that the set {t ∈ R+ : Xt ∈ ∂D} has a zero Lebesgue measure while the so-
journ time of the set is nontrivial [23]. This concept is not just a mathematical
one but also has physical relevance in understanding the “crossover exponent”
associated with “renewal rate” in modern renewal theory [17].

In [12], an alternative explicit form of the local time was found,

L(t) =

√

π

2

∫ t

0
I∂D(Xs)

√
ds, (2.5)

where the the right-hand side of (2.5) is understood as the limit of

n−1
∑

i=1

max
s∈∆i

I∂D(Xs)
√

|∆i|, max
i

|∆i| → 0, (2.6)

where ∆ = {∆i} is a partition of the interval [0, t] and each ∆i is an element in
∆. (2.4) and (2.5) provide us different ways to approximate local time and in
[4], it was found that (2.4) yields better approximations in Neumann problem
than (2.5). Therefore, in this paper, we will also choose (2.4) as the approach
to estimate the local time here.
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3 A Feynman-Kac formula

The Feynman-Kac formula named after Richard Feynman and Mark Kac,
establishes a link between PDEs and stochastic processes. It first arose in the
potential theory for Schödinger equations, leading to a profound reformulation
of the quantum mechanics by the means of path integrals. Later, the formula
also finds its applications in mathematical finance, where the probabilistic and
the PDE representations in derivative pricing are connected.

Let us first look at the Dirichlet problems. Given a domain D ⊂ Rd with a
boundary ∂D,

{

Lu(x)− c(x)u(x) = f(x), x ∈ D

u(x) = φ(x), x ∈ ∂D
, (3.1)

where the operator L = −1

2

d
∑

i,j=1

aij(x)
∂2

∂xi∂xj
−

d
∑

i=1

bi(x)
∂

∂xi
and both the

coefficients in L and c(x) are Lipschitz continuous and bounded.

The Feynman-Kac formula in this case [18] represents the solution to (3.1) in
terms of an Ito diffusion process Xt(ω),

u(x) = Ex[
∫ τD

0
f(Xt)exp

{
∫ t

0
c(Xs)ds

}

dt] + Ex[φ(XτD)exp
{
∫ τD

0
c(Xs)ds

}

],

(3.2)
with τD = inf{t : Xt ∈ ∂D} and Xt(ω) is defined by

dXt = b(Xt)dt+ α(Xt)dBt, (3.3)

where Bt is the Brownian motion and [aij ] =
1

2
α(x)αT (x), [bij ] = b.

The expectation Ex is an integration with respect to a measure Px taken over
all sample paths Xt=0(ω) = x, thus (3.2) is a representation of a solution of
Dirichlet problem in the form of functional integral. Moreover, (3.2) is obtained
by killing process Xt at a stopping time τD at which Xt will be absorbed on the
boundary. If c(x) ≥ 0, then the function c(x) can be interpreted as the killing
rate [22]. It should be pointed out that (3.2) is equivalent to the formulation of
weak solution and it is a classical solution as well if some smoothness conditions
are satisfied.

The Feynman-Kac formula above offers a method for solving certain PDEs
by simulating random paths of a stochastic process. Conversely, an important
class of expectations of random processes can be computed by deterministic
methods. For the Neumann boundary condition, a similar formula was derived
by Hsu [12] for the Poisson equation, which is in the form of a functional
integral based on the boundary local time introduced in section 2. In this
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case, though the Feynman-Kac formula remains in a similar form, it should
be understood as a path integral over the stochastic process Lt associated with
the standard reflecting Brownian motion.

4 Robin boundary value problem

We focus on Robin boundary value problem for the time-independent Schrödinger
equation.















1

2
∆u+ qu = 0, in D;

∂u

∂n
− cu = f, on ∂D.

(4.1)

A generalization of the Feynman-Kac formula of section 3 in [2] gives a prob-
ablistic solution of (4.1) as follows,

u(x) = Ex

{
∫ ∞

0
eq(t)êc(t)f(Xt)dLt

}

, (4.2)

where Xt is a SRBM starting at x. The term Feynman-Kac functional eq(t),
also appeared in the Neumann problem [12], is defined as

eq(t) = exp
[
∫ t

0
q(Xs) ds

]

, (4.3)

and a second functional is introduced for the Robin boundary problem, for
c ∈ Σd(∂D)

êc(t) = exp
[
∫ t

0
c(Xs)dLs

]

. (4.4)

Using these two functionals, we have,

u(x) = Ex

{
∫ ∞

0
exp

[
∫ t

0
(q(Xs)ds+ c(Xs)dLs)

]

f(Xt)dLt

}

. (4.5)

Recalling the definition of the local time in (2.4), we have the following ap-
proximation

L(t) ≈ 1

ǫ

∫ t

0
IDǫ

(Xs)ds, (4.6)

thus,

dL(s) ≈ 1

ǫ
IDǫ

(Xs)ds. (4.7)

Therefore, (4.5) can be modified as

u(x) ≈ Ex

{
∫ ∞

0
exp

[
∫ t

0

(

q(Xs) +
1

ǫ
c(Xs)IDǫ

(Xs)
)

ds
]

f(Xt)dLt

}

, (4.8)
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It can also be shown that as ǫ goes to zero, (4.8) converges to (4.5) uniformly
on D̄.

As (4.8) resembles the Feyman-Kac formula for the Neumann problem with a
modified q(x) [4], it indicates a connection between the Robin and the Neu-
mann problems, namely, we may introduce

qǫ(x) = q(x) +
1

ǫ
c(x)IDǫ

(x), (4.9)

then, the Robin boundary problem (4.1) can be viewed as a limiting case
(ǫ → 0) of Neumann problems















1

2
∆u+ qǫu = 0, in D;

∂u

∂n
= f, on ∂D.

(4.10)

5 Numerical approach and results

In the present work, we only consider the case of the Laplace equation where
q = 0 in (4.10). From (4.5),

u(x) = Ex

{
∫ ∞

0
e
∫ t

0
c(Xt)dLtf(Xt)dLt

}

, (5.1)

where Xt represents the standard reflecting Brownian motion. For the sake of
computer simulation, the time period is truncated into [0, T ] to produce an
approximation for u(x), i.e.,

ũ(x) = Ex

{

∫ T

0
e
∫ t

0
c(Xt)dLtf(Xt)dLt

}

. (5.2)

Next we will give a general description on the realization of SRBM paths and
the calculation of the corresponding local time, as implemented in [4]. A SRBM
path can be constructed by pulling back a BM path back onto the boundary
whenever it runs out of the domain. Specifically, a SRBM path behaves exactly
the same way as a BM which is simulated by the WOS method.

5.1 Simulating SRBM by the method of Walk on Spheres (WOS)

• Method of WOS for Brownian paths
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Random walk on spheres (WOS) method was first proposed by Müller [7],
which can solve the Dirichlet problem for the Laplace operator efficiently
[8][10] .

To illustrate the WOS method for the Dirichlet problem (3.1), let us consider
the Laplace equation again where f = 0, aij = δij and bi = 0 in (3.1) and the
Itô diffusion is then simply the standard Brownian motion with no drift. The
solution to the Laplace equation can be rewritten in terms of a measure µx

D

defined on the boundary ∂D,

u(x) = Ex(φ(XτD)) =
∫

∂D
φ(y)dµx

D, (5.3)

where µx
D is the harmonic measure defined by

µx
D(F ) = P x {XτD ∈ F} , F ⊂ ∂D, x ∈ D. (5.4)

It can be shown easily that the harmonic measure is related to the Green’s
function g(y, x) for the domain with a homogeneous boundary condition [20],
i.e.,

{

−∆g(x, y) = δ(x− y), x ∈ D,

g(x, y) = 0, x ∈ ∂D
, (5.5)

as follows

p(x,y) = −∂g(x, y)

∂ny

. (5.6)

If the starting point x of a Brownian motion is at the center of a ball, the
probability of the BM exiting a portion of the boundary of the ball will be
proportional to the portion’s area. Therefore, sampling a Brownian path by
drawing balls within the domain can significantly reduce the path sampling
time. To be specific, given a starting point x inside the domain D, we simply
draw a ball of largest possible radius fully contained in D and then the next
location of the Brownian path on the surface of the ball can be sampled,
using a uniform distribution on the sphere, say at x1. Treat x1 as the new
starting point, draw a second ball fully contained in D, make a jump from x1

to x2 on the surface of the second ball as before. Repeat this procedure until
the path hits a absorption ǫ-shell of the domain (see Fig. 2) [5]. When this
happens, we assume that the path has hit the boundary ∂D (see Fig. 1(a) for
an illustration).

Now we can define an estimator of (3.2) with c = 0 by

u(x) ≈ 1

N

N
∑

i=1

u(xi), (5.7)

where N is the number of Brownian paths sampled and xi is the first hitting
point of each path on the boundary. To speed up the WOS process, maximum
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(a) WOS within the domain (b) WOS (with a maximal
step size for each jump) within
the domain

Fig. 1. Walk on Spheres method

possible size of the sphere for each step would allow faster first hitting on the
boundary.

• WOS and RBM

For the reflecting boundary, we will construct a strip region around the bound-
ary (see Fig. 2) and allow the process Xt to move according to the law of BM
continuously. Before the path enters the strip region, the radius of WOS is
chosen to be of a maximum possible size less than the distance to the bound-
ary. Once the particle is in the strip region, the radius of the WOS sphere is
fixed at a constant ∆x (or 2∆x, see Fig. 3). With this approach, according to
the definition (2.4), the local time may be interpreted as

dL(t) ≈
∫ tj
tj−1

IDǫ
(Xs)ds

ǫ
, (5.8)

which is

dL(t) ≈
∫ tj
tj−1

IDǫ
(Xs)ds

ǫ
= (ntj − ntj−1

)
(∆x)2

3ǫ
, (5.9)

given a prefixed constant ∆x in the strip region and ntj be the cumulative
steps that path stays within the ǫ-region from the begining until time tj (see
Remark below for definition). Notice that only those steps where the path of
Xt remains in the ǫ-region will contribute to ntj because the SRBM may lie
out of the ǫ-region at other steps. More details can be found in [4], where
the same construction is applied for the Neumann boundary value problem.
One may refer to Fig. 3 for an illustration of the behavior of path near the
boundary.

Remark 2 Occupation time of SRBM Xt in the numerator of (5.8) was cal-
culated in terms of that of BM sampled by the walks on spheres. Notice here
that within the ǫ-region, the radius of the WOS may be ∆x or 2∆x, which
implies that the corresponding elapsed time of one step for local time could be
(∆x)2/3 or (2∆x)2/3. The latter is four times bigger than the former. But if
we absorb the factor 4 into nt, (5.9) still holds. In practical implementation,
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Fig. 2. A ǫ-region for a bounded domain in R3

Fig. 3. WOS in the ǫ-region. At point x1, BM path first hits the ǫ-region. By WOS
with a prefixed radius ∆x, the path continues moving subsequently to x2 where the
distance to the boundary is less than ∆x. Enlarge the radius to 2∆x, the path then
have a probability to run out of the domain to x3. Pull back to the closest point x4
on the boundary, record φ(x4) and continue WOS-sampling starting at x4.

we treat nt as a vector of entries of increasing value, the increment of each
component of nt over the previous one after each step of WOS will be 0, 1 or
4, corresponding to the scenarios that Xt is out of the ǫ-region, in the ǫ-region
while sampled on the sphere of a radius ∆x, or in the ǫ-region while sampled
on the sphere of a radius 2∆x, respectively.

Robin boundaries represent a general form of an insulating boundary con-
dition for convection-diffusion equations where c(x) stands for the positive
diffusive coefficients. For our numerical test, we will consider two cases: a
positive constant c and a positive function c(x).

5.2 Numerical Tests

The numerical approximations obtained are compared to the true solutions on
a selected circle and a line segment, respectively, for the following three test
domains in R3:
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(1) A cube centered at the origin with a length 2;
(2) A sphere centered at the origin with a radius 1;
(3) An ellipsoid centered at the origin with axial lengths [3, 2, 1].

The location of the circle is given by

{(x, y, z)T = (r cos θ1 sin θ2, r sin θ1 sin θ2, r cos θ2)
T} (5.10)

with r = 0.6, θ1 = 0 : k · 2π/30 : 2π, θ2 = π/4 with k = 1, ..., 15. While the
line segment is defined with endpoints (0.4, 0.4, 0.6)T and (0.1, 0, 0)T . Fifteen
uniformly spaced points on the line are selected to monitor the accuracy of
the numerical solutions.

Finally, we set the true solution of the Robin boundary problem (4.1) to be

u(x) = sin 3x sin 4y e5z + 5. (5.11)

5.2.1 Constant c(x)

Example 1 c(Xt) = 1

In this case, (5.1) is reduced to

u(x) = Ex{
∫ ∞

0
e
∫ t

0
dLtf(Xt)dLt}, (5.12)

which is equivalent to

u(x) = Ex{
∫ ∞

0
eLt−L0f(Xt)dLt} (5.13)

or
u(x) = Ex{

∫ ∞

0
eLtf(Xt)dLt}, (5.14)

for a starting point x belonging to the interior of the solution domain.

We will truncate the time interval to [0, T ], an approximation to (5.14) will
be

ũ(x) = Ex{
∫ T

0
eLtf(Xt)dLt}. (5.15)

Using the fact that

dLt ≈ (nt − nt−1)
(∆x)2

3ǫ
, (5.16)

we can rewrite (5.15) as

ũ(x) = Ex{
∫ T

0
ent

(∆x)2

3ǫ f(Xt)(nt − nt−1)
(∆x)2

3ǫ
}. (5.17)

12



0 5 10 15
−2

0

2

4

6

8

10

12

(a) ǫ = 3∆x, Err = 9.59%,
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(b) ǫ = 4∆x, Err =8.84%,
NP=1.6e4, ∆x=5e-4

Fig. 4. Cubic domain: number of paths N = 2e5 and c(Xt) = 1. (Left - circle; right
- line segement)

Next identifying the time interval with the length of sample path NP, we have

ũ(x) = Ex







NP
∑

j′=0

entj

(∆x)2

3ǫ f(Xtj)(ntj − ntj−1
)
(∆x)2

3ǫ







, (5.18)

where j′ denotes each step of the path and j denotes the steps where the path
hits the boundary.

At each step along a path we first evaluate

entj

(∆x)2

3ǫ f(Xtj )(ntj − ntj−1
)
(∆x)2

3ǫ
,

if Xtj hits the boundary, we then compute f(Xtj )(ntj − ntj−1
)
(∆x)2

3ǫ
, followed

by multiplying it by entj

(∆x)2

3ǫ , which uses the cumulative time of Ltj from t = 0
to tj . Finally, the expectation is done via the average over N sample paths.

The simulation results of a cubic domain are presented in Fig. 4 and 5. The
two figures show the convergency of the approximations as the length of path
increases from 1.35e4 to 1.43e4 and 1.6e4 to 1.7e4 over the circle and the line
segment, respectively. Some deviations are seen at the tail in Figure 4(a) and
among the middle points in Figure 4(b). Meanwwhile, for the spherical and
ellipsoid domains (Figure 6 and 7), the approximations are better and the
errors are relatively smaller especially over the line segments, which are below
3% in Figure 6(b) and Figure 7(b).

5.2.2 Variable c(x)

Example 2 c(Xt) = |x|, x is the first component of Xt on the boundary.
Similar to Example 1, we have
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(b) ǫ = 4∆x, Err = 6.49%,
NP=1.7e4, ∆x=5e-4

Fig. 5. Cubic domain: number of paths N = 2e5 and c(Xt) = 1. (Left - circle; right
- line segement)
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(b) ǫ = 3∆x, Err = 1.24%,
NP=5.5e3, ∆x=5e-4

Fig. 6. Spherical domain: number of paths N = 2e5 and c(Xt) = 1. (Left - circle;
right - line segement)
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(b) ǫ = 3∆x, Err = 2.44%,
NP=4.5e3, ∆x=5e-4

Fig. 7. Ellipsoid domain: number of paths N = 2e5 and c(Xt) = 1. (Left - circle;
right - line segement)

u(x) = Ex

{
∫ ∞

0
e
∫ t

0
c(Xs)dLsf(Xt)dLt

}

. (5.19)

It can be seen that c(Xs)dLs and f(Xt)dLt have the same form, so we can
handle c(Xs)dLs exactly the same way as f(Xt)dLt. Then, we have
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(a) ǫ = 3∆x, Err = 6.35%,
NP=1.6e4, ∆x=5e-4
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(b) ǫ = 3∆x, Err = 6.66%,
NP=1.48e4, ∆x=5e-4

Fig. 8. Cubic domain: number of paths N = 2e5 and c(Xt) = |x|. (Left - circle;
right - line segement)

u(x) = Ex







NP
∑

j′=0

e
∑j

k=0
c(Xtk

)(ntk
−ntk−1

)h
2

3ǫ f(Xtj )(ntj − ntj−1
)
h2

3ǫ







. (5.20)

Notice that the term

e
∑j

k=0
c(Xtk

)(ntk
−ntk−1

)h
2

3ǫ (5.21)

cumulates all the information of c(Xt) with respect to the local time from the
beginning to the current time. If c(Xt) = |x|, then

u(x) = Ex







NP
∑

j′=0

e
∑j

k=0
|xtk

|(ntk
−ntk−1

)h
2

3ǫ f(Xtj )(ntj − ntj−1
)
h2

3ǫ







, (5.22)

where j′ denote each step for the path and j denotes the steps where the path
hits the boundary.

Numerical results are shown in Figure 8-10 for a cubic, a spherical and an
ellipsoid domain, respectively with some adjustment in ∆x and NP . Here we
still have similar results for cube with errors around 6.5%. For the sphere, we
change ∆x to 4e−4 and there are deviation around the middle in Figure 9(a)
which may explain the overall error only 6.74% while it performs well over the
line segment in Figure 9(b) with a smaller error of 3.1%. For the ellipsoid, the
results are similar as in Example 1 and maintain an error below 4%.

6 Conclusions and future work

This paper presents a Monte Carlo simulation method to solve the third
boundary problems associated with Laplace equations. The idea of simulating
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(b) ǫ = 3∆x, Err = 3.10%,
NP=6e3, ∆x=4e-4

Fig. 9. Spherical domain: number of paths N = 2e5 and c(Xt) = |x|. (Left - circle;
right - line segement)
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(a) ǫ = 3∆x, Err = 3.76 %, NP=
5e3, ∆x=4e-4
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(b) ǫ = 3∆x, Err = 1.93%,
NP=5e3, ∆x=4e-4

Fig. 10. Ellipsoid domain: number of paths N = 2e5 and c(Xt) = |x|. (Left - circle;
right - line segement)

sample paths of SRBM by the WOS within the strip region shows its efficiency
and accuracy in estimating local time and evaluating Feynman-Kac formula.
It should be noted that the cases that q 6= 0 needs further work due to the un-
known exit time out of the sphere at each step. For the Poisson equation, the
contribution of the source term might be computed as a conditional integral
[19]. Moreover, the proper truncation of time period is unknown, though it is
proven that the variance of the approximation increases linearly of T [13].

For future work, more flexible domains with local convexity will be considered
as it relates to the calculations of electrical properties such as the conductivity
of composite materials where the particle shapes plays an important role [21].
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