
A HIGH ORDER HDG METHOD FOR CURVED-INTERFACE
PROBLEMS VIA APPROXIMATIONS FROM STRAIGHT

TRIANGULATIONS

WEIFENG QIU ∗, MANUEL SOLANO † , AND PATRICK VEGA ‡

Abstract. We generalize the technique of [Solving Dirichlet boundary-value problems on curved
domains by extensions from subdomains, SIAM J. Sci. Comput. 34, pp. A497–A519 (2012)] to
elliptic problems with mixed boundary conditions and elliptic interface problems involving a non-
polygonal interface. We study first the treatment of the Neumann boundary data since it is crucial
to understand the applicability of the technique to curved interfaces. We provide numerical results
showing that, in order to obtain optimal high order convergence, it is desirable to construct the
computational domain by interpolating the boundary/interface using piecewise linear segments. In
this case the distance of the computational domain to the exact boundary is only O(h2).

Key words. Discontinuous Galerkin, high order, curved boundary, curved interface.

1. Introduction. In this paper we present a technique to numerically solve
second order elliptic problems in domains Ω which are not necessarily polygonal. In
addition, we deal with domains divided in two regions by a curved interface Σ. In
particular we use a high order hybridizable discontinuous Galerkin method (HDG)
[3, 4] where the computational domain do not exactly fit the curved boundary or
interface. The main motivation of this technique is being able to use high order
polynomial approximations and keep high order accuracy using triangular meshes
having only straight elements.

One of the first ideas in this direction was introduced by [5] for the one-dimensional
case and then extended to higher space dimensions for pure diffusion [8, 9] and
convection-diffusion [9] equations. In their work, the mesh does not fit the domain
and the distance between the computational domain and the boundary Γ := ∂Ω is of
only order O(h), making this method attractive from a computational point of view.
In addition, [7] applied this method to couple boundary element and HDG methods to
solve exterior diffusion problems. However, only Dirichlet boundary value problems
have been considered since Neumann data can not be handled in the same way as we
will explain below. We will see that for the Neumann boundary case the proposed
technique works properly if the computational domain is order O(h2) away from the
actual boundary.

The work presented here focuses first on the treatment of part of the boundary
where a Neumann data is prescribed. It is important to understand this situation in
order to extend the ideas to problems having a curved interface. In fact, the trans-
mission conditions at the interface involve jumps of the scalar variable and jumps of
the normal component of the flux. The computational jump of the scalar variable can
be treated considering the transferring technique of [9] and the computational jump
of the normal component of the flux can be handled using the extrapolation method
for the Neumann data that we will describe in the following sections.

∗Department of Mathematics, City University of Hong Kong, Hong Kong, email:
weifeqiu@cityu.edu.hk.
†Corresponding author. Departamento de Ingenieŕıa Matemática and CI2MA, Universidad de

Concepción, Chile, email: msolano@ing-mat.udec.cl.
‡Departamento de Ingenieŕıa Matemática and CI2MA, Universidad de Concepción, Chile, email:

pvega@ing-mat.udec.cl.

1

ar
X

iv
:1

50
1.

05
23

2v
2

 [
m

at
h.

N
A

]
 2

1
N

ov
 2

01
5

One of the first methods that approximate Neumann boundary conditions on
curved domains considering non-fitted meshes was introduced by [1]. Here, a piecewise
linear finite element method was considered and optimal convergence in the H1-norm
was shown. In addition, the same authors solved a semi-definite Neumann problem
on curved domains using a similar technique ([2]). They showed optimal behavior of
the errors in H1 and L2-norms using again piecewise linear elements. On the other
hand, higher order approximation finite element methods require to properly fit the
boundary in order to keep high order accuracy. For instance, isoparametric element
can be considered ([2],[12]). In the case of elliptic interface problems, usually the curve
describing the interface is interpolated by a piecewise linear computational interface.
Hence, super-parametric elements near the interface must be considered in order to
achieve high order accuracy ([11]).

This article aims to develop a high order method based on a triangulation of the
domain involving only straight elements. As we will discuss, the boundary/interface
must be interpolated by piecewise linear function in order to obtain the expected
rates of convergence. Since most of the methods based on linear fitting are only
second order accurate, we believe our method constitutes a competitive alternative.

The rest of the manuscript is organized as follows. We will begin by setting
notation. Then, we will describe the technique for a boundary-value problem where
Neumann data is prescribed in part of the boundary. In particular, we will discuss the
proper choice of the paths that will transfer the Dirichlet and impose the Neumann
data. We will provide numerical simulations showing the performance of the method.
Then, we will adapt these ideas in order to solve a elliptic interface problem and show
numerical experiments validating the technique.

2. Mesh construction and notation. Let Dh be a a triangulation constructed
by the union of disjoint straight triangles that approximates a bounded domain Ω ⊂
R2 and does not necessarily fit its boundary. The Dirichlet and Neumann part of the
boundary Γ are denoted by ΓD and ΓN (ΓD∩ΓN = ∅, ΓD∪ΓN = Γ). We also assume
that the computational boundary, Γh, satisfies Γh = ΓhD ∪ΓhN and ΓhD ∩ΓhN = ∅ where
ΓhD and ΓhN are part of Γh with Dirichlet (g̃D) and Neumman (g̃N) data, respectively.
Let d(Γ,Γh) be the distance between Γ and Γh. We denote by hK the diameter of
the element K ∈ Dh and by n its outward unit normal. The meshsize h is defined
as maxK∈Dh

hK . Let E0
h be the set of interior edges of Dh and E∂h the edges at the

boundary. We say that an edge e ∈ E0
h if there are two elements K+ and K− in Dh

such that e = ∂K+ ∩ ∂K−. Also, we say that e ∈ E∂h if there is an element K ∈ Dh
such that e = ∂K∩Γh. We set Eh = E0

h∪E∂h. For each element K in the triangulation
Dh, we denote by Pk(K) the space of polynomials of degree at most k defined on the
element K. For each edge e in Eh Pk(e) is the space of polynomials of degree at
most k defined on the edge e. Given an element K, (·, ·)K and 〈·, ·〉∂K denote the
L2(K) = {v :

∫
K
v2 < ∞} and L2(∂K) = {ξ :

∫
∂K

ξ2 < ∞} products, respectively.
Thus, for each ξ and ψ we define

(ξ, ψ)Dh
=
∑
K∈Dh

(ξ, ψ)K and 〈ξ, ψ〉∂Dh
=
∑
K∈Dh

〈ξ, ψ〉∂K .

2

3. Boundary value problem with mixed boundary conditions. We con-
sider the following model problem:

−∇ · q = f in Ω,(3.1a)

q + K∇u = 0 in Ω,(3.1b)

u = gD on ΓD,(3.1c)

q · n = gN on ΓN .(3.1d)

Here gD ∈ H1/2(ΓD) and gN ∈ H−1/2(ΓN) are given data at the border, f ∈ L2(Ω)
is a source term and K ∈ [L∞(Ω)]2×2 is a symmetric and positive definite tensor.

In the computational domain Dh, problem (3.1) can be written as follows:

−∇ · q = f in Dh,(3.2a)

q + K∇u = 0 in Dh,(3.2b)

u = g̃D on ΓhD,(3.2c)

q · n = g̃N on ΓhN .(3.2d)

Here g̃D and g̃N are unknowns. As we mentioned before, g̃D can be calculated
following [5, 7, 9], i.e.,

g̃D(x) := gD(x̄) +

∫
σ(x)

K−1q ·m ds,(3.3)

where σ(x), is a path starting at x ∈ ΓhD and ending at x̄ ∈ ΓD; and m is the tangent
vector to σ(x). This expression comes from integrating (3.1b) along the path σ(x)
(see [9] for details).

In principle, any kind of numerical method using polygonal domains can be used
to solve the equations in Dh. However, it is desirable to consider those methods
where an accurate approximation of q is obtained, since the boundary condition (3.3)
depends on that flux. We also notice from (3.3) that the same idea will not work for g̃N
since a similar expression will involve derivatives of q which are not well approximated
by the numerical method.

3.1. The HDG method. The method seeks an approximation (qh, uh, ûh) of
the exact solution (q, u, u|Eh

) in the space V h ×Wh ×Mh given by

V h = {v ∈ [L2(Dh)]2 : v|K ∈ [Pk(K)]2 ∀K ∈ Dh},(3.4a)

Wh = {w ∈ L2(Dh) : w|K ∈ Pk(K) ∀K ∈ Dh},(3.4b)

Mh = {µ ∈ L2(Eh) : µ|e ∈ Pk(e) ∀e ∈ Eh}.(3.4c)

It is defined by requiring that it satisfies the equations

− (K−1qh,∇w)Dh
+ 〈q̂h · n, w〉∂Dh

= (f, w)Dh
(3.5a)

(qh,v)Dh
− (uh,∇ · v)Dh

+ 〈ûh,v · n〉∂Dh
= 0,(3.5b)

〈µ, q̂h · ν〉∂Dh\Γh = 0,(3.5c)

〈µ, ûh〉Γh
D

= 〈µ, ghD〉Γh
D
,(3.5d)

〈µ, q̂h〉Γh
N

= 〈µ, ghN 〉Γh
N
,(3.5e)

3

for all (v, w, µ) ∈ V h ×Wh ×Mh. Here ghD is the approximation of g̃D proposed by
[9]. More precisely, let K ∈ Dh. We define the operator EK : [Pk(K)]2 → [Pk(R2)]2

such that EK(v) = v for all v ∈ [Pk(K)]2. Then, for x ∈ e ⊂ ΓhD,

g̃D(x) ≈ ghD(x) := gD(x̄) +

∫
σ(x)

K−1EKe(qh) ·m ds,(3.5f)

where Ke is the triangle where e belongs. In other words, EKe is the standard
extension of a polynomial to the whole R2 space. On the other hand, ghN is an
approximation of g̃N which is still unknown. In Subsection 3.3 we propose to replace
(3.5e) by an equation involving known quantities at the right hand side.

Finally, to complete the definition of the HDG method we must specify the defi-
nition of numerical trace q̂h on ∂Dh, which we takes of the form

q̂h = qh + τ(uh − ûh)n,(3.5g)

where τ : ∂Dh → (0,∞) is a stabilization parameter that guaranties solvability of
(3.5) and can be set as τ |K = ‖K‖L∞(K) on each element K ([3, 13]).

3.2. Definition of the family of paths. The representation of ghD in (3.5f) is
independent on the integration path. Let x be a point on a boundary edge e. Previous
work have proposed two ways to determine a point x̄ in Γ and hence construct σ(x):

(P1) If x is a vertex, an algorithm developed by [9] uniquely determines x̄ as
the closest point to x such that σ(x) does not intersect another path before
terminating at Γ and does not intersect the interior of the domain Ω. In
addition, if x is not a vertex, its corresponding path is defined as convex
combination of those paths associated to the vertices of e. For the Dirichlet
boundary value problem, the authors in [9] numerically showed optimal rates
of convergence with this choice of σ(x) when d(Γ,Γh) is of order h, that is,
order k + 1 for uh and qh and order k + 2 for the numerical trace ûh.

(P2) On the other hand, [8] proposed to determine x̄ such that m is normal to the
edge e. In this case these authors theoretically proved that if d(Γ,Γh) is of
order h, the order of convergence for uh and qh is indeed k+ 1, but the order
for ûh is only k+3/2. However, if d(Γ,Γh) is of order h5/4 the numerical trace
also superconverges with order k + 2. Moreover, they also showed numerical
evidence indicating that the numerical trace optimally superconverges even
though d(Γ,Γh) is of order h.

Let now be e a boundary edge with vertices x1 and x2. We denote by Γe the
part of Γ determined by x̄1 and x̄2 as it is shown in Fig. 1. In this paper we assume
that if e ⊂ ΓhD (or e ⊂ ΓhN) then Γe ⊂ ΓD (Γe ⊂ ΓN). The algorithm in (P1) can be
easily modified to satisfy this assumption. On the other hand, the paths defined in
(P2) will not always satisfy this condition.

3.3. Approximation of the Neumann boundary condition. Let e ⊂ ΓhN a
Neumann boundary face and Γe ⊂ ΓN the part of ΓN associated to e. We denote by
Ke the element of the triangulation where e belongs.

The main idea is to characterize Γe using the parameterization induced by the
family of paths. More precisely, Let e = {x : x(θ) = (x2−x1)θ+x1, θ ∈ [0, 1]}. Then

Γe = {x̄ = φ(θ) : φ(θ) = x(θ) + |σ(x(θ))|m(θ), θ ∈ [0, 1]},(3.6)

4

Ke

e
x1 x2

σ(x1) σ(x2)

x̄2x̄1

Γe

Ke

e
x1 x2

σ(x1)

σ(x2)

x̄2

x̄1

Γe

Fig. 1. Examples of a boundary edge e with vertices x1 and x2. Γe is the segment of ΓN

determined by x̄1 and x̄2.

where we recall that |σ(x(θ))| and m(θ) are the length and tangent vector of the
segment joining x(θ) and x̄(θ). We define the space

Mφ(Γe) :=

{
µ ∈ L2(Γe) : µ =

µ̃ ◦ φ−1

‖φ′ ◦ φ−1‖2
with µ̃ ∈ Pk([0, 1])

}
.(3.7)

Equation (3.5e) is then replaced by imposing the following condition over qh:

〈EKe(qh) · n, µ〉Γe
= 〈gN , µ〉Γe

∀µ ∈Mφ(Γe).(3.8)

Notice that (3.8) becomes∫ 1

0

(
EKe(qh) · n) ◦ φ

)
(θ) µ̃(θ)dθ =

∫ 1

0

(gN ◦ φ) µ̃(θ)dθ(3.9)

for all µ̃((θ)) ∈ Pk([0, 1]); hence, there is no need of computing the derivative of φ.

On the other hand, we observe that ifm and σ were independent of θ (for example,
if Γe were polygonal and m perpendicular to e), then ‖φ′ ◦φ−1‖2 would be constant
and hence Mφ(Γe) becomes a standard space of polynomials through pulling back
polynomials from the interval [0, 1]. As we will see in the numerical experiments
provided in next section, this technique performs optimally if m and n have the same
direction.

3.4. Numerical results: boundary-value problem. In this section we present
numerical experiments showing the performance the extrapolation technique and the
influence of the choice of paths. Since the size of the computational domain changes
with h, we measure the errors eu := u− uh, eq := q − qh and eû := u− ûh by using
the following norms:

‖eu‖int : =
‖eu‖L2(Dh)

|Dh|1/2
, ‖eq‖int :=

‖eq‖[L2(Dh)]2

|Dh|1/2
,

‖eû‖Eh
: =

(∑
K∈Dh

hK‖P∂u− ûh‖2L2(∂K)∑
K∈Dh

hk|∂K|

)1/2

.

5

Here P∂ is the L2−projection over Pk(e) with e ⊂ ∂K.
In addition we compute an element-by-element postprocessing, denoted by u∗h, of

the approximate solution uh, which provides a better approximation for the scalar
variable when k ≥ 1 ([4, 6]). Given an element K we construct u∗h = ūh + ũh as the
only function in Pk+1(K) such that

ūh =

1
3

∑
e∈∂K ûh|e if k = 0,

1
|K|
∫
K
uhdx if k > 0,

and ũh is the polynomial in Pk+1
0 (K) (set of functions in Pk+1(K) with mean zero)

satisfying

(∇ũh,∇w)K = −(qh,∇w)K ∀w ∈ Pk+1(K).

In the purely diffusive case, this new approximation of u has been proven to converge
with order k + 2 for k ≥ 1 when the domain is polygonal ([4, 6]), and also when it
has curved Dirichlet boundary ([8, 9]).

We set K = I in all the experiments of this section. In Subsection 3.4.1 we show
that deteriorate convergence can happen if d(Γ,Γh) = O(h). However, we will see in
Subsection 3.5 that optimal convergence is obtained when d(Γ,Γh) = O(h2).

3.4.1. Computational domain at a distance d(Γ,Γh) = O(h). In the fol-
lowing examples the computational domain is constructed in such a way that the
distance d(Γ,Γh) is of order h. Moreover, f , gD and gN are chosen in order that
u(x, y) = sin(x) sin(y) is solution the exact of (3.1).

Example 3.1. Our first example consist of approximating a squared domain
Ω = (0, 1) by a squared subdomain satisfying d(Γ,Γh) = O(h) as Fig. 2 shows. Let
ΓN = {x : x = 0}, ΓD = ∂Ω \ ΓN and the family of paths is computed according to
(P2).

Fig. 2. Two consecutive meshes (h = 1/4 and h = 1/8) approximating the domain of Example
3.1. (Figure obtained from [8])

In Table 1 we display the history of convergence for different polynomial degree
(k = 0, 1, 2 and 3) and meshsizes (h = 1/2, 1/4, 1/8, 1/16 and 1/32). We observe
that the error of u and q behaves optimally with convergence rate of order k + 1.
Moreover the error of numerical trace and postprocessed solution also converge with

6

order k + 1, which is not optimal for the standard HDG method on polygonal do-
mains. Even though, the errors eu∗ are always small than eu. We attribute this lack
of superconvergence to the fact that the Neumann condition (3.8) is being imposed
on qh and not on q̂h as in the standard HDG method.

‖eu‖int ‖eq‖int ‖eû‖Eh
‖eu∗‖int

k h error order error order error order error order

1/2 4.58E-03 - 6.59E-02 - 2.13E-02 - 7.50E-03 -

1/4 6.09E-03 -0.41 4.77E-02 0.46 5.75E-03 1.89 6.60E-03 0.18

0 1/8 4.62E-03 0.40 2.74E-02 0.80 1.75E-03 1.71 4.71E-03 0.49

1/16 2.78E-03 0.73 1.46E-02 0.91 6.18E-04 1.51 2.80E-03 0.75

1/32 1.52E-03 0.87 7.52E-03 0.96 2.51E-04 1.30 1.53E-03 0.88

1/2 1.54E-03 - 9.89E-03 - 3.70E-03 - 1.67E-03 -

1/4 5.67E-04 1.44 2.55E-03 1.96 6.31E-04 2.55 4.68E-04 1.84

1 1/8 1.69E-04 1.75 7.09E-04 1.85 1.50E-04 2.07 1.31E-04 1.83

1/16 4.62E-05 1.86 1.94E-04 1.87 3.84E-05 1.97 3.60E-05 1.87

1/32 1.21E-05 1.93 5.13E-05 1.92 9.83E-06 1.97 9.52E-06 1.92

1/2 2.29E-04 - 1.20E-03 - 5.23E-04 - 2.17E-04 -

1/4 2.82E-05 3.02 1.24E-04 3.28 3.36E-05 3.96 2.44E-05 3.16

2 1/8 3.43E-06 3.03 1.36E-05 3.19 3.22E-06 3.38 2.81E-06 3.12

1/16 4.25E-07 3.01 1.63E-06 3.06 3.61E-07 3.16 3.38E-07 3.05

1/32 5.28E-08 3.01 2.02E-07 3.01 4.26E-08 3.08 4.13E-08 3.03

1/2 3.37E-05 - 1.51E-04 - 7.55E-05 - 3.39E-05 -

1/4 2.30E-06 3.87 9.32E-06 4.02 3.12E-06 4.59 2.30E-06 3.88

3 1/8 1.55E-07 3.89 6.74E-07 3.79 1.78E-07 4.14 1.55E-07 3.89

1/16 1.05E-08 3.89 4.76E-08 3.82 1.12E-08 3.99 1.05E-08 3.89

1/32 6.90E-10 3.92 3.22E-09 3.89 7.13E-10 3.97 6.90E-010 3.92

Table 1
History of convergence of the approximation in Example 3.1.

Example 3.2. We now consider an annular domain Ω = {(x, y) ∈ R2 : 142 <
x2 + y2 < 202} that is being approximated by a polygonal subdomain satisfying
d(Γ,Γh) = O(h) as shown in Fig. 3. We consider Neumman data in the outer
boundary ΓN = {(x, y) ∈ R2 : x2 + y2 = 202} and Dirichlet data in the inner
boundary ΓD = {(x, y) : x2 + y2 = 142}. Here the paths are computed according to
(P2).

Fig. 3. Annular domain and mesh in Example 3.2.

7

The behavior of the L2-norm of the error displayed in Table 2 is similar to the one
obtained in the previous example, i.e., the rate of convergence of the error in all the
variables is of order k + 1. Thus, this example suggests that our technique performs
properly when the boundary is actually non-polygonal.

‖eu‖int ‖eq‖int ‖eû‖Eh
‖eu∗‖int

k h error order error order error order error order

1.89 9.56E+00 - 8.79E+00 - 4.66E-01 - 9.80E+00 -

0.96 8.47E+00 0.18 5.82E+00 0.61 3.72E-01 0.33 8.50E+00 0.21

0 0.49 5.72E+00 0.57 3.38E+00 0.79 2.42E-01 0.63 5.72E+00 0.56

0.24 3.29E+00 0.81 1.82E+00 0.90 1.37E-01 0.83 3.29E+00 0.81

0.12 1.76E+00 0.91 9.42E-01 0.91 7.26E-02 0.92 1.76E+00 0.91

1.89 2.03E+01 - 7.85E+00 - 9.56E-01 - 2.04E+01 -

0.96 5.94E+00 1.82 2.12E+00 1.94 2.58E-01 1.94 5.96E+00 1.82

1 0.49 1.43E+00 2.08 5.03E-01 2.10 6.00E-02 2.13 1.43E+00 2.08

0.24 3.40E-01 2.09 1.20E-01 2.08 1.40E-02 2.11 3.40E-01 2.09

0.12 8.19E-02 2.06 2.92E-02 2.06 3.35E-03 2.11 8.20E-02 2.06

1.89 4.04E+00 - 1.82E+00 - 1.90E-01 - 4.04E+00 -

0.96 6.80E-01 2.64 3.42E-01 2.46 2.95E-02 2.76 6.81E-01 2.64

2 0.49 1.41E-01 2.30 5.86E-02 2.58 5.89E-03 2.36 1.41E-01 2.30

0.24 2.12E-02 2.75 8.33E-03 2.83 8.75E-04 2.77 2.12E-02 2.75

0.12 2.88E-03 2.89 1.10E-03 2.93 1.16E-04 2.90 2.88E-03 2.93

1.89 4.12E+00 - 1.52E+00 - 1.93E-01 - 4.12E+00 -

0.96 3.17E-01 3.80 1.07E-01 3.93 1.37E-03 3.92 3.17E-01 3.80

3 0.49 1.89E-02 4.13 6.29E-03 4.15 7.89E-04 4.18 1.89E-02 4.13

0.24 1.10E-03 4.13 3.70E-04 4.12 4.53E-05 4.15 1.10E-03 4.13

0.12 6.56E-05 4.08 2.23E-05 4.07 2.68E-06 4.09 6.56E-05 4.08

Table 2
History of convergence of the approximation in Example 3.2.

Remark 3.1. The construction of the family of paths according to (P1) in Ex-
amples 3.1 and 3.2 deliver similar results since the difference between (P1) and (P2)
is not significant for these domains. That is why we do not display the convergence
tables for this case. This numerical evidence indicates that the technique proposed
provides optimal rate of convergence when d(Γ,Γh) = O(h) and the family of paths is
constructed according to (P1) or (P2). However, in practice, this condition over the
distance can not be satisfied in general, unless the mesh is constructed properly to do
so.

A practical construction of the computational domain Dh was described in [9]. It
consists of “immersing” the domain in a Cartesian background mesh and set Dh as
the union of all the elements that are completely inside of Ω as it is shown in Fig.
4. Here d(Γ,Γh) = O(h). In this case it is not convenient to construct the paths
according to (P2). In fact, given a point x ∈ E∂h it might happen that x̄ is extremely
far from x, specially in parts of Γ where the domain is non-convex. Since both proce-
dures deliver similar results in previous examples, we will consider from now on (P1).

Example 3.3. In order to observe the performance of the method where the
mesh satisfies d(Γ,Γh) = O(h) and the paths are given by (P1), we consider the ring
Ω = {(x, y) ∈ R2 : 0.252 < (x − 0.5)2 + (y − 0.5)2 < 1} with ΓN = {(x, y) ∈ R2 :
x2 + y2 = 1} and ΓD = {(x, y) : x2 + y2 = 0.252}. In Fig. 5 we show a zoom at
the upper-right corner of three consecutive meshes. We also plot the family paths

8

Fig. 4. Left: Domain Ω, its boundary Γ (solid line), a background mesh Bh and the polygonal
subdomain Dh (gray). Right: Dirichlet data g on Γ transferred to ϕ on Γh. (Figure taken from [9])

from vertices and quadrature points on the boundary edges. In Table 3 we display
the history of convergence. Even though the method is still convergent for k = 0, 1
and 2, the rates deteriorate. Moreover, there is no convergence when k = 3 . For
the Dirichlet boundary value problem this non-optimal behavior does not occur as
[9] showed. This example suggests that in a practical situation (meshes satisfying
d(Γ,Γh) = O(h) and paths constructed using (P1), the method does not perform
properly. So, it seems that for Neumann boundary data, the family of paths needs to
be build according to (P2). Even though we have no theoretical support that explains
this behavior, we believe it might be related to the oscillatory nature of high degree
polynomials. In fact, for the Dirichlet problem, [8] showed error estimates where
some of the constants depend on the polynomial degree. In addition, [10] numerically
studied the robustness of this method applied to a convection-diffusion problem with
Dirichlet boundary data. The concluded that, even though d(Γ,Γh) = O(h), Γ and
Γh must be “close enough’ when k ≥ 1.

One way of always being able to construct the paths using (P2) is to interpolate
the boundary by a piecewise linear function. In this case d(Γ,Γh) = O(h2).

Remark 3.2. In Example 3.3 it is not possible to construct the family of path by
(P1). In fact, a path perpendicular to an inner boundary edge might not intersect the
inner ring . Moreover, a path perpendicular to an outer boundary edge might intersect
the outer boundary extremely “far” as would happen in the third mesh of Fig. 5.

3.5. Computational domain at a distance d(Γ,Γh) = O(h2). Another prac-
tical construction of Dh is defining first Γh by interpolating Γ using piecewise linear
segments. Then, Dh is the domain enclosed by Γh as Fig. 6 shows. In this case
d(Γ,Γh) = O(h2) and the family of paths can be easily defined according to (P2).

Example 3.4. We consider the domain Ω = {(x, y) ∈ R2 : 1 < (x− 0.5)2 + (y −
0.5)2 < 4} with ΓN = {(x, y) ∈ R2 : x2 + y2 = 1} and ΓD = {(x, y) : x2 + y2 = 4}.
In Table 4 we observe again that the order of convergence in all the variables in
k + 1. We point out that part of the computational domain is outside of Ω as it can
be observed in the inner circle in Fig. 6. This was never the case in the examples
provided by [9] and [8]. Thus, these results indicates that their technique also works
when Ωc ∩ Dh 6= ∅. In Fig. 7 we show the approximated solution ph considering
h = 1.10 (left) and 0.55 (right) and using polynomials of degree k = 0, 1 and 2. We
clearly see an improvement either when the mesh is refined or the polynomial degree

9

Fig. 5. Zoom at the upper-right corner of three consecutive meshes of Example 3.3. Mesh (grey
region) constructed considering the procedure in [9] and family of paths determined according to
(P1). Blue lines: paths from the vertices. Red lines: paths from quadrature points of the boundary
edges (k = 1).

‖eu‖int ‖eq‖int ‖eû‖Eh
‖eu∗‖int

k h error order error order error order error order

0.312 4.12E-02 - 1.83E-01 - 4.40E-02 - 4.15E-02 -

0.156 3.70E-02 0.16 1.27E-01 0.53 3.26E-02 0.43 3.69E-02 0.17

0 0.078 1.69E-02 1.13 1.37E-01 -0.11 1.50E-02 1.12 1.69E-02 1.13

0.039 9.11E-03 0.89 7.00E-02 0.96 7.61E-03 0.97 9.11E-03 0.89

0.019 8.50E-03 0.10 4.92E-02 0.51 5.66E-03 0.43 8.50E-03 0.10

0.312 6.13E-03 - 1.82E-02 - 3.75E-03 - 5.71E-03 -

0.156 3.44E-03 0.84 1.06E-02 0.77 2.18E-03 0.78 3.37E-03 0.76

1 0.078 3.86E-03 -0.17 9.41E-03 0.18 2.36E-03 -0.11 3.86E-03 -0.20

0.039 1.16E-03 1.74 2.68E-03 1.81 6.88E-04 1.78 1.16E-03 1.73

0.019 5.17E-04 1.16 1.16E-03 1.20 3.04E-04 1.18 5.16E-04 1.16

0.312 4.68E-04 - 1.25E-03 - 3.03E-04 - 4.60E-04 -

0.156 2.25E-04 1.06 5.89E-04 1.08 1.45E-04 1.06 2.24E-04 1.04

2 0.078 1.21E-04 0.89 3.24E-04 0.86 7.39E-05 0.97 1.21E-04 0.89

0.039 1.31E-05 3.20 3.60E-05 3.17 7.79E-06 3.25 1.31E-05 3.21

0.019 2.63E-06 2.32 7.03E-06 2.35 1.54E-06 2.33 2.63E-06 2.32

0.312 3.02E-05 - 8.78E-05 - 1.98E-05 - 3.00E-05 -

0.156 1.11E-05 1.44 3.45E-05 1.35 7.19E-06 1.45 1.10E-05 1.44

3 0.078 1.65E-06 2.75 5.37E-06 2.67 1.01E-06 2.83 1.65E-06 2.75

0.039 6.69E-06 - 1.53E-05 - 3.98E-06 - 6.70E-06 -

0.019 8.03E-03 - 2.26E-02 - 4.73E-03 - 8.04E-03 -

Table 3
History of convergence of the approximation in Example 3.3.

increases.

10

Fig. 6. Zoom at the upper-right corner of Example 3.4. Blue line: boundary Γ. Grey region:
mesh.

‖eu‖int ‖eq‖int ‖eû‖Eh
‖eu∗‖int

k h error order error order error order error order

1.72 5.31E-01 - 2.14E+00 - 2.22E-01 - 6.63E-01 -

1.10 2.87E-01 1.37 1.19E+00 1.3 1.14E-01 1.48 3.00E-01 1.77

0 0.55 1.45E-01 0.99 6.13E-01 0.95 5.76E-02 1.00 1.46E-01 1.04

0.29 8.10E-02 0.89 3.31E-01 0.95 3.10E-02 0.95 8.05E-02 0.91

0.15 4.36E-02 0.98 1.69E-01 1.07 1.60E-02 1.05 4.34E-02 0.98

0.08 2.24E-02 0.99 8.48E-02 1.02 8.12E-03 1.01 2.23E-02 1.00

1.72 2.59E-01 - 9.51E-03 - 9.51E-03 - 1.22E-01 -

1.10 7.11E-02 2.89 1.61E-03 3.97 1.61E-03 3.97 1.80E-02 4.27

1 0.55 1.77E-02 2.01 2.50E-04 2.68 2.50E-04 2.68 2.54E-03 2.82

0.29 4.45E-03 2.12 5.92E-05 2.22 5.92E-05 2.22 4.23E-04 2.76

0.15 1.08E-03 2.26 1.43E-05 2.25 1.43E-05 2.25 9.03E-05 2.45

0.08 2.66E-04 2.08 4.24E-06 1.81 4.24E-06 1.81 2.69E-05 1.80

1.72 4.59E-02 - 6.22E-02 - 1.43E-03 - 1.04E-02 -

1.10 6.55E-03 4.35 9.09E-03 4.29 1.95E-04 4.44 1.35E-03 4.56

2 0.55 8.37E-04 2.97 1.26E-03 2.85 1.10E-05 4.15 8.25E-05 4.03

0.29 1.12E-04 3.09 1.71E-04 3.07 2.14E-06 2.52 1.44E-05 2.67

0.15 1.42E-05 3.29 2.11E-05 3.32 2.01E-07 3.75 1.34E-06 3.77

0.08 1.77E-06 3.10 2.63E-06 3.10 3.37E-08 2.66 2.22E-07 2.68

1.72 5.61E-03 - 8.48E-03 - .57E-04 - 1.28E-03 -

1.10 4.47E-04 5.65 6.59E-04 5.71 6.52E-06 7.11 4.82E-05 7.32

3 0.55 3.31E-05 3.75 4.77E-05 3.78 1.77E-07 5.20 1.42E-06 5.08

0.29 2.26E-06 4.12 3.30E-06 4.11 1.51E-08 3.78 1.04E-07 4.01

0.15 1.37E-07 4.46 2.12E-07 4.36 9.59E-10 4.39 6.42E-09 4.43

0.08 8.47E-09 4.14 1.32E-08 4.13 9.52E-11 3.43 6.28E-10 3.46

Table 4
History of convergence of the approximation in Example 3.4.

Example 3.5. Now we test the performance of the method where Ω is a bounded
domain exterior to an airfoil. This is the most difficult case in our examples since the
domain has a boundary with a curved, re-entrant corner. The airfoil is obtained by
using the Joukowsky transformation:

J(z) = z +
λ2

z
,

where z ∈ C and λ ∈ R. It is well known that this transformation maps the disc
centered at (s1, s2) of radius R to an airfoil when we set λ = R −

√
s2

1 + s2
2. Here,

we take R = 0.1605 and s1 = s2 = 0.01. In Fig. 8 we show two triangulations of
the domain with meshsizes h = 0.143 and 0.073. Neumann boundary conditions are
imposed around the airfoil and Dirichlet data in the remaining part of the boundary.

11

Fig. 7. Approximation of the scalar variable in Example 3.4. Columns: meshsize h = 1.10 and
0.55. Rows: Polynomial of degree k = 0, 1 and 2.

We consider the following two examples:

a) Smooth solution. We set f and g such that u(x, y) = sin(x) sin(y) is the
exact solution as in previous example. In Table 5 we observe that similar

12

conclusions to those in previous examples can be drawn, even though in the
case the domain is more complicated.

b) Non-smooth solution. We now consider a potential flow around the airfoil

where the exact solution in polar coordinates is u(r, θ) = r cos(θ)

(
1 +

R2

r2

)
.

Here gN = 0 around the airfoil. In this case ∇u has singularities at the
leading and trailing edges, hence we do not expect high order convergence
rates. In fact, this can be seen on Table 6 where in all the cases u converges
with order one and q converges with order less than one. However, for a fixed
mesh, the errors decrease when the polynomial degree increases. In Fig. 9 we
show the approximation of the x-component of q considering h = 0.143 and
0.024 and k = 0, 1 and 2.

Fig. 8. Meshes of Example 3.5. Meshsizes h = 0.143 and 0.073.

‖eu‖int ‖eq‖int ‖eû‖Eh
‖eu∗‖int

k h error order error order error order error order

0.143 5.69E-03 - 2.25E-02 - 1.35E-03 - 5.76E-03 -

0.113 4.78E-03 0.75 1.71E-02 1.18 7.52E-04 2.50 4.81E-03 0.77

0 0.073 3.12E-03 0.98 1.05E-02 1.11 4.30E-04 1.29 3.14E-03 0.98

0.038 1.59E-03 1.03 5.36E-03 1.04 1.97E-04 1.19 1.59E-03 1.04

0.024 9.93E-04 1.02 3.25E-03 1.08 1.21E-04 1.06 9.94E-04 1.02

0.143 1.41E-04 - 2.91E-04 - 1.46E-05 - 1.48E-05 -

0.113 8.04E-05 2.38 1.68E-04 2.33 8.36E-06 2.39 8.46E-06 2.37

1 0.073 3.36E-05 2.01 6.72E-05 2.11 1.95E-06 3.35 1.96E-06 3.36

0.038 8.51E-06 2.11 1.74E-05 2.07 5.30E-07 2.00 5.14E-07 2.05

0.024 3.21E-06 2.11 6.50E-06 2.12 1.32E-07 3.00 1.28E-07 3.00

0.143 1.89E-06 - 3.58E-06 - 1.92E-07 - 1.85E-07 -

0.113 8.56E-07 3.37 1.55E-06 3.56 6.58E-08 4.56 6.34E-08 4.56

2 0.073 2.27E-07 3.06 4.06E-07 3.09 5.65E-09 5.65 5.67E-09 5.56

0.038 2.96E-08 3.12 5.30E-08 3.12 6.17E-10 3.39 5.97E-10 3.45

0.024 6.87E-09 3.15 1.24E-08 3.14 7.78E-11 4.47 7.57E-11 4.45

0.143 2.13E-08 - 3.00E-08 - 1.04E-08 - 9.98E-10 -

0.113 7.16E-09 4.64 1.06E-08 4.44 3.33E-09 4.86 3.20E-10 4.85

3 0.073 1.32E-09 3.89 1.80E-09 4.08 1.89E-10 6.61 1.83E-11 6.58

0.038 8.65E-11 4.18 1.20E-10 4.14 1.47E-11 3.91 1.40E-12 3.95

0.024 1.25E-11 4.17 1.75E-11 4.16 3.52E-12 3.09 3.32E-13 3.10

Table 5
History of convergence of the approximation in Example 3.5a) (smooth solution).

13

‖eu‖int ‖eq‖int ‖eû‖Eh
‖eu∗‖int

k h error order error order error order error order

0.143 2.49E-03 - 2.20E-02 - 1.40E-03 - 2.53E-0 -

0.113 1.81E-03 1.35 1.62E-02 1.29 7.08E-04 2.92 1.84E-03 1.36

0 0.073 1.11E-03 1.11 1.10E-02 0.90 2.94E-04 2.02 1.12E-03 1.14

0.038 5.75E-04 1.01 7.23E-03 0.64 1.63E-04 0.91 5.77E-04 1.02

0.024 3.49E-04 1.08 5.73E-03 0.50 9.09E-05 1.26 3.50E-04 1.08

0.143 4.04E-04 - 8.38E-03 - 4.29E-04 - 3.97E-04 -

0.113 1.80E-04 3.45 5.60E-03 1.72 2.08E-04 3.09 1.89E-04 3.15

1 0.073 7.93E-05 1.88 3.38E-03 1.16 8.83E-05 1.97 8.07E-05 1.96

0.038 4.52E-05 0.86 2.00E-03 0.80 4.82E-05 0.93 4.53E-05 0.88

0.024 3.03E-05 0.86 1.63E-03 0.45 3.23E-05 0.87 3.03E-05 0.87

0.143 1.55E-04 - 4.37E-03 - 1.77E-04 - 1.57E-04 -

0.113 8.10E-05 2.78 3.02E-03 1.58 9.16E-05 2.81 8.12E-05 2.82

2 0.073 4.91E-05 1.15 1.72E-03 1.30 5.35E-05 1.24 4.91E-05 1.16

0.038 2.70E-05 0.92 9.71E-04 0.87 2.87E-05 0.95 2.70E-05 0.92

0.024 1.70E-05 0.99 8.32E-04 0.33 1.81E-05 0.99 1.70E-05 0.99

0.143 7.94E-05 - 2.73E-03 - 9.13E-05 - 8.02E-05 -

0.113 4.89E-05 2.06 1.84E-03 1.68 5.45E-05 2.19 4.92E-05 2.08

3 0.073 3.59E-05 0.71 1.09E-03 1.21 3.90E-05 0.77 3.60E-05 0.72

0.038 1.79E-05 1.07 6.34E-04 0.83 1.90E-05 1.10 1.79E-05 1.07

0.024 1.07E-05 1.10 5.15E-04 0.45 1.14E-05 1.10 1.08E-05 1.10

Table 6
History of convergence of the approximation in Example 3.5b) (Non smooth solution).

4. Elliptic interface problem. Let us now consider and interface Σ that di-
vides the domain Ω in two disjoint subdomains Ω1 and Ω2 as Figure 10 show. Then,
problem (3.1) becomes

−∇ · q = f in Ω,(4.1a)

q + K∇u = 0 in Ω,(4.1b)

u = gD on ΓD,(4.1c)

q · n = gN on ΓN ,(4.1d)

u|Σ1 − u|Σ2 = sD on Σ,(4.1e)

q|Σ1 · n1 + q|Σ2 · n2 = sN on Σ.(4.1f)

Here Σ1 and Σ2 are defined by

Σ1 := {x− εn1 : x ∈ Σ and ε→ 0},
Σ2 := {x− εn2 : x ∈ Σ and ε→ 0},

where nj (j ∈ {1, 2}) is the unit outward normal unit vector of the subdomain Ωj ,
sD ∈ H1/2(Σ) and sN ∈ H−1/2(Σ) are prescribed jumps at the interface. At Σ we
adopt the convention n := n1.

For the sake of simplicity we assume ∂Ω to be polygonal (if not, we apply the
technique explained in previous section). However, the interface Σ is not necessarily
piecewise flat. The numerical results provided in section (3.4) for a boundary value
problem, suggested that the distance between the computational domain and the
boundary should be of order O(h2) with a family of paths normal to the computational
boundary. That is why we interpolate the interface Σ by piecewise linear segments.
The computational interface, denoted by Σh, divides the computational domain Dh

14

in two disjoint unions of elements D1
h and D2

h. Σjh (j ∈ {1, 2}) is defined as Σjh :=

{x − εnjh : x ∈ Σh and ε → 0}, where njh is the unit outward normal vector of the

computational domain Djh.

Fig. 9. Approximation of the x-component of q Example 3.5 (non-smooth solution). Columns:
meshsize h = 0.143 and 0.024. Rows: Polynomial of degree k = 0, 1 and 2.

The main idea is to impose the jump of the scalar variable, denoted by s̃hD, on
the computational interface Σh. On the other hand, the jump sN will be imposed at
Σ by using the idea explained in Section 3.3.

Following the approach by [11], the method HDG applied to the interface problem
seeks an approximation (qh, uh, λh) ∈ V h ×Wh ×Mh such that

(K−1qh,v)Dh
− (uh,∇h · v)Dh

+ 〈λh,v · n〉∂Dh
= 0,(4.2a)

(w,∇h · qh)Dh
+ 〈(q̂h − qh) · n, w〉∂Dh

= (f, w)Dh
,(4.2b)

〈q̂h · n, µ〉∂Dh\(Γ∪Σh) = 0,(4.2c)

〈λh, µ〉ΓD
= 〈gD, µ〉ΓD

,(4.2d)

〈q̂h · n, µ〉ΓN
= 〈gN , µ〉ΓN

,(4.2e)

15

Ω1

Ω2

∂Ω

Σ
n

Fig. 10. Example domain Ω divided in two regions Ω1 and Ω2 by an interface Σ

for all (v, w, µ) ∈ V h ×Wh ×Mh. We still need to specify the jump of the normal
component of q at Σ.

Here λh is a single-valued function, however the approximation of u must be
double-valued on Σh. Then, similarly to [11], we let λh be the approximation of
uh|Σ2

h
and consider λh + s̃hD as an approximation of uh|Σ1

h
. Thus, we define

(4.2f) ûh := λh + δΣh
s̃hD,

where δΣh
, defined on ∂Dh, satisfies

(4.3) δΣh
=

{
1 on ∂K ∩ Σh, if ∂K ∩ Σh 6= ∅ and K ∈ D1

h,

0 otherwise.

To complete the method we define the numerical flux as usual

q̂h := q̃h − τ(uh − ûh)n on ∂Dh.

4.1. Approximation s̃hD. In order to define an approximation of s̃hD, we use the
same transferring technique used for the Dirichlet data on a curved boundary (3.3).
Let e ⊂ Σh such that e = ∂K1∩∂K2 and, without loss of generality, assume that e lies
completely inside of Ω2. We denote by (qjh, u

j
h) the approximation (qh, uh) restricted

to the domain Djh. Now, for each x ∈ e, we observe that σ(x) ⊂ K1 ∩ Ω2 and then,
according to the approximation given in (3.5f),

u2
h(x) ≈ u2

h(x̄) +

∫
σ(x)

K−1EK2(q2
h) ·m,(4.4)

where EK2(q2
h) is the standard extrapolation of q2

h to the whole R2 space defined in
(3.5d). Similarly,

u1
h(x) ≈ u1

h(x̄) +

∫
σ(x)

K−1EK1(q1
h) ·m,(4.5)

In this case EK1(q1
h) = q1

h.
Combining both equations,

u1
h(x)− u2

h(x) ≈ u1
h(x̄)− u2

h(x̄) +

∫
σ(x)

K−1EK1(q1
h) ·m−

∫
σ(x)

K−1EK2(q2
h) ·m.

16

This expression suggest the following approximation

shD(x) := sD(x̄) +

∫
σ(x)

K−1EK1(q1
h) ·m−

∫
σ(x)

K−1EK2(q2
h) ·m.(4.6)

4.2. Imposition of sN . For approximating sN we use the same idea that we
applied for a Neumann boundary edge. For each interface edge e ∈ Σh, we consider
Σe ⊂ Σ, the part of Σ associated to e. We denote by K1

e and K2
e the element of D1

h

and D2
h where e belongs. Then, we impose the following condition at the interface Σ:

〈EK
1
e (qh) · n1 + EK

2
e (qh) · n2, µ〉Σe = 〈sN , µ〉Σe ∀µ ∈Mφ(Σe),(4.7)

where Mφ(Σe) is defined similarly as in (3.7).

4.3. Numerical results: Interface problem. Finally, in this section we con-
sider three numerical examples showing the performance of our technique in elliptic
interface problems. Since the computational domains D1

h and D2
h do not exactly fit Ω1

and Ω2, we exclude from the computation of the errors the triangles intersecting the
interface. Let D̃h the set of triangles whose faces are not interface edges. We measure
the errors using the following norms ‖ · ‖L2(D̃h) and

‖eû‖L2(Ẽh)
: =

 ∑
K∈D̃h:K∩Σh=∅

hK‖P∂u− ûh‖2L2(∂K)

1/2

.

Example 4.1 (Elliptical-shaped domain). We first solve a Poisson equation in a
the domain Ω = (−1, 1)2 divided by the elliptical interface Σ described by (x/0.8)2 +
(y/0.4)2 = 1. We take K = I and

u =

{
ex cos(y) in Ω1

sin(πx) sin(πy) in Ω2
.

as exact solution. The source term, transmission and Dirichlet boundary conditions
are obtained from this exact solution.

In Table 7 the history of convergence for this example is displayed. Similarly to the
examples involving Neumann boundary data, the order of convergence for u and q are
optimal whereas the convergence of the numerical trace is suboptimal, i.e., O(hk+1).
Moreover, even though superconvergence of the postprocessed solution u∗h is lost, it
provides a more accurate approximation of u. Figure 11 shows the approximation uh
obtained with meshsizes of h = 0.072 and 0.018; and polynomial degree k = 0, 1 and
2.

Example 4.2 (Kidney-shaped domain). We now consider the same exact solu-
tion as in previous example, but considering a kidney-shaped described by (2[(x +
0.5)2 +y2]−x−0.5)2−[(x+0.5)2 +y2]+0.1 = 0. In despite of the changes of convexity
of this geometry, Table 8 shows similar accuracy on the approximations as the ones
obtained in Example 4.1. Figure 12 shows the quality of the approximations of the
scalar variable uh and its postprocessing u∗h obtained with a meshsize of h = 0.069
and polynomial degree k = 0, 1 and 2. As expected, u∗h provides a more accurate
approximation of uh without significantly increase the computational cost.

17

‖eu‖L2(D̃h)
‖eq‖L2(D̃h)

‖eû‖L2(Ẽh)
‖eu∗‖L2(D̃h)

k h error order error order error order error order

0.072 2.37E − 01 − 3.53E − 01 − 3.66E − 02 − 4.16E − 02 −
0.035 1.22E − 01 0.94 1.92E − 01 0.87 2.01E − 02 0.85 2.16E − 02 0.93

0 0.018 5.97E − 02 1.03 9.22E − 02 1.04 1.05E − 02 0.93 1.09E − 02 0.98

0.009 2.98E − 02 1.01 4.66E − 02 0.99 5.60E − 03 0.92 5.67E − 03 0.95

0.004 1.50E − 02 1.00 2.34E − 02 1.00 2.84E − 03 0.98 2.86E − 03 0.99

0.072 1.98E − 02 − 4.20E − 02 − 1.75E − 03 − 2.24E − 03 −
0.035 4.95E − 03 1.97 1.01E − 02 2.03 1.63E − 04 3.37 2.72E − 04 3.00

1 0.018 1.24E − 03 1.97 2.36E − 03 2.07 2.05E − 05 2.96 3.06E − 05 3.12

0.009 3.12E − 04 2.01 5.78E − 04 2.05 7.79E − 06 1.41 8.02E − 06 1.95

0.004 7.85E − 05 2.00 1.43E − 04 2.02 1.24E − 06 2.67 1.22E − 06 2.73

0.072 1.44E − 03 − 3.93E − 03 − 1.25E − 04 − 1.58E − 04 −
0.035 2.00E − 04 2.80 5.24E − 04 2.86 2.69E − 05 2.18 2.78E − 05 2.47

2 0.018 2.43E − 05 3.01 5.99E − 05 3.10 1.89E − 06 3.80 1.96E − 06 3.79

0.009 3.07E − 06 3.01 7.54E − 06 3.01 3.00E − 07 2.67 3.03E − 07 2.72

0.004 3.92E − 07 2.98 9.54E − 07 2.99 3.99E − 08 2.92 4.01E − 08 2.93

0.072 1.10E − 04 − 3.02E − 04 − 7.05E − 06 − 8.09E − 06 −
0.035 7.78E − 06 3.76 2.16E − 05 3.75 1.79E − 07 5.21 3.06E − 07 4.65

3 0.018 4.49E − 07 4.08 1.17E − 06 4.16 6.33E − 09 4.78 8.78E − 09 5.08

0.009 2.82E − 08 4.02 7.17E − 08 4.06 4.60E − 10 3.81 4.96E − 10 4.18

0.004 1.80E − 09 3.98 4.49E − 09 4.01 1.93E − 11 4.59 2.02E − 11 4.63

Table 7
History of convergence of the approximation in Example 4.1 (elliptical-shaped)

‖eu‖L2(D̃h)
‖eq‖L2(D̃h)

‖eû‖L2(Ẽh)
‖eu∗‖L2(D̃h)

k h error order error order error order error order

0.069 2.37E − 01 − 3.76E − 01 − 3.80E − 02 − 4.39E − 02 −
0.035 1.23E − 01 0.97 2.05E − 01 0.90 1.97E − 02 0.98 2.12E − 02 1.08

0 0.018 6.07E − 02 1.03 9.73E − 02 1.09 1.09E − 02 0.86 1.13E − 02 0.92

0.009 3.01E − 02 1.01 4.79E − 02 1.02 5.69E − 03 0.94 5.77E − 03 0.97

0.004 1.51E − 02 1.00 2.41E − 02 1.00 2.89E − 03 0.99 2.91E − 03 1.00

0.069 2.13E − 02 − 4.35E − 02 − 1.89E − 03 − 2.59E − 03 −
0.035 5.30E − 03 2.06 1.08E − 02 2.05 4.31E − 04 2.19 4.94E − 04 2.45

1 0.018 1.33E − 03 2.03 2.63E − 03 2.07 1.03E − 04 2.10 1.08E − 04 2.23

0.009 3.28E − 04 2.01 6.24E − 04 2.07 2.22E − 05 2.20 2.27E − 05 2.24

0.004 8.28E − 05 2.00 1.56E − 04 2.01 5.74E − 06 1.97 5.78E − 06 1.99

0.069 1.56E − 03 − 3.72E − 03 − 1.39E − 04 − 1.74E − 04 −
0.035 2.02E − 04 3.02 5.62E − 04 2.79 1.78E − 05 3.04 1.93E − 05 3.25

2 0.018 2.58E − 05 3.02 6.53E − 05 3.15 2.53E − 06 2.86 2.60E − 06 2.93

0.009 3.19E − 06 3.01 7.76E − 06 3.07 4.17E − 07 2.60 4.19E − 07 2.63

0.004 4.04E − 07 3.00 9.80E − 07 3.01 5.03E − 08 3.07 5.04E − 08 3.08

0.069 1.31E − 04 − 3.50E − 04 − 1.27E − 05 − 1.40E − 05 −
0.035 7.96E − 06 4.13 2.11E − 05 4.15 9.42E − 07 3.84 9.68E − 07 3.94

3 0.018 4.92E − 07 4.08 1.27E − 06 4.11 4.03E − 08 4.61 4.10E − 08 4.63

0.009 2.92E − 08 4.06 7.37E − 08 4.10 2.22E − 09 4.18 2.23E − 09 4.19

0.004 1.87E − 09 3.99 4.71E − 09 4.00 1.44E − 10 3.98 1.44E − 10 3.98

Table 8
History of convergence of the approximation in Example 4.2 (kidney-shaped)

18

Fig. 11. Approximation of the scalar variable in Example 4.1. Columns: meshsize of h = 0.072
and 0.018. Rows: Polynomial of degree k = 0, 1 and 2.

Example 4.3 (Thermal conductivity). Finally, considering the example provided
by [11], we simulate the heat distribution u at steady state, due to the heat source
f , over the domain Ω = (−1, 1)2 divided by a circular interface of radius R = 0.5
centered at the origin. The source term f and the thermal conductivity tensor are
given by

f(x, y) = −10(x2 + y2)3/2 − 15x2(x2 + y2)1/2 − 15y2(x2 + y2)1/2

and K = κjI in Ωj (j = 1, 2). The exact solution of this problem is

u =

{
1
κ1

(x2 + y2)5/2 in ∈ Ω1

1
κ2

(x2 + y2)5/2 +
(

1
κ1
− 1

κ2

)
R5 in Ω2

,

and we consider κ1 = 1, κ2 = 100. Dirichlet boundary condition on Γ is derived
from the previous equation. In this case the jumps sD and sN are both equal to

19

zero. Table 9 validates the optimal convergence rates of order hk+1 for the heat
distribution u and the flux q. Figure 13 shows the approximated heat distribution
considering meshes of size h = 0.072 and 0.018, and polynomials of degree k = 0, 1
and 2.

Fig. 12. Approximations uh (left) and u∗h of the scalar variable u of Example 4.2. Columns:
meshsize h = 0.069. Rows: Polynomial of degree k = 0, 1 and 2.

Remark 4.1. If the mesh is fine enough, the errors eu, eq and eu∗ can be
computed in the entire computational domain Dh since the quadrature points of a
triangle K ∈ Djh will eventually lie in Ωj. This happens in all previous examples. In
fact, we computed the errors ‖eu‖L2(Dh), ‖eq‖L2(Dh) and ‖eu∗‖L2(Dh). Their behavior
and magnitude are similar to ones displayed in the convergence tables.

5. Conclusions. We have proposed a technique for high order approximation
of boundary value problems in curved domains with mixed boundary conditions. We
have provided numerical evidence suggesting that the technique performs properly if

20

the family of paths is normal to the computational boundary. A practical way to
always satisfy this restriction is to define Γh by interpolating Γ using only piecewise
linear segments. Moreover, we have extend this technique to elliptic interface problems
where the interface is not necessarily polygonal. We have presented numerical results
indicating that the order of convergence of are optimal for the error of u and q if the
interface is interpolated by piecewise linear segments.

Fig. 13. Approximation of the scalar variable in Example 4.3 (thermal conductivity). Columns:
meshsize h = 0.072 and 0.018. Rows: Polynomial of degree k = 0, 1 and 2.

Acknowledgments. W. Qiu is partially by the GRF of Hong Kong (Grant No.
9041980 and 9042081) and a grant from the Research Grants Council of the Hong Kong
Special Administrative Region, China (Project No. CityU 11302014). M. Solano Par-
tially supported by CONICYT-Chile through grant FONDECYT-11130350, BASAL
project CMM, Universidad de Chile and Centro de Investigación en Ingenieŕıa Matemática
(CI2MA). P. Vega acknowledges the Scholarship Program of CONICYT-Chile.

21

‖eu‖L2(D̃h)
‖eq‖L2(D̃h)

‖eû‖L2(Ẽh)
‖eu∗‖L2(D̃h)

k h error order error order error order error order

0.072 9.10E − 03 − 5.66E − 01 − 1.42E − 03 − 1.63E − 03 −
0.035 7.30E − 03 0.31 3.09E − 01 0.84 7.58E − 04 0.88 8.22E − 04 0.96

0 0.018 4.56E − 03 0.68 1.46E − 01 1.08 4.04E − 04 0.91 4.21E − 04 0.97

0.009 2.50E − 03 0.87 7.32E − 02 1.01 2.09E − 04 0.96 2.13E − 04 0.99

0.004 1.28E − 03 0.96 3.60E − 02 1.02 1.06E − 04 0.97 1.07E − 04 0.99

0.072 1.39E − 03 − 5.99E − 02 − 5.95E − 05 − 1.55E − 04 −
0.035 4.51E − 04 1.57 1.45E − 02 1.98 1.23E − 05 2.20 1.87E − 05 2.95

1 0.018 1.36E − 04 1.74 3.36E − 03 2.12 2.34E − 06 2.39 3.26E − 06 2.52

0.009 3.73E − 05 1.88 8.24E − 04 2.04 5.18E − 07 2.19 6.20E − 07 2.41

0.004 9.42E − 06 1.98 2.06E − 04 1.99 6.66E − 08 2.95 8.03E − 08 2.94

0.072 1.69E − 04 − 3.94E − 03 − 1.28E − 05 − 2.07E − 05 −
0.035 2.33E − 05 2.77 4.62E − 04 3.00 9.34E − 07 3.66 1.19E − 06 3.99

2 0.018 3.40E − 06 2.78 5.36E − 05 3.11 1.05E − 07 3.16 1.19E − 07 3.32

0.009 4.73E − 07 2.87 6.64E − 06 3.04 1.38E − 08 2.95 1.45E − 08 3.07

0.004 5.94E − 08 2.98 7.84E − 07 3.07 1.39E − 09 3.30 1.43E − 09 3.33

0.072 1.35E − 05 − 1.58E − 04 − 8.50E − 07 − 1.24E − 06 −
0.035 8.36E − 07 3.89 7.36E − 06 4.28 1.80E − 08 5.39 2.51E − 08 5.45

3 0.018 5.64E − 08 3.90 4.05E − 07 4.19 1.03E − 09 4.13 1.23E − 09 4.37

0.009 3.94E − 09 3.87 2.43E − 08 4.09 6.98E − 11 3.92 7.39E − 11 4.08

0.004 2.49E − 10 3.97 1.41E − 09 4.10 2.02E − 12 5.10 2.17E − 12 5.08

Table 9
History of convergence of the approximation in Example 4.3 (thermal conductivity)

REFERENCES

[1] J.W. Barrett and C.M. Elliott, A finite-element method for solving elliptic equations with
Neumann data on a curved boundary using unfitted meshes, IMA J. Numer. Anal., 4
(1984), pp. 309–325

[2] J.W. Barrett and C.M. Elliott, A practical finite element approximation of a semi-definite
Neumann problem on a curved domain, Numer. Math., 51 (1987), pp. 23–36.

[3] B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous
Galerkin, mixed and continuous Galerkin methods for second order elliptic problems, SIAM
J. Numer. Anal., 47 (2009), pp. 1319–1365.

[4] B. Cockburn, J. Gopalakrishnan and F.-J. Sayas, A projection-based error analysis of HDG
methods, Math. Comp., 79 (2010), pp. 1351–1367.

[5] B. Cockburn, D. Gupta and F. Reitich, Boundary-conforming discontinuous Galerkin methods
via extensions from subdomains, SIAM J. Sci. Comput., 42 (2010), pp. 144–184.

[6] B. Cockburn and J. Guzmán and H. Wang, Superconvergent discontinuous Galerkin methods
for second-order elliptic problems, Math. Comp., 78 (2009), pp. 1-24.

[7] B. Cockburn, F.–J. Sayas, M. Solano, Coupling at a Distance HDG and BEM, SIAM J. Sci.
Comput. 34, pp A28–A47 (2012).

[8] B. Cockburn, W. Qiu and M. Solano, A priori error analysis for HDG methods using extensions
from subdomains to achieve boundary-conformity, Math. of Comp. 83, 286, pp. 665–699
(2014).

[9] B. Cockburn and M. Solano, Solving Dirichlet boundary-value problems on curved domains by
extensions from subdomains, SIAM J. Sci. Comput. 34, pp. A497–A519 (2012).

[10] B. Cockburn and M. Solano, Solving convection-diffusion problems on curved domains by ex-
tensions from subdomain, J. Sci Comput. 59, 2, pp. 512–543 (2014).

[11] L. N. T. Huynh, N. C. Nguyen, J. Peraire and B. C. Khoo, A high-order hybridizable discon-
tinuous Galerkin method for elliptic interface problems, Int. J. Numer. Meth. Engng. 93,
pp 183-200 (2013)

[12] M. Lenoir, Optimal isoparametric finite elements and errors estimates form domains involving
curved boundaries, SIAM J. Numer. Anal., 23 (1986), pp. 562–580.

[13] N.C. Nguyen, J. Peraire J and B. Cockburn, An implicit high-order hybridizable discontinuous
Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228, 3232-
3254 (2009)

22

