
ar
X

iv
:1

51
2.

06
90

5v
2 

 [
m

at
h.

N
A

] 
 1

 A
ug

 2
01

6

STOCHASTIC C-STABILITY AND B-CONSISTENCY OF

EXPLICIT AND IMPLICIT MILSTEIN-TYPE SCHEMES

WOLF-JÜRGEN BEYN, ELENA ISAAK, AND RAPHAEL KRUSE

Abstract. This paper focuses on two variants of the Milstein scheme, namely
the split-step backward Milstein method and a newly proposed projected Mil-
stein scheme, applied to stochastic differential equations which satisfy a global
monotonicity condition. In particular, our assumptions include equations with
super-linearly growing drift and diffusion coefficient functions and we show that
both schemes are mean-square convergent of order 1. Our analysis of the er-
ror of convergence with respect to the mean-square norm relies on the notion
of stochastic C-stability and B-consistency, which was set up and applied to
Euler-type schemes in [Beyn, Isaak, Kruse, J. Sci. Comp., 2015]. As a direct
consequence we also obtain strong order 1 convergence results for the split-step
backward Euler method and the projected Euler-Maruyama scheme in the case
of stochastic differential equations with additive noise. Our theoretical results
are illustrated in a series of numerical experiments.

1. Introduction

More than four decades ago Grigori N. Milstein proposed a new numerical

method for the approximate integration of stochastic ordinary differential equa-

tions (SODEs) in [15] (see [16] for an English translation). This scheme is nowa-

days called the Milstein method and offers a higher order of accuracy than the

classical Euler-Maruyama scheme. In fact, G. N. Milstein showed that his method

converges with order 1 to the exact solution with respect to the root mean square

norm under suitable conditions on the coefficient functions of the SODE while the

Euler-Maruyama scheme is only convergent of order 1
2 , in general.

In its simplest form, that is for scalar stochastic differential equations driven by

a scalar Wiener process W , the Milstein method is given by the recursion

Xh(t+ h) = Xh(t) + hf(t,Xh(t)) + g(t,Xh(t))∆hW (t)

+
1

2

(∂g

∂x
◦ g

)

(t,Xh(t))
(

∆hW (t)2 − h
)

,
(1)

where h denotes the step size, ∆hW (t) = W (t+ h)−W (t) is the stochastic incre-

ment, and f and g are the drift and diffusion coefficient functions of the underlying

SODE (Equation (3) below shows the SODE in the full generality considered in

this paper).

Since the derivation of the Milstein method in [15] relies on an iterated applica-

tion of the Itō formula, the error analysis requires the boundedness and continuity of

the coefficient functions f and g and their partial derivatives up to the fourth order.

Similar conditions also appear in the standard literature on this topic [9, 17, 18].
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In more recent publications these conditions have been relaxed: For instance in

[10] it is proved that the strong order 1 result for the scheme (1) stays true if the co-

efficient functions are only two times continuously differentiable with bounded par-

tial derivatives, provided the exact solution has sufficiently high moments and the

mapping x 7→ ( ∂g∂x ◦ g)(t, x) is globally Lipschitz continuous for every t ∈ [0, T ]. On

the other hand, from the results in [7] it follows that the explicit Euler-Maruyama

method is divergent in the strong and weak sense if the coefficient functions are

super-linearly growing. Since the same reasoning also applies to the Milstein scheme

(1) it is necessary to consider suitable variants in this situation.

One possibility to treat super-linearly growing coefficient functions is proposed

in [23]. Here the authors combine the Milstein scheme with the taming strategy

from [8]. This allows to prove the strong convergence rate 1 in the case of SODEs

whose drift coefficient functions satisfy a one-sided Lipschitz condition. The same

approach is used in [12], where the authors consider SODEs driven by Lèvy noise.

However, both papers still require that the diffusion coefficient functions are globally

Lipschitz continuous.

This is not needed for the implicit variant of the Milstein scheme considered in

[6], where the strong convergence result also applies to certain SODEs with super-

linearly growing diffusion coefficient functions. However, the authors only consider

scalar SODEs and did not determine the order of convergence. The first result

bypassing all these restrictions is found in [25], which deals with an explicit first

order method based on a variant of the taming idea. A more recent result based

on the taming strategy is also given in [13].

In this paper we propose two further variants of the Milstein scheme which apply

to multi-dimensional SODEs of the form (3). First, we follow an idea from [2] and

study the projected Milstein method which consists of the standard explicit Milstein

scheme together with a nonlinear projection onto a sphere whose radius is expanding

with a negative power of the step size. The second scheme is a Milstein-type variant

of the split-step backward Euler scheme (see [5]) termed split-step backward Milstein

method.

For both schemes we prove the optimal strong convergence rate 1 in the following

sense: Let X : [0, T ]×Ω → R
d and Xh : {t0, t1, . . . , tN}×Ω → R

d denote the exact

solution and its numerical approximation with corresponding step size h. Then,

there exists a constant C independent of h such that

max
n∈{1,...,N}

‖X(tn)−Xh(tn)‖L2(Ω;Rd) ≤ Ch,(2)

where tn = nh. For the proof we essentially impose the global monotonicity condi-

tion (4) and certain local Lipschitz assumptions on the first order derivatives of the

drift and diffusion coefficient functions. For a precise statement of all our assump-

tions and the two convergence results we refer to Assumption 2.1 and Theorems 2.2

and 2.3 below. Together with the result on the balanced scheme found in [25], these

theorems are the first results which determine the optimal strong convergence rate

for some Milstein-type schemes without any linear growth or global Lipschitz as-

sumption on the diffusion coefficient functions and for multi-dimensional SODEs.

The remainder of this paper is organized as follows: In Section 2 we introduce

the projected Milstein method and the split-step backward Milstein scheme in full

detail. We state all assumptions and the convergence results, which are then proved

in later sections. Further, we apply the convergence results to SODEs with additive
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noise for which the Milstein-type schemes coincide with the corresponding Euler-

type scheme.

The proofs follow the same steps as the error analysis in [2]. In order to keep this

paper as self-contained as possible we briefly recall the notions of C-stability and B-

consistency and the abstract convergence theorem from [2] in Section 3. Then, in the

following four sections we verify that the two considered Milstein-type schemes are

indeed stable and consistent in the sense of Section 3. Finally, in Section 8 we report

on a couple of numerical experiments which illustrate our theoretical findings. Note

that both examples include non-globally Lipschitz continuous coefficient functions,

which are not covered by the standard results found in [9, 17].

2. Assumptions and main results

This section contains a detailed description of our assumptions on the stochastic

differential equation, under which our strong convergence results hold. Further,

we introduce the projected Milstein method and the split-step backward Milstein

scheme and we state our main results.

Our starting point is the stochastic ordinary differential equation (3) below.

We apply the same notation as in [2] and we fix d,m ∈ N, T ∈ (0,∞), and a

filtered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the usual conditions. By

X : [0, T ]× Ω → R
d we denote a solution to the SODE

dX(t) = f(t,X(t)) dt+
m
∑

r=1

gr(t,X(t)) dW r(t), t ∈ [0, T ],

X(0) = X0.

(3)

Here f : [0, T ]×R
d → R

d stands for the drift coefficient function, while gr : [0, T ]×
R

d → R
d, r = 1, . . . ,m, are the diffusion coefficient functions. By W r : [0, T ] ×

Ω → R, r = 1, . . . ,m, we denote an independent family of real-valued standard

(Ft)t∈[0,T ]-Brownian motions on (Ω,F ,P). For a sufficiently large p ∈ [2,∞) the

initial condition X0 is assumed to be an element of the space Lp(Ω,F0,P;Rd).

Let us fix some further notation: We write 〈·, ·〉 and | · | for the Euclidean

inner product and the Euclidean norm on R
d, respectively. Further, we denote

by L(Rd) = L(Rd,Rd) the set of all bounded linear operators on R
d endowed with

the matrix norm | · |L(Rd) induced by the Euclidean norm. For a sufficiently smooth

mapping f : [0, T ]× R
d → R

d and a given t ∈ [0, T ] we denote by ∂f
∂x (t, x) ∈ L(Rd)

the Jacobian matrix of the mapping R
d ∋ x 7→ f(t, x) ∈ R

d.

Having established this we formulate the conditions on the drift and the diffusion

coefficient functions:

Assumption 2.1. The mappings f : [0, T ]× R
d → R

d and gr : [0, T ]× R
d → R

d,

r = 1, . . . ,m, are continuously differentiable. Further, there exist L ∈ (0,∞) and

η ∈ (12 ,∞) such that for all t ∈ [0, T ] and x1, x2 ∈ R
d it holds

〈

f(t, x1)− f(t, x2), x1 − x2

〉

+ η

m
∑

r=1

∣

∣gr(t, x1)− gr(t, x2)
∣

∣

2 ≤ L|x1 − x2|2.(4)

In addition, there exists q ∈ [2,∞) such that

∣

∣

∂f
∂x (t, x1)− ∂f

∂x(t, x2)
∣

∣

L(Rd)
≤ L

(

1 + |x1|+ |x2|
)q−2|x1 − x2|(5)
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and, for every r = 1, . . . ,m,

∣

∣

∂gr

∂x (t, x1)− ∂gr

∂x (t, x2)
∣

∣

L(Rd)
≤ L

(

1 + |x1|+ |x2|
)

q−3

2 |x1 − x2|(6)

for all t ∈ [0, T ] and x1, x2 ∈ R
d. Moreover, it holds

∣

∣

∂f
∂t (t, x)

∣

∣ ≤ L
(

1 + |x|
)q
,

∣

∣

∂gr

∂t (t, x)
∣

∣ ≤ L
(

1 + |x|
)

q+1

2 ,(7)

for all t ∈ [0, T ], x ∈ R
d, and all r = 1, . . . ,m.

First we note that Assumption 2.1 is slightly weaker than the conditions imposed

in [25, Lemma 4.2] in terms of smoothness requirements on the coefficient functions.

Further, we recall that Equation (4) is often termed global monotonicity condition

in the literature. It is easy to check that Assumption 2.1 is satisfied (with q = 3) if f

and gr and all their first order partial derivatives are globally Lipschitz continuous.

However, Assumption 2.1 includes several SODEs which cannot be treated by the

standard results found in [9, 17]. We refer to Section 8 for two more concrete

examples.

For a possibly enlarged L the following estimates are an immediate consequence

of Assumption 2.1 and the mean value theorem: For all t, t1, t2 ∈ [0, T ] and

x, x1, x2 ∈ R
d it holds

|f(t, x)| ≤ L
(

1 + |x|
)q
,(8)

∣

∣

∂f
∂x (t, x)

∣

∣

L(Rd)
≤ L

(

1 + |x|
)q−1

,(9)

|f(t1, x)− f(t2, x)| ≤ L
(

1 + |x|
)q|t1 − t2|,(10)

|f(t, x1)− f(t, x2)| ≤ L
(

1 + |x1|+ |x2|
)q−1|x1 − x2|,(11)

and, for all r = 1, . . . ,m,

|gr(t, x)| ≤ L
(

1 + |x|
)

q+1

2 ,(12)

∣

∣

∂gr

∂x (t, x)
∣

∣

L(Rd)
≤ L

(

1 + |x|
)

q−1

2 ,(13)

|gr(t1, x)− gr(t2, x)| ≤ L
(

1 + |x|
)

q+1

2 |t1 − t2|,(14)

|gr(t, x1)− gr(t, x2)| ≤ L
(

1 + |x1|+ |x2|
)

q−1

2 |x1 − x2|.(15)

Thus, Assumption 2.1 implies [2, Assumption 2.1] and all results of that paper

also hold true in the situation considered here. Note that in this paper we use the

weights (1 + |x|)p instead of 1 + |x|p as in [2]. For p ≥ 0 this makes no difference,

however in condition (6) we may have p = q−3
2 < 0 if 2 ≤ q < 3, so that Lipschitz

constants actually decrease at infinity.

In the following it will be convenient to introduce the abbreviation

gr1,r2(t, x) :=
∂gr1

∂x
(t, x)gr2(t, x), t ∈ [0, T ], x ∈ R

d,(16)

for r1, r2 = 1, . . . ,m. As above, one easily verifies under Assumption 2.1 that the

mappings gr1,r2 satisfy (for a possibly larger L) the polynomial growth bound
∣

∣gr1,r2(t, x)
∣

∣ ≤ L
(

1 + |x|
)q

(17)

as well as the local Lipschitz bound
∣

∣gr1,r2(t, x1)− gr1,r2(t, x2)
∣

∣ ≤ L
(

1 + |x1|+ |x2|
)q−1|x1 − x2|(18)
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for all x, x1, x2 ∈ R
d, t ∈ [0, T ], and r1, r2 = 1, . . . ,m. For this conclusion to hold

in case q < 3, it is essential to use the modified weight function in (6).

We say that an almost surely continuous and (Ft)t∈[0,T ]-adapted stochastic pro-

cess X : [0, T ]×Ω → R
d is a solution to (3) if it satisfies P-almost surely the integral

equation

X(t) = X0 +

∫ t

0

f(s,X(s)) ds+
m
∑

r=1

∫ t

0

gr(s,X(s)) dW r(s)(19)

for all t ∈ [0, T ]. It is well-known that Assumption 2.1 is sufficient to ensure the

existence of a unique solution to (3), see for instance [11], [14, Chap. 2.3] or the

SODE chapter in [20, Chap. 3].

In addition, the exact solution has finite p-th moments, that is

sup
t∈[0,T ]

∥

∥X(t)
∥

∥

Lp(Ω;Rd)
< ∞,(20)

if the following global coercivity condition is satisfied: There exist C ∈ (0,∞) and

p ∈ [2,∞) such that

〈

f(t, x), x
〉

+
p− 1

2

m
∑

r=1

∣

∣gr(t, x)
∣

∣

2 ≤ C
(

1 + |x|2
)

(21)

for all x ∈ R
d, t ∈ [0, T ]. A proof is found, for example, in [14, Chap. 2.4].

For the formulation of the numerical methods we recall the following terminology

from [2]: By h ∈ (0, T ] we denote an upper step size bound. Then, for every N ∈ N

we say that h = (h1, . . . , hN) ∈ (0, h]N is a vector of (deterministic) step sizes if
∑N

i=1 hi = T . Every vector of step sizes h induces a set of temporal grid points Th
given by

Th :=
{

tn :=

n
∑

i=1

hi : n = 0, . . . , N
}

,

where
∑

∅ = 0. For short we write

|h| := max
i∈{1,...,N}

hi

for the maximal step size in h.

Moreover, we recall from [9, 17] the following notation for the stochastic incre-

ments: Let t, s ∈ [0, T ] with s < t. Then we define

Is,t(r) :=

∫ t

s

dW r(τ),(22)

for r ∈ {1, . . . ,m} and, similarly,

Is,t(r1,r2)
:=

∫ t

s

∫ τ1

s

dW r1(τ2) dW
r2(τ1),(23)

where r1, r2 ∈ {1, . . . ,m}. The joint family of the iterated stochastic integrals

(Is,t(r1,r2)
)mr1,r2=1 is not easily generated on a computer. Besides special cases such

as commutative noise one relies on an additional approximation method from e.g.

[3, 21, 24]. We also refer to the corresponding discussion in [9, Chap. 10.3].

The first numerical scheme, which we study in this paper, is an explicit one-

step scheme and termed projected Milstein method (PMil). It is the Milstein-type

counterpart of the projected Euler-Maruyama method form [2] and consists of the
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standard Milstein scheme and a projection onto a ball in R
d whose radius is ex-

panding with a negative power of the step size.

To be more precise, let h ∈ (0, h]N , N ∈ N, be an arbitrary vector of step sizes

with upper step size bound h = 1. For a given parameter α ∈ (0,∞) the PMil

method is determined by the recursion

X
PMil

h (ti) = min
(

1, h−α
i

∣

∣XPMil
h (ti−1)

∣

∣

−1)
XPMil

h (ti−1),

XPMil
h (ti) = X

PMil

h (ti) + hif(ti−1, X
PMil

h (ti)) +

m
∑

r=1

gr(ti−1, X
PMil

h (ti))I
ti−1,ti
(r)

+

m
∑

r1,r2=1

gr1,r2(ti−1, X
PMil

h (ti))I
ti−1,ti
(r2,r1)

, for 1 ≤ i ≤ N,

(24)

where XPMil
h (0) := X0. The results of Section 4 indicate that the parameter value

for α is optimally chosen by setting α = 1
2(q−1) in dependence of the growth rate

q appearing in Assumption 2.1. One aim of this paper is the proof of the fol-

lowing strong convergence result for the PMil method. It follows directly from

Theorems 4.4 and 5.1 as well as Theorem 3.5.

Theorem 2.2. Let Assumption 2.1 be satisfied with polynomial growth rate q ∈
[2,∞). If the exact solution X to (3) satisfies supτ∈[0,T ] ‖X(τ)‖L8q−6(Ω;Rd) < ∞,

then the projected Milstein method (24) with parameter value α = 1
2(q−1) and with

arbitrary upper step size bound h ∈ (0, 1] is strongly convergent of order γ = 1.

Next, we come to the second numerical scheme, which is called split-step backward

Milstein method (SSBM). For a suitable upper step size bound h ∈ (0, T ] and a

given vector of step sizes h = (h1, . . . , hN ) ∈ (0, h]N , N ∈ N, this method is defined

by setting XSSBM
h (0) = X0 and by the recursion

X
SSBM

h (ti) = XSSBM
h (ti−1) + hif(ti, X

SSBM

h (ti)),

XSSBM
h (ti) = X

SSBM

h (ti) +

m
∑

r=1

gr(ti, X
SSBM

h (ti))I
ti−1,ti
(r)

+
m
∑

r1,r2=1

gr1,r2(ti, X
SSBM

h (ti))I
ti−1,ti
(r2,r1)

,

(25)

for every i = 1, . . . , N .

Let us note that the recursion defining the SSBM method evaluates the diffusion

coefficient functions gr at time ti in the i-th step. This phenomenon was already

apparent in the definition of the split-step backward Euler method in [2]. It turns

out that by this modification we avoid some technical issues in the proofs as con-

dition (26) is applied to f and gr, r = 1, . . . ,m, simultaneously at the same point

t ∈ [0, T ] in time. Compare also with the inequality (50) further below.

It is shown in Section 6 that the SSBM scheme is a well-defined stochastic one-

step method under Assumption 2.1. The second main result of this paper is the

proof of the following strong convergence result:
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Theorem 2.3. Let Assumption 2.1 be satisfied with L ∈ (0,∞) and q ∈ [2,∞). In

addition, we assume that there exist η1 ∈ (1,∞) and η2 ∈ (0,∞) such that it holds

〈

f(t, x1)− f(t, x2), x1 − x2

〉

+ η1

m
∑

r=1

∣

∣gr(t, x1)− gr(t, x2)
∣

∣

2

+ η2

m
∑

r1,r2=1

∣

∣gr1,r2(t, x1)− gr1,r2(t, x2)
∣

∣

2 ≤ L|x1 − x2|2
(26)

for all x1, x2 ∈ R
d. If the solution X to (3) satisfies supτ∈[0,T ] ‖X(τ)‖L6q−4(Ω;Rd) <

∞, then the split-step backward Milstein method (25) with arbitrary upper step size

bound h ∈ (0,max(L−1, 2η2

η1
)) is strongly convergent of order γ = 1.

As we show below this theorem follows directly from Theorem 3.5 together with

Theorems 6.3 and 7.1. Note that (26) is more restrictive than the global mono-

tonicity condition (4) if the mappings gr1,r2 are not globally Lipschitz continuous

for all r1, r2 = 1, . . . ,m.

In the remainder of this section we briefly summarize the corresponding conver-

gence results in the case of stochastic differential equations with additive noise, that

is if the mappings gr, r = 1, . . . ,m, do not depend explicitly on the state of X . In

this case it is well-known that Milstein-type schemes coincide with their Euler-type

counterparts.

To be more precise, we consider the solution X : [0, T ]×Ω → R
d to an SODE of

the form

dX(t) = f(t,X(t)) dt+

m
∑

r=1

gr(t) dW r(t), t ∈ [0, T ],

X(0) = X0.

(27)

In this case, the conditions on the drift coefficient function f : [0, T ]×R
d → R

d and

the diffusion coefficient functions gr : [0, T ] → R
d, r = 1, . . . ,m, in Assumption 2.1

simplify to

Assumption 2.4 (Additive noise). The coefficient functions f : [0, T ]× R
d → R

d

and gr : [0, T ] → R
d, r = 1, . . . ,m, are continuously differentiable, and there exist

constants L ∈ (0,∞), q ∈ [2,∞) such that for all t ∈ [0, T ] and x, x1, x2 ∈ R
d the

following properties hold
〈

f(t, x1)− f(t, x2), x1 − x2

〉

≤ L|x1 − x2|2,
∣

∣

∂f
∂t (t, x)

∣

∣ ≤ L
(

1 + |x|
)q
,

∣

∣

∂f
∂x (t, x1)− ∂f

∂x (t, x2)
∣

∣

L(Rd)
≤ L

(

1 + |x1|+ |x2|
)q−2|x1 − x2|.

Under this assumption it directly follows that gr1,r2 ≡ 0 for all r1, r2 = 1, . . . ,m

for the coefficient functions defined in (16) . Consequently, the PMil method and

the SSBM scheme coincide with the PEM method and the SSBE scheme from [2],

respectively.

Let us note that Assumption 2.4 implies the global coercivity condition (21) for

every p ∈ [2,∞). Consequently, under Assumption 2.4 the exact solution to (27)

has finite p-th moments for every p ∈ [2,∞). From this and Theorems 2.2 and 2.3

we directly obtain the following convergence result:

Corollary 2.5. Let Assumption 2.4 be satisfied with L ∈ (0,∞) and q ∈ [2,∞).

Then it holds that
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(i) the projected Euler-Maruyama method with α = 1
2(q−1) and arbitrary upper

step size bound h ∈ (0, 1] is strongly convergent of order γ = 1.

(ii) the split-step backward Euler method with arbitrary upper step size bound

h ∈ (0, L−1) is strongly convergent of order γ = 1.

3. A reminder on stochastic C-stability and B-consistency

In this section we give a brief overview of the notions of stochastic C-stability and

B-consistency introduced in [2]. We also state the abstract convergence theorem,

which, roughly speaking, can be summarized by

stoch. C-stability + stoch. B-consistency ⇒ Strong convergence.

We first recall some additional notation from [2]: For an arbitrary upper step

size bound h ∈ (0, T ] we define the set T := T(h) ⊂ [0, T )× (0, h] to be

T(h) :=
{

(t, δ) ∈ [0, T )× (0, h] : t+ δ ≤ T
}

.

Further, for a given vector of step sizes h ∈ (0, h]N , N ∈ N, we denote by G2(Th)
the space of all adapted and square integrable grid functions, that is

G2(Th) :=
{

Z : Th × Ω → R
d : Z(tn) ∈ L2(Ω,Ftn ,P;Rd) for all n = 0, 1, . . . , N

}

.

The next definition describes the abstract class of stochastic one-step methods

which we consider in this section.

Definition 3.1. Let h ∈ (0, T ] be an upper step size bound and Ψ: Rd×T×Ω → R
d

be a mapping satisfying the following measurability and integrability condition: For

every (t, δ) ∈ T and Z ∈ L2(Ω,Ft,P;Rd) it holds

Ψ(Z, t, δ) ∈ L2(Ω,Ft+δ,P;Rd).(28)

Then, for every vector of step sizes h ∈ (0, h]N , N ∈ N, we say that a grid function

Xh ∈ G2(Th) is generated by the stochastic one-step method (Ψ, h, ξ) with initial

condition ξ ∈ L2(Ω,F0,P;Rd) if

Xh(ti) = Ψ(Xh(ti−1), ti−1, hi), 1 ≤ i ≤ N,

Xh(t0) = ξ.
(29)

We call Ψ the one-step map of the method.

For the formulation of the next definition we denote by E[Y |Ft] the conditional

expectation of a random variable Y ∈ L1(Ω;Rd) with respect to the sigma-field

Ft. Note that if Y is square integrable, then E[Y |Ft] coincides with the orthogonal

projection onto the closed subspace L2(Ω,Ft,P;Rd). By (id − E[·|Ft]) we denote

the associated projector onto the orthogonal complement.

Definition 3.2. A stochastic one-step method (Ψ, h, ξ) is called stochastically C-

stable (with respect to the norm in L2(Ω;Rd)) if there exist a constant Cstab and

a parameter value ν ∈ (1,∞) such that for all (t, δ) ∈ T and all random variables

Y, Z ∈ L2(Ω,Ft,P;Rd) it holds
∥

∥E
[

Ψ(Y, t, δ)−Ψ(Z, t, δ)|Ft

]∥

∥

2

L2(Ω;Rd)

+ ν
∥

∥

(

id− E[ · |Ft]
)(

Ψ(Y, t, δ)−Ψ(Z, t, δ)
)
∥

∥

2

L2(Ω;Rd)

≤
(

1 + Cstabδ
)
∥

∥Y − Z
∥

∥

2

L2(Ω;Rd)
.

(30)
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A first consequence of the notion of stochastic C-stability is the following a priori

estimate: Let (Ψ, h, ξ) be a stochastically C-stable one-step method. If there exists

a constant C0 such that for all (t, δ) ∈ T it holds

∥

∥E
[

Ψ(0, t, δ)|Ft

]∥

∥

L2(Ω;Rd)
≤ C0δ,(31)

∥

∥

(

id− E
[

· |Ft

])

Ψ(0, t, δ)
∥

∥

L2(Ω;Rd)
≤ C0δ

1
2 ,(32)

then there exists a positive constant C with

max
n∈{0,...,N}

‖Xh(tn)‖L2(Ω;Rd) ≤ eCT
(

‖ξ‖2L2(Ω;Rd) + CC2
0T

)
1
2

,

for every vector of step sizes h ∈ (0, h]N , N ∈ N, where Xh denotes the grid

function generated by (Ψ, h, ξ) with step sizes h. A proof for this result is found in

[2, Cor. 3.6].

Definition 3.3. A stochastic one-step method (Ψ, h, ξ) is called stochastically B-

consistent of order γ > 0 to (3) if there exists a constant Ccons such that for every

(t, δ) ∈ T it holds

∥

∥E
[

X(t+ δ)−Ψ(X(t), t, δ)|Ft

]
∥

∥

L2(Ω;Rd)
≤ Cconsδ

γ+1
(33)

and

∥

∥

(

id− E[ · |Ft]
)(

X(t+ δ)−Ψ(X(t), t, δ)
)
∥

∥

L2(Ω;Rd)
≤ Cconsδ

γ+ 1
2 ,(34)

where X : [0, T ]× Ω → R
d denotes the exact solution to (3).

Finally, it remains to give our definition of strong convergence.

Definition 3.4. A stochastic one-step method (Ψ, h, ξ) converges strongly with

order γ > 0 to the exact solution of (3) if there exists a constant C such that for

every vector of step sizes h ∈ (0, h]N , N ∈ N, it holds

max
n∈{0,...,N}

∥

∥Xh(tn)−X(tn)
∥

∥

L2(Ω;Rd)
≤ C|h|γ .

Here X denotes the exact solution to (3) and Xh ∈ G2(Th) is the grid function

generated by (Ψ, h, ξ) with step sizes h ∈ (0, h]N .

We close this section with the following abstract convergence theorem, which is

proved in [2, Theorem 3.7].

Theorem 3.5. Let the stochastic one-step method (Ψ, h, ξ) be stochastically C-

stable and stochastically B-consistent of order γ > 0. If ξ = X0, then there exists

a constant C depending on Cstab, Ccons, T , h, and ν such that for every vector of

step sizes h ∈ (0, h]N , N ∈ N, it holds

max
n∈{0,...,N}

∥

∥X(tn)−Xh(tn)
∥

∥

L2(Ω;Rd)
≤ C|h|γ ,

where X denotes the exact solution to (3) and Xh the grid function generated by

(Ψ, h, ξ) with step sizes h. In particular, (Ψ, h, ξ) is strongly convergent of order γ.
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4. C-stability of the projected Milstein method

In this section we prove that the projected Milstein (PMil) method defined in

(24) is stochastically C-stable.

Throughout this section we assume that Assumption 2.1 is satisfied with growth

rate q ∈ [2,∞). First, we choose an arbitrary upper step size bound h ∈ (0, 1] and

a parameter value α ∈ (0,∞). Later it will turn out to be optimal to set α = 1
2(q−1)

in dependence of the growth q in Assumption 2.1.

For the definition of the one-step map of the PMil method it is convenient to

introduce the following short hand notation: For every δ ∈ (0, h], we denote the

projection of x ∈ R
d onto the ball of radius δ−α by

x◦ := min(1, δ−α|x|−1)x.(35)

Then, the one-step map ΨPMil : Rd × T× Ω → R
d is given by

ΨPMil(x, t, δ) := x◦ + δf(t, x◦) +

m
∑

r=1

gr(t, x◦)It,t+δ
(r) +

m
∑

r1,r2=1

gr1,r2(t, x◦)It,t+δ
(r2,r1)

(36)

for every x ∈ R
d and (t, δ) ∈ T. Recall (22) and (23) for the definition of the

stochastic increments.

First, we check that the PMil method is a stochastic one-step method in the

sense of Definition 3.1. At the same time we verify that the one step map satisfies

conditions (31) and (32).

Proposition 4.1. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞) and let h ∈ (0, 1]. For every initial value ξ ∈ L2(Ω;F0,P;Rd) and

for every α ∈ (0,∞) it holds that (ΨPMil, h, ξ) is a stochastic one-step method.

In addition, there exists a constant C0 only depending on L and m such that

∥

∥E
[

ΨPMil(0, t, δ)|Ft

]
∥

∥

L2(Ω;Rd)
≤ C0δ,(37)

∥

∥

(

id− E[ · |Ft]
)

ΨPMil(0, t, δ)
∥

∥

L2(Ω;Rd)
≤ C0δ

1
2(38)

for all (t, δ) ∈ T.

Proof. We first verify that ΨPMil satisfies (28). For this let us fix arbitrary (t, δ) ∈ T

and Z ∈ L2(Ω,Ft,P;Rd). Then, the continuity and boundedness of the mapping

R
d ∋ x 7→ x◦ = min(1, δ−α|x|−1)x ∈ R

d yields

Z◦ ∈ L∞(Ω,Ft,P;Rd).

Consequently, by the smoothness of the coefficient functions and by (8), (12), and

(17) it follows that

f(t, Z◦), gr1(t, Z◦), gr1,r2(t, Z◦) ∈ L∞(Ω,Ft,P;Rd)

for every r1, r2 = 1, . . . ,m. Therefore, ΨPMil(Z, t, δ) : Ω → R
d is an Ft+δ/B(Rd)-

measurable random variable satisfying condition (28).

It remains to show (37) and (38). From (8) we get immediately that

∥

∥E
[

ΨPMil(0, t, δ)|Ft

]
∥

∥

L2(Ω;Rd)
=

∣

∣δf(t, 0)
∣

∣ ≤ Lδ.
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Next, recall that the stochastic increments (It,t+δ
(r) )mr=1 and (It,t+δ

(r1,r2)
)mr1,r2=1 are pair-

wise uncorrelated. Therefore, we obtain that
∥

∥

(

id− E[ · |Ft]
)

ΨPMil(0, t, δ)
∥

∥

2

L2(Ω;Rd)

=
∥

∥

∥

m
∑

r=1

gr(t, 0)It,t+δ
(r) +

m
∑

r1,r2=1

gr1,r2(t, 0)It,t+δ
(r1,r2)

∥

∥

∥

2

L2(Ω;Rd)

= δ

m
∑

r=1

∣

∣gr(t, 0)
∣

∣

2
+

δ2

2

m
∑

r1,r2=1

∣

∣gr1,r2(t, 0)
∣

∣

2 ≤ L2mδ +
1

2
L2m2δ2,

where the last step follows from (12) and (17). Since δ ≤ h ≤ 1 this verifies (38). �

The next result is concerned with the projection onto the ball of radius δ−α.

The proof is found in [2, Lem. 6.2].

Lemma 4.2. For every α ∈ (0,∞) and δ ∈ (0, 1] the mapping R
d ∋ x 7→ x◦ ∈

R
d defined in (35) is globally Lipschitz continuous with Lipschitz constant 1. In

particular, it holds
∣

∣x◦
1 − x◦

2

∣

∣ ≤
∣

∣x1 − x2

∣

∣(39)

for all x1, x2 ∈ R
d.

The following inequality (40) follows from the global monotonicity condition (4)

and plays an import role in the stability analysis of the PMil method. The proof

is given in [2, Lem. 6.3].

Lemma 4.3. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1 with

L ∈ (0,∞), q ∈ [2,∞), and η ∈ (12 ,∞). Consider the mapping R
d ∋ x 7→ x◦ ∈ R

d

defined in (35) with α ∈ (0, 1
2(q−1) ] and δ ∈ (0, 1]. Then there exists a constant C

only depending on L such that

∣

∣x◦
1 − x◦

2 + δ(f(t, x◦
1)− f(t, x◦

2))
∣

∣

2
+ 2ηδ

m
∑

r=1

∣

∣gr(t, x◦
1)− gr(t, x◦

2))
∣

∣

2

≤ (1 + Cδ)|x1 − x2|2
(40)

for all x1, x2 ∈ R
d.

The next theorem verifies that the PMil method is stochastically C-stable.

Theorem 4.4. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞), q ∈ [2,∞), and η ∈ (12 ,∞). Further, let h ∈ (0, 1]. Then, for every

ξ ∈ L2(Ω,F0,P;Rd) the projected Milstein method (ΨPMil, h, ξ) with α = 1
2(q−1) is

stochastically C-stable.

Proof. Let (t, δ) ∈ T and Y, Z ∈ L2(Ω,Ft,P;Rd) be arbitrary. By recalling (36) we

obtain

E
[

ΨPMil(Y, t, δ)−ΨPMil(Z, t, δ)|Ft

]

= Y ◦ + δf(t, Y ◦)− (Z◦ + δf(t, Z◦))

and
(

id− E[ · |Ft]
)(

ΨPMil(Y, t, δ)−ΨPMil(Z, t, δ)
)

=

m
∑

r=1

(

gr(t, Y ◦)− gr(t, Z◦)
)

It,t+δ
(r) +

m
∑

r1,r2=1

(

gr1,r2(t, Y ◦)− gr1,r2(t, Z◦)
)

It,t+δ
(r2,r1)

.
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In order to verify (30) with ν = 2η ∈ (1,∞) let us note that the stochastic incre-

ments are pairwise uncorrelated and independent of Y ◦ and Z◦. Hence it follows
∥

∥E
[

ΨPMil(Y, t, δ)−ΨPMil(Z, t, δ)|Ft

]∥

∥

2

L2(Ω;Rd)

+ ν
∥

∥

(

id− E[ · |Ft]
)(

ΨPMil(Y, t, δ)−ΨPMil(Z, t, δ)
)∥

∥

2

L2(Ω;Rd)

=
∥

∥Y ◦ + δf(t, Y ◦)− (Z◦ + δf(t, Z◦))
∥

∥

2

L2(Ω;Rd)

+ νδ

m
∑

r=1

∥

∥gr(t, Y ◦)− gr(t, Z◦)
∥

∥

2

L2(Ω;Rd)

+
1

2
νδ2

m
∑

r1,r2=1

∥

∥gr1,r2(t, Y ◦)− gr1,r2(t, Z◦)
∥

∥

2

L2(Ω;Rd)
.

An application of Lemma 4.3 with ν = 2η shows that the first two terms are

dominated by

E

[

∣

∣Y ◦ + δf(t, Y ◦)− (Z◦ + δf(t, Z◦))
∣

∣

2
+ νδ

m
∑

r=1

∣

∣gr(t, Y ◦)− gr(t, Z◦)
∣

∣

2
]

≤ (1 + Cδ)
∥

∥Y − Z
∥

∥

2

L2(Ω;Rd)
.

In addition, applications of (18) and (39) yield
∣

∣gr1,r2(t, x◦
1)− gr1,r2(t, x◦

2)
∣

∣ ≤ L
(

1 + |x◦
1|+ |x◦

2|
)q−1∣

∣x◦
1 − x◦

2

∣

∣

≤ L
(

1 + 2δ−α
)q−1∣

∣x1 − x2

∣

∣,

where we made use of the fact that |x◦
1|, |x◦

2| ≤ δ−α. Since α(q − 1) = 1
2 and

δ ∈ (0, 1] it follows δ
1
2 (1 + 2δ−α)q−1 ≤ 3q−1 and, therefore,

νδ2
m
∑

r1,r2=1

∥

∥gr1,r2(t, Y ◦)− gr1,r2(t, Z◦)
∥

∥

2

L2(Ω;Rd)
≤ 32(q−1)νm2L2δ

∥

∥Y − Z
∥

∥

2

L2(Ω;Rd)
.

This completes the proof. �

5. B-consistency of the projected Milstein method

In this section we show that the PMil method is stochastically B-consistent of

order γ = 1. To be more precise, we prove the following result:

Theorem 5.1. Let f and gr, r = 1, . . . ,m, satisfy Assumption 2.1 with L ∈
(0,∞) and q ∈ [2,∞). Let h ∈ (0, 1] be arbitrary. If the exact solution X to

(3) satisfies supτ∈[0,T ] ‖X(τ)‖L8q−6(Ω;Rd) < ∞, then the projected Milstein method

(ΨPMil, h,X0) with α = 1
2(q−1) is stochastically B-consistent of order γ = 1.

In preparation for the proof of Theorem 5.1 we introduce several more technical

lemmas. The first is cited from [2, Lemma 6.5]. It formalizes a method of proof

already found in [5, Theorem 2.2].

Lemma 5.2. For arbitrary α ∈ (0,∞) and δ ∈ (0, 1] consider the mapping R
d ∋

x 7→ x◦ ∈ R
d defined in (35). Let L ∈ (0,∞), κ ∈ [1,∞) and let ϕ : Rd → R

d be a

measurable mapping which satisfies

|ϕ(x)| ≤ L
(

1 + |x|κ
)
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for all x ∈ R
d. For some p ∈ (2,∞) let Y ∈ Lpκ(Ω;Rd). Then there exists a

constant C only depending on L and p with

∥

∥ϕ(Y )− ϕ(Y ◦)
∥

∥

L2(Ω;Rd)
≤ C

(

1 + ‖Y ‖
1
2
pκ

Lpκ(Ω;Rd)

)

δ
1
2
α(p−2)κ.

The proof of consistency also depends on the Hölder continuity of the exact

solution to (3) with respect to the norm in Lp(Ω;Rd) for some p ∈ [2,∞). A proof

is given in [2, Proposition 5.4].

Proposition 5.3. Let f and gr, r = 1, . . . ,m, satisfy Assumption 2.1 with L ∈
(0,∞) and q ∈ [2,∞). For every p ∈ [2,∞) there exists a constant C = C(L, q, p)

such that
∥

∥X(t1)−X(t2)
∥

∥

Lp(Ω;Rd)
≤ C

(

1 + sup
t∈[0,T ]

‖X(t)‖q
Lpq(Ω;Rd)

)

|t1 − t2|
1
2(41)

holds for all t1, t2 ∈ [0, T ] and for every solution X of (3) satisfying

supt∈[0,T ] ‖X(t)‖Lpq(Ω;Rd) < ∞.

The next auxiliary result combines the Hölder estimates with growth functions.

Proposition 5.4. Let q1 ≥ 0, q2 > 0 and consider an R
d-valued process X(t), t ∈

[0, T ] satisfying (41) for pq = 2(qq2+q1) and supt∈[0,T ] ‖X(t)‖Lpq(Ω;Rd) < ∞. Then

there exists a constant C such that for all 0 ≤ t1 ≤ t2 ≤ T

(42)

‖
(

1+|X(t1)|+ |X(t2)|
)q1 ∣

∣X(t1)−X(t2)
∣

∣

q2‖L2(Ω;R)

≤C
(

1 + sup
t∈[0,T ]

‖X(t)‖
pq

2

Lpq(Ω;Rd)

)

|t1 − t2|
q2
2 .

Proof. We apply a Hölder estimate with arbitrary ν > 1, ν′ = ν
ν−1 and use (41),

‖
(

1+|X(t1)|+ |X(t2)|
)q1 ∣

∣X(t1)−X(t2)
∣

∣

q2‖L2(Ω;R)

≤C‖1 + |X(t1)|+ |X(t2)|‖q1L2ν′q1 (Ω;R)
‖X(t2)−X(t1)‖q2L2νq2(Ω;Rd)

≤C
(

1 + sup
t∈[0,T ]

‖X(t)‖q1
L2ν′q1 (Ω;Rd)

)(

1 + sup
t∈[0,T ]

‖X(t)‖qq2
L2νqq2(Ω;Rd)

)

|t1 − t2|
q2
2 .

The norms are balanced if we choose 2ν′q1 = 2qνq2 which leads to ν = 1 + q1
qq2

and 2νqq2 = 2(qq2 + q1). This shows our assertion for q1 > 0. In case q1 = 0 it is

enough to just apply (41) with p = 2q2. �

The following lemma is quoted from [2, Lemma 5.5].

Lemma 5.5. Let Assumption 2.1 be satisfied by f and gr, r = 1, . . . ,m, with

L ∈ (0,∞) and q ∈ [2,∞). Further, let the exact solution X to the SODE (3)

satisfy supt∈[0,T ] ‖X(t)‖L4q−2(Ω;Rd) < ∞. Then, there exists a constant C such that

for all t1, t2, s ∈ [0, T ] with 0 ≤ t1 ≤ s ≤ t2 ≤ T it holds

∫ t2

t1

∥

∥f(τ,X(τ)) − f(s,X(t1))
∥

∥

L2(Ω;Rd)
dτ

≤ C
(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

2q−1

L4q−2(Ω;Rd)

)

|t1 − t2|
3
2 .

The order of convergence indicated by Lemma 5.5 can be increased if we insert

the conditional expectation with respect to the σ-field Ft1 :
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Lemma 5.6. Let Assumption 2.1 be satisfied by f and gr, r = 1, . . . ,m with

L ∈ (0,∞) and q ∈ [2,∞). Further, let the exact solution X to the SODE (3)

satisfy supt∈[0,T ] ‖X(t)‖L6q−4(Ω;Rd) < ∞. Then, there exists a constant C such that

for all t1, t2, s ∈ [0, T ] with 0 ≤ t1 ≤ s ≤ t2 ≤ T it holds

∫ t2

t1

∥

∥E
[

f(τ,X(τ))− f(s,X(t1))|Ft1

]∥

∥

L2(Ω;Rd)
dτ

≤ C
(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

3q−2

L6q−4(Ω;Rd)

)

|t1 − t2|2.

Proof. Since ‖E[Y |Ft1 ]‖L2(Ω;Rd) ≤ ‖Y ‖L2(Ω;Rd) for all Y ∈ L2(Ω;Rd) the integrand

is estimated by
∥

∥E
[

f(τ,X(τ))− f(s,X(t1))|Ft1

]
∥

∥

L2(Ω;Rd)

≤
∥

∥f(τ,X(τ)) − f(s,X(τ))
∥

∥

L2(Ω;Rd)
+
∥

∥E
[

f(s,X(τ))− f(s,X(t1))|Ft1

]
∥

∥

L2(Ω;Rd)

for every τ ∈ [t1, t2]. From (10) it follows that
∥

∥f(τ,X(τ))− f(s,X(τ))
∥

∥

L2(Ω;Rd)
≤ L‖1 + |X(τ)|‖qL2q(Ω;R)|τ − s|
≤ C

(

1 + sup
t∈[0,T ]

‖X(t)‖q
L2q(Ω;Rd)

)

|t2 − t1|,(43)

which after integrating over τ , yields the desired estimate since 2q ≤ 6q − 4 for

q ≥ 1.

Next, from the mean value theorem we obtain

f(s,X(τ))− f(s,X(t1)) =
∂f

∂x
(s,X(t1))

(

X(τ)−X(t1)
)

+Rf ,

where the remainder term Rf is given by

Rf =

∫ 1

0

(∂f

∂x

(

s,X(t1) + ρ(X(τ)−X(t1))
)

− ∂f

∂x
(s,X(t1))

)

dρ
(

X(τ)−X(t1)
)

.

Using the SODE (3) we obtain

E

[∂f

∂x
(s,X(t1))

(

X(τ)−X(t1)
)

∣

∣

∣
Ft1

]

= E

[∂f

∂x
(s,X(t1))

∫ τ

t1

f(σ,X(σ)) dσ
∣

∣

∣
Ft1

]

.

After taking the L2-norm and inserting (8) and (9) we arrive at

∥

∥

∥
E

[∂f

∂x
(s,X(t1))

(

X(τ)−X(t1)
)

∣

∣

∣
Ft1

]∥

∥

∥

L2(Ω;Rd)

≤
∫ τ

t1

∥

∥L(1 + |X(t1)|
)q−1

L
(

1 + |X(σ)|
)q∥
∥

L2(Ω;R)
dσ

≤ C
(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

2q−1

L4q−2(Ω;Rd)

)

|τ − t1|.

(44)

Hence, we also obtain the desired estimate for this term after integrating over τ .

Finally, we have to estimate the L2-norm of the remainder term Rf . For this we

make use of (5) and get

(45)

|Rf | ≤
∫ 1

0

L
(

1 + |X(t1) + ρ(X(τ)−X(t1))|+ |X(t1)|
)q−2

dρ
∣

∣X(τ)−X(t1)
∣

∣

2

≤ C
(

1 +
∣

∣X(t1)
∣

∣+
∣

∣X(τ)
∣

∣

)q−2∣
∣X(τ)−X(t1)

∣

∣

2



STOCHASTIC C-STAB. AND B-CONS. OF MILSTEIN-TYPE SCHEMES 15

for a constant C only depending on L and q. Applying Proposition 5.4 with q2 =

2, q1 = q − 2 yields 2(qq2 + q1) = 6q − 4 and therefore,

‖Rf‖L2(Ω;Rd) ≤ C
(

1 + sup
t∈[0,T ]

‖X(t)‖3q−2
L6q−4(Ω;Rd)

)

|τ − t1|.(46)

�

The next lemma contains the corresponding estimate for the stochastic integral.

Lemma 5.7. Let Assumption 2.1 be satisfied by f and gr, r = 1, . . . ,m with

L ∈ (0,∞) and q ∈ [2,∞). Further, let the exact solution X to (3) satisfy

supt∈[0,T ] ‖X(t)‖L6q−4(Ω;Rd) < ∞. Then, there exists a constant C such that for

all r = 1, . . . ,m and t1, t2, s ∈ [0, T ] with 0 ≤ t1 ≤ s ≤ t2 ≤ T it holds

∥

∥

∥

∫ t2

t1

gr(τ,X(τ))− gr(s,X(t1)) dW
r(τ)−

m
∑

r2=1

gr,r2(s,X(t1))I
t1,t2
(r2,r)

∥

∥

∥

L2(Ω;Rd)

≤ C
(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

3q−2

L6q−4(Ω;Rd)

)

|t1 − t2|
3
2 .

Proof. Let us fix r = 1, . . . ,m arbitrary. We first consider the square of the L2-norm

and by recalling (22) and (23) we get

E

[∣

∣

∣

∫ t2

t1

(

gr(τ,X(τ)) − gr(s,X(t1))−
m
∑

r2=1

gr,r2(s,X(t1))I
t1,τ
(r2)

)

dW r(τ)
∣

∣

∣

2]

=

∫ t2

t1

E

[∣

∣

∣
gr(τ,X(τ))− gr(s,X(t1))−

m
∑

r2=1

gr,r2(s,X(t1))I
t1,τ
(r2)

∣

∣

∣

2]

dτ

by an application of the Itō isometry. Thus, the assertion is proved if there exists

a constant C independent of τ , t1, t2, and s such that

Γ(τ) :=
∥

∥

∥
gr(τ,X(τ)) − gr(s,X(t1))−

m
∑

r2=1

gr,r2(s,X(t1))I
t1,τ
(r2)

∥

∥

∥

L2(Ω;Rd)

≤ C
(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

3q−2

L6q−4(Ω;Rd)

)

|t1 − t2|

for every τ ∈ [t1, t2]. For this we first estimate Γ(τ) by

Γ(τ) ≤
∥

∥gr(τ,X(τ)) − gr(s,X(τ))
∥

∥

L2(Ω;Rd)

+
∥

∥

∥
gr(s,X(τ))− gr(s,X(t1))−

m
∑

r2=1

gr,r2(s,X(t1))I
t1,τ
(r2)

∥

∥

∥

L2(Ω;Rd)
.

In the same way as in (43) one shows for the first term

∥

∥gr(τ,X(τ))− gr(s,X(τ))
∥

∥

L2(Ω;Rd)
≤ C

(

1 + sup
t∈[0,T ]

‖X(t)‖
q+1

2

Lq+1(Ω;Rd)

)

|t2 − t1|

and notes q + 1 ≤ 6q − 4. Next, we again apply the mean value theorem

gr(s,X(τ))− gr(s,X(t1)) =
∂gr

∂x
(s,X(t1))

(

X(τ)−X(t1)
)

+Rg,

where this time the remainder term Rg is given by

Rg :=

∫ 1

0

(∂gr

∂x

(

s,X(t1) + ρ(X(τ)−X(t1))
)

− ∂gr

∂x
(s,X(t1))

)

dρ
(

X(τ)−X(t1)
)

.
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Using the condition (6) we get

|Rg| ≤ C
(

1 + |X(t1)|+ |X(τ)|
)q1 |X(τ)−X(t1)|2, where q1 = (q−3)+

2 .

Therefore, Proposition 5.4 applies with q2 = 2 and leads to

‖Rg‖L2(Ω;Rd) ≤ C
(

1 + sup
t∈[0,T ]

‖X(t)‖3q−2
L6q−4(Ω;Rd)

)

|τ − t1|,

since 2(qq2 + q1) = max(5q − 3, 4q) ≤ 6q − 4 for q ≥ 2. It remains to give a

corresponding estimate for

Γ2(τ) :=
∥

∥

∥

∂gr

∂x
(s,X(t1))

(

X(τ)−X(t1)
)

−
m
∑

r2=1

gr,r2(s,X(t1))I
t1,τ
(r2)

∥

∥

∥

L2(Ω;Rd)
.

After inserting (19) we finally arrive at the two terms

Γ2(τ) ≤
∥

∥

∥

∂gr

∂x
(s,X(t1))

∫ τ

t1

f(σ,X(σ)) dσ
∥

∥

∥

L2(Ω;Rd)

+

m
∑

r2=1

∥

∥

∥

∂gr

∂x
(s,X(t1))

∫ τ

t1

gr2(σ,X(σ)) dW r2 (σ) − gr,r2(s,X(t1))I
t1,τ
(r2)

∥

∥

∥

L2(Ω;Rd)
.

Using (13), the first term is estimated analogously to (44),
∥

∥

∥

∂gr

∂x
(s,X(t1))

∫ τ

t1

f(σ,X(σ)) dσ
∥

∥

∥

L2(Ω;Rd)
≤ C

(

1 + sup
t∈[0,T ]

‖X(t)‖
3q−1

2

L3q−1(Ω,Rd)

)

|τ − t1|.

For the second term we insert (16) and (22) and obtain from Itō’s isometry

m
∑

r2=1

∥

∥

∥

∂gr

∂x
(s,X(t1))

∫ τ

t1

gr2(σ,X(σ)) dW r2 (σ)− gr,r2(s,X(t1))I
t1,τ
(r2)

∥

∥

∥

L2(Ω;Rd)

=

m
∑

r2=1

∥

∥

∥

∫ τ

t1

∂gr

∂x
(s,X(t1))

(

gr2(σ,X(σ)) − gr2(s,X(t1))
)

dW r2(σ)
∥

∥

∥

L2(Ω;Rd)

=

m
∑

r2=1

(

∫ τ

t1

∥

∥

∥

∂gr

∂x
(s,X(t1))

(

gr2(σ,X(σ)) − gr2(s,X(t1))
)

∥

∥

∥

2

L2(Ω;Rd)
dσ

)
1
2

.

Now, it follows from (14) and (15) that
∣

∣gr2(σ,X(σ)) − gr2(s,X(t1))
∣

∣

≤
∣

∣gr2(σ,X(σ)) − gr2(σ,X(t1))
∣

∣+
∣

∣gr2(σ,X(t1))− gr2(s,X(t1))
∣

∣

≤ L
(

1 + |X(t1)|+ |X(σ)|
)

q−1

2 |X(σ)−X(t1)|+ L
(

1 + |X(t1)|
)

q+1

2 |σ − s|.
Hence, the growth estimate (13) and Proposition 5.4 with q1 = q − 1, q2 = 1 yield

∥

∥

∥

∂gr

∂x
(s,X(t1))

(

gr2(σ,X(σ)) − gr2(s,X(t1))
)

∥

∥

∥

L2(Ω;Rd)

≤ L
∥

∥

(

1 + |X(t1)|)
q−1

2

∣

∣gr2(σ,X(σ)) − gr2(s,X(t1))
∣

∣

∥

∥

L2(Ω,R)

≤ L2
∥

∥

(

1 + |X(t1)|+ |X(σ)|
)q−1∣

∣X(σ)−X(t1)
∣

∣

∥

∥

L2(Ω,R)

+ L2‖
(

1 + |X(t1)|
)q‖L2(Ω,R)|σ − s|

≤ C
(

(

1 + sup
t∈[0,T ]

‖X(t)‖2q−1
L4q−2(Ω,Rd)

)

|σ − t1|
1
2

+
(

1 + sup
t∈[0,T ]

‖X(t)‖q
L2q(Ω,Rd)

)

|σ − s|
)

.
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To sum up, we have shown

Γ2(τ) ≤ C
(

1 + sup
t∈[0,T ]

‖X(t)‖2q−1
L4q−2(Ω;Rd)

)

|t1 − t2|.

Since 4q − 2 ≤ 6q − 4, this completes the proof. �

The proof shows that it is sufficient to have bounds for moments of order

max(5q − 3, 4q) instead of 6q − 4. However, in view of the weaker estimate in

Lemma 5.6, this does not improve the result of Theorem 5.1.

Now we are well-prepared for the proof of Theorem 5.1.

Proof of Theorem 5.1. We first verify (33) with γ = 1 for the PMil method. For

this, let (t, δ) ∈ T be arbitrary. After inserting (19) and (36) we obtain
∥

∥E
[

X(t+ δ)−ΨPMil(X(t), t, δ)
∣

∣Ft

]
∥

∥

L2(Ω;Rd)

=
∥

∥

∥
E

[

X(t) +

∫ t+δ

t

f(τ,X(τ)) dτ −X◦(t)− δf(t,X◦(t))
∣

∣

∣
Ft

]∥

∥

∥

L2(Ω;Rd)

≤
∥

∥X(t)−X◦(t)
∥

∥

L2(Ω;Rd)
+ δ

∥

∥f(t,X(t))− f(t,X◦(t))
∥

∥

L2(Ω;Rd)

+

∫ t+δ

t

∥

∥E
[

f(τ,X(τ))− f(t,X(t))
∣

∣Ft

]∥

∥

L2(Ω;Rd)
dτ.

By applying Lemma 5.2 with ϕ = id, κ = 1, p = 8q − 6, and α = 1
2(q−1) we obtain

∥

∥X(t)−X◦(t)
∥

∥

L2(Ω;Rd)
≤ C

(

1 +
∥

∥X(t)
∥

∥

4q−3

L8q−6(Ω;Rd)

)

δ2,

since 1
2α(p − 2)κ = 2. Similarly, we estimate the second term by Lemma 5.2 with

ϕ = f(t, ·), κ = q, and p = 6− 4
q . Since in this case 1

2α(p− 2)κ = 1 we get

δ
∥

∥f(t,X(t))− f(t,X◦(t))
∥

∥

L2(Ω;Rd)
≤ C

(

1 +
∥

∥X(t)
∥

∥

3q−2

L6q−4(Ω;Rd)

)

δ2.(47)

The last term is estimated by Lemma 5.6 with t1 = s = t and t2 = t+ δ,

∫ t+δ

t

∥

∥E
[

f(τ,X(τ))− f(t,X(t))
∣

∣Ft

]
∥

∥

L2(Ω;Rd)
dτ

≤ C
(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

3q−2

L6q−4(Ω;Rd)

)

δ2.

This completes the proof of (33). For the proof of (34) we first insert (19) and (36).

Then, in the same way as above we obtain the following four terms
∥

∥(id− E[ · |Ft])
(

X(t+ δ)−ΨPMil(X(t), t, δ)
)
∥

∥

L2(Ω;Rd)

≤
m
∑

r=1

∥

∥

(

gr(t,X(t))− gr(t,X◦(t))
)

It,t+δ
(r)

∥

∥

L2(Ω;Rd)

+

m
∑

r,r2=1

∥

∥

(

gr,r2(t,X(t))− gr,r2(t,X◦(t))
)

It,t+δ
(r,r2)

∥

∥

L2(Ω;Rd)

+
∥

∥

∥
(id− E[ · |Ft])

∫ t+δ

t

f(τ,X(τ)) dτ
∥

∥

∥

L2(Ω;Rd)

+

m
∑

r=1

∥

∥

∥

∫ t+δ

t

gr(τ,X(τ)) − gr(t,X(t)) dW r(τ) −
m
∑

r2=1

gr,r2(t,X(t))It,t+δ
(r2,r)

∥

∥

∥

L2(Ω;Rd)
.
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Since the stochastic increment It,t+δ
(r) is independent of Ft it directly follows that

∥

∥

(

gr(t,X(t))− gr(t,X◦(t))
)

It,t+δ
(r)

∥

∥

L2(Ω;Rd)

= δ
1
2

∥

∥gr(t,X(t))− gr(t,X◦(t))
∥

∥

L2(Ω;Rd)
.

Then, we apply Lemma 5.2 with ϕ = gr(t, ·), κ = q+1
2 , and p = 10− 16

q+1 . As above,

this yields 1
2α(p− 2)κ = 1 and we get

δ
1
2

∥

∥gr(t,X(t))− gr(t,X◦(t))
∥

∥

L2(Ω;Rd)
≤ C

(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

5
2
q− 3

2

L5q−3(Ω;Rd)

)

δ
3
2

for every r = 1, . . . ,m. In the same way we obtain for the second term
∥

∥

(

gr,r2(t,X(t))− gr,r2(t,X◦(t))
)

It,t+δ
(r,r2)

∥

∥

L2(Ω;Rd)

=
1√
2
δ
∥

∥gr,r2(t,X(t))− gr,r2(t,X◦(t))
∥

∥

L2(Ω;Rd)
.

Then, a further application of Lemma 5.2 with ϕ = gr,r2(t, ·), κ = q, and p = 4− 2
q

gives

δ
∥

∥gr,r2(t,X(t))− gr,r2(t,X◦(t))
∥

∥

L2(Ω;Rd)
≤ C

(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

2q−1

L4q−2(Ω;Rd)

)

δ
3
2

for every r, r2 = 1, . . . ,m, since in this case 1
2α(p− 2)κ = 1

2 .

Next, since f(t,X(t)) is Ft-measurable it follows for the third term that

∥

∥

∥
(id− E[ · |Ft])

∫ t+δ

t

f(τ,X(τ)) dτ
∥

∥

∥

L2(Ω;Rd)

=
∥

∥

∥
(id− E[ · |Ft])

∫ t+δ

t

f(τ,X(τ))− f(t,X(t)) dτ
∥

∥

∥

L2(Ω;Rd)
.

By making use of ‖(id−E[ · |Ft])Y ‖L2(Ω;Rd) ≤ ‖Y ‖L2(Ω;Rd) one directly deduces the

desired estimate from Lemma 5.5. Finally, the last term is estimated by Lemma 5.7.

�

6. C-stability of the split-step backward Milstein method

In this section we verify that Assumption 2.1 and condition (26) are sufficient

for the C-stability of the split-step backward Milstein method.

The results of Proposition 6.1 below are needed in order to show that the SSBM

method is a well-defined one-step method in the sense of Definition 3.1. Further, the

inequality (50) plays a key role in the proof of the C-stability of the SSBM method

and generalizes a similar estimate for the split-step backward Euler method from

[2, Corollary 4.2].

Proposition 6.1. Let the functions f : [0, T ]×R
d → R

d and gr : [0, T ]×R
d → R

d,

r = 1, . . . ,m, satisfy Assumption 2.1 and condition (26) with L ∈ (0,∞), η1 ∈
(1,∞), and η2 ∈ (0,∞). Let h ∈ (0, L−1) be given and define for every δ ∈ (0, h]

the mapping Fδ : [0, T ] × R
d → R

d by Fδ(t, x) = x − δf(t, x). Then, the mapping

R
d ∋ x 7→ Fδ(t, x) ∈ R

d is a homeomorphism for every t ∈ [0, T ].

In addition, the inverse F−1
δ (t, ·) : Rd → R

d satisfies
∣

∣F−1
δ (t, x1)− F−1

δ (t, x2)
∣

∣ ≤ (1 − Lδ)−1|x1 − x2|,(48)
∣

∣F−1
δ (t, x)

∣

∣ ≤ (1 − Lδ)−1
(

Lδ + |x|
)

,(49)
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for every x, x1, x2 ∈ R
d and t ∈ [0, T ]. Moreover, there exists a constant C1 only

depending on L and h such that

∣

∣F−1
δ (t, x1)− F−1

δ (t, x2)
∣

∣

2
+ η1δ

m
∑

r=1

∣

∣gr(t, F−1
δ (t, x1))− gr(t, F−1

δ (t, x2))
∣

∣

2

+ η2δ

m
∑

r1,r2=1

∣

∣gr1,r2(t, F−1
δ (t, x1))− gr1,r2(t, F−1

δ (t, x2))
∣

∣

2 ≤ (1 + C1δ)
∣

∣x1 − x2

∣

∣

2

(50)

for every x1, x2 ∈ R
d and t ∈ [0, T ].

Proof. The first part is a direct consequence of the Uniform Monotonicity Theorem

(see for instance, [19, Chap.6.4], [22, Theorem C.2]). The estimates (48) and (49)

are standard and a proof is found, for example, in [2, Sec. 4].

Regarding (50) it first follows from (26) that

〈Fδ(t, x1)− Fδ(t, x2), x1 − x2〉
= |x1 − x2|2 − δ〈f(t, x1)− f(t, x2), x1 − x2〉

≥ (1− Lδ)|x1 − x2|2 + η1δ

m
∑

r=1

∣

∣gr(t, x1)− gr(t, x2)
∣

∣

2

+ η2δ

m
∑

r1,r2=1

∣

∣gr1,r2(t, x1)− gr1,r2(t, x2)
∣

∣

2

for all x1, x2 ∈ R
d. For some y1, y2 ∈ R

d we substitute x1 = F−1
δ (t, y1) and

x2 = F−1
δ (t, y2) into this inequality. Then, after some rearranging we obtain

∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2
+ η1δ

m
∑

r=1

∣

∣gr(t, F−1
δ (t, y1))− gr(t, F−1

δ (t, y2))
∣

∣

2

+ η2δ

m
∑

r1,r2=1

∣

∣gr1,r2(t, F−1
δ (t, y1))− gr1,r2(t, F−1

δ (t, y2))
∣

∣

2

≤
〈

y1 − y2, F
−1
δ (t, y1)− F−1

δ (t, y2)
〉

+ Lδ
∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2
.

Next, as in the proof of [2, Corollary 4.2] we apply the Cauchy-Schwarz inequality

and (48). This yields
〈

y1 − y2, F
−1
δ (t, y1)− F−1

δ (t, y2)
〉

+ Lδ
∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2

≤ |y1 − y2|
∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣+ Lδ
∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2

≤ (1− Lδ)−1
(

1 + (1 − Lδ)−1Lδ
)

|y1 − y2|2 = (1− Lδ)−2|y1 − y2|2

for all y1, y2 ∈ R
d. Finally, note that b(δ) = (1−Lδ)−2 is a convex function, hence

for all δ ∈ [0, h],

(1− Lδ)−2 ≤ 1 + C1δ, with C1 =
b(h)− b(0)

h
= L(2− Lh)(1− Lh)−2,

and inequality (50) is verified. �

Proposition 6.1 ensures that the implicit step of the SSBM method admits a

unique solution if f satisfies Assumption 2.1 with one-sided Lipschitz constant L.

To be more precise, for a given h ∈ (0, L−1) let us consider an arbitrary vector
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of step sizes h ∈ (0, h]N , N ∈ N. Then, it follows from Proposition 6.1 that the

nonlinear equations

X
SSBM

h (ti) = XSSBM
h (ti−1) + hif(ti, X

SSBM

h (ti)), 1 ≤ i ≤ N,

are uniquely solvable. Further, there exists a homeomorphism Fhi
(ti, ·) : Rd →

R
d such that X

SSBM

h (ti) = F−1
hi

(ti, X
SSBM
h (ti−1)). Therefore, the one-step map

ΨSSBM : Rd × T× Ω → R
d of the split-step backward Milstein method is given by

ΨSSBM(x, t, δ) = F−1
δ (t+ δ, x) +

m
∑

r=1

gr(t+ δ, F−1
δ (t+ δ, x))It,t+δ

(r)

+

m
∑

r1,r2=1

gr1,r2(t+ δ, F−1
δ (t+ δ, x))It,t+δ

(r2,r1)

(51)

for every x ∈ R
d and (t, δ) ∈ T, where the stochastic increments are defined in (22)

and (23). Next, we verify that ΨSSBM satisfies condition (28) as well as (31) and

(32).

Proposition 6.2. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

and condition (26) with L ∈ (0,∞), q ∈ [2,∞), η1 ∈ (1,∞), and η2 ∈ (0,∞). For

every h ∈ (0,max(L−1, 2η2

η1
)) and initial value ξ ∈ L2(Ω;F0,P;Rd) it holds that

(ΨSSBM, h, ξ) is a stochastic one-step method.

In addition, there exists a constant C0 depending on L, q, m, and h, such that
∥

∥E
[

ΨSSBM(0, t, δ)|Ft

]
∥

∥

L2(Ω;Rd)
≤ C0δ,(52)

∥

∥

(

id− E[ · |Ft]
)

ΨSSBM(0, t, δ)
∥

∥

L2(Ω;Rd)
≤ C0δ

1
2(53)

for all (t, δ) ∈ T.

Proof. Regarding the first assertion we show that ΨSSBM satisfies (28). For this we

fix arbitrary (t, δ) ∈ T and Z ∈ L2(Ω,Ft,P;Rd). Then, we obtain from Proposi-

tion 6.1 that the mapping F−1
δ (t + δ, ·) : Rd → R

d is a homeomorphism satisfying

the linear growth bound (49). Hence, we have

F−1
δ (t+ δ, Z) ∈ L2(Ω,Ft,P;Rd).

Consequently, by the continuity of gr and gr1,r2 the mappings

Ω ∋ ω 7→ gr(t+ δ, F−1
δ (t+ δ, Z(ω))) ∈ R

d

and

Ω ∋ ω 7→ gr1,r2(t+ δ, F−1
δ (t+ δ, Z(ω))) ∈ R

d

areFt/B(Rd)-measurable for every r, r1, r2 = 1, . . . ,m. Hence, ΨSSBM(Z, t, δ) : Ω →
R

d is an Ft+δ/B(Rd)-measurable random variable.

Next, we show that ΨSSBM(Z, t, δ) is square integrable. First, it follows from

(49) that
∥

∥E
[

ΨSSBM(Z, t, δ)|Ft

]∥

∥

L2(Ω;Rd)
=

∥

∥F−1
δ (t+ δ, Z)

∥

∥

L2(Ω;Rd)

≤ (1 − Lδ)−1
(

Lδ + ‖Z‖L2(Ω;Rd)

)

.

In particular, if Z = 0 ∈ L2(Ω;Rd) we get
∥

∥E
[

ΨSSBM(0, t, δ)|Ft

]
∥

∥

L2(Ω;Rd)
≤ (1− Lh)−1Lδ,
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which is (52). Further, since the stochastic increments It,t+δ
(r) and It,t+δ

(r1,r2)
are pairwise

uncorrelated and satisfy E[|It,t+δ
(r) |2] = δ and E[|It,t+δ

(r1,r2)
|2] = 1

2δ
2 we obtain

∥

∥

(

id− E[ · |Ft]
)

ΨSSBM(0, t, δ)
∥

∥

2

L2(Ω;Rd)

=
∥

∥

∥

m
∑

r=1

gr(t+ δ, F−1
δ (t+ δ, 0))It,t+δ

(r)

∥

∥

∥

2

L2(Ω;Rd)

+
∥

∥

∥

m
∑

r1,r2=1

gr1,r2(t+ δ, F−1
δ (t+ δ, 0))It,t+δ

(r2,r1)

∥

∥

∥

2

L2(Ω;Rd)

= δ
m
∑

r=1

∣

∣gr(t+ δ, F−1
δ (t+ δ, 0))

∣

∣

2
+

1

2
δ2

m
∑

r1,r2=1

∣

∣gr1,r2(t+ δ, F−1
δ (t+ δ, 0))

∣

∣

2
.

Then, applications of (12) and (49) yield

∣

∣gr(t+ δ, F−1
δ (t+ δ, 0))

∣

∣ ≤ L
(

1 +
∣

∣F−1
δ (t+ δ, 0)

∣

∣

)

q+1

2

≤ L
(

1 + (1 − Lh)−1Lh
)

q+1

2

and, similarly, by (17)

∣

∣gr1,r2(t+ δ, F−1
δ (t+ δ, 0))

∣

∣ ≤ L
(

1 +
∣

∣F−1
δ (t+ δ, 0)

∣

∣

)q

≤ L
(

1 + (1− Lh)−1Lh
)q
.

Therefore, there exists a constant C0 depending on L, q, m, and h, such that (53)

is satisfied. In particular, this proves that ΨSSBM(0, t, δ) ∈ L2(Ω,Ft+δ,P;Rd).

Next, for arbitrary Z ∈ L2(Ω;Ft,P;Rd) the same arguments as above yield

∥

∥ΨSSBM(Z, t, δ)−ΨSSBM(0, t, δ)
∥

∥

2

L2(Ω;Rd)

=
∥

∥F−1
δ (t+ δ, Z)− F−1

δ (t+ δ, 0)
∥

∥

2

L2(Ω;Rd)

+ δ

m
∑

r=1

∥

∥gr(t+ δ, F−1
δ (t+ δ, Z))− gr(t+ δ, F−1

δ (t+ δ, 0))
∥

∥

2

L2(Ω;Rd)

+
δ2

2

m
∑

r1,r2=1

∥

∥gr1,r2(t+ δ, F−1
δ (t+ δ, Z))− gr1,r2(t+ δ, F−1

δ (t+ δ, 0))
∥

∥

2

L2(Ω;Rd)
.

Note that η1 > 1 and δ2

2 ≤ h
2 δ ≤ η2δ. Thus, the inequality (50) is applicable and

we obtain

∥

∥ΨSSBM(Z, t, δ)− ΨSSBM(0, t, δ)
∥

∥

2

L2(Ω;Rd)
≤ (1 + C1δ)‖Z‖2L2(Ω;Rd).

Hence ΨSSBM(Z, t, δ) ∈ L2(Ω,Ft+δ,P;Rd). �

Theorem 6.3. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

and condition (26) with L ∈ (0,∞), η1 ∈ (1,∞), and η2 ∈ (0,∞). Further, let

h ∈ (0,max(L−1, 2η2

η1
)). Then, for every ξ ∈ L2(Ω,F0,P;Rd) the SSBM scheme

(ΨSSBM, h, ξ) is stochastically C-stable.

Proof. Let (t, δ) ∈ T be arbitrary. For every Y ∈ L2(Ω,Ft,P;Rd) we have

E
[

ΨSSBM(Y, t, δ)|Ft

]

= F−1
δ (t+ δ, Y )
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and

(

id− E[ · |Ft]
)

ΨSSBM(Y, t, δ) =

m
∑

r=1

gr(t+ δ, F−1
δ (t+ δ, Y ))It,t+δ

(r)

+

m
∑

r1,r2=1

gr1,r2(t+ δ, F−1
δ (t+ δ, Y ))It,t+δ

(r2,r1)
.

For the computation of the L2-norm, we make use of the facts that the stochas-

tic increments are independent of Ft and pairwise uncorrelated. Further, since

E[|It,t+δ
(r) |2] = δ and E[|It,t+δ

(r1,r2)
|2] = 1

2δ
2 it follows for (30) with ν = η1

∥

∥E
[

ΨSSBM(Y, t, δ)−ΨSSBM(Z, t, δ)|Ft

]∥

∥

2

L2(Ω;Rd)

+ ν
∥

∥

(

id− E[·|Ft]
)(

ΨSSBM(Y, t, δ)−ΨSSBM(Z, t, δ)
)∥

∥

2

L2(Ω;Rd)

= E
[∣

∣F−1
δ (t+ δ, Y )− F−1

δ (t+ δ, Z)
∣

∣

2]

+ η1δ
m
∑

r=1

E
[∣

∣gr(t+ δ, F−1
δ (t+ δ, Y ))− gr(t+ δ, F−1

δ (t+ δ, Z))
∣

∣

2]

+
1

2
η1δ

2
m
∑

r1,r2=1

E
[∣

∣gr1,r2(t+ δ, F−1
δ (t+ δ, Y ))− gr1,r2(t+ δ, F−1

δ (t+ δ, Z))
∣

∣

2]
.

Due to 1
2η1δ ≤ 1

2η1h < η2 an application of inequality (50) yields

∥

∥E
[

ΨSSBM(Y, t, δ)−ΨSSBM(Z, t, δ)|Ft

]∥

∥

2

L2(Ω;Rd)

+ ν
∥

∥

(

id− E[ · |Ft]
)(

ΨSSBM(Y, t, δ)−ΨSSBM(Z, t, δ)
)∥

∥

2

L2(Ω;Rd)

≤ (1 + C1δ)
∥

∥Y − Z
∥

∥

2

L2(Ω;Rd)
,

which is the C-stability condition (30) with ν = η1 ∈ (1,∞). �

7. B-consistency of the split-step backward Milstein method

This section is devoted to the proof of the following result, which is concerned

with the B-consistency of the SSBM method.

Theorem 7.1. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞) and q ∈ [2,∞). Let h ∈ (0, L−1). If the exact solution X to (3)

satisfies supτ∈[0,T ] ‖X(τ)‖L6q−4(Ω;Rd) < ∞, then the split-step backward Milstein

method (ΨSSBM, h,X0) is stochastically B-consistent of order γ = 1.

For the proof we recall some estimates of the homeomorphism F−1
δ from [2,

Lemma 4.3], which will be useful for the estimate of the local truncation error.

Lemma 7.2. Consider the same situation as in Proposition 6.1. Then there exist

constants C2, C3 only depending on L, h and q such that for every δ ∈ (0, h] the

inverse F−1
δ (t, ·) : Rd → R

d satisfies the estimates
∣

∣F−1
δ (t, x) − x

∣

∣ ≤ δC2

(

1 + |x|q
)

,(54)
∣

∣F−1
δ (t, x) − x− δf(t, x)

∣

∣ ≤ δ2C3

(

1 + |x|2q−1
)

(55)

for every x ∈ R
d and t ∈ [0, T ].
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Proof of Theorem 7.1. The proof follows the same steps as the proof of [2, Theo-

rem 5.7]. Let us fix arbitrary (t, δ) ∈ T. Then, by inserting (19) and (51) we obtain

the following representation of the local truncation error

X(t+ δ)−ΨSSBM(X(t), t, δ) = X(t) + δf(t+ δ,X(t))− F−1
δ (t+ δ,X(t))

+

∫ t+δ

t

(

f(τ,X(τ))− f(t+ δ,X(t))
)

dτ

+
(

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ)) − gr(t+ δ,X(t))
)

dW r(τ)

−
m
∑

r1,r2=1

gr1,r2(t+ δ,X(t))It,t+δ
(r2,r1)

)

+

m
∑

r=1

(

gr(t+ δ,X(t))− gr(t+ δ, F−1
δ (t+ δ,X(t)))

)

It,t+δ
(r)

+

m
∑

r1,r2=1

(

gr1,r2(t+ δ,X(t))− gr1,r2(t+ δ, F−1
δ (t+ δ,X(t)))

)

It,t+δ
(r2,r1)

=: T1 + T2 + T3 + T4 + T5.

We discuss the five terms separately. It is already shown in the proof of [2, Theo-

rem 5.7] that by applying (55) the L2-norm of the term T1 is dominated by

‖T1‖L2(Ω;Rd) =
∥

∥X(t) + δf(t+ δ,X(t))− F−1
δ (t+ δ,X(t))

∥

∥

L2(Ω;Rd)

≤ C3

∥

∥1 + |X(t)|2q−1
∥

∥

L2(Ω;R)
δ2

≤ C3

(

1 + sup
τ∈[0,T ]

‖X(τ)‖2q−1
L4q−2(Ω;Rd)

)

δ2.

(56)

Moreover, if we consider the conditional expectation of the term T2 with respect to

Ft, then after taking the L2-norm we arrive at

∥

∥E
[

T2|Ft

]
∥

∥

L2(Ω;Rd)
=

∥

∥

∥
E

[

∫ t+δ

t

(

f(τ,X(τ))− f(t+ δ,X(t))
)

dτ
∣

∣Ft

]
∥

∥

∥

L2(Ω;Rd)
.

Hence, an application of Lemma 5.6 with t1 = t and s = t+ δ yields
∥

∥E
[

T2|Ft

]
∥

∥

L2(Ω;Rd)
≤ C

(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

3q−2

L6q−4(Ω;Rd)

)

δ2.(57)

Since E[T1|Ft] = T1 and E[Ti|Ft] = 0 for i ∈ {3, 4, 5} we get from (56) and (57)
∥

∥E
[

X(t+ δ)−ΨSSBM(X(t), t, δ)
∣

∣Ft

]
∥

∥

L2(Ω;Rd)

≤ ‖T1‖L2(Ω;Rd) +
∥

∥E
[

T2|Ft

]
∥

∥

L2(Ω;Rd)

≤ C
(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

3q−2

L6q−4(Ω;Rd)

)

δ2.

This proves (33) with γ = 1 and it remains to show (34). For this we estimate
∥

∥

(

id− E[ · |Ft]
)(

X(t+ δ)−ΨSSBM(X(t), t, δ)
)∥

∥

L2(Ω;Rd)

≤
5

∑

i=1

∥

∥

(

id− E[ · |Ft]
)

Ti

∥

∥

L2(Ω;Rd)
.

Then, note that ‖(id−E[ · |Ft])T1‖L2(Ω;Rd) = 0 since T1 is Ft-measurable. Further,

by making use of the fact that ‖(id − E[ · |Ft])Y ‖L2(Ω;Rd) ≤ ‖Y ‖L2(Ω;Rd) for all
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Y ∈ L2(Ω;Rd) we get
∥

∥

(

id− E[ · |Ft]
)

T2

∥

∥

L2(Ω;Rd)
≤ ‖T2‖L2(Ω;Rd).

After inserting T2 it follows from Lemma 5.5 that

‖T2‖L2(Ω;Rd) ≤
∫ t+δ

t

∥

∥f(τ,X(τ)) − f(t+ δ,X(t))
∥

∥

L2(Ω;Rd)
dτ

≤ C
(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

2q−1

L4q−2(Ω;Rd)

)

δ
3
2 .

Regarding the term T3 we first couple the summation indices r = r1. Then, the

triangle inequality yields

‖T3‖L2(Ω;Rd) ≤
m
∑

r=1

∥

∥

∥

∫ t+δ

t

(

gr(τ,X(τ))− gr(t+ δ,X(t))
)

dW r(τ)

−
m
∑

r2=1

gr,r2(t+ δ,X(t))It,t+δ
(r2,r)

∥

∥

∥

L2(Ω;Rd)
.

Hence, we are in the situation of Lemma 5.7 with t1 = t and t2 = s = t+ δ and we

obtain

‖T3‖L2(Ω;Rd) ≤ C
(

1 + sup
t∈[0,T ]

‖X(t)‖3q−2
L6q−4(Ω;Rd)

)

δ
3
2 .

The L2-norm estimates of the remaining terms T4 and T5 follow the same line of

arguments as the last part of the proof of [2, Theorem 5.7]. For instance, the term

T5 is estimated as follows: From (18), (49), and (54) we obtain
∣

∣gr1,r2(t+ δ,X(t))− gr1,r2(t+ δ, F−1
δ (t+ δ,X(t)))

∣

∣

≤ L
(

1 + |X(t)|+ |F−1
δ (t+ δ,X(t))|

)q−1∣
∣X(t)− F−1

δ (t+ δ,X(t))
∣

∣

≤ C2L
(

1 + |X(t)|+ (1− Lδ)−1(Lδ + |X(t)|)
)q−1(

1 + |X(t)|q
)

δ

≤ C
(

1 + |X(t)|2q−1
)

δ,

for a constant C only depending on C2, L, q, and h. Therefore,

∥

∥

∥

m
∑

r1,r2=1

(

gr1,r2(t+ δ,X(t))− gr1,r2(t+ δ, F−1
δ (t+ δ,X(t)))

)

It,t+δ
(r2,r1)

∥

∥

∥

2

L2(Ω;Rd)

=
1

2
δ2

m
∑

r1,r2=1

∥

∥gr1,r2(t+ δ,X(t))− gr1,r2(t+ δ, F−1
δ (t+ δ,X(t)))

∥

∥

2

L2(Ω;Rd)

≤ Cm2
(

1 + sup
τ∈[0,T ]

‖X(τ)‖2q−1
L4q−2(Ω;Rd)

)

δ4,

which is the desired estimate of T5. The corresponding estimate of T4 reads

‖T4‖L2(Ω;Rd) ≤ Cm
(

1 + sup
τ∈[0,T ]

‖X(τ)‖
3
2
q− 1

2

L3q−1(Ω;Rd)

)

δ
3
2

and is obtained in the same way as for T5 but with (15) in place of (18). Altogether,

this completes the proof of (34) with γ = 1. �

8. Numerical experiments

In this section we perform several numerical experiments which illustrate the

preceding theory for two characteristic examples.
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Double well dynamics with multiplicative noise. Consider the following sto-

chastic differential equation

dX(t) = X(t)(1−X(t)2) dt+ σ(1 −X(t)2) dW (t), t ∈ [0, T ],

X(0) = X0,
(58)

where σ > 0. The coefficient functions of (58) are given by f(x) := x(1 − x2) and

g(x) := σ(1− x2), x ∈ R. Note that −f is the gradient of the double well potential

V (x) = 1
4x

4 − 1
2x

2.

In our experiments we compare the projected Milstein scheme (24) and the split-

step backward Milstein method (25). In additon, we compare with the projected

Euler-Maruyama method (PEM) proposed in [2],

Xh(ti) = min(1, h−α
i |Xh(ti−1)|−1)Xh(ti−1),

Xh(ti) = X(ti) + hif(ti−1, Xh(ti)) +

m
∑

r=1

gr(ti−1, Xh(ti))I
ti−1,ti
(r) .

(59)

As before, we have 1 ≤ i ≤ N , h ∈ (0, 1]N , Xh(0) := X0 , and α = 1
2(q−1) .

The equation (58) satisfies Assumption 2.1 and the coercivity condition (21) with

polynomial growth rate q = 3. Table 1 contains the restrictions on η and σ which

imply condition (4) in Assumption 2.1. Moreover, we summarize the p-th moment

bounds such that the assumptions of Theorems 2.2, 2.3, and Theorem 6.7 in [2] are

satisfied.

Table 1. Convergence conditions for the three methods

PEM PMil SSBM

Moment bounds

for exact solution: p = 6q − 4 p = 8q − 6 p = 6q − 4

supt∈[0,T ] ‖X(t)‖Lp < ∞

Global monotonicity

condition (4): σ2 < 1 σ2 < 1 σ2 < 1

2ησ2 ≤ 1 for some η > 1
2

Coercivity condition (21): p = 14, p = 18, p = 14,
p−1
2 σ2 ≤ 1 for p ∈ [2,∞) σ2 < 2

13 σ2 < 2
17 σ2 < 2

13

Note that the additional condition (26) for the SSBM-method is never satisfied

for our example, since the square of the term g(x)g′(x) = −2σ2x(1 − x2), x ∈ R

is of sixth order and cannot be controlled by the fourth order f -term in condition

(26).

Since there is no explicit expression for the solution of (58) we replace the exact

solution by a numerical reference approximation obtained with an extremely small

step size ∆t = 2−17. For this step-size, the projection onto the (∆t)−α-ball actually

never occurs. The implicit step in the SSBM scheme employs Cardano’s method

in order to solve the nonlinear equation exactly. The parameter value was set to

α = 1
4 as prescribed by the results in Section 4 above and in [2]. Figure 1 shows the

strong error of convergence for seven different step sizes h = 2k∆t, k = 7, . . . , 13.
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Figure 1. Strong convergence errors for the approximation of the

double well dynamics with parameter σ = 0.3 and X0 = 2.

The parameter values are σ = 0.3 and X0 = 2, and the coercivity condition (21)

always holds.

The strong error is measured at the endpoint T = 1 by

error = (E[|Xh(T )−X(T )|2]) 1
2 ,(60)

with a Monte Carlo simulation using 2 ·106 samples. For this number of samples we

estimated the associated confidence intervals. They turned out to be two orders of

magnitude smaller than the values of the error itself for all methods and parameters

shown. In the scale of Figure 1 they will be hardly visible.

In Figure 1 one observes strong order γ = 1 for the two Milstein-type schemes

and strong order γ = 1
2 for the projected Euler-Maruyama method, at least for

smaller step-sizes.

Table 2. Strong convergence errors for the approximation of the

double well dynamics with parameter σ = 0.3 and X0 = 2.

PEM PMil SSBM

h error EOC # error EOC # error EOC

2−4 0.0183 101912 0.0169 152196 0.0171

2−5 0.0087 1.07 0 0.0081 1.07 1 0.0085 1.01

2−6 0.0045 0.95 0 0.0040 1.02 0 0.0042 1.01

2−7 0.0025 0.88 0 0.0020 1.01 0 0.0021 1.00

2−8 0.0014 0.80 0 0.0010 1.00 0 0.0010 1.00

2−9 0.0009 0.71 0 0.0005 1.00 0 0.0005 1.00

2−10 0.0006 0.64 0 0.0002 1.01 0 0.0003 1.01
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Figure 2. Strong convergence errors for the approximation of the

double well dynamics. Parameter values σ = 1 and X0 = 2.

Table 2 contains the values of the computed errors and of the corresponding

experimental order of convergence defined by

EOC =
log(error(hi))− log(error(hi−1))

log(hi)− log(hi−1)
,

which support the theoretical results. Moreover, as in [2] we are interested in the

number of samples for which the trajectories of the PEM method and the PMil

scheme leave the sphere of radius h−α, i.e. the total number of trajectories we

observed the following events

{i = 1, . . . , N : |XPEM
h (ti)| > h−α} 6= ∅,(61)

{i = 1, . . . , N : |XPMil
h (ti)| > h−α} 6= ∅,(62)

respectively. This information is provided in the fourth and seventh columns of

Table 2.

Table 3. Strong convergence errors for the approximation of the

double well dynamics. Parameter values σ = 0.3 and X0 = 2.
PEM PMil SSBM

h error EOC # error EOC # error EOC

2−4 0.4611 233635 0.1139 331721 1.2222

2−5 0.2525 0.87 877 0.0214 2.41 516 0.1324 3.21

2−6 0.1151 1.13 212 0.0118 0.85 168 0.0640 1.05

2−7 0.0433 1.41 58 0.0068 0.80 63 0.0389 0.72

2−8 0.0161 1.43 21 0.0046 0.58 24 0.0291 0.42

2−9 0.0091 0.83 11 0.0037 0.30 9 0.0146 0.99

2−10 0.0056 0.69 1 0.0014 1.38 2 0.0081 0.86
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(a) The case σ = 0.3.
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(b) The case σ = 1.

Figure 3. Single trajectories for the methods PEM, PMil, and

SSBM with step size h = 2−5 versus reference solution (exact)

with parameter values α = 1
4 , X0 = 2, and T = 1.
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Figure 2 and Table 3 show the results of the strong error of convergence when

conditions (4) and (21) in Assumption 2.1 are violated by choosing σ = 1. The

estimate of the errors are based on the Monte Carlo simulation with the same

number 2 · 106 of samples as above. And as in the first experiment, confidence

intervals are two orders of magnitude smaller than the values themselves. Therefore,

we believe that the slightly irregular behavior of the convergence errors is not due to

a too small number of samples. Rather we suspect that violation of the convergence

conditions influences the expected order of convergence, see the numerical EOC

values in Table 3. This effect certainly deserves further investigation. For an

illustration we include two runs for parameter values σ = 0.3 and σ = 1 in Figure 3.
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time

10 -4

10 -3

10 -2

10 -1

er
ro

r

PEM
PMil
SSBM

Figure 4. CPU times versus L2-errors of the PEM, PMil, and

SSBM methods for the double well dynamics.

For a fair comparison of computational costs we compiled Figure 4 which shows

the L2-error versus computing times (measured by tic,toc in MATLAB). One clearly

observes that PMil and PEM outperform the split-step backward Milstein method

SSBM. Moreover, PMil has a slight advantage over PEM when high accuracy is

required.

A stochastic oscillator with commutative noise. Next, we consider a system

in polar coordinates with diagonal noise of the following form

(63)

(

dr(t)

dϕ(t)

)

=

(

rf1(r
2)

f2(ϕ)

)

dt+

(

rg1(r
2) dW 1(t)

g2(ϕ) dW
2(t)

)

,

where f1, f2 are smooth functions on [0,∞) and g1, g2 are smooth 2π-periodic func-

tions on R. We transform to Euclidean coordinates by applying Itō’s formula to
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(a) Single trajectories of exact solution and PMil scheme.
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(b) Zoom in on the first few steps of the trajectory from (a).

Figure 5. Single trajectory of PMil scheme with step size h = 2−4

for the stochastic oscillator dynamics. Two projected intermediate

steps are indicated by dashed lines. Parameter values µ = 0.4,

σ1 = 0.5, σ2 = 0.6, θ = 1, r0 = 1.97 and ϕ0 = π
4 .
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x(r, ϕ) = (r cos(ϕ), r sin(ϕ)),

(64)

dx(t) =

[(

x1 −x2

x2 x1

)(

f1(r
2)

f2(ϕ)

)

− 1

2
(g2(ϕ))

2

(

x1

x2

)]

dt

+ g1(r
2)

(

x1

x2

)

dW 1(t) + g2(ϕ)

(−x2

x1

)

dW 2(t).

Here we set r2 = x2
1 + x2

2 and replace gj(ϕ), j = 1, 2 by gj(arg(x1 + ix2)) with

the argument arg(reiϕ) = ϕ taken from (−π, π], for example. In the following

computation we treat the special case

(65) f1(r
2) = µ− r2, f2(ϕ) = θ, g1(r

2) = σ1, g2(ϕ) = σ2

with parameters µ, θ, σ1, σ2 ∈ R still to be chosen. This is a generalization of a

system studied in [4]. When the parameter µ varies, this may be considered as a

model problem for stochastic Hopf bifurcation (cf. [1, Chap. 9.4.2]).

In this case the system (64) with initial condition x(0) = (r0 cos(ϕ0), r0 sin(ϕ0))

can be solved explicitly via (63), since the radial equation is a stochastic Ginzburg

Landau equation while the angular equation can be directly integrated. We obtain

from [9, Chap. 4.4]

(66)

r(t) = r0 exp
(

(µ− σ2
1

2
)t+ σ1W

1(t)
)

×
(

1 + 2r20

∫ t

0

exp
(

(2µ− σ2
1)s+ 2σ1W

1(s)
)

ds
)−1/2

,

ϕ(t) = ϕ0 + θt+ σ2W
2(t).

Since g1, g2 are linear and f is cubic with a uniform upper Lipschitz bound, we find

that Assumption 2.1 is satisfied with q = 3. Moreover, the system has commutative

noise [9, Chap. 10.3], since

g1,2(x) = g2,1(x) = σ1σ2

(−x2

x1

)

.

As in [9, Chap.10 (3.16)] the double sum in (24), (25) then takes the explicit form

1

2

[

σ2
1((I

ti−1,ti
(1) )2 − hi)− σ2

2((I
ti−1,ti
(2) )2 − hi)

]

Y + σ1σ2I
ti−1,ti
(1) I

ti−1,ti
(2)

(−Y2

Y1

)

,

where Y = X
PMil

h (ti) and Y = X
SSBM

h (ti), respectively.

Figure 5 (a) shows the simulation of a single path generated by the exact so-

lution and the projected Milstein method with equidistant step size h = 2−4 and

parameters α = 1
4 , µ = 0.4, σ1 = 0.5, σ2 = 0.6, θ = 1, r0 = 1.97, and ϕ0 = π

4 . The

initial value is X0 = (1.39, 1.39). Further, we use a highly accurate approximation

of the integral in (66) by a Riemann sum with step size ∆t = 2−18.

As already mentioned in [2] we are interested in trajectories of the PMil scheme

which do not coincide with trajectories generated by the standard Milstein method.

Such a case is shown in Figure 5 (a) where the exact trajectory and the PMil-

trajectory are displayed. Figure 5 (b) shows a close-up of the projected Milstein

scheme near the circle of radius h−α = 2. In the first and in the third step the tra-

jectory leaves the ball, creating in the next step the intermediate values X
PMil

h (t2)

and X
PMil

h (t4), which have been connected by dashed lines to their predecessor and
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their successor. Obviously, this event occurs more often when the starting point is

close to the circle and the values of σ1 and σ2 are large.
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Figure 6. Strong convergence errors for the approximation of the

stochastic oscillator. Parameter values µ = 0.4, σ1 = 0.5, σ2 = 0.6,

θ = 1, r0 = 1.97, and ϕ0 = π
4 .

Figure 6 and Table 4 show the estimated strong error of convergence for the

PEM scheme, the PMil method, and the SSBM scheme. Nonlinear equations in

the scheme SSBM are solved by Newton’s method with three iteration steps. The

parameters and the initial value are as in Figure 5.

The estimates of errors, given by (60) at the endpoint T = 1, with seven different

step sizes h = 2k∆t, k = 8, . . . , 14 are again based on Monte Carlo simulations with

2 · 106 samples. As above the associated confidence intervals are two orders of

magnitude smaller than the estimated errors.

Table 4. Strong convergence errors for the approximation of the

stochastic oscillator. Parameter values µ = 0.4, σ1 = 0.5, σ2 = 0.6,

θ = 1, r0 = 1.97, and ϕ0 = π
4 .

PEM PMil SSBM

h error EOC # error EOC # error EOC

2−4 0.1045 3082 0.07540 4279 0.06741

2−5 0.06045 0.79 1 0.03468 1.12 0 0.03445 0.97

2−6 0.03838 0.66 0 0.01673 1.05 0 0.01753 0.97

2−7 0.02566 0.58 0 0.00823 1.02 0 0.00894 0.97

2−8 0.01762 0.54 0 0.00408 1.01 0 0.00464 0.95

2−9 0.01226 0.52 0 0.00204 1.01 0 0.00254 0.87

2−10 0.00860 0.51 0 0.00102 1.00 0 0.00158 0.69
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The numerical results in Figure 6 and in Table 4 confirm the theoretical orders

of convergence, though with some loss towards smaller step-sizes for the SSBM-

method. As in our first example we provide a diagram of error versus computing

time in Figure 7. This time PEM has a slight advantage for very rough accuracy,

but is worse than PMil and SSBM for higher accuracy. PMil always wins against

SSBM.
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Figure 7. CPU times versus L2-errors of the PEM, PMil, and

SSBM methods for the stochastic oscillator.
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