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Abstract This paper discusses a connection between scalar convex conservation laws and
Pontryagin’s minimum principle. For flux functions for which an associated optimal control
problem can be found, a minimum value solution of the conservation law is proposed. For
scalar space-independent convex conservation laws such a control problem exists and the
minimum value solution of the conservation law is equivalent to the entropy solution. This
can be seen as a generalization of the Lax–Oleinik formula to convex (not necessarily
uniformly convex) flux functions. Using Pontryagin’s minimum principle, an algorithm
for finding the minimum value solution pointwise of scalar convex conservation laws is
given. Numerical examples of approximating the solution of both space-dependent and space-
independent conservation laws are provided to demonstrate the accuracy and applicability of
the proposed algorithm. Furthermore, a MATLAB routine using Chebfun is provided (along
with demonstration code on how to use it) to approximately solve scalar convex conservation
laws with space-independent flux functions.

Keywords Conservation laws · Pontryagin’s minimum principle · Spectral method · Burgers’
equation

1 Introduction

Conservation laws arise naturally from continuum physics. Scalar convex conservation
laws have been studied extensively, developing both theory and numerical methods, see
for example Dafermos [7], Evans [10], Lax [14], LeVeque [15], and the references there
in. Many of the approaches taken, both theoretical and numerical, use the conservation law
form of the problem. However, for some applications, such as landform evolution [18] and
traffic flow [19], it can be natural to consider the integrated unknown from the conservation
law. This leads to a Hamilton–Jacobi equation. This connection between conservation laws
and Hamilton–Jacobi equations has been exploited in developing numerical algorithms for
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Hamilton–Jacobi equations [21, 22], see Osher and Fedkiw [20,Chapter 5] for a description of
this history. The Hamilton–Jacobi equation can be solved using the method of characteristics.
When characteristics cross a minimization principle is used by Luke [18] and Newell [19] to
select a unique physically meaningful solution. Daganzo [8] has shown that this minimization
procedure provides a stable solution. Sharing the similar idea of Hamilton–Jacobi equation
and minimization, in this work we take a different approach in the study of a general family
of conservation laws and initial conditions. Motivated by the the causality free method of
solving Hamilton–Jacobi–Bellman equations by Kang and Wilcox [12, 13], we explore the
connections between the entropy solution of scalar convex conservation laws and optimal
control theory as well as the associated Pontryagin’s minimum principle, which leads to an
efficient numerical method for solving the conservation law.

Corrias et al. [6] proved that the entropy solution of a scalar convex conservation law
is the gradient of the viscosity solution of an associated Hamilton–Jacobi equation. This
underlying relationship was also used to find the numerical solution of conservation laws
with large time steps [24]. This paper extends this connection further and introduces optimal
control problems related to conservation laws. When an associated optimal control problem
can be found, which is always the case for conservation laws with space-independent flux
functions, Pontryagin’s minimum principle gives a set of necessary conditions which can be
used, along with the cost function, in an algorithm to find a minimum value solution of the
conservation law. For conservation laws with space-independent flux functions, we show that
this minimum value solution is indeed the entropy solution. This generalizes the Lax–Oleinik
formula (see for example Evans [10,Section 3.4.2]) to convex (not necessarily uniformly
convex) flux functions.

An alternative to the method proposed in this paper is the recent work of Darbon and
Osher [9] and Chow et al. [4], which solves the Hopf formula to find the viscosity solution of
Hamilton–Jacobi–Bellman equations. The algorithm is causality free and it is effective in
solving high dimensional problems. The algorithm given by Darbon and Osher [9], like the
one explored in this paper, also has an interesting link to conservation laws. For problems
with a space-independent Hamiltonian and a convex initial condition, the algorithm converges
to not only the solution of the Hamilton–Jacobi–Bellman equations, but also its gradient,
which is a entropy solution of the corresponding conservation law.

The necessary conditions from Pontryagin’s minimum principle are a set of boundary
value problems that can be solved numerically using various techniques, we use a spectral
collocation method provided by the Chebfun software package [1]. Although the solution of
a conservation law is the gradient of the value function of an optimal control, Pontryagin’s
minimum principle contains this gradient as a part of its solution so that numerical differ-
entiation is not necessary. For space-independent flux functions these necessary conditions
become algebraic equations, which can be approximately solved using piecewise polynomial
functions; again we use Chebfun in our implementation of the algorithm. For this case, we
provide code for a numerical implementation of solving scalar convex conservation laws
with space-independent flux functions pointwise. The algorithm does not need a grid in
space and time. It achieves high accuracy even around shocks. In both space-dependent and
-independent cases, minimizing the cost function provides a unique solution of the control
problem and its gradient provides a pointwise solution of the conservation law. We finish
our discussion with numerical examples demonstrating accuracy and applicability of the
proposed algorithm where scalar convex conservation laws, such as Burgers’ equation, are
solved and compared to analytical or numerical solutions using other techniques.
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2 From Pontryagin’s minimum principle to conservation law

In this section, we outline the underlying relationship between Pontryagin’s minimum princi-
ple (PMP) and the solution of a conservation law. Consider the conservation law

ut + (F(x, u))x = 0 in R × (0,T ) (1a)

u = g on R × {t = 0}, (1b)

where the flux function F : R × R → R and initial condition g : R → R are given and
u : R × (0,T ) → R is the unknown, u = u(x, t). The associated Hamilton–Jacobi (HJ)
equation has the following form

wt + F(x,wx) = 0 in R × (0,T ) (2a)

w = G on R × {t = 0}, (2b)

where the initial condition G : R→ R is such that

G′ = g almost everywhere in R (2c)

and w : R × (0,T )→ R is the unknown, w = w(x, t). At any point where w(x, t) has second
order derivatives, we have

u(x, t) = wx(x, t) (3)

is a solution of the conservation law (1). Given the initial condition, (x, s) ∈ R × [0,T ],
consider a related problem of optimal control

min
α

Jx,s[α] = min
α

∫ T

s
L(x(r),α(r)) dr + G(x(T )), (4a)

where the response of the system, x : [s,T ]→ R, is subject to

ẋ(r) = α(r), x(s) = x. (4b)

α : [0,T ]→ A is a measurable function that represents the control input; A is a subset of R;
Jx,s : A → R is the cost function; and L : R × A → R is called the Lagrangian. Define the
Hamiltonian, H : R × R × A→ R as

H(x, p, α) = pα + L(x, α)

and the value function, V : R × [0,T ]→ R, as

V(x, s) = inf
α

Jx,s[α]. (5)

Then, the associated Hamilton–Jacobi–Bellman (HJB) equation is

Vs + min
α

H(x,Vx, α) = 0 in R × (0,T )

V = G on R × {s = T }.
If we define t = T − s and w(x, t) = V(x,T − t) we can rewrite this HJB equation as

wt(x, t) −min
α

H(x,wx, α) = 0 in R × (0,T ) (7a)

w = G on R × {t = 0}. (7b)
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Suppose the flux function and Hamiltonian are related such that

F(x, p) = −min
α

H(x, p, α) (8)

then the HJB equation (7) is equivalent to the HJ equation (2). Therefore, solving the optimal
control problem (4) leads us to a solution of the HJ equation (2); and then to a solution of the
conservation law (1) through (3). We summarize this relation in the following proposition.

Proposition 1 Let V(x, s) be the value function defined in (5) by the optimal control (4).
Suppose the flux function, F, in the conservation law (1) and HJ equation (2) satisfies (8)
and suppose G′(x) = g(x) almost everywhere. Then the function w(x, t) = V(x,T − t) satisfies
the HJ equation (2) and the function u(x, t) = wx(x, t) satisfies the conservation law (1) at all
points where the second order derivatives of w(x, t) exist.

A conservation law may have multiple solutions with non-smooth properties such as shock
and rarefaction waves. Uniqueness has been proved in the literature for entropy solutions.
The relationship between w(x, t) in Proposition 1 and the entropy solution is addressed in
Section 3 for a family of conservation laws with a convex flux functions. In general, we
call u(x, t) = wx(x, t) the minimum value solution of the conservation law (1) with respect to
the Lagrangian L(x, α). Please note that the minimum value solution is unique for a given
Lagrangian at all points where w(x, t) admits the second order derivatives. This uniqueness is
due to the fact that the value function of a problem of optimal control is unique.

The problem of finding the minimum value solution for a conservation law boils down
to solving the optimal control problem (4). Let α∗(x, p) be a solution of the following
minimization

min
α

H(x, p, α). (9)

From PMP, an optimal trajectory of the control problem (4) satisfies the following necessary
conditions

ẋ(r) = α∗(x(r),p(r)) (10a)

ṗ(r) = −∂H
∂x

(x(r),p(r),α∗ (x(r),p(r))) (10b)

x(s) = x (10c)

p(T ) = G′(x(T )) (10d)

in which the costate, p : [s,T ]→ R, corresponds the gradient of the optimal cost, i.e.,

p(r) = Vx(x(r), r).

Because all functions do not explicitly depend on r, we can shift s to 0 so that the boundary
value problem (10) is equivalent to

ẋ(r) = α∗(x(r),p(r)) (11a)

ṗ(r) = −∂H
∂x

(x(r),p(r),α∗ (x(r),p(r))) (11b)

x(0) = x (11c)

p(t) = G′(x(t)) (11d)
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where t = T − s. If G′(x) does not exist at ak, for k = 1, 2, . . . ,m, an optimal trajectory may
satisfy the following equations

ẋ(r) = α∗(x(r),p(r)) (12a)

ṗ(r) = −∂H
∂x

(x(r),p(r),α∗ (x(r),p(r))) (12b)

x(0) = x (12c)

x(t) = ak (12d)

for k = 1, 2, . . . ,m. Both (11) and (12) are two-point boundary value problems (BVPs). If an
optimal control problem can be derived in which the Lagrangian L(x, α) and its associated
Hamiltonian that satisfies (8), then the following is a high-level algorithm for finding the
minimum value solution based on the PMP. Note that this algorithm finds both the minimum
value solution to the conservation law (1) and the solution to the associated HJ equation (2).

Algorithm 1 (Minimum value solution)

Step I For any given point (x, t), find all solutions of the two-point BVPs (11)
and (12).

Step II Among all the solutions in Step I, adopt the one, (x,p), with the smallest
cost,

J∗x,t =

∫ t

0
L (x(r),α∗(x(r),p(r))) dr + G(x(t)).

Step III Set
w(x, t) = V(x,T − t) = J∗x,t, u(x, t) = p(0).

For the rest of the paper, we address the following questions that are important to the
algorithm.

– What is the relationship between the minimum value solution and the entropy solution?
– How to find a Lagrangian L(x, α) that satisfies (8)?
– How to find all solutions of the two-point BVPs (11) and (12)?

In addition, several examples are shown in the following sections to test the algorithm for
conservation laws with various types of flux functions.

3 From viscosity solutions to entropy solutions

This section describes the connection between the minimum value solution and the entropy for
space-independent flux functions. The following assumptions are made in several theorems
that follow.

Assumption 1 The initial condition function g(x), in the conservation law (1), is bounded in
R and it is continuous everywhere except for a finite number of points, x = a1, a2, . . . , am.

Assumption 2 In the conservation law (1), the flux function F(x, p) = F(p) is independent
of x. In addition, F is a convex function satisfying

lim
|p|→∞

F(p)
|p| = +∞. (13)
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Definition 1 Given a function F : R→ R, its Legendre transform is

F∗(q) = sup
p
{pq − F(p)} for q ∈ R.

For convex functions satisfying (13), the ‘sup’ in the definition can be replaced by ‘max.’ The
following lemma formalizes when the Legendre transform of a convex function is a convex
function and when the transform is an involution.

Lemma 1 (Convex duality [10]) Assume F(p) satisfies Assumption 2. Then

(i) the mapping q→ F∗(q) is convex and

lim
|q|→∞

F∗(q)
|q| = +∞.

(ii) Moreover
F = (F∗)∗.

In this section, we consider the conservation law

ut + (F(u))x = 0 in R × (0,T ) (14a)

u = g on R × {t = 0}, (14b)

in which g and F satisfy Assumptions 1 and 2. The associated HJ equation has the form

wt + F(wx) = 0 in R × (0,T ) (15a)

w = G on R × {t = 0} (15b)

G′ = g almost everywhere in R. (15c)

Following the idea in Section 2, the Hamiltonian of the optimal control problem must
satisfy (8). Let F ◦ (−1) : R→ R represent the function

p→ F(−p).

Define the function L : R→ R by

L(α) = (F ◦ (−1))∗(α) = max
p
{pα − F(−p)} . (16)

Given the initial condition, (x, s) ∈ R × [0,T ], the associate problem of optimal control has
the form

min
α

Jx,s[α] = min
α

∫ T

s
L(α(r)) dr + G(x(T )) (17a)

subject to
ẋ(r) = α(r), x(s) = x. (17b)

The Hamiltonian is independent of x, specifically

H(p, α) = pα + L(α).

The following lemma shows that the requirement (8) is fulfilled.

Lemma 2 Suppose Assumption 2 holds. Then

F(p) = −min
α

H(p, α).



Solving 1D Conservation Laws Using Pontryagin’s Minimum Principle 7

Proof From Lemma 1, we have
F ◦ (−1) = L∗.

More specifically, for any p ∈ R
F(p) = L∗(−p)

= max
α
{(−p)α − L(α)}

= −min
α
{pα + L(α)}

= −min
α

H(p, α).

ut

The following lemma will be used to simplify the form of the dynamics given in the PMP.

Lemma 3 Suppose F ∈ C1(R) satisfies Assumption 2. Then the function

α∗(p) = −F′(p), p ∈ R
is the unique solution of the following minimization

min
α

H(p, α).

Proof From the definition (16),

L(α) = max
λ
{λα − F(−λ)}

for all α ∈ R. Equivalently
L(α) = λα − F(−λ)

where λ is a number satisfying
α + F′(−λ) = 0. (18)

For a given α, the value of λ satisfying (18) may not be unique. However, the minimum value,
L(α), is unique because λα − F(−λ) is convex. Define

H̄(p, λ) = H(p,−F′(λ))

= −(p + λ)F′(−λ) − F(−λ).

Assumption 2 implies that F′(−λ) is monotone and unbounded. Therefore, α minimizes
H(p, α) if and only if there is a number λ satisfying (18) that minimizes H̄(p, λ). To minimize
H̄(p, λ), we consider

H̄(p, λ) = −(p + λ)F′(−λ) − F(−λ) + F(p) − F(p)

= −(p + λ)F′(−λ) + (p + λ)F′(ξ) − F(p)

= −(p + λ)(F′(−λ) − F′(ξ)) − F(p)

where ξ is a number between p and −λ. If p + λ > 0, then p > ξ > −λ. We know that F′(·) is
nondecreasing. Therefore,

−(p + λ)(F′(−λ) − F′(ξ)) ≥ 0
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Similarly, we can prove the same inequality if p + λ < 0. Therefore,

H̄(p, λ) ≥ −F(p) = H̄(p,−p),

i.e., λ = −p minimizes H̄(p, λ). Its minimum value is −F(p). Therefore, α∗ = −F′(p)
minimizes H(p, α).

To prove that α∗ = −F′(p) is the unique function that minimizes H(p, α), let us assume
that α1 = −F′(λ1) minimizes H(p, α) and H̄(p, λ). Then

H̄(p, λ1) = −F(p),

i.e.,
−(p + λ1)F′(−λ1) − F(−λ1) + F(p) = 0.

Equivalently,
F(p) = F(−λ1) + (p + λ1)F′(−λ1).

Because F(ξ) is convex, its curve cannot lie below its tangent line. Therefore,

F(ξ) = F(−λ1) + (ξ + λ1)F′(−λ1)

for all ξ between λ1 and p. So,
F′(ξ) = F′(−λ1).

Let ξ = p, then −F′(p) = −F′(λ1) = α1. This implies that α∗ = −F′(p) is the unique function
that minimizes H(p, α). ut

Using Lemma 3, the Hamilton dynamics (11a)–(11b) (and (12a)–(12b)) for the control
problem (17) is simplified to

ẋ(r) = α∗(p(r)) = −F′(p(r)) (19a)

ṗ(r) = 0. (19b)

This implies that p is a constant and the characteristic is a straight line

p(r) ≡ p (a constant)

x(r) = x − F′(p)r.

For this to be a solution of one of the two-point BVPs (11) and (12), p must satisfy at least
one of the following equations

p = G′(x − F′(p)t) (20a)

ak = x − F′(p)t for 1 ≤ k ≤ m, (20b)

where ak’s are the points at which G′(x), or g(x), is discontinuous. Thanks to Assumption 2,
the two-point boundary value problem (BVP) of PMP boils down to the algebraic equa-
tions (20). This is fundamentally different from the PMP in Section 2, where the problem is
defined using differential equations. Under some conditions which will be addressed later, all
solutions of the algebraic equations (20) can be found.
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Remark 1 From the Hamiltonian dynamics (19), the optimal trajectory is a line

x + αr

where α = α(p) is a constant. The problem of optimal control (17) is equivalent to

min
α
{L(α)t + G(x + αt)} . (21)

Define
y = x + αt

then minimization problem (21), for t > 0, is transformed to

min
y

{
tL

(y − x
t

)
+ G(y)

}
.

This is the Hopf–Lax formula [10].

Now, let us address the issue of discontinuity in solutions. Instead of a classic smooth
solution, we consider the entropy solution of the conservation law (14). The problem is
closely related to the viscosity solution of associated HJ equation. Suppose that the control
input of the optimal control problem (17) is bounded and measurable, i.e., the set of possible
control inputs is

{α : [0,T ]→ [A1, A2] |α is measurable}. (22)

Theorem 1 ([10]) Suppose g satisfies Assumption 1 and G is bounded. Further, suppose
F ∈ C1(R) satisfies Assumption 2. Let V(x, s) be the value function of the optimal control
problem (17) with bounded control inputs and define

w(x, t) = V(x,T − t).

Then, w(x, t) is the viscosity solution of the initial value problem (15).

It is proved by Corrias et al. [6] that the entropy solution of a conservation law is the gradient
of the viscosity solution of the HJ equation.

Theorem 2 ([6]) Suppose g satisfies Assumption 1. Suppose F ∈ C1(R) satisfies Assump-
tion 2. If w ∈ W1,∞(R × (0,T ]) is the (unique) viscosity solution of the HJ equation (15), then
u = wx is the (unique) entropy solution of the conservation law (14).

Theorems 1 and 2 almost bridge the HJ equation and the conservation law except that the
control input is required to be bounded in (22). In fact, it can be guaranteed that (22) holds
true for the optimal control problem (17).

Proposition 2 Suppose that Assumptions 1 and 2 hold true. Then the value of optimal control,
α∗, for the optimal control problem (17) as a function of x is bounded in R.

Proof The result is trivially true if F is C1. However, it can be proved without this smoothness
assumption. From the relation of the initial conditions (2c) and Assumption 1, we know that
G is Lipschitz. Let C be its Lipschitz constant. Given (x, s), the optimal control is a constant
function, α∗ ≡ α∗ for some α∗ ∈ R. The corresponding optimal cost value is

J∗x,s = min
α
{L(α)(T − s) + G(x + (T − s)α)}.
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The optimal value is less than or equal to the value at α = 1, i.e.,

L(α∗)(T − s) + G(x + (T − s)α∗) ≤ L(1)(T − s) + G(x + (T − s)).

Because G is Lipschitz

L(α∗)(T − s) + G(x) −C(T − s)|α∗| ≤ L(α∗)(T − s) + G(x + (T − s)α∗)

≤ L(1)(T − s) + G(x + (T − s))

≤ L(1)(T − s) + G(x) + C(T − s).

Therefore,
L(α∗) −C|α∗| ≤ L(1) + C

or equivalently
L(α∗)
|α∗| ≤

L(1)
|α∗| +

C
|α∗| + C.

Therefore, α∗ must be bounded because of the following property of L(α)

lim
|α|→∞

L(α)
|α| = +∞.

ut

The following section contains a causality free algorithm for the computation of u at any
point (x, t).

4 A simplified numerical algorithm

Let us consider a conservation law satisfying Assumptions 1 and 2. It is proved in Section 3
that its entropy solution is the same as the minimum value solution with respect to an
associated Lagrangian. In addition, the characteristics resulting from the PMP are straight
lines. In this case, Algorithm 1 can be significantly simplified. In the following,

L = (F ◦ (−1))∗.

If an explicit expression of this function is not derived, its value in (24) can be computed
using the following formula

L(−F′(p)) = pF′(p) − F(p).

because any p satisfying α = −F′(p) maximizes

max
p
{−pα − F(p)} ,

which is equivalent to (16).

Algorithm 2 (Entropy solution) This algorithm is for conservation laws satisfying Assump-
tions 1 and 2.
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Step I Given any point (x, t), find all values of p that satisfy at least one of the
algebraic equations (20), i.e.,

p = g(x − F′(p)t) (23a)

or

ak = x − F′(p)t, for 1 ≤ k ≤ m. (23b)

Step II Among all the solutions in Step I, adopt the one with the smallest value,

J∗ = L(−F′(p))t + G(x − F′(p)t) (24)

or equivalently

J∗ = (pF′(p) − F(p))t + G(x − F′(p)t)

Step III Set
u(x, t) = p.

Remark 2 Step I is critical in this algorithm. Given a general bounded initial function, g,
the algebraic equations (23) may have multiple solutions. In the examples below we use
piecewise-polynomial approximation [23] (and trigonometric approximation [29] for periodic
functions) via Chebfun1 [1] and its roots command to approximate the solutions of the
algebraic equations (23). In the piecewise-polynomial case, the Chebfun command roots
uses the algorithm described in Boyd [3]. Basically, it subdivides the interval into small
pieces (based on the number of terms in the approximations) and uses the eigenvalues of the
colleague matrix associated with the approximation on each interval [11, 26]. For further
discussion of root finding using Chebfun see Trefethen [28,Chaper 18]. For the polynomial
and trigonometric approximations used in this paper, we uses Chebfun’s adaptive procedure
to find the number of terms automatically to achieve roughly 15 digits of relative accuracy.

Here is an implementation of Algorithm 2 in MATLAB [27] using Chebfun.

Implementation 1 (Entropy solution for convex flux functions)

1 function u = pdeccl(Fp, L, g, G, d, a, x, t)
2 %
3 cFp = chebfun(Fp, d, 'splitting', 'on');
4 q = [];
5 for k = 1:length(a)
6 hk = a(k) − x + t*cFp;
7 q = [q, roots(hk)'];
8 end
9

10 dom = unique([d, q]);
11 h = chebfun(@(p) g(x − t*Fp(p)) − p, dom, 'splitting', 'on');
12 p = [roots(h); q(:)];
13
14 %

1 Chebfun is a MATLAB [27] package that allows symbolic-like manipulation of functions at numerics
speed using Chebyshev and Fourier series [1].
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15 J = @(p) L(−Fp(p))*t + G(x−Fp(p)*t);
16 [~, idx] = min(J(p));
17
18 %
19 u = p(idx);
20 end

Here, Fp, L, g, and G are the functions F′, L, g, and G, respectively. The array d is the domain
of definition (i.e., the range of g including breakpoints where F′ might not be smooth) that
should be used with Chebfun and the array a contains the points at which the initial condition
g is discontinuous. The pair (x,t) is the point (x, t) at which the solution u, returned as u,
of the conservation law is computed. If g is a compactly supported chebfun2 (e.g., g =
chebfun({0,1,0}, [−1,0,1,3])) and F′ is smooth then G, d, and a can be computed
with:

G = cumsum(g);
d = minandmax(g)';
a = g.ends(abs(jump(g, g.ends)) > 10*vscale(g)*eps);

In this implementation, the Step I consists of lines 3–8 which solve the algebraic equa-
tions (23b) and lines 10–12 which find all the solutions of (23a).

This algorithm has several advantages. In the presence of shock waves, finding the
unique entropy solution is simple because the minimum value solution in Step II is unique.
Furthermore, unlike the traditional method of characteristics for conservation laws, the
computation does not explicitly use the Rankine–Hugoniot condition to calculate the behavior
of the shock curves.

The algorithm is not based on interpolating and differentiation on a spacial grid and
thus can avoid the Gibbs–Wilbraham phenomenon when calculating the solution at a point.
We say that the algorithm is causality free or pointwise, meaning that the value of u(x, t) is
computed without using the value of u at any other points. An advantage of causality free
algorithms is their perfect parallelism. If the solution is to be computed at a large number of
points, the computation is embarrassingly parallel.

Also because of the causality free property, the error does not propagate in space. The
accuracy can be kept at the same level throughout a region and is based on the accuracy
approximating the algebraic equations (23) and finding their roots.

Remark 3 If we assume t > 0 and that F is uniformly convex, i.e., F′′(p) > γ > 0, then the
algebraic equations (23) can be derived from the Lax–Oleinik formula in Evans [10] given
here as

u(x, t) = (F′)−1
(

x − ξ(x, t)
t

)
(25a)

where

ξ(x, t) = arg min
ξ

{
tF∗

( x − ξ
t

)
+ G(ξ)

}
. (25b)

2 Chebfun with a capital C is the name of the software package, chebfun with a lowercase c is a single
variable function defined on an interval created with the package [1].
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The critical points of the minimization problem in (25b) must satisfy one of the following
equations

(F∗)′
( x − ξ

t

)
− g(ξ) = 0 (26a)

or

ξ = ak for 1 ≤ k ≤ m. (26b)

It can be proved that (F∗)′ = (F′)−1. Therefore, if we define

ξ = x − F′(p)t

the minimizations (25b) and (24) are equivalent. Further, the equations for the critical points
(26) are transformed to (23).

5 Examples

In the following, we illustrate Algorithms 1 and 2 using several examples with different types
of flux functions, including both space-dependent and space-independent. A specific thing to
note is the lack of Gibbs–Wilbraham oscillations in all of the approximate solutions given
in the figures below, even in the presence of solutions with many shocks. All examples are
computed using MATLAB 8.4.0.150421 (R2014b) and Chebfun 5.3.0 with double floating-
point precision on an Apple MacBook Pro (Retina, 15-inch, Early 2013) with a 2.7 GHz
Intel Core i7 central processing unit and 16 GB of 1600 MHz DDR3 random-access memory
running OS X 10.10.5.

Remark 4 In the examples below we provide timings of Implementation 1 of the causality-
free Algorithm 2. Timings are also given for the second-order Lax–Wendroff finite volume
method with the van Leer limiter from Clawpack3 [5, 16] when it is compared with Im-
plementation 1. These numbers show the current performance of our implementation. It
should be noted that no performance tuning has been done by the authors for either code. In
our experience if high-accuracy and/or the long time solution is desired at a few points in
space and time then Implementation 1 is a competitive method. If lower-accuracy is okay
and the solution is desired on a dense space-time grid then grid based methods, such as the
finite-volume method, will be more competitive than Implementation 1.

Example 1 We start by solving Burgers’ equation

ut +

(
u2

2

)
x

= 0 in R × (0,T )

u =

1, 0 ≤ x ≤ 1
0, otherwise

on R × {t = 0}.

3 More specifically, we used Clawpack v5.3.1-11-geb31727 from https://github.com/clawpack/
clawpack with the Chapter 11 examples in the git repository https://github.com/clawpack/apps (git
commit ba557b49852377c05192d48289b3fbc8fea0f52e).

https://github.com/clawpack/clawpack
https://github.com/clawpack/clawpack
https://github.com/clawpack/apps
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Fig. 1: The solution of Burgers’ equation for the piecewise constant initial condition given in
Example 1. Here (a) is a waterfall plot of the solution and (b) is the solution for t = 1.9.

It has a known solution given in Evans [10,Example 3 of Chapter 3.4] as the following

for 0 ≤ t ≤ 2 and for t ≥ 2

u(x, t) =


0, x < 0
x
t , 0 < x < t
1, t < x < 1 + t

2

0, x > 1 + t
2

u(x, t) =


0, x < 0
x
t , 0 < x < (2t)1/2

0, x > (2t)1/2.

The solution has shock wave which travel at two different speeds for t < 2 and t > 2,
respectively. It also has a rarefaction wave for t < 2. In the computation, we do not need any
information about the shock wave speed.

The causality-free Algorithm 2 is applied using Implementation 1. Note that for this
simple case, a piecewise constant initial condition for Burgers’ equation, the equations
for the critical points (23) can be solved directly and Chebfun is not required. However,
we go ahead and use Chebfun anyways to benchmark the implementation. The maximum
pointwise error (i.e., l∞) for the solution u on a uniform grid of 100 × 100 points covering
the domain [−1, 3] × [0.1, 4] (the point within 2.2204 × 10−15 of the shock was excluded)
is 2.2204 × 10−16. For this error calculation, the solution is computed in parallel using a
MATLAB parfor loop at the rate of 78 points per second (excluding the time for starting
the parallel pool). Here g and G are chebfuns, the code would be faster if these were simple
MATLAB functions.

Implementation 1 provides a pointwise solution that we choose to feed back into Chebfun
to build piecewise continuous approximations to the solution shown in Figure 1. The code
used to generate this figure is given in Appendix A.

Example 2 We solve Burgers’ equation

ut +

(
u2

2

)
x

= 0 in R × (0,T )

u = 1 + sin(πx) on R × {t = 0},
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Fig. 2: The solution of Burgers’ equation for the sinusoidal initial condition given in Exam-
ple 2. Here (a) is a waterfall plot of the solution and (b) is the solution for t = 0.4.

using Implementation 1 and compare the result against the traditional method of character-
istics for conservation laws. The maximum pointwise error (i.e., l∞) for the solution u on a
uniform grid of 80 × 80 points covering the domain [0, 4] × [0.1, 0.8] is 1.2212 × 10−14. For
this error calculation, the solution is computed in parallel using a MATLAB parfor loop
at the rate of 188 points per second (excluding the time for starting the parallel pool). Note,
here we use MATLAB functions for g and G.

As in the previous example, we give the pointwise solution function to Chebfun and build
piecewise continuous approximations to the solution shown in Figure 2.

Example 3 We solve Burgers’ equation with a compactly supported initial condition

ut +

(
u2

2

)
x

= 0 in R × (0,T )

u =

(cos(x) + 1)
(
2 sin(3x) + cos(2x) + 1

5

)
, −π ≤ x ≤ π

0, otherwise
on R × {t = 0},

which is an example of N-wave decay given in Chapter 11.5 of LeVeque [16]. As in the
previous example, we give the pointwise solution function using Implementation 1 to Chebfun
and build piecewise continuous approximations to the solution shown in Figure 3. For
verification, this figure also presents a solution to this problem using a second-order Lax–
Wendroff finite volume method with the van Leer limiter from Clawpack3 [5, 16] on a grid
from [−8, 8] of 1000 cells, which took 0.021 seconds to compute to t = 1.

Example 4 We solve Burgers’ equation with a compactly supported initial condition with
many oscillations

ut +

(
u2

2

)
x

= 0 in R × (0,T )

u =

(sin(x))2 + sin(x2), 0 ≤ x ≤ 14
0, otherwise

on R × {t = 0},
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Fig. 3: The solution of Burgers’ equation for the compactly supported initial condition given
in Example 3. Here (a) is a waterfall plot of the solution and (b) is the solution for t = 1 where
the solid line is the chebfun constructed by the pointwise solution using Implementation 1
and the transparent circles show the computed solution using a finite volume method as
described in Example 3.

which we use to demonstrate the ability of the proposed algorithm to find solutions with
many shocks. As in the previous example, we give the pointwise solution function using
Implementation 1 to Chebfun and build piecewise continuous approximations to the solution
shown in Figure 4. Figure 5 further illustrates the complexity of the solution.

Example 5 For this example consider a LWR model for traffic flow, named after Lighthill
and Whitham [17], Richards [25] and Richards [25],

qt + (vmaxq(1 − q))x = 0 in R × (0,T ), (27a)

q = g on R × {t = 0}, (27b)

where

g(x) =


1
5 + 4

5 exp
(
− 1

20

(
x − 1

3

)2
)
, −30 ≤ x ≤ 30

1
5 , otherwise

for x ∈ R, (27c)

which is an example given in Chapter 11.1 of LeVeque [16]. Here 0 ≤ q ≤ 1 is the density
of the traffic flowing at a maximum speed vmax. For this example we assume vmax = 1.
The flux functions for this conservation law is concave upward and Algorithm 2 requires
a conservation law with a convex downward flux function. Thus, we let u = −q which
transforms the LWR model (27) to the convex conservation law

ut + (vmaxu(1 + u))x = 0 in R × (0,T ),

u = −g on R × {t = 0}.
As in Example 3, we give the pointwise solution function using Implementation 1 to Chebfun
and build piecewise continuous approximations to the solution shown in Figure 6. For
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Fig. 4: Various time instances of the solution of Burgers’ equation for the compactly supported
oscillatory initial condition given in Example 4.
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Fig. 5: The solution of Burgers’ equation for the compactly supported oscillatory initial
condition given in Example 4.
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Fig. 6: The solution of the LWR equation for the initial condition given in Example 5. Here
(a) is a waterfall plot of the solution and (b) is the solution for t = 4 where the solid line is the
chebfun constructed by the pointwise solution using Implementation 1 and the transparent
circles show the computed solution using a finite volume method as described in Example 5.

verification, this figure also presents a solution to this problem using a second-order Lax–
Wendroff finite volume method with the van Leer limiter from Clawpack3 [5, 16] on a grid
from [−30, 30] of 500 cells, which took 0.0024 seconds to reach t = 4.

Example 6 In this example we consider the following conservation law with a space-
dependent flux function

ut +

(
u2 − x2

2

)
x

= 0 in R × (0,T ), (28a)

u =

1, −1 ≤ x ≤ 0
0, otherwise

on R × {t = 0}. (28b)

Since the flux function is space-dependent, Algorithm 2 and the theory in Sections 3 and 4 do
not apply. However, we can use Algorithm 1 to compute the unique minimum value solution.
Some details required by the algorithm is given as follows. The associated Lagrangian is

L(x, α) =
x2 + α2

2

and the Hamiltonian is
H(x, p, α) = pα + L(x, α).

It is straightforward to derive relationship (8)

p2 − x2

2
= −min

α
H(x, p, α),

and the associated optimal control (9)

α∗ = −p.
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Given any point (x, t) we want to compute u(x, t). The Hamilton dynamics in (11) and (12)
have the following form

ẋ(r) = −p(r),

ṗ(r) = −x(r).

The solution with the initial condition x(0) = x is

x(r) = (x −C)e−r + Cer,

p(r) = (x −C)e−r −Cer,

where C is an arbitrary constant. Denote x(t) and p(t) by X and P, respectively, then we have

X = (x −C)e−t + Cet,

P = (x −C)e−t −Cet.

Solving for C in terms of X we have

C =
X − xe−t

et − e−t = 2
(
X − xe−t

)
csch(t)

and thus

P = xe−t − et + e−t

et − e−t (X − xe−t) = x csch(t) − X coth(t).

In Step I of Algorithm 1, we solve the PMP (11) and (12). It is equivalent to finding X that
satisfies at least one set of the following conditionsX =

2x
et + e−t = x sech(t),

X ≥ 0 or X ≤ −1,
(29a)

or

X =
2x + e−t − et

et + e−t = x sech(t) − tanh(t),

−1 < X < 0,
(29b)

or X = 0, (29c)

or X = −1. (29d)

The optimal cost in Step II is

J =
C2

2

(
e2t − 1

)
− (x −C)2

2

(
e−2t − 1

)
+ G(X)

=
x2 + X2

2
coth(t) − xX csch(t) + G(X),

(30)

for t > 0 where G is a continuous function satisfying G′ = g almost everywhere.
The solution of the conservation law (28) using Algorithm 2 is shown in Figure 7. The

rarefaction and shock waves in the solution are clearly shown in the figure.
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Fig. 7: The solution of the conservation law with a space-dependent flux given in Example 6.
Here (a) is a waterfall plot of the solution and (b) is the solution for t = 1.8.

Example 7 The follow example is adopted from Zhang and Liu [30]. Consider the conserva-
tion law with a space-dependent flux

ut +

((
1 +

u
a

)
u
)

x
= 0 in R × (0,T ), (31a)

u = −e−10x

10
on R × {t = 0}, (31b)

a = e−10x on R. (31c)

It can be shown that the problem has no shocks and the unique solution is

u = − e−10x

1 + 9e−10t .

Again, we use Algorithm 1 to compute the unique minimum value solution. The associated
Lagrangian is the Legendre transform of F ◦ (−1),

L(x, α) =
a(x)

4
(α + 1)2.

The Hamiltonian is
H(x, p, α) = pα +

a(x)
4

(α + 1)2

and the optimal control satisfies

α∗ = −1 − 2p
a(x)

.

Then, it is straightforward to derive the PMP (11)

ẋ(r) = −1 − 2e10x(r)p(r),

ṗ(r) = 10e10x(r)(p(r))2,

x(0) = x,

p(t) = −e−10x(t)

10
.
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It is a two-point BVP of differential equations. For the purpose of testing a numerical
implementation of Algorithm 1, we do not transform (32) into algebraic equations, although
the differential equations can be explicitly solved. Instead, we use Chebfun to solve the BVP
(32) as described in Birkisson and Driscoll [2]. Due to the uniqueness of solutions, Step II in
Algorithm 1 is unnecessary. The Chebfun implementation of damped Newton method is used
for the BVP solver with the standard termination criteria and the standard error tolerance
of 10−10 is used. The computation is carried out on a uniform grid of 30 × 30 points in the
region [0, 1] × [0.1, 0.6] with a maximum absolute error of 1.33 × 10−13 is observed.

6 Conclusions

Using optimal control theory, our study yields an algorithm and implementation for finding
the minimum value solution of a scalar convex conservation laws, pointwise. It is proved that
in the case of a space-independent flux function the minimum value solution is the entropy
solution, thus providing a generalization of the Lax–Oleinik formula. Numerical results show
good agreement of solutions from the proposed algorithm with that of analytical solutions
and the finite volume method.

A Example using Implementation 1

As an example of using Implementation 1, we present the code used in Example 1 to generate Figure 1.

1 Fp = @(u) u;
2 L = @(u) u.^2/2;
3
4 g = chebfun({0,1,0}, [−1,0,1,3]);
5 G = cumsum(g);
6 d = minandmax(g)';
7 a = g.ends(abs(jump(g, g.ends)) > 10*vscale(g)*eps);
8
9 t = 0:0.1:4;

10 U = cell(size(t));
11 T = cell(size(t));
12 u = @(x, t) pdeccl(Fp, L, g, G, d, a, x, t);
13
14 T{1} = chebfun(0, domain(g));
15 U{1} = chebfun(@(x) g(x), domain(g), 'splitting', 'on', 'vectorize');
16 parfor i = 2:length(t(:))
17 T{i} = chebfun(t(i), domain(g));
18 U{i} = chebfun(@(x) u(x, t(i)), domain(g), ...
19 'splitting', 'on', 'vectorize');
20 end
21
22 %
23 x = chebfun('x', domain(g));
24 for i = 1:length(t(:))
25 plot3(x, T{i}, U{i}, 'k'); hold on;
26 end



22 Wei Kang, Lucas C. Wilcox

27 hold off;
28
29 %
30 figure;
31 k = 20;
32 plot(x, U{k}, 'k');
33 xlabel('x');
34 ylabel('u');
35 title(sprintf('$t = \%f$', T{k}(0)));

Here we give the point-wise solver pdeccl to chebfun to generate polynomial approximations of the solution,
U, for various time instances, T.
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