
PARALLEL MULTI-BLOCK ADMM WITH o(1/k) CONVERGENCE

WEI DENG∗ , MING-JUN LAI† , ZHIMIN PENG‡ , AND WOTAO YIN‡

Abstract. This paper introduces a parallel and distributed extension to the alternating direc-

tion method of multipliers (ADMM) for solving convex problem:

minimize f1(x1) + · · ·+ fN (xN)

subject to A1x1 + · · ·+ANxN = c,

x1 ∈ X1, . . . , xN ∈ XN .

The algorithm decomposes the original problem into N smaller subproblems and solves them in

parallel at each iteration. This Jacobian-type algorithm is well suited for distributed computing

and is particularly attractive for solving certain large-scale problems.

This paper introduces a few novel results. Firstly, it shows that extending ADMM straightfor-

wardly from the classic Gauss-Seidel setting to the Jacobian setting, from 2 blocks to N blocks,

will preserve convergence if matrices Ai are mutually near-orthogonal and have full column-rank.

Secondly, for general matrices Ai, this paper proposes to add proximal terms of different kinds

to the N subproblems so that the subproblems can be solved in flexible and efficient ways and

the algorithm converges globally at a rate of o(1/k). Thirdly, a simple technique is introduced to

improve some existing convergence rates from O(1/k) to o(1/k).

In practice, some conditions in our convergence theorems are conservative. Therefore, we in-

troduce a strategy for dynamically tuning the parameters in the algorithm, leading to substantial

acceleration of the convergence in practice. Numerical results are presented to demonstrate the

efficiency of the proposed method in comparison with several existing parallel algorithms.

We implemented our algorithm on Amazon EC2, an on-demand public computing cloud, and

report its performance on very large-scale basis pursuit problems with distributed data.

Key words. alternating direction method of multipliers, ADMM, parallel and distributed

computing, convergence rate

1. Introduction. We consider the following convex optimization problem with

N (N ≥ 2) blocks of variables:

(1.1) min
x1,x2,...,xN

N∑
i=1

fi(xi) s.t.

N∑
i=1

Aixi = c,

∗Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005.
(wei.deng@rice.edu)
†Department of Mathematics, University of Georgia, Athens, GA 30602. (mjlai@math.uga.edu)
‡Department of Mathematics, University of California, Los Angeles, CA 90095. (zhimin.peng

/ wotaoyin@math.ucla.edu)

1

ar
X

iv
:1

31
2.

30
40

v2
 [

m
at

h.
O

C
]

 1
9

M
ar

 2
01

4

2 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

where xi ∈ Rni , Ai ∈ Rm×ni , c ∈ Rm, and fi : Rni → (−∞,+∞] are closed proper

convex functions, i = 1, 2, . . . , N . If an individual block is subject to constraint

xi ∈ Xi, where Xi ⊆ Rni is a nonempty closed convex set, it can be incorporated in

the objective function fi using the indicator function:

(1.2) IXi(xi) =

{
0 if xi ∈ Xi,

+∞ otherwise.

The problem (1.1) is also referred to as an extended monotropic programming problem

[2]. The special case that each xi is a scalar (i.e., ni = 1) is called a monotropic

programming problem [26]. Such optimization problems arise from a broad spectrum

of applications including numerical partial differential equations, signal and image

processing, compressive sensing, statistics and machine learning. See [11, 1, 3, 29,

4, 24, 22, 31, 23] and the references therein for a number of examples.

In this paper, we focus on parallel and distributed optimization algorithms for

solving the problem (1.1). Since both of the objective function and constraints

of (1.1) are summations of terms on individual xi’s (we call them separable), the

problem can be decomposed into N smaller subproblems, which can be solved in a

parallel and distributed manner.

1.1. Literature review. A simple distributed algorithm for solving (1.1) is

dual decomposition [9], which is essentially a dual ascent method or dual subgradient

method [28] as follows. Consider the Lagrangian for problem (1.1):

(1.3) L(x1, . . . ,xN , λ) =

N∑
i=1

fi(xi)− λ>
(

N∑
i=1

Aixi − c

)

where λ ∈ Rm is the Lagrangian multiplier or the dual variable. The method of

dual decomposition iterates as follows: for k ≥ 1,

(1.4)

 (xk+1
1 ,xk+1

2 , . . . ,xk+1
N) = arg min{xi} L(x1, . . . ,xN , λ

k),

λk+1 = λk − αk
(∑N

i=1Aix
k+1
i − c

)
,

where αk > 0 is a step-size. Since all the xi’s are separable in the Lagrangian

function (1.3), the x-update step reduces to solving N individual xi-subproblems:

(1.5) xk+1
i = arg min

xi
fi(xi)− 〈λk, Aixi〉, for i = 1, 2, . . . , N,

Parallel multi-block ADMM with o(1/k) convergence 3

and thus they can be carried out in parallel. With suitable choice of αk and certain

assumptions, dual decomposition is guaranteed to converge to an optimal solution

[28]. However, the convergence of such subgradient method often tends to be slow

in practice. Its convergence rate for general convex problems is O(1/
√
k).

Another effective distributed approach is based on the alternating direction

method of multipliers (ADMM). ADMM was introduced in [10, 12] to solve the

special case of problem (1.1) with two blocks of variables (N = 2). It utilizes the

augmented Lagrangian for (1.1):

(1.6) Lρ(x1, . . . ,xN , λ) =
N∑
i=1

fi(xi)− λ>
(

N∑
i=1

Aixi − c

)
+
ρ

2

∥∥∥∥∥
N∑
i=1

Aixi − c

∥∥∥∥∥
2

2

,

which incorporates a quadratic penalty of the constraints (with a parameter ρ > 0)

into the Lagrangian. In each iteration, the augmented Lagrangian is minimized

over x1 and x2 separately, one after the other, followed by a dual update for λ. The

iterative scheme of ADMM is outlined below:

(1.7)

xk+1
1 = arg minx1

Lρ(x1,x
k
2, λ

k),

xk+1
2 = arg minx2

Lρ(xk+1
1 ,x2, λ

k),

λk+1 = λk − ρ(A1x
k+1
1 +A2x

k+1
2 − c).

To solve the problem (1.1) with N ≥ 3 using ADMM, one can first convert the multi-

block problem into an equivalent two-block problem via variable splitting [1, 3, 30]:

min
{xi},{zi}

N∑
i=1

fi(xi) + IZ(z1, . . . , zN)

s.t. Aixi − zi =
c

N
, ∀i = 1, 2, . . . , N,

(1.8)

where IZ is a indicator function defined by (1.2), and the convex set Z is given by

Z =

{
(z1, . . . , zN) :

N∑
i=1

zi = 0

}
.

The variables in (1.8) can be grouped into two blocks: x := (x1, . . . ,xN) and z :=

(z1, . . . , zN), so that ADMM can directly apply. The augmented Lagrangian for

4 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

(1.8) is given by

(1.9)

Lρ(x, z, λ) =

N∑
i=1

fi(xi)+IZ(z)−
N∑
i=1

λ>i

(
Aixi − zi −

c

N

)
+
ρ

2

N∑
i=1

∥∥∥Aixi − zi −
c

N

∥∥∥2
2
.

Since all the xi’s are now fully decoupled, the resulting x-subproblem decomposes

into N individual xi-subproblems, which can be carried out in parallel. The resulting

z-subproblem is a simple quadratic problem:

(1.10) zk+1 = arg min
{z:

∑N
i=1 zi=0}

N∑
i=1

ρ

2

∥∥∥∥Aixi − zi −
c

N
− λki

ρ

∥∥∥∥2
2

,

which admits a closed-form solution. The details of the algorithm are summarized

below:

Algorithm 1: Variable Splitting ADMM (VSADMM)

Initialize x0, λ0, ρ > 0;

for k = 0, 1, . . . do
Update zi then xi for i = 1, . . . , N in parallel by:

zk+1
i =

(
Aix

k
i − c

N −
λki
ρ

)
− 1

N

{∑N
j=1Ajx

k
j − c

N −
λkj
ρ

}
;

xk+1
i = arg minxi fi(xi) + ρ

2

∥∥∥Aixi − zk+1
i − c

N −
λki
ρ

∥∥∥2
2
;

Update λk+1
i = λki − ρ

(
Aix

k+1
i − zk+1

i − c
N

)
,∀i = 1, . . . , N .

The distributed ADMM approach based on (1.8), by introducing splitting vari-

ables, substantially increases the number of variables and constraints in the problem,

especially when N is large.

We prefer to extending the ADMM framework for solving (1.1) rather than first

converting (1.1) to a two-block problem and then applying the classic ADMM. A

natural extension is to simply replace the two-block alternating minimization scheme

by a sweep of Gauss-Seidel update, namely, update xi for i = 1, 2, . . . , N sequentially

as follows:

xk+1
i = arg min

xi
Lρ(xk+1

1 , . . . ,xk+1
i−1 ,xi,x

k
i+1, . . . ,x

k
N , λ

k)

= arg min
xi

fi(xi) +
ρ

2

∥∥∥∥∥∥
∑
j<i

Ajx
k+1
j +Aixi +

∑
j>i

Ajx
k
j − c−

λk

ρ

∥∥∥∥∥∥
2

2

.(1.11)

Such Gauss-Seidel ADMM (Algorithm 2) has been considered lately, e.g., in [17, 20].

Parallel multi-block ADMM with o(1/k) convergence 5

However, it has been shown that the algorithm may not converge for N ≥ 3 [5].

Although lack of convergence guarantee, some empirical studies show that Algorithm

2 is still very effective at solving many practical problems (see, e.g., [24, 29, 30]).

Algorithm 2: Gauss-Seidel ADMM

Initialize x0, λ0, ρ > 0;

for k = 0, 1, . . . do
Update xi for i = 1, . . . , N sequentially by:

xk+1
i = minxi fi(xi) + ρ

2

∥∥∥∑j<iAjx
k+1
j +Aixi +

∑
j>iAjx

k
j − c− λk

ρ

∥∥∥2
2
;

Update λk+1 = λk − ρ
(∑N

i=1Aix
k+1
i − c

)
.

A disadvantage of Gauss-Seidel ADMM is that the blocks are updated one after

another, which is not amenable for parallelization.

1.2. Jacobian scheme. To overcome this disadvantage, this paper considers

using a Jacobi-type scheme that updates all the N blocks in parallel:

xk+1
i = arg min

xi
Lρ(xk1, . . . ,xki−1,xi,xki+1, . . . ,x

k
N , λ

k)

= arg min
xi

fi(xi) +
ρ

2

∥∥∥∥∥∥Aixi +
∑
j 6=i

Ajx
k
j − c−

λk

ρ

∥∥∥∥∥∥
2

2

, ∀i = 1, . . . , N.(1.12)

We refer to it as Jacobian ADMM ; see Algorithm 3.

Algorithm 3: Jacobian ADMM

Initialize x0, λ0, ρ > 0;

for k = 0, 1, . . . do
Update xi for i = 1, . . . , N in parallel by:

xk+1
i = arg minxi fi(xi) + ρ

2

∥∥∥Aixi +
∑

j 6=iAjx
k
j − c− λk

ρ

∥∥∥2
2
;

Update λk+1 = λk − ρ
(∑N

i=1Aix
k+1
i − c

)
.

The parallelization comes with a cost: this scheme is more likely to diverge

than the Gauss-Seidel scheme for the same parameter ρ. In fact, it may diverge

even in the two-block case; see [16] for such an example. In order to guarantee its

convergence, either additional assumptions or modifications to the algorithm must

be made.

In Section 4, we show that if matrices Ai are mutually near-orthogonal and have

full column-rank, then Algorithm 3 converges globally. For general cases, a few

variants of Jacobian ADMM have been proposed in [15, 16] by taking additional

6 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

correction steps at every iteration.

In this paper, we propose Proximal Jacobian ADMM ; see Algorithm 4). Com-

pared with Algorithm 3, there are a proximal term 1
2‖xi − xki ‖2Pi for each xi-

subproblem and a damping parameter γ > 0 for the update of λ. Here Pi � 0

is some symmetric and positive semi-definite matrix and we let ‖xi‖2Pi := x>i Pixi.

Algorithm 4: Proximal Jacobian ADMM

Initialize: x0
i (i = 1, 2, . . . , N) and λ0;

for k = 0, 1, . . . do
Update xi for i = 1, . . . , N in parallel by:

xk+1
i = arg minxi fi(xi)+ ρ

2

∥∥∥Aixi +
∑

j 6=iAjx
k
j − c− λk

ρ

∥∥∥2
2
+ 1

2

∥∥xi − xki
∥∥2
Pi

;

Update λk+1 = λk − γρ(
∑N

i=1Aix
k+1
i − c).

The proposed algorithm has a few advantages. First of all, as we will show, it

enjoys global convergence as well as an o(1/k) convergence rate under conditions

on Pi and γ. Secondly, when the xi-subproblem is not strictly convex, adding

the proximal term can make the subproblem strictly or strongly convex, making it

more stable. Thirdly, we provide multiple choices for matrices Pi with which the

subproblems can be made easier to solve. Specifically, the xi-subproblem contains

a quadratic term ρ
2xiA

>
i Aixi. When A>i Ai is ill-conditioned or computationally

expensive to invert, one can let Pi = Di − ρA>i Ai, which cancels the quadratic

term ρ
2xiA

>
i Aixi and adds 1

2xiDixi. The matrix Di can be chosen as some well-

conditioned and simple matrix (e.g., a diagonal matrix), thereby leading to an easier

subproblem.

Here we mention two commonly used choices of Pi:

• Pi = τiI (τi > 0): This corresponds to the standard proximal method.

• Pi = τiI − ρA>i Ai (τi > 0): This corresponds to the prox-linear method [6],

which linearizes the quadratic penalty term of augmented Lagrangian at the

current point xki and adds a proximal term. More specifically, the prox-linear

xi-subproblem is given by

(1.13)

xk+1
i = arg min

xi
fi(xi) +

〈
ρA>i (Axk − c− λk/ρ),xi

〉
+
τi
2

∥∥∥xi − xki

∥∥∥2 .
It essentially uses an identity matrix τiI to approximate the Hessian matrix

ρA>i Ai of the quadratic penalty term.

More choices of Pi have also been discussed in [33, 8].

Parallel multi-block ADMM with o(1/k) convergence 7

1.3. Summary of Contributions. This paper introduces a few novel results

from different perspectives. Firstly, we propose Proximal Jacobian ADMM, which

is suitable for parallel and distributed computing. The use of flexible proximal

terms make it possible to solve its subproblems in different ways, important for

easy coding and fast computation. We establish its convergence at a rate of o(1/k).

Our numerical results on the exchange problem and `1-minimization problem show

that the proposed algorithm achieves competitive performance, in comparison with

several existing parallel algorithms.

The second contribution is a sufficient condition of convergence for the extension

of classic ADMM with a Jacobian update scheme.

The third contribution is the improvement of the established convergence rate

of O(1/k) for the standard ADMM to o(1/k) by a simple proof. This technique can

be also applied to various other algorithms, and some existing convergence rates of

O(1/k) can be slightly improved to o(1/k) as well.

1.4. Preliminary, Notation, and Assumptions. To simplify the notation

in this paper, we introduce

x :=

x1

...

xN

 ∈ Rn, A :=
(
A1, . . . , AN

)
∈ Rm×n, u :=

(
x

λ

)
∈ Rn+m,

where

n =

N∑
i=1

ni.

We let 〈·, ·〉 and ‖·‖ denote the standard inner product and `2-norm ‖·‖2, respectively,

in the Euclidean space. For a matrix M ∈ Rl×l, ‖M‖ denotes the spectral norm,

i.e., the largest singular value of M . For a positive definite matrix G ∈ Rl×l, we

define the G-norm as follows:

(1.14) ‖z‖G :=
√

z>Gz, ∀z ∈ Rl.

If the matrix G is positive semi-definite, then ‖ · ‖G is a semi-norm.

Throughout the paper, we make the following standard assumptions.

Assumption 1. Functions fi : Rni → (−∞,+∞] (i = 1, 2, . . . , N) are closed

proper convex.

Assumption 2. There exists a saddle point u∗ = (x∗1,x
∗
2, . . . ,x

∗
N , λ

∗) to the

8 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

problem (1.1). Namely, u∗ satisfies the KKT conditions:

A>i λ
∗ ∈ ∂fi(x∗i), for i = 1, . . . , N,(1.15)

Ax∗ =
N∑
i=1

Aix
∗
i = c.(1.16)

The optimality conditions (1.15) and (1.16) can be written in a more compact form

by the following variational inequality [16]:

(1.17) f(x)− f(x∗) + (u− u∗)>F (u∗) ≥ 0, ∀u,

where f(x) :=
∑

i fi(xi) and

F (u) :=

−A>1 λ

...

−A>Nλ
Ax− c

 .

Let ∂fi(xi) denote the subdifferential of fi at xi:

(1.18) ∂fi(xi) :=
{
si ∈ Rni : s>i (yi − xi) ≤ fi(yi)− fi(xi), ∀yi ∈ domfi

}
.

We recall the following basic property for convex functions, which will be used

several times in later sections.

Lemma 1.1 (monotonicity of subdifferential). Under Assumption 1, for any

xi,yi ∈ dom fi, we have

(1.19) (si − ti)>(xi − yi) ≥ 0, ∀si ∈ ∂fi(xi), ti ∈ ∂fi(yi),

for i = 1, 2, . . . , N .

Proof. By definition, for any si ∈ ∂fi(xi) and ti ∈ ∂fi(yi), we have

s>i (yi − xi) ≤ fi(yi)− fi(xi),

t>i (xi − yi) ≤ fi(xi)− fi(yi).

Adding these two inequalities together yields (1.19).

In addition, we shall use an elementary lemma to improve the convergence rate

Parallel multi-block ADMM with o(1/k) convergence 9

from O(1/k) to o(1/k). Intuitively, the harmonic sequence 1/k is not summable, so

a summable, nonnegative, monotonic sequence shall converge faster than 1/k.

Lemma 1.2. If a sequence {ak} ⊆ R obeys: (1) ak ≥ 0; (2)
∑∞

k=1 ak < +∞;

(3) ak is monotonically non-increasing, then we have ak = o(1/k).

Proof. By the assumptions, we have

k · a2k ≤ ak+1 + ak+2 + · · ·+ a2k → 0

as k → +∞. Therefore, ak = o(1/k).

2. Convergence Analysis of the Proximal Jacobian ADMM. In this

section, we mainly study the convergence of Proximal Jacobian ADMM (Algorithm

4). We first show its convergence and then establish an o(1/k) convergence rate in

the same sense as in [18]. Furthermore, we discuss how to tune the parameter in

order to make Proximal Jacobian ADMM more practical.

2.1. Convergence. To simplify the notation, we let

Gx :=

P1 + ρA>1 A1

. . .

PN + ρA>NAN

 , G :=

(
Gx

1
γρI

)
,

where I is the identity matrix of size m×m. In the rest of the section, we let {uk}
denote the sequence generated by Proximal Jacobian ADMM from any initial point.

The analysis is based on bounding the error ‖uk−u∗‖2G and estimating its decrease,

motivated by the works [19, 8, 16].

Lemma 2.1. For k ≥ 1, we have

(2.1) ‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ h(uk, uk+1),

where

(2.2)

h(uk, uk+1) := ‖xk −xk+1‖2Gx +
2− γ
ργ2

‖λk − λk+1‖2 +
2

γ
(λk − λk+1)>A(xk −xk+1).

10 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

Proof. Recall that in Algorithm 4, we solve the following xi-subproblem:

xk+1
i = arg min

xi
fi(xi) +

ρ

2

∥∥∥∥∥∥Aixi +
∑
j 6=i

Ajx
k
j − c−

λk

ρ

∥∥∥∥∥∥
2

+
1

2
‖xi − xki ‖2Pi .

Its optimality condition is given by

(2.3) A>i

λk − ρ(Aix
k+1
i +

∑
j 6=i

Ajx
k
j − c)

+ Pi(x
k
i − xk+1

i) ∈ ∂fi(xk+1
i).

For convenience, we introduce λ̂ := λk − ρ(Axk+1− c). Then (2.3) can be rewritten

as

(2.4) A>i

λ̂− ρ∑
j 6=i

Aj(x
k
j − xk+1

j)

+ Pi(x
k
i − xk+1

i) ∈ ∂fi(xk+1
i).

By Lemma 1.1, it follows from (1.15) and (2.4) that〈
Ai(x

k+1
i − x∗i), λ̂− λ∗ − ρ

∑
j 6=i

Aj(x
k
j − xk+1

j)

〉
+ (xk+1

i − x∗i)
>Pi(x

k
i − xk+1

i) ≥ 0.

Summing the above inequality over all i and using the following equality for each i:∑
j 6=i

Aj(x
k
j − xk+1

j) = A(xk − xk+1)−Ai(xki − xk+1
i),

we obtain

〈A(xk+1 − x∗), λ̂− λ∗〉+
N∑
i=1

(xk+1
i − x∗i)

>(Pi + ρA>i Ai)(x
k
i − xk+1

i)

≥ ρ〈A(xk+1 − x∗), A(xk − xk+1)〉.

(2.5)

Note that

A(xk+1 − x∗) =
1

γρ
(λk − λk+1),

and

λ̂− λ∗ = (λ̂− λk+1) + (λk+1 − λ∗) =
γ − 1

γ
(λk − λk+1) + (λk+1 − λ∗).

Parallel multi-block ADMM with o(1/k) convergence 11

With the above two equations, the inequality (2.5) can be rewritten as

〈 1

γρ
(λk − λk+1), λk+1 − λ∗〉+

N∑
i=1

(xk+1
i − x∗i)

>(Pi + ρA>i Ai)(x
k
i − xk+1

i)

≥ 1− γ
γ2ρ

‖λk − λk+1‖2 +
1

γ
(λk − λk+1)>A(xk − xk+1),

(2.6)

i.e.,

(2.7) (uk−uk+1)>G(uk+1−u∗) ≥ 1− γ
γ2ρ

‖λk−λk+1‖2+
1

γ
(λk−λk+1)>A(xk−xk+1).

Since ‖uk − u∗‖2G − ‖uk+1 − u∗‖2G = 2(uk − uk+1)>G(uk+1 − u∗) + ‖uk − uk+1‖2G,

using the above inequality (2.7) yields (2.1) immediately.

Lemma 2.2. Suppose the parameters ρ, γ and Pi (i = 1, 2, . . . , N) satisfy the

following condition:

(2.8)

{
Pi � ρ(1

εi
− 1)A>i Ai, i = 1, 2, . . . , N∑N

i=1 εi < 2− γ,

for some εi > 0, i = 1, 2, . . . , N . Then there exists some η > 0 such that

(2.9) h(uk,uk+1) ≥ η · ‖uk − uk+1‖2G.

Therefore,

(2.10) ‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ η · ‖uk − uk+1‖2G.

Condition (2.8) can be reduced to

(2.11) Pi � ρ
(

N

2− γ
− 1

)
A>i Ai, i = 1, 2, . . . , N,

by letting each εi <
2−γ
N . In particular, for the following choices:

• Pi = τiI (standard proximal), condition (2.11) becomes τi > ρ
(

N
2−γ − 1

)
‖Ai‖2;

• Pi = τiI− ρA>i Ai (prox-linear), condition (2.11) becomes τi >
ρN
2−γ ‖Ai‖

2.

12 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

Proof. By the Cauchy-Schwarz inequality,

2

γ
(λk − λk+1)>A(xk − xk+1) =

N∑
i=1

2

γ
(λk − λk+1)>Ai(x

k
i − xk+1

i)

≥−
N∑
i=1

(
εi
ργ2
‖λk − λk+1‖2 +

ρ

εi
‖Ai(xki − xk+1

i)‖2
)

(2.12)

Then we have

(2.13)

h(uk,uk+1) ≥
N∑
i=1

‖xki − xk+1
i ‖2

Pi+ρA>i Ai−
ρ
εi
A>i Ai

+
2− γ −

∑N
i=1 εi

ργ2
‖λk − λk+1‖2.

The condition (2.8) guarantees that Pi+ρA
>
i Ai−

ρ
εi
A>i Ai � 0 and 2−γ−

∑N
i=1 εi > 0.

Therefore, we must have (2.9) for some η > 0. By Lemma 2.1, (2.10) follows

immediately.

Lemma 2.2 shows that the iterative sequence {uk} is strictly contractive. It fol-

lows that the error ‖uk−u∗‖2G is monotonically non-increasing and thus converging,

as well as ‖uk−uk+1‖2G → 0. The convergence of the algorithm follows immediately

from the standard analysis for contraction methods (see, e.g., [14]). We omit the

details of the proof for the sake of brevity.

Theorem 2.3. Suppose the parameters in Algorithm 4 satisfy the condition

(2.8). Then the sequence {uk} generated by Algorithm 4 converges to a solution u∗

to the problem (1.1).

2.2. Rate of Convergence. Next, we shall establish the o(1/k) convergence

rate of Proximal Jacobian ADMM. We use the quantity ‖uk−uk+1‖2G′ as a measure

of the convergence rate motivated by [18, 16]. Here, we define the matrix G′ by

G′ :=

(
G′x

1
γρI

)
and G′x := Gx − ρA>A.

Theorem 2.4. If G′x � 0 and (2.8) holds, then

‖uk − uk+1‖2G′ = o(1/k),

and, thus,

‖xk − xk+1‖2G′x = o(1/k) and ‖λk − λk+1‖2 = o(1/k).

Parallel multi-block ADMM with o(1/k) convergence 13

We need the following monotonic property of the iterations:

Lemma 2.5. If G′x � 0 and 0 < γ < 2, then

(2.14) ‖uk − uk+1‖2G′ ≤ ‖uk−1 − uk‖2G′ .

Proof. Let ∆xk+1
i = xki −xk+1

i , i = 1, . . . , N , ∆xk+1 = xk −xk+1, and ∆λk+1 =

λk − λk+1. By Lemma 1.1, the optimality conditions (2.4) at k-th and (k + 1)-th

iterations yield

(2.15)

〈Ai∆xk+1
i ,∆λk−ρA∆xk+1−ρ

∑
j 6=i

Aj(∆xkj−∆xk+1
j)〉+(∆xk+1

i)>Pi(∆xki−∆xk+1
i) ≥ 0.

Summing up over all i and rearranging the terms, we have

(2.16) 〈A∆xk+1,∆λk〉 ≥ ‖∆xk+1‖2Gx − (∆xk)>(Gx − ρA>A)∆xk+1.

Since G′x := Gx − ρA>A � 0, we have

(2.17) 2(∆xk)>(Gx − ρA>A)∆xk+1 ≤ ‖∆xk‖2G′x + ‖∆xk‖2G′x ,

and thus

2〈A∆xk+1,∆λk〉 ≥ ‖∆xk+1‖22Gx−G′x − ‖∆xk‖2G′x
= ‖∆xk+1‖2Gx+ρA>A − ‖∆xk‖2G′x .(2.18)

Note that ∆λk+1 = ∆λk − γρA∆xk+1. It follows that

1

γρ
‖∆λk‖2 − 1

γρ
‖∆λk+1‖2 = 2〈A∆xk+1,∆λk〉 − γρ‖A∆xk+1‖2

≥ ‖∆xk+1‖2Gx+(1−γ)ρA>A − ‖∆xk‖2G′x ,(2.19)

i.e.,

(‖∆xk‖2G′x +
1

γρ
‖∆λk‖2)− (‖∆xk+1‖G′x +

1

γρ
‖∆λk+1‖2)

≥ ‖∆xk+1‖2(2−γ)ρA>A ≥ 0,

(2.20)

which completes the proof.

14 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

Proof. [Proof of Theorem 2.4] By Lemma 2.2, we have

(2.21) ‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ η‖uk − uk+1‖2G ≥ η‖uk − uk+1‖2G′ .

Summing (2.21) over k gives

(2.22)

∞∑
k=1

‖uk − uk+1‖2G′ <∞.

On the other hand, Lemma 2.5 implies the monotone non-increasing of ‖uk −
uk+1‖2G′ . By Lemma 1.2, we have ‖uk − uk+1‖2G′ = o(1/k), which completes the

proof.

2.3. Adaptive Parameter Tuning. The parameters satisfying the condition

(2.8) may be rather conservative because the Cauchy-Schwarz inequality (2.12) for

bounding h(uk,uk+1) is usually very loose. In practice, we can exactly compute

h(uk,uk+1) at very little extra cost, instead of using the bound in (2.13). Based

on the value of h(uk,uk+1), we thereby propose a practical strategy for adaptively

adjusting the matrices {Pi}:

Initialize with small P 0
i � 0 (i = 1, 2, . . . , N) and a small η > 0;

for k = 1, 2, . . . do

if h(uk−1,uk) > η · ‖uk−1 − uk‖2G then

P k+1
i ← P ki , ∀i;

else

Increase Pi: P
k+1
i ← αiP

k
i + βiQi (αi > 1, βi ≥ 0, Qi � 0),∀i;

Restart: uk ← uk−1;

The above strategy starts with relatively small proximal terms and gradually

increase them. By Lemma 2.2, we know that when the parameters {Pi} are large

enough for (2.8) to hold, the condition (2.9) will be satisfied (for sufficiently small

η). Therefore, the adjustment of {Pi} cannot occur infinite times. After a finite

number of iterations, {Pi} will remain constant and the contraction property (2.10)

of the iterations will hold. Therefore, the convergence of such an adaptive parameter

tuning scheme follows immediately from our previous analysis.

Theorem 2.6. Suppose the matrices Pi (i = 1, 2, . . . , N) in Algorithm 4 are

adaptively adjusted using the above scheme. Then the algorithm converges to a

solution to the problem (1.1).

Parallel multi-block ADMM with o(1/k) convergence 15

Empirical evidence shows that the paramters {Pi} typically adjust themselves

only during the first few iterations and then remain constant afterwards. Alterna-

tively, one may also decrease the parameters after every few iterations or after they

have not been updated for a certain number of iterations. But the total times of

decrease should be bounded to guarantee convergence. By using this adaptive strat-

egy, the resulting paramters {Pi} are usually much smaller than those required by

the condition (2.8), thereby leading to substantially faster convergence in practice.

3. Numerical Experiments. In this section, we present numerical results to

compare the performance of the following parallel splitting algorithms:

• Prox-JADMM: proposed Proximal Jacobian ADMM (Algorithm 4);

• VSADMM: Variable Splitting ADMM (Algorithm 1);

• Corr-JADMM: Jacobian ADMM with correction steps [16]. At every it-

eration, it first generates a “predictor” ũk+1 by an iteration of Jacobian

ADMM (Algorithm 3) and then corrects ũk+1 to generate the new iterate

by:

(3.1) uk+1 = uk − αk(uk − ũk+1),

where αk > 0 is a step size. In our experiments, we adopt the dynamically

updated step size αk according to [16], which is shown to converge signifi-

cantly faster than using a constant step size, though updating the step size

requires extra computation.

• YALL1: one of the state-of-the-art solvers for the `1-minimization problem.

In Section 3.1 and 3.2, all of the numerical experiments are run in MATLAB

(R2011b) on a workstation with an Intel Core i5-3570 CPUs (3.40GHz) and 32 GB

of RAM. Section 3.3 gives two very large instances that are solved by a C/MPI

implementation on Amazon Elastic Compute Cloud (EC2).

3.1. Exchange Problem. Consider a network of N agents that exchange n

commodities. Let xi ∈ Rn (i = 1, 2, . . . , N) denote the amount of commodities

that are exchanged among the N agents. Each agent i has a certain cost function

fi : Rn → R. The exchange problem (see, e.g., [3] for a review) is given by

(3.2) min
{xi}

N∑
i=1

fi(xi) s.t.

N∑
i=1

xi = 0,

16 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

which minimizes the total cost among N agents subject to an equilibrium constraint

on the commodities. This is a special case of (1.1) where Ai = I and c = 0.

We consider quadratic cost functions fi(xi) := 1
2‖Cixi − di‖

2, where Ci ∈ Rp×n

and di ∈ Rp. Then all the compared algorithms solve the following type of subprob-

lems at every iteration:

(3.3) xk+1
i = arg min

xi

1

2
‖Cixi − di‖2 +

ρ

2
‖xi − bki ‖2, ∀i = 1, 2, . . . , N,

except that Prox-JADMM also adds a proximal term 1
2‖xi − xki ‖2Pi . Here bki ∈ Rm

is a vector independent of xi and takes different forms in different algorithms. For

Prox-JADMM, we simply set Pi = τiI (τi > 0). Clearly, each xi-subproblem is a

quadratic program that can be computed efficiently using various methods.

In our experiment, we randomly generate x∗i , i = 1, 2, . . . , N − 1, following the

standard Gaussian distribution, and let x∗N = −
∑N−1

i=1 x∗i . Matrices Ci are random

Gaussian matrices, and vectors di are computed by di = Cix
∗
i . Apparently, x∗ is a

solution (not necessarily unique) to (3.2), and the optimal objective value is 0.

The penalty parameter ρ is set to be 0.01, 1 and 0.01 for Prox-JADMM, VSADMM

and Corr-JADMM, respectively. They are nearly optimal for each algorithm, picked

out of a number of different values. Note that the parameter for VSADMM is quite

different from the other two algorithms because it has different constraints due to

the variable splitting. For Prox-JADMM, the proximal parameters are initialized

by τi = 0.1(N − 1)ρ and adaptively updated by the strategy in Subsection 2.3; the

parameter γ is set to be 1.

The size of the test problem is set to be n = 100, N = 100, p = 80. Letting

all the algorithms run 200 iterations, we plot their objective value
∑N

i=1 fi(xi) and

residual ‖
∑N

i=1 xi‖2. Note that the per-iteration cost (in terms of both computation

and communication) is roughly the same for all the compared algorithms. Figure

3.1 shows the comparison result, which is averaged over 100 random trials. We can

see that Prox-JADMM is clearly the fastest one among the compared algorithm.

3.2. `1-minimization. We consider the `1-minimization problem for finding

sparse solutions of an underdetermined linear system:

(3.4) min
x
‖x‖1 s.t. Ax = c,

where x ∈ Rn, A ∈ Rm×n and c ∈ Rm (m < n). It is also known as the basis pursuit

problem, which has been widely used in compressive sensing, signal and image pro-

Parallel multi-block ADMM with o(1/k) convergence 17

0 50 100 150 200
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Iteration

O
bj

ec
tiv

e
V

al
ue

Prox−JADMM
VSADMM
Corr−JADMM

0 50 100 150 200
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration

R
es

id
ua

l

Prox−JADMM
VSADMM
Corr−JADMM

Fig. 3.1. Exchange problem (n = 100, N = 100, p = 80).

cessing, statistics, and machine learning. Suppose that the data is partitioned into

N blocks: x = [x1,x2, . . . ,xN] and A = [A1, A2, . . . , AN]. Then the problem (3.4)

can be written in the form of (1.1) with fi(xi) = ‖xi‖1.

In our experiment, a sparse solution x∗ is randomly generated with k (k � n)

nonzeros drawn from the standard Gaussian distribution. Matrix A is also randomly

generated from the standard Gaussian distribution, and it is partitioned evenly into

N blocks. The vector c is then computed by c = Ax∗ + η, where η ∼ N (0, σ2I) is

Gaussian noise with standard deviation σ.

Prox-JADMM solves the xi-subproblems with Pi = τiI−ρA>i Ai (i = 1, 2, . . . , N)

as follows:

xk+1
i = arg min

xi
‖xi‖1 +

ρ

2

∥∥∥∥∥∥Aixi +
∑
j 6=i

Ajx
k
j − c−

λk

ρ

∥∥∥∥∥∥
2

+
1

2

∥∥∥xi − xki

∥∥∥2
Pi

= arg min
xi

‖xi‖1 +

〈
ρA>i

(
Axk − c− λk

ρ

)
,xi

〉
+
τi
2

∥∥∥xi − xki

∥∥∥2 .(3.5)

Here, we choose the prox-linear Pi’s to linearize the original subproblems, and thus

(3.5) admits a simple closed-form solution by the shrinkage (or soft-thresholding)

formula. The proximal parameters are initialized as τi = 0.1Nρ and are adaptively

updated by the strategy discussed in Section 2.3.

18 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

Recall that VSADMM needs to solve the following xi-subproblems:

xk+1
i = arg min

xi
‖xi‖1 +

ρ

2

∥∥∥∥Aixi − zk+1
i − c

N
− λki

ρ

∥∥∥∥2 .(3.6)

Such subproblems are not easily computable, unless xi is a scalar (i.e., ni = 1) or

A>i Ai is a diagonal matrix. Instead, we solve the subproblems approximately using

the prox-linear approach:

xk+1
i = arg min

xi
‖xi‖1 +

〈
ρA>i

(
Aix

k
i − zk+1

i − c

N
− λki

ρ

)
,xi − xki

〉
+
τi
2

∥∥∥xi − xki

∥∥∥2 ,
(3.7)

which can be easily computed by the shrinkage operator. We set τi = 1.01ρ‖Ai‖2

in order to guarantee the convergence, as suggested in [30].

Corr-JADMM solves the following xi-subproblems in the “prediction” step:

x̃k+1
i = arg min

xi
‖xi‖1 +

ρ

2

∥∥∥∥∥∥Aixi +
∑
j 6=i

Ajx
k
j − c−

λk

ρ

∥∥∥∥∥∥
2

.(3.8)

Because the correction step in [16] is based on exact minimization of the subprob-

lems, we do not apply the prox-linear approach to solve the subproblems approxi-

mately. Instead, we always partition x into scalar components (i.e., N = n) so that

the subproblems (3.8) can still be computed exactly. The same penalty parameter

ρ = 10/‖c‖1 is used for the three algorithms. It is nearly optimal for each algorithm,

selected out of a number of different values.

In addition, we also include the YALL1 package [32] in the experiment, which

is one of the state-of-the-art solvers for `1 minimization. Though YALL1 is not

implemented in parallel, the major computation of its iteration is matrix-vector

multiplication by A and A>, which can be easily parallelized (see [25]). Since all the

compared algorithms have roughly the same amount of per-iteration cost (in terms

of both computation and communication), we simply let all the algorithms run for

a fixed number of iterations and plot their relative error ‖x
k−x∗‖2
‖x∗‖2 .

Figure 3.2 shows the comparison result where n = 1000, m = 300, k = 60

and the standard deviation of noise σ is set to be 0 and 10−3, respectively. For

Prox-JADMM and VSADMM, we set N = 100; for Corr-JADMM, we set N =

1000. The results are average of 100 random trials. We can see that Prox-JADMM

and Corr-JADMM achieve very close performance and are the fastest ones among

Parallel multi-block ADMM with o(1/k) convergence 19

0 200 400 600 800 1000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Iteration

R
el

at
iv

e
E

rr
or

Prox−JADMM
YALL1
VSADMM
Corr−JADMM

(a) Noise-free (σ = 0)

0 50 100 150 200 250 300 350
10

−6

10
−4

10
−2

10
0

10
2

10
4

Iteration

R
el

at
iv

e
E

rr
or

Prox−JADMM
YALL1
VSADMM
Corr−JADMM

(b) Noise added (σ = 10−3)

Fig. 3.2. `1-problem (n = 1000, m = 300, k = 60).

the compared algorithms. YALL1 also shows competitive performance. However,

VSADMM is far slower than the others, probably due to inexact minimization of

the subproblems and the conservative proximal parameters.

3.3. Distributed Large-Scale `1-Minimization. In previous subsections,

we described the numerical simulation of a distributed implementation of Proximal

Jacobian ADMM that was carried out in Matlab. We now turn to realistic dis-

tributed examples and solve two very large instances of the `1-minimization prob-

lem (3.4) using a C code with MPI for inter-process communication and the GNU

Scientific Library (GSL) for BLAS operations. The experiments are carried out on

Amazon’s Elastic Compute Cloud (EC2).

We generate two test instances as shown in Table 3.1. Specifically, a sparse

solution x∗ is randomly generated with k nonzeros drawn from the standard Gaus-

sian distribution. Matrix A is also randomly generated from the standard Gaussian

distribution with m rows and n columns, and it is partitioned evenly into N = 80

blocks. Vector c is then computed by c = Ax∗. Note that A is dense and has double

precision. For Test 1 it requires over 150 GB of RAM and has 20 billion nonzero

entries, and for Test 2 it requires over 337GB of RAM. Those two tests are far too

large to process on a single PC or workstation. We want to point out that we cannot

find a dataset of similar or larger size in the public domain. We are willing to test

our a larger problem per reader’s request.

We solve the problem using a cluster of 10 machines, where each machine is a

“memory-optimized instance” with 68 GB RAM and 1 eight-core Intel Xeon E5-

2665 CPU. Those instances run Ubuntu 12.04 and are connected with 10 Gigabit

20 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

Table 3.1
Two large datasets

m n k RAM

dataset 1 1.0× 105 2.0× 105 2.0× 103 150GB
dataset 2 1.5× 105 3.0× 105 3.0× 103 337GB

ethernet network. Since each has 8 cores, we run the code with 80 processes so that

each process runs on its own core. Such a setup is charged for under $17 per hour.

We solve the large-scale `1 minimization problems with a C implementation that

matches the Matlab implementation in the previous section. The implementation

consists of a single file of C code of about 300 lines, which is available for download

on our personal website.

Table 3.2
Time results for large scale `1 minimization examples

150GB Test 337GB Test

Itr Time(s) Cost($) Itr Time(s) Cost($)

Data generation – 44.4 0.21 – 99.5 0.5
CPU per iteration – 1.32 – – 2.85 –
Comm. per iteration – 0.07 – – 0.15 –
Reach 10−1 23 30.4 0.14 27 79.08 0.37
Reach 10−2 30 39.4 0.18 39 113.68 0.53
Reach 10−3 86 112.7 0.53 84 244.49 1.15
Reach 10−4 234 307.9 1.45 89 259.24 1.22

The breakdown of the wall-clock time is summarized in Table 3.2. We can

observe that Jacobian ADMM is very efficient in obtaining a relative low accuracy,

which is usually sufficient for large-scale problems. We want to point out that

the basic BLAS operations in our implantation can be further improved by using

other libraries such as hardware-optimized BLAS libraries produced by ATLAS,

Armadillo, etc. Those libraries might lead to several times of speedup1. We use

GSL due to its ease of use, so the code can be easily adapted for solving similar

problems.

4. A Sufficient Condition for Convergence of Jacobian ADMM. In this

section, we provide a sufficient condition to guarantee the convergence of Jacobian

1http://nghiaho.com/?p=1726

Parallel multi-block ADMM with o(1/k) convergence 21

ADMM (Algorithm 3), which does not use either proximal terms or correction steps.

The condition only depends on the coefficient matrices Ai, without imposing further

assumptions on the objective functions fi or the penalty parameter ρ. For the Gauss-

Seidel ADMM (Algorithm 2), a sufficient condition for convergence is provided in

[5] for the special case N = 3, assuming two of the three coefficient matrices are

orthogonal. Our condition does not require exact orthogonality. Instead, we mainly

assume that the matrices Ai, i = 1, 2, . . . , N are mutually “near-orthogonal” and

have full column-rank.

Theorem 4.1. Suppose that there exists δ > 0 such that

(4.1) ‖A>i Aj‖ ≤ δ, ∀ i 6= j, and λmin(A>i Ai) > 3(N − 1)δ, ∀ i,

where λmin(A>i Ai) denotes the smallest eigenvalue of A>i Ai. Then the sequence

{uk} generated by Algorithm 3 converges to a solution u∗ to the problem (1.1).

The proof technique is motivated by the contraction analysis of the sequence

{uk} under some G-norm (e.g., see [19, 8, 16]). To prove the theorem, we first need

the following lemma:

Lemma 4.2. Let

G0 :=

ρA>1 A1

. . .

ρA>NAN
1
ρI

 ,

where I is the identity matrix of size m×m. For k ≥ 1, we have

(4.2) ‖uk − u∗‖2G0
− ‖uk+1 − u∗‖2G0

≥ h0(uk, uk+1),

where

(4.3) h0(u
k, uk+1) := ‖uk − uk+1‖2G0

+ 2(λk − λk+1)>A(xk − xk+1).

This lemma follows directly from Lemma 2.1 since it is a special case with γ = 1

and Pi = 0, ∀i. Now we are ready to prove the theorem.

22 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

Proof. [Proof of Theorem 4.1] By the assumption ‖A>i Aj‖ ≤ δ, i 6= j, we have

(4.4)

∣∣∣∣∣∣
∑
i 6=j
〈Aiai, Ajbj〉

∣∣∣∣∣∣ ≤
∑
i 6=j

δ‖ai‖‖bj‖ ≤
δ

2
(N − 1)(‖a‖2 + ‖b‖2), ∀ a,b

To simplify the notation, we let

(4.5) aki := xki − x∗i , i = 1, 2, . . . , N.

Note that

λk − λk+1 = ρAak+1, xk − xk+1 = ak − ak+1.

Then, we can rewrite (4.3) as

1

ρ
h0(u

k − uk+1) =
∑
i

‖Ai(aki − ak+1
i)‖2 + ‖Aak+1‖2 + 2〈Aak+1, A(ak − ak+1)〉

(4.6)

=
∑
i

‖Aiaki ‖2 + 2
∑
i 6=j
〈Aiak+1

i , Aja
k
j 〉 −

∑
i 6=j
〈Aiak+1

i , Aja
k+1
j 〉(4.7)

≥
∑
i

‖Aiaki ‖2 − (N − 1)δ(‖ak+1‖2 + ‖ak‖2)− (N − 1)δ‖ak+1‖2(4.8)

=
∑
i

‖Aiaki ‖2 − (N − 1)δ‖ak‖2 − 2(N − 1)δ‖ak+1‖2,(4.9)

where the inequality (4.8) comes from (4.4). By Lemma 4.2, we have

‖uk − u∗‖2G0
− 2(N − 1)δρ‖ak‖2

≥‖uk+1 − u∗‖2G0
− 2(N − 1)δρ‖ak+1‖2 + ρ

∑
i

‖Aiaki ‖2 − 3(N − 1)δρ‖ak‖2.(4.10)

We further simplify (4.10) as

(4.11) bk − bk+1 ≥ dk,

where the sequences {bk} and {dk} are defined by

bk := ‖uk − u∗‖2G0
− 2(N − 1)δρ‖ak‖2,(4.12)

dk := ρ
∑
i

‖Aiaki ‖2 − 3(N − 1)δρ‖ak‖2.(4.13)

Parallel multi-block ADMM with o(1/k) convergence 23

By the definition of G0, we have

(4.14) bk = ρ
∑
i

‖Aiaki ‖2 − 2(N − 1)δρ‖aki ‖2 +
1

ρ
‖λk − λ∗‖2.

Since we assume λmin(A>i Ai) > 3(N − 1)δ, it follows that

(4.15) ‖Aiaki ‖2 ≥ 3(N − 1)δ‖aki ‖2, ∀i.

Then it is easy to see that bk ≥ 0 and dk ≥ 0. By (4.11), the nonnegative sequence

{bk} is monotonically non-increasing. Hence, {bk} converges to some b∗ ≥ 0. By

(4.11), it also follows that dk → 0. Therefore, ak → 0, i.e., xk → x∗.

Next we show λk → λ∗. By taking limit of (4.14) and using ak → 0, we have

(4.16) b∗ = lim
k→∞

bk = lim
k→∞

1

ρ
‖λk − λ∗‖2.

To show λk → λ∗, it thus suffices to show b∗ = 0.

By (4.16), {λk} is bounded and must have a convergent subsequence λkj → λ̄.

Recall the optimality conditions for the xi-subproblems (1.12):

(4.17) A>i

λk − ρ(Aix
k+1
i +

∑
j 6=i

Ajx
k
j − c)

 ∈ ∂fi(xk+1
i).

By Theorem 24.4 of [27], taking limit over the subsequence {kj} on both sides of

(4.17) yields:

(4.18) A>i λ̄ ∈ ∂fi(x∗i), ∀ i.

Therefore, (x∗, λ̄) satisfies the KKT conditions of the problem (1.1). Since (x∗, λ∗)

is any KKT point, now we let λ∗ = λ̄. By (4.16) and ‖λkj − λ∗‖2 → 0, we must

have b∗ = 0, thereby completing the proof.

Under the similar near-orthogonality assumption on the matricesAi, i = 1, 2, . . . , N ,

we have the following convergence result for Proximal Jacobian ADMM:

Theorem 4.3. Suppose ‖A>i Aj‖ ≤ δ for all i 6= j, and the parameters in

Algorithm 4 satisfy the following condition: for some α, β > 0,

(4.19)

{
Pi � ρ(1

α − 1)A>i Ai + ρ
β δ(N − 1)I

λmin(A>i Ai) >
2−γ+β
2−γ−αδ(N − 1)

for i = 1, . . . , N.

24 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

Then Algorithm 4 converges to a solution to the problem (1.1).

Proof. Let

H :=

A>1 A1

. . .

A>NAN

 .

If ‖A>i Aj‖ ≤ δ for all i 6= j, then it is easy to show the following: for any x and y,

‖Ax‖2 =
N∑
i=1

‖Aixi‖2 +
∑
i 6=j

x>i A
>
i Ajxj ≥

N∑
i=1

‖Aixi‖2 − δ
∑
i 6=j
‖xi‖‖xj‖

≥
N∑
i=1

‖Aixi‖2 − δ(N − 1)‖x‖2 = ‖x‖2[H−δ(N−1)I],(4.20)

and

2x>A>Ay = 2
N∑
i=1

x>i A
>
i Ajyj + 2

∑
i 6=j

x>i A
>
i Ajyj ≥ 2

N∑
i=1

x>i A
>
i Ajyj − 2δ

∑
i 6=j
‖xi‖‖yj‖

≥ −
N∑
i=1

α‖Aixi‖2 − βδ(N − 1)‖x‖2 −
N∑
i=1

1

α
‖Aiyi‖2 −

1

β
δ(N − 1)‖y‖2

= −‖x‖2[αH+βδ(N−1)I] − ‖y‖
2
[1
α
H+ 1

β
δ(N−1)I], ∀α, β > 0,

(4.21)

Using the above inequalities, we have

2

γ
(λk − λk+1)>A(xk − xk+1) = 2ρ(xk+1 − x∗)A>A(xk − xk+1)

≥− ρ‖xk+1 − x∗‖2[αH+βδ(N−1)I] − ρ‖x
k − xk+1‖2

[1
α
H+ 1

β
δ(N−1)I],(4.22)

and

(4.23) ‖λk − λk+1‖2 = γ2ρ2‖A(xk+1 − x∗)‖2 ≥ γ2ρ2‖xk+1 − x∗‖2[H−δ(N−1)I].

Therefore,

h(uk,uk+1) ≥‖xk − xk+1‖2Gx + (2− γ)ρ‖xk+1 − x∗‖2[H−δ(N−1)I]
− ρ‖xk+1 − x∗‖2[αH+βδ(N−1)I] − ρ‖x

k − xk+1‖2
[1
α
H+ 1

β
δ(N−1)I].(4.24)

Parallel multi-block ADMM with o(1/k) convergence 25

As long as the following holds:

(4.25)

{
Gx � ρ

αH + ρ
β δ(N − 1)I,

(2− γ)ρ[H − δ(N − 1)I] � ρ[αH + βδ(N − 1)I],

which is equivalent to the condition (4.19), there must exist some η > 0 such that

(2.9) and (2.10) hold. Then the convergence of Algorithm 4 follows immediately

from the standard analysis of contraction methods [14].

5. On o(1/k) Convergence Rate of ADMM. The convergence of the stan-

dard two-block ADMM has been long established in the literature [10, 12]. Its

convergence rate has been actively studied; see [21, 19, 18, 13, 8, 20] and the ref-

erences therein. In the following, we briefly review the convergence analysis for

ADMM (N = 2) and then improve the O(1/k) convergence rate established in [18]

slightly to o(1/k) by using the same technique as in Subsection 2.2.

As suggested in [18], the quantity ‖wk − wk+1‖2H can be used to measure the

optimality of the iterations of ADMM , where

w :=

(
x2

λ

)
, H :=

(
ρA>2 A2

1
ρI

)
,

and I is the identity matrix of size m ×m. Note that x1 is not part of w because

x1 can be regarded as an intermediate variable in the iterations of ADMM, whereas

(x2, λ) are the essential variables [3]. In fact, if ‖wk − wk+1‖2H = 0 then wk+1 is

optimal. The reasons are as follows. Recall the subproblems of ADMM:

xk+1
1 = arg min

x1

f1(x1) +
ρ

2
‖A1x1 +A2x

k
2 − λk/ρ‖2,(5.1)

xk+1
2 = arg min

x2

f2(x2) +
ρ

2
‖A1x

k+1
1 +A2x2 − λk/ρ‖2.(5.2)

By the formula for λk+1, their optimality conditions can be written as:

A>1 λ
k+1 − ρA>1 A2(x

k
2 − xk+1

2) ∈ ∂f(xk+1
1),(5.3)

A>2 λ
k+1 ∈ ∂f2(xk+1

2).(5.4)

In comparison with the KKT conditions (1.15) and (1.16), we can see that uk+1 =

26 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin(
xk+1
1 ,xk+1

2 , λk+1
)

is a solution of (1.1) if and only if the following holds:

rk+1
p := A1x

k+1
1 +A2x

k+1
2 − c = 0 (primal feasibility),(5.5)

rk+1
d := ρA>1 A2(x

k
2 − xk+1

2) = 0 (dual feasibility).(5.6)

By the update formula for λk+1, we can write rp equivalently as

(5.7) rk+1
p =

1

ρ
(λk − λk+1).

Clearly, if ‖wk − wk+1‖2H = 0 then the optimality conditions (5.5) and (5.6) are

satisfied, so wk+1 is a solution. On the other hand, if ‖wk − wk+1‖2H is large,

then wk+1 is likely to be far away from being a solution. Therefore, the quantity

‖wk − wk+1‖2H can be viewed as a measure of the distance between the iteration

wk+1 and the solution set. Furthermore, based on the variational inequality (1.17)

and the variational characterization of the iterations of ADMM, it is reasonable to

use the quadratic term ‖wk −wk+1‖2H rather than ‖wk −wk+1‖H to measure the

convergence rate of ADMM (see [18] for more details).

The work [18] proves that ‖wk −wk+1‖2H converges to zero at a rate of O(1/k).

The key steps of the proof are to establish the following properties:

• the sequence {wk} is contractive:

(5.8) ‖wk −w∗‖2H − ‖wk+1 −w∗‖2H ≥ ‖wk −wk+1‖2H ,

• the sequence ‖wk −wk+1‖2H is monotonically non-increasing:

(5.9) ‖wk −wk+1‖2H ≤ ‖wk−1 −wk‖2H .

The contraction property (5.8) has been long established and its proof dates back

to [10, 12]. Inspired by [18], we provide a much shorter proof for (5.9) than the one

in [18].

Proof. [Proof of (5.9)] Let ∆xk+1
i = xki − xk+1

i and ∆λk+1 = λk − λk+1. By

Lemma 1.1, i.e., (1.19), the optimality condition (5.3) at the k-th and (k + 1)-th

iterations yields:

(5.10) 〈∆xk+1
1 , A>1 ∆λk+1 − ρA>1 A2(∆xk2 −∆xk+1

2)〉 ≥ 0.

Parallel multi-block ADMM with o(1/k) convergence 27

Similarly for (5.4), we obtain

(5.11) 〈∆xk+1
2 , A>2 ∆λk+1〉 ≥ 0.

Adding the above two inequalities together, we have

(5.12) (A1∆xk+1
1 +A2∆xk+1

2)>∆λk+1 − ρ(A1∆xk+1
1)>A2(∆xk2 −∆xk+1

2) ≥ 0.

Using the equality according to (5.7):

(5.13) A1∆xk+1
1 +A2∆xk+1

2 =
1

ρ
(∆λk −∆λk+1),

(5.12) becomes

(5.14)
1

ρ
(∆λk −∆λk+1)>∆λk+1 − (∆λk −∆λk+1 − ρA2∆xk+1

2)>A2(∆xk2 −∆xk+1
2) ≥ 0.

After rearranging the terms, we get

(
√
ρA2∆xk2 +

1
√
ρ

∆λk)>(
√
ρA2∆xk+1

2 +
1
√
ρ

∆λk+1)− (A2∆xk2)>∆λk − (A2∆xk+1
2)>∆λk+1

≥ 1

ρ
‖∆λk+1‖2 + ρ‖A2∆xk+1

2 ‖2 = ‖wk −wk+1‖2H .

(5.15)

By the Cauchy-Schwarz inequality, we have

(5.16) (a1 + b1)
>(a2 + b2) ≤ (‖a1 + b1‖2 + ‖a2 + b2‖2)/2,

or equivalently,

(5.17) (a1 + b1)
>(a2 + b2)− a>1 b1 − a>2 b2 ≤ (‖a1‖2 + ‖b1‖2 + ‖a2‖2 + ‖b2‖2)/2.

Applying the above inequality to the left-hand side of (5.15), we have

‖wk −wk+1‖2H ≤
(
ρ‖A2∆xk2‖2 +

1

ρ
‖∆λk‖2 + ρ‖A2∆xk+1

2 ‖2 +
1

ρ
‖∆λk+1‖2

)
/2

=
(
‖wk−1 −wk‖2H + ‖wk −wk+1‖2H

)
/2,

(5.18)

28 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

and thus (5.9) follows immediately.

We are now ready to improve the convergence rate from O(1/k) to o(1/k).

Theorem 5.1. The sequence {wk} generated by Algorithm 2 (for N = 2)

converges to a solution w∗ of problem (1.1) in the H-norm, i.e., ‖wk −w∗‖2H → 0,

and ‖wk −wk+1‖2H = o(1/k). Therefore,

(5.19) ‖A1x
k
1 −A1x

k+1
1 ‖2 + ‖A2x

k
2 −A2x

k+1
2 ‖2 + ‖λk − λk+1‖2 = o(1/k),

for k →∞.

Proof. Using the contractive property of the sequence {wk} (5.8) along with

the optimality conditions, the convergence of ‖wk − w∗‖2H → 0 follows from the

standard analysis for contraction methods [14].

By (5.8), we have

(5.20)

n∑
k=1

‖wk −wk+1‖2H ≤ ‖w1 −w∗‖2H − ‖wn+1 −w∗‖2H , ∀n.

Therefore,
∑∞

k=1 ‖wk − wk+1‖2H < ∞. By (5.9), ‖wk − wk+1‖2H is monotonically

non-increasing and nonnegative. So Lemma 1.2 indicates that ‖wk − wk+1‖2H =

o(1/k), which further implies that ‖A2x
k
2 −A2x

k+1
2 ‖2 = o(1/k) and ‖λk − λk+1‖2 =

o(1/k). By (5.13), we also have ‖A1x
k
1 − A1x

k+1
1 ‖2 = o(1/k). Thus (5.19) follows

immediately.

Remark 5.1. The proof technique based on Lemma 1.2 can be applied to improve

some other existing convergence rates of O(1/k) (e.g., [16, 7]) to o(1/k) as well.

6. Conclusion. Due to the dramatically increasing demand for dealing with

big data, parallel and distributed computational methods are highly desirable. ADMM,

as a versatile algorithmic tool, has proven to be very effective at solving many large-

scale problems and well suited for distributed computing. Yet, its parallelization

still needs further investigation and improvement. This paper proposes a simpler

parallel and distributed ADMM for solving problems with separable structures. The

algorithm framework introduces more flexibility for computing the subproblems due

to the use of proximal terms ‖xi−xki ‖2Pi with wisely chosen Pi. Its theoretical prop-

erties such as global convergence and an o(1/k) rate are established. Our numerical

results demonstrate the efficiency of the proposed method in comparison with several

existing parallel algorithms. The code will be available online for further studies.

In addition, we provide a simple sufficient condition to ensure the convergence of

Parallel multi-block ADMM with o(1/k) convergence 29

Jacobian ADMM and demonstrate a simple technique to improve the convergence

rate of ADMM from O(1/k) to o(1/k).

Acknowledgements. Wei Deng is supported by NSF grant ECCS-1028790.

Ming-Jun Lai is partially supported by a Simon collaboration grant for 2013–2018.

Wotao Yin is partially supported by NSF grants DMS-0748839 and DMS-1317602,

and ARO/ARL MURI grant FA9550-10-1-0567.

REFERENCES

[1] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,

Second Edition, Athena Scientific, 1997.

[2] D. P. Bertsekas, Extended monotropic programming and duality, Journal of optimization

theory and applications, 139 (2008), pp. 209–225.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and

statistical learning via the alternating direction method of multipliers, Machine Learning,

3 (2010), pp. 1–122.

[4] V. Chandrasekaran, P. A Parrilo, and A. S Willsky, Latent variable graphical model

selection via convex optimization, Annals of Statistics, 40 (2012), pp. 1935–1967.

[5] C. H. Chen, B. S. He, Y. Y. Ye, and X. M. Yuan, The direct extension of ADMM for

multi-block convex minimization problems is not necessarily convergent, preprint, (2013).

[6] G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization

problems, Mathematical Programming, 64 (1994), pp. 81–101.

[7] E. Corman and X. M. Yuan, A generalized proximal point algorithm and its convergence

rate, (2013).

[8] W. Deng and W. Yin, On the global and linear convergence of the generalized alternating

direction method of multipliers, Rice University CAAM Technical Report TR12-14, (2012).

[9] H. Everett, Generalized lagrange multiplier method for solving problems of optimum alloca-

tion of resources, Operations research, 11 (1963), pp. 399–417.

[10] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational prob-

lems via finite element approximation, Computers & Mathematics with Applications, 2

(1976), pp. 17–40.

[11] R. Glowinski, Numerical methods for nonlinear variational problems, Springer Series in

Computational Physics, 1984.

[12] R. Glowinski and A. Marrocco, Sur l’approximation, par éléments finis d’ordre un, et la

résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires,

Laboria, 1975.

[13] T. Goldstein, B. O’Donoghue, and S. Setzer, Fast alternating direction optimization

methods, CAM report 12-35, UCLA, (May 2012).

[14] B. S. He, A class of projection and contraction methods for monotone variational inequalities,

Applied Mathematics and Optimization, 35 (1997), pp. 69–76.

[15] , Parallel splitting augmented lagrangian methods for monotone structured variational

inequalities, Computational Optimization and Applications, 42 (2009), pp. 195–212.

30 Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

[16] B. S. He, L. S. Hou, and X. M. Yuan, On full Jacobian decomposition of the augmented

lagrangian method for separable convex programming, (2013).

[17] B. S. He, M. Tao, and X. M. Yuan, Alternating direction method with gaussian back

substitution for separable convex programming, SIAM Journal on Optimization, 22 (2012),

pp. 313–340.

[18] B. S. He and X. M. Yuan, On non-ergodic convergence rate of Douglas-Rachford alternating

direction method of multipliers, (2012).

[19] , On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method,

SIAM Journal on Numerical Analysis, 50 (2012), pp. 700–709.

[20] M. Hong and Z.-Q. Luo, On the linear convergence of the alternating direction method of

multipliers, arXiv preprint arXiv:1208.3922, (2012).

[21] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators,

SIAM Journal on Numerical Analysis, 16 (1979), pp. 964–979.

[22] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, D-ADMM: A communication-

efficient distributed algorithm for separable optimization, IEEE Transactions on Signal

Processing, 61 (2013), pp. 2718–2723.

[23] N. Parikh and S. Boyd, Block splitting for distributed optimization, Mathematical Program-

ming Computation, (2013), pp. 1–26.

[24] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, RASL: Robust alignment by sparse

and low-rank decomposition for linearly correlated images, IEEE Transactions on Pattern

Analysis and Machine Intelligence, (2012), pp. 2233–2246.

[25] Z. Peng, M. Yan, and W. Yin, Parallel and distributed sparse optimization, IEEE Asilomar

Conference on Signals Systems and Computers, (2013).

[26] R. T. Rockafellar, Monotropic programming: descent algorithms and duality, Nonlinear

programming, 4 (1981), pp. 327–366.

[27] , Convex analysis, vol. 28, Princeton University Press, 1997.

[28] N. Z. Shor, K. C Kiwiel, and A. Ruszcayski, Minimization methods for non-differentiable

functions, Springer-Verlag New York, Inc., 1985.

[29] M. Tao and X. M. Yuan, Recovering low-rank and sparse components of matrices from

incomplete and noisy observations, SIAM Journal on Optimization, 21 (2011), pp. 57–81.

[30] X. F. Wang, M. Y. Hong, S. Q. Ma, and Z.-Q. Luo, Solving multiple-block separable

convex minimization problems using two-block alternating direction method of multipliers,

arXiv preprint arXiv:1308.5294, (2013).

[31] E. Wei and A. Ozdaglar, On the O(1/k) convergence of asynchronous distributed alternat-

ing direction method of multipliers, arXiv preprint arXiv:1307.8254, (2013).

[32] J. F. Yang and Y. Zhang, Alternating direction algorithms for `1-problems in compressive

sensing, SIAM journal on scientific computing, 33 (2011), pp. 250–278.

[33] X. Zhang, M. Burger, and S. Osher, A unified primal-dual algorithm framework based on

Bregman iteration, Journal of Scientific Computing, 46 (2011), pp. 20–46.

