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An Asymptotic Preserving Maxwell Solver Resulting in the Darwin Limit of

Electrodynamics
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Abstract

In plasma simulations, where the speed of light divided by a characteristic length is at a much
higher frequency than other relevant parameters in the underlying system, such as the plasma
frequency, implicit methods begin to play an important role in generating efficient solutions in these
multi-scale problems. Under conditions of scale separation, one can rescale Maxwell’s equations in
such a way as to give a magneto static limit known as the Darwin approximation of electromagnetics.
In this work, we present a new approach to solve Maxwell’s equations based on a Method of Lines
Transpose (MOLT) formulation, combined with a fast summation method with computational
complexity O(Nlog N), where N is the number of grid points (particles). Under appropriate
scaling, we show that the proposed schemes result in asymptotic preserving methods that can

recover the Darwin limit of electrodynamics.
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1 Introduction

In this paper, we develop asymptotic preserving (AP) numerical methods for Maxwell’s equations
which can recover the Darwin limit of electrodynamics under an appropriate scaling limit. AP
schemes are also known as temporal multi-scale methods in the literature, see [25] for review and
recent development of such methods. The main attractive features lie in the ability to preserve
the asymptotic limit of the underlying equation at the discrete level, permitting large time step
evolution even when the scaling parameter becomes small in the system. There has been lots
of success of AP schemes in the kinetic simulations, in which the Knudsen number ¢ is used to
characterize the kinetic scales. As ¢ goes to 0, the AP scheme is designed in a way that it becomes
a consistent discretization of the limiting hydrodynamic models, which, in fact, is mimicking the
asymptotic limiting procedure on the partial differential equation (PDE) level. As a result, the AP
scheme is uniformly stable with respect to €. Recent development of AP schemes for kinetic models
include a penalty method for solving the Boltzmann equation with general collisional operator [19],
the macro-micro decomposition technique for the BGK model [4], among many others [311, [32], 40)].
Based on similar ideas, AP schemes were also developed for the Euler-Poisson and Euler-Maxwell
models in [16} [I5] to recover the quasi-neutral limit of the incompressible Euler model as the Debye
length Ap goes to 0.

This paper, on the other hand, concerns the construction of numerical schemes for Maxwell’s
equations which can capture asymptotic limit to the Darwin model. The Darwin model is a well-
known approximate model to Maxwell’s equations [I3]. It is obtained from Maxwell’s equations
by neglecting the solenoidal, i.e., the divergence-free part of the displacement current in Ampeére’s
law. This results in a set of elliptic equations with separated electric and magnetic fields which are
easier to solve than full Maxwell’s equations. In [17], Degond et al. showed that the Darwin model
approximates Maxwell’s equations up to second order for the magnetic field and third order for the

electric field with respect to the dimensionless parameter ¢ = % in a three-dimensional bounded

‘
simply connected domain, where v is a characteristic velocity and c is the speed of light. Such an
analysis in fact verifies the effectiveness of the Darwin model when no high frequency phenomenon
or rapid change occurs in the physics system. Many research efforts have been devoted to the

development of numerical schemes for solving the Darwin model. For instance, in [I1], a finite

element method was proposed and the well-posedness of the associated variational problems was also



established. In plasma physics, numerical schemes to the Vlasov-Darwin model, which is a simplified
model for the Vlasov-Maxwell system, have been considered in [39, B8, [5]. In [33] 34], a hierarchy
of approximate models for Maxwell’s equations are established with the perfectly conducting and
the Silver-Miiller boundary conditions. The quasistatic Darwin models are proven to be first and
second order approximation to Maxwell’'s equations with respect to e. It is therefore, of great
interest to applications, to construct efficient Maxwell solvers that can capture the Darwin limit
automatically.

The approach we use in this paper consists of several important components, including the
development and the extension of the Method of Line Transpose (MOL?) framework, the investi-
gation of the scalar and vector potential formulations of Maxwell’s equations and their asymptotic
limit as key steps to ensure the solver to capture the correct Darwin limit, and an efficient treecode
algorithm to further accelerate the computation. The MOL” method we consider in this paper is
also known as transverse MOL, and Rothe’s method in the literature [35, 37]. As the name implies,
discretization is carried out in an orthogonal fashion, where the time variable is first discretized, fol-
lowed by solving the resulting boundary value problems (BVPs) at discrete time levels. The MOLT
approach is advantageous when coupled with the integral method framework since one can employ
many fast summation methods, such as the fast multipole method [23] (FMM) and the treecode [3]
to reduce the computational complexity of evaluation from O(N?) to O(N) or O(N log N). In [7],
the MOLT method was developed for the wave equations, in which the BVP is first split into a series
of one-dimensional BVPs via the alternating direction implicit (ADI) technique, then the proposed
one-dimensional solver is applied to the split BVPs at a price of splitting errors. The resulting
method is A-stable, easy to implement and the computation complexity can be reduced to O(N)
by utilizing the analytical properties of the one-dimensional Green’s function, see [§]. Arbitrary
temporal accuracy is attained by successive convolutions in [6]. However, there are still several
challenges for the extension of this method to Maxwell’s equations. To employ the framework for
the wave equation, first we need the potential formulations of Maxwell’s equations. They also turn
out to be crucial to achieve AP properties for the schemes. Second, the ADI splitting strategy
used in [7] is no longer suitable when the Silver-Miiller boundary condition is imposed. Instead,
we shall invert the three-dimensional Helmholtz operator. Note that there is a huge amount of

literature on integral methods for Maxwell’s equations in the frequency domain, where very fast



algorithms have been developed, such as the FMM [12, B30, 29]. However, the FMM deals with
the oscillating free-space Green’s function. While, in our case, the associated Green’s function
exhibits exponential decay and has been recently incorporated in both FMM [22] and treecode [26]
algorithms. We use the treecode algorithm to speed up our calculation, and similar to the scheme
in [7], the newly proposed scheme is unconditionally stable due to the implicit treatment in the
MOLT framework, which is a highly desirable property in the plasma simulations, since % is at a
much higher frequency than the relevant parameters in the underlying system, such as the plasma
frequency. In [27] 21], the treecode is used to solve the Darwin model in plasma simulations.

The rest of the paper is organized as follows. In Section [2, we introduce the underlying mod-
els including Maxwell’s equations and the Darwin model. In particular, we consider Maxwell’s
equations which are written in terms of potentials. We show that, under a suitable scaling, the
potential forms of Maxwell’s equations are consistent with the Darwin model up to certain orders
of the dimensionless parameter €. In Section [3] we formulate the semi-discrete schemes for solv-
ing the rescaled potential forms of Maxwell’s equations in the MOL” framework. Through formal
asymptotic analysis, we show that the semi-discrete schemes are AP in the sense that the schemes
can capture the Darwin limit as € goes to 0. In Section 4] we propose several fully discrete schemes
and utilize the treecode to speed up the computations. Two numerical examples are presented in
Section [5| to verify the performance of our methods. We end with concluding remarks and future

work in Section [6l

2 The Models

In this section, we review Maxwell’s equations, their potential formulations, and the asymptotic

limit to the Darwin model.



2.1 Maxwell’s Equations and the Potential Formulations

We are interested in Maxwell’s equations defined on Q C R3, which can be written in MKS units

as follows:
1 OE
- B = 2.1
2 Ot +V X MOJa ( a)
0B
— E=0 2.1b
v E=" (2.1¢)
€o
V-B=0, (2.1d)
subject to the continuity equation
dp
— -J=0 2.2
5 TV , (22)

where c is the speed of light, 1o and ¢, are the magnetic permeability and the electric permittivity,
respectively. Note that o and ¢, are related to ¢ according to pge,c? = 1.

We consider two types of boundary conditions: the perfectly conducting boundary condition
Exn=0 onlg, (2.3)
where n is outward unit normal vector on the boundary, and the Silver-Miiller boundary conditions
(E—cBxn)xn=gxn only, (2.4)

where g is a given function. Note that in the case of g = 0, the Silver-Miiller boundary conditions
correspond to the absorbing boundary condition. Here, I'c and I'4 denote the subsets of the
boundary on which the perfect conducting and Silver-Miiller boundary conditions are imposed.
Next, we review several potential formulations of Maxwell’s equations for the purpose of devel-
oping our numerical schemes. First, we consider the potential formulation proposed in [14]. Let
w be the time integral of the electric field, i.e., w(t,x) = fot E(s,x)ds. A useful property of w
is that both the electric and magnetic fields can be represented by such a single vector poten-

tial. Therefore, it is relatively easy to impose boundary conditions. In particular, substituting



w(t,x) = fot E(s,x)ds into (2.1]), we obtain a set of evolution equations for w as follows.

1 0?w

C*QW—FVX(VXW):VXB(O,X)—/,L()J, (25&)
ow\ p

V- (875) = (2.5b)

w(0,x) =0, (2.5¢)

ow(0,x) = E(0,x). (2.5d)

Note that the electric and magnetic fields can be conveniently expressed in terms of w as E(¢,x) =
Oyw(t,x), and B(t,x) = =V xw(t,x)+B(0,x). In other words, one can just solve for w and obtain

E and B by a numerical differentiation procedure. The perfectly conducting boundary condition

(2.3) becomes
wxn=0 onlg, (2.6)

and the Silver-Miiller boundary conditions ([2.4)) become
(Ow+c(Vxw)xn)xn=(cB(0,x) xn+g)xn only. (2.7)

We remark that equations (2.5 also have an equivalent wave formulation:

1 0w “p
@aﬂ‘AW__V<Am“>+VXmQ@_ML (2.8a)
ow p
. — = — 2. b
v (81&) 60’ ( ° )
w(0,x) =0, (2.8¢)

Notice that here the source term involves the time integral of the density function, and the constraint

V- (%—‘;") = % is necessary to enforce the continuity equation. The numerical scheme discussed in

this paper will be based on the wave equation formulation (2.8)). A numerical scheme for ({2.5)) will
be considered in future work.
Besides the vector potential formulation introduced above, we can also consider the more com-

mon scalar ¢ and vector potential A defined by

0A

Here, gauge conditions are important to uniquely determine the potentials v) and A. For example,

with the Lorentz gauge

1oy
VoAt 55 =0, (2.9)
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Maxwell’s equations can be written as a set of wave equations for the potential ¢ and A:

1 5% p
1 5°A

This formulation is especially suited for a particle code, where p and J are linear combinations of

Dirac delta functions. Another common choice is to take the Coulomb gauge

V-A=0. (2.11)

Under this gauge, the evolution equations for the potentials can be written as

Ay =L, (2.12a)
€0
1 0’A 1 o

where the first equation (2.12a]) is simply Poisson’s equation for the scalar potential i, and the
second equation (2.12b)) is a set of wave equations for each component of the vector potential A.
Note that (2.12b)) involves V <%—1f>, which is not simple to compute for a particle code.

As for the boundaries, we have

(VxA)-n=0, (2.13)

from B-n = 0. If A is obtained, the perfectly conducting boundary condition becomes
Vi xn=—-0;Axn onlg¢, (2.14)

from E x n = 0. For the Silver-Miiller conditions, by replacing E and B in (2.4) with 1) and A, we
have

(Vi + 0 A+cVXAxn)xn=-gxn only. (2.15)

Comparing with the potential formulation for w, we can see that it is non-trivial to impose
boundary conditions on ¢ and A in a decoupled manner. Obviously, the coupling between
and A poses implementation challenges. Therefore, in this paper, we only implement the scheme
derived from the w formulation, and leave the implementation of the ¥, A formulation to future
work. However, for completeness, we provide theoretical analysis for both potential formulations

in Sections 2] and Bl



2.2 The Darwin Model

In this subsection, we review the Darwin model while omitting the details of derivation. The
readers are referred to [I7] for more discussions about the model and its well-posedness. Consider
the Helmholtz decomposition, E = E;.. + E,,, where V X E;.. =0 and V - Eg,; = 0, i.e., E;.» and
E,,; refer to the irrotational and solenoidal components of the electric field E, respectively. Then,

we have the following elliptic equations.

Ay =L By =y,
0

€

Ylrg, =i, 0<i<m,

where I'c; denote the connected components of the boundary I'c, and I'c, denotes the outer

boundary. {«a;, i = 0,...m} are solutions of the differential system

Here {x;, i = 0,...m} are the solutions of
AX@' = 0,
Xilrg, = 6ij, 0<j<m,

IXi
Hods.

and «;o depends on the initial value of E;.., and the capacitance coefficients ¢;; = ch-
J

The Darwin model can be derived from Maxwell’s equations by neglecting the transverse com-

ponent 8%;‘” of %—}t'] in . In particular, the magnetic field B satisfies
VXxVxB=pVxJ, V-B=J0,
B-n=B(0,x)'n, (VxB)xn=pypJxn onl¢.
E,, satisfies

VXVXESOZZ—%VXB, V- -E;; =0.

E;y Xxn=0 onlIg, / Es - nds=0 0<17<m.
Ic,

Imposing the Silver-Miiller boundary conditions is more complicated, which was discussed in

[34]. For example, B satisfies

1
(CZVXB—C(“)thn)xn:—an—i—atgxn on I'4,
€0



while E,; satisfies

(0Ego + ¢(V X Egp) Xxn) xn=0;,g xn on 4.
2.3 Asymptotic Analysis of the Models

The goal of this paper is to develop implicit AP Maxwell solvers that can recover the Darwin limit
under appropriate scaling limit. To serve the purpose, we will review the asymptotic analysis of
Maxwell’s equations and the potential formulations, and establish their connection with the Darwin

model in this subsection.
2.3.1 A Scaling

First, we describe a scaling for Maxwell’s equations and apply it to various potential formulations

and the Darwin model. Similar to [34], we let

L = characteristic length
t = characteristic time
v = characteristic speed = L/t
p, J = charge and current densities scaling factors
E, B = electric and magnetic fields scaling factors

and assume that

E J E
- =1 == == 2.16
€0 Lﬁ ) F; ¢, B ¢ ( )
The dimensionless Maxwell’s equations become
E
—ea——i-VxB:J, (2.17a)
ot
0B
— E=0 2.17b
€ +V x , ( )
V-E=p, (2.17¢)
V-B =0, (2.17d)
where € = % The rescaled continuity equation is
dp
— -J=0. 2.18
€ +V (2.18)



The boundary conditions are the same as ([2.3) and (2.4)) if we let g = E. Note that the scaling

considered in this paper is different from the Poiswell model [28] developed for quantum mechanics,

in which —6% + V x B = eJ. Such limit is different from the regime we are considering, and we

do not consider it in this paper.

Under the same scaling (2.16)), the curl-curl formulation for the vector potential w with

becomes

0 0?wW
ot?

ow
v <8t

€

W=t

E(t,x) = oyw(t, x),

B(t,x) = —%v « wit,x) +B(0,x)

or equivalently, the wave equation formulation for w becomes

5 O*w
ot?

€

ow
V- <8t> =P

E(t,x) = ow(t, x),

+V X (Vxw)=¢eVxB(0,x) —eJ,

)=

t
— Aw = —V(/ pds) + eV x B(0,x) — eJ,
0

B(t,x) = —%V x w(t,x) + B(0, x).

The perfectly conducting boundary condition (2.6 scales as

wxn=0 onlg,

and the Silver-Miiller boundary conditions (2.7 scale as

1
(Ow+ —-(Vxw)xn)xn=(B(0,x) xn+g)xn only,
€

if g = E. Similarly, with the scaling

A
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(2.19a)

(2.19D)
(2.19¢)

(2.19d)

(2.20a)

(2.20b)
(2.20¢)

(2.20d)

(2.21)

(2.22)



the evolution equations for the potentials ¢ and A under the Lorentz gauge (2.10) become

2 0%

0?A
2 AA=] 2.23b
oY
A4 e— = 2.2
V-A+e 5 0, (2.23¢)
0A
The evolution equations for ¢ and A under the Coulomb gauge (2.24]) become
— Ay = p, (2.24a)
0%A oY
2 _ _7_ oy
€ o AA =T —eV( 5 ), (2.24b)
V-A=0, (2.24c¢)
E=-Vy - e%—?, B=VxA. (2.24d)
Lastly, the Darwin model scales as
—AY=p, Eu, =-V, (2.25a)
VxVxB=VxJ, V-B=J0, (2.25b)
VXV xEg = —e%V xB, V-Egz; =0, (2.25¢)

while for the boundary conditions, we have

w|pci:ai, with jin(:)cijcgytjzi/gz‘]-v;@dw, 0<i<m onl¢,
B n=B(0,x)'n, (VxB)xn=Jxn onl¢,

E;y xn=0 on I, /F E;p -nds=0 0<1<m,
(VXB—G(%BXI’I)Xn203Xn+68thn on Iy,

(€01 Eso; + (V X Egpp) xn) X n = edyg xn  on I'y4.

2.3.2 Asymptotic Expansion

In this subsection, asymptotic expansions of the models will be performed under the scaling in-
troduced in the previous subsection. Such expansions follow the procedure proposed in [17]. For

simplicity, we apply the expansions to equations in free space without boundary conditions. We
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impose the ansatz that variables can be expanded in terms of the dimensionless parameter ¢,

f=fotefi+efot .

We first perform an asymptotic expansion on the Darwin model (2.25]). Matching the asymptotic

expansion, we obtain

(Ao = po, —Ayy = p1,
(Eirr)o = — Vo, (Eirr)1 = =V,
V xV xByg=V xJy, ) VxVxBy =V xJy,
o) V.Bg =0, 0fe) - V.-B; =0,
V x V x (Ey)o = 0, V x V x (Eg)1 = -5V x By,
V- (Esol)O = 07 Y (Esol)l = 07
([ —AvYp = pg,
(Eirr)k: = _v¢ka
VxVxBy,=VxJ
k S 9. k ks
O(e"), k>2: VB = 0.
V%V x (B =5V x By_1,
V  (Ego1)r = 0.
Similarly, we perform an asymptotic expansion for the potential formulation w in (2.19) and
obtain
V x (V xwg) =0, V x (Vxwp) =V xB(0,x) — Jo,
v(%):p()) v(%>:plv
0(1) . Eo = atWO, O(G) . E1 = 8tW1,
V xwg=0, B():—VXWI—i-B(O,X),
V-Jo =0, %0 +v-J =0,
BQW]C,Q _
ot2 + V X (v X wk*l) - _Jk717
i V- (%) = Pk
O(e"), k>2: Ey = O,wp,
Bi1 = -V X wy,
Opr—1 _

We now verify that the expansion for the potential formulation agrees with the Darwin model up to
second order. For the O(1) terms, V-Eqg = pg, and V x Eg = 0. Hence, there must exist a potential
function vy, such that Eg = —V1)g. Since V- Eqg = pg, we recover —Abg = po. For the O(e) terms,
VxByg=-VxVxw +VxB(0,x)=Jg,and V x Vx E; =0,(V xB(0,x) —Jg) = —0:Jo =
-0V x By, and V - E; = p;. Performing a Helmholtz decomposition on E1 = (Ejp )1 + (Egor)1
recovers the O(e) expansion for the Darwin model. Similar derivation goes through for the wave

formulation (2.20) and is omitted here.
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Consider now the scalar and vector potential formulations. An asymptotic expansion with the

Lorentz gauge (2.23) gives

—Avo = po, — A1 = pr,
*AAOZJQ, _AAl :Jlu
V-Ay=0, VA + % =,
O(l) V'J0:07 O(E) %—FV'Jl:O,
Eo = =V, E| = Vi — 250
(. Bo =V x Ay, B, =V xA;
( 2
Uz Agy = py,
Phia  AAL =T
8t2 aw k — ks
k—1 __
O(*), k> 2: g'AkWL ar =0,
pggl + V- -J, =0,
Ej, = — Vi, — 5L,
Bk =V x Ak

This expansion agrees with the Darwin model up to O(e) term if we take (E;)o = Eo, (Eso1)o = 0,

(Eirr)1 = =V, and (Egy)1 = —%. Observe
VXBO:VXVXAOZV(V'A())—AAQ:J().
Hence,
VxVxByg=V xJy,

and
V-BoZV'(VXA()):O
agree with the magneto static model on first order. However, on the first order, the Darwin

equations are not consistent with the continuity equation.

Applying our procedure with the Coulomb gauge

—Ao = po, —Av1 = p1,
—AAg = Jo, —AA; =T, - V(%)
V.Ay=0, V.A =0,
o) V-Jp=0, 0 %0 4 v .3, =0,
Eq = — Vi), E; = -V — 252,
\B():VXA(), B, =V x Ay,
—QA% = Pk
Thi2  AA =3 - V(2%
VoA, =0
O("), k> 2: : ’
(6 ) — dpgt_l + v . Jk — ,
OA,_
Ep = -V — =5,
L Bk—VXAk




We can see that for O(1) terms, the model is the same as the Lorentz gauge. For the O(e) terms, a
simple check yields that it still agrees with the Darwin model if we take (E;-)o = Eo, (Eso)o = 0,

(Eirr)l = —le, (Esol)l — _%
3 Semi-discrete Schemes

In this section, we extend the implicit solver for the wave equation recently developed in [7] to
Maxwell’s equations. We focus on the semi-discrete scheme in the MOL”T framework, i.e., we only

discretize the time variable and leave the space variable continuous.
3.1 Method of Lines Transpose for Wave Equations

The key idea of the proposed scheme is to utilize MOL” which yields a semi-discrete system that
can be solved using an integral formulation. To illustrate the MOL” approach, consider a scalar
wave equation in R3,

0%u

2
ﬁ_k Au:f,

subject to some properly imposed boundary conditions, where u is the unknown function and & is
a positive constant representing the wave speed.
Applying a second order finite difference approximation to us and evaluating Awu at time level

n + 1 gives,
fn+1
TR

2 n+1 1 (_5un + 4un—1 . un—2)

n+1
A = e = s

+1

with a one step truncation error of O(6t3), where 6t denotes the time step. u"*! can now be

represented in an integral formulation.

5y — 4un—1 4 un—2 fn+1
n+1 _
u"T(x) = /Q < 12572 + 2 ) G(xly) dSy

ountl ng1 0G
_ 729 ( oy Gxly) —u any(x]y)) dsy, x€Q, (3.1)

where G(x|y), the free space Green’s function for the modified Helmholtz operator £(-) = (A —

1 \@r
G(xly) = e~ exp <_k§t>

in R3. Here, r = |x — y|. Note that, different from the fast oscillatory Green’s function for

az) (), is

the Helmholtz operator, G(x|y) exhibits exponential decay with respect to r, leading to efficient

14



computation of the convolution integrals. Equation (3.1]) is known as a second order dissipative
scheme, which has been proposed and analyzed in [7].
Another purely dispersive scheme with second order temporal accuracy can simply be obtained

by centering the term Awu in time via
n 1 n+1 n—1
Au" ~ §A(u +u") .

The solution of u™! 4+ u"~! is then given as,

n n— 4u™ n—1 4 fntl
(W ") (x) = —/Q <k26t2 o k2f ) G(x|y) dQy (3.2)
8(U”+1 + un_l) it 1. 0G

The unknown function at time level t"*1 appearing in the boundary integrals in equations (3.1
and are then solved by imposing the boundary conditions, which will be discussed in detail in
Section . Similar to [9] on particle-based methods for the Vlasov-Poisson system, we will evaluate
the volumetric and boundary integrals using a midpoint approximation. The discrete forms of
and can be interpreted as a collection of IV interacting point charges. The resulting
summations can be computed using a fast summation algorithm, such as the treecode algorithm to
be described in Section 4. Thanks to the implicit treatment in the MOL” approach, the proposed
method is able to take time steps much larger than an explicit integrator.

3.2 Method of Lines Transpose for Maxwell’s Equations in Potential Formula-
tion

Using similar ideas, we can apply the MOL” approach to Maxwell’s equations formulated using the

potential formulation w. Applying the second order dissipative MOL” approximation to ,

the integral solution for w is given by

n 5w — 4wl 4 wn—2 n
W +1(x) = —/Q (62 ( 5t2 > +T +1> G(X‘y) de (33)
ow L e
- f (T —w S ) ) sy, xe 0

15



" dmr

where T" = —V(fgn pds) + eV x BY — eJ", G(x]y) = — 1% exp (—%) with r = |x — y|. If we

apply the second order dispersive scheme, the solution becomes

Aw™
(W' w (%) = —/Q <52 < (;:2 > + 1l 4 Tn+1> G(x|y) dQy (3.4)
a(W”'H +Wn_1) il 1 8G

Then, by making use of the relation between potential w and E, B, we can further obtain the

approximations of E and B via

3/2wntl — 2w + w12

En+1 —
5t ’

Bn+1 _ _lv % Wn+1 + BO.
€

Note that is a second order accurate scheme in time for E, and the temporal accuracy for B is the

same as wW.

Remark 3.1. We mention a subtle point here for enforcing the additional constraint V - ( ) = p.
This is the key for charge continuity and also necessary to uniquely determine the solution as shown
in Section 4l We find that the best way is to enforce this relation using the same temporal scheme

for E, i.e. we require

3/2wntl — ow™ + 1 /2w 1

In computations, we will only enforce (3.5)) on the boundaries instead of the whole domain. Such
practice is justified if the discrete charge and current densities p,j satisfy the continuity equation
(which is true if they are both zero). Otherwise, a divergence cleaning procedure is needed, and we

will discuss the detailed procedure in our future work.

Similarly, we can obtain the integral formulations for potential ¢ and A with the Lorentz gauge

and Coulomb gauge. For example, the second order dissipative scheme with the Lorentz gauge

writes
5" — Aqp—1 n—2
1/1n+1( ) = —/ ( ( Y ¢5t2 + 9 > + pn+1> G(xly) dQy, (3.6)
oyt oG
7{ ( (U (xly) - @Z)n+18n(x|y)> dsy, x€,
y
n n—1 n—2
A" (x / < <5A 4A(5752 + A > + Jn+1> G(x|y) dQy, (3.7)
Q
OA™ oG
?gg < (xly) - An+18ny(x|y)> dsy, x€Q.
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The second order dissipative scheme with the Coulomb gauge writes

i oG
P (x) = — /Qp"“GO(x|y)de - fég < g’ny Go(xly) — zp"“ano(x|y)> dsy, x€Q, (3.8)

y
AM(x) = — /Q <€2 <5A" —4An1 4 A”2> Loy <3/2w"+1 — 29" + zb“/?)) Gxly) do,

at? ot
(3.9)
oA oG
- G(x[y) — A" —— d Q
# (2 Gty — A T ) ) sy, xe 0
where Go(x|y) = —ﬁr denotes the Green’s function associated with the Laplace operator A. Once

1 and A are obtained, we can also advance E and B through

3/2A"TL —2A" 4 ANTL/2
€

Bt = v x A"
5t ’

En+1 _ _v¢n+1 .

Again, we require discrete gauge conditions, such as

n+1 _ n n—1
v-An+1+e<3/2¢ 20"+ 1/20 );0,

ot

for the Lorentz gauge, and V - A™ = 0 for the Coulomb gauge.
3.3 Formal Asymptotic Analysis of the Semi-discrete Schemes

We now verify that the semi-discrete schemes in Section are AP. In particular, we fix the time
step size 0t, and let € — 0.

We first focus on schemes and . For simplicity, we neglect the boundary terms, but
in principle, the argument holds when we include the boundary integrals. Expanding the Green’s

function G(x|y) with respect to €, we get

1 V2¢[x —y]|
G =— 1- .
() = gL~ ),
Therefore, Go(x|y) = —m, Gi(xly) = F\/gt? ---. Note that, Go(x]y) is the Green’s function

associated with the Laplace operator. For scheme ([3.3), asymptotic matching gives

o) Wil == [ v (/0

Ofe): witl(x) = —/Q (v (/OW p1d8> -V xB® +Jg+1> Go(x|y) dQy
A

tn+1

pods) GO (x\y) de

pods> G1(x]y) dQy.
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Hence,

tn+1 tn+1
—AwWIT =V (/ pgdS) , —Awtl =V (/ p1d8> ~V x B+ J0
0 0

We can also derive
3/2witt — 2wl 4 1/2w) !

ETL+1
0 St ’
prtl _ 3/2witt —owh 4 1/2wh !
! St ’
V x ng 0,
Bt = -V x wit! + B,

Assume condition (3.5]) is satisfied, then

32wt — 2wl 4+ 1/2w) ! N
v ( / wE + 12w )—po“, (3.10)

3/2witt —owh 4 1/2wh !

ot
This implies

V- E6L+1 _ p61+1, AV E?{Hrl _ P?+1.

Since V x wgJrl = 0, this gives V x EB‘H = 0, and hence there must exist 1/16‘“ such that

n+1 n+1 n+1l _ n+1 n+1
A Py, EyT =-Vyy . For By",

VxBi =-VxVxwit+VvxB°

=—VV. -wit + Aw?t! 4V x B?
tn+1

=—-VV- w4+ V/O prds + Jgt! (3.12)

Note that (3.11)) is the second order backward differentiation formulae for equation
8tv * W1 = p1,
whose the exact solution is V - wy(t) = f(f p1ds due to the zero initial condition. Hence,
tn+l
v/ prds — VV - witt = O(6t%),
0
and we obtain
tn+1

VxBytt =35t —vv w4+ v/ prds = Jgtt + O(6t%).
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For E’f"'l,

n+1 n n—1
VXVXE?H:VXVX(B/ZW 2;‘;1+1/2W1 >

_ov. (3/2w”+1 — 2wl + 1/2w§‘1> A <3/2w”+1 —2wh + 1/2w]~ )

ot ot

1 tn+1 tn tnfl
=Vpitt — gv <3/2/0 prds — 2/0 p1ds + 1/2/0 p1d3>

B <3/2Jg+1 —2J7 + 1/2.1’31)
ot '

Substituting (3.12)) into the above equation, we obtain

n+1l n n—1 n+1
VXV E =V x (3/2B0 220 +1/2B! ) et (3/2w 2;\;1 +1/2wh >

_ o« (3/233+1 - 2By + 1/233—1)

ot
= -0,V x Bjtt 4+ 0(6t%)

due to (3.11). Therefore, the scheme is a consistent discretization for the Darwin model (2.25))

taking into account V - E?H = p?“ and the Helmholtz decomposition for E;. A similar derivation

holds for the dispersive scheme (3.4) and is omitted. In summary, we obtain the following theorem.

Theorem 3.2. If equation (3.5) is satisfied, the implicit schemes (3.3)), (3.4) or their dispersive
versions will reduce to schemes for the Darwin equation in the limit as € — 0. Therefore, the

schemes are AP.

Similarly, we can repeat the procedure for schemes (3.6)-(3.7)), which yields
0 w0 = [ = 5 3)Goxly) 0

ARl (x) = /Q I (y)Go(x]y) d9

0©: W)= /Q L) Golxly) — oL (y) G (xly) A2

AT (x) = /Q I () Golxly) — I (y) G (xly) dy
Hence,

n+1 n+1 n+1 n+1
_Aw A?b 1

) )
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and

1 1 1 1
—AAH = Jp —AATT = g0t

We can also obtain
Eg—i-l — _vwg-‘rl’

3/2A0T —2A7 +1/2A771
at ’

Bt =V x AT,

E?11+1 _ —Vl/J?Jrl _

Bt =V x AT

To show that the scheme is consistent with the Darwin model, observe

n+1_ n n—1
VXVXE?H:—VxVx(B/zAO 220+1/2A0 )

_ o« <3/2Bg+1 —2B? + 1/2Bg—1>
B St

=— 9,V x Bl + O(5t?).

Under the assumption that the following discrete version of the Lorentz gauge condition ([2.23c)) is

satisfied, i.e.,

3/29"tt —29n + 1 /29" 1
V-A”+1+e</¢ ;/’t /2 >=0, (3.13)
then
n+1l n n—1
V-Aj™ =0 and V-A’f+1+3/2% 2;i°+1/2¢0 = 0.
For B6L+1,

VxBytl =V xVx AT =VvVv. Al — AAPT = g0t

. 1
Similarly, for B},

200! — 248 + 1/245 7!
Vx B =V x V x AT = vV ATl AATTL = v <3/ it g’;* /24 >+J’{‘+1.

Hence, we obtain

VxVxBitl=vx I, vxvxBit!l=vxJrh

n+1_ n n—1
If (Eirr)g+1 _ Eg—H’ (En+1)0 =0, (En+1)1 _ _wall—i-l’ and (En—i-l)l _ _ 3/2A4 Z?tO'H/QAo ,

sol wrr sol

n+l_ n n—1
then V- (E*t1);, = -V . (3/2A0 2$0+1/2A0 ) = 0, because of the gauge condition (3.13)).

sol
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Therefore, we have shown that the semi-discrete scheme is a consistent discretization of the Darwin
model up to second order. The proof for the dispersive scheme is similar and is omitted.

For the dissipative scheme with the Coulomb gauge (3.8)-(3.9)), we first obtain

n+l _ n+l n+l _ n+l1
—A% =Py > =AY = piT,

3/201! — 208 + w8‘1/2>
ot ’

—AAGTT =30 —AATT =gt -V (

By performing a similar asymptotic analysis, we can verify that, if the gauge condition V- A™ =0
holds, or V- Aj = 0 and V - A} = 0, then the scheme is consistent with the Darwin model up to
second order. Again, we can prove in a similar way that the dispersive scheme is also a consistent

discretization for the Darwin model. Therefore, we arrive at the following theorem.

Theorem 3.3. If the discrete gauge conditions are satisfied, the implicit dissipative schemes (3.6))-
(3.7) with the Lorentz gauge and scheme (3.8)-(3.9) with the Coulomb gauge or their dispersive
versions will reduce to schemes for the Darwin model in the limit ¢ — 0. Therefore, the schemes

are AP.

4 Fully Discrete Schemes

In this section, we formulate the fully discrete schemes based on semi-discrete schemes (3.3) and

(3.4) for the vector potential w.
4.1 The Treecode Algorithm

The treecode algorithm is a fast summation algorithm, which is useful for approximating the volume
integrals in and . First, the domain €2 is partitioned into a set of small cells €2;, i =
1,..., N. The solution w is discretized by the associated macro particles with locations at the
centers of each cell, which are denoted by x;, i =1,---, N. Assume that the source T is known at
the locations of particles, which is denoted by T; at x;. Then, the particular solution is given by

the convolution of the source T with the free space Green’s function

B(x) = /Q T(y) G(x[y)dS.

The integral is discretized using the mid-point rule:

O(x) = ) _wiTiG(x]y:), (4.1)
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where w; is the quadrature weight. ® at the location of a particle x; should be calculated by
O(x;) = aT; + Y wiTG(x;lyi), (4.2)
1#]
where a = fQj G(x;]y)dQ. Note that even though the Green’s function is singular when y ap-
proaches x;, it is still integrable. In the simulation, integral a is computed using a Gaussian
quadrature rule based on the spherical coordinates. Higher order accuracy can be achieved by
using a higher order quadrature formula.
Equation can be computed via direct summation, which leads to computational cost on
the order of O(N?). In order to speed up the calculation, a treecode [26] can be adopted. Below,

we summarize the treecode algorithm for computing the sum

¢j = Z%’G(Xj\xi)a (4.3)
i#]

where ¢; denotes the charge associated with the particle x;. In a treecode, particles are divided into a
hierarchy of clusters. Based on the tree structure, particle-particle interactions with computational
complexity of O(N?) are replaced by particle-cluster interactions with complexity of O(N log N).
Once the hierarchical clusters are formed, the treecode efficiently computes the sum . For a
cluster ¢ with center x., the contribution from ¢ can be approximated using a high-dimensional

Taylor expansion.

D aGxjlxi) = Y GiGxglxe + (xi — %))

X;EC X;€cC
"1
~ Z qi Z Ea;fG(xﬂxc)(xi —x.)k
x;€c  |k|=0
"1
= Z Ea;,(G(XﬂXC) Z gi(xi — x0)¥
k|=0 """ x;€c
P
= ) af(xj, x)my, (4.4)
[k|=0

where p is the order of approximation, a¥ (x;,%.) are the Taylor coefficients of the Green’s function,
and mX are the cluster moments associated with the cluster c¢. Note that the moments are indepen-
dent of the particle x; and the Taylor coefficients are independent of the number of particles inside

the cluster, leading to the speedup of the treecode. Another attractive aspect of the treecode is
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that the Taylor coefficients can be computed via a recurrence relation, which significantly reduces
computational cost. See [26] for a detailed discussion.

We note that the error of the approximation is O((r¢/R)?), where r. = maxy,cc |Xi — X¢|
denotes the radius of the cluster and R = |x; — x| denotes particle-cluster distance. In particular,
if r./R is small, i.e., the cluster c¢ is considered as a far-field with respect to particle x;, then the
Taylor expansion can generate a good approximation. Otherwise, if r./R is large, then the
error becomes larger accordingly, and hence the Taylor expansion is inefficient. In the treecode,
¢; is computed using the recursive divide-conquer strategy. The standard multiple acceptance
criterion (MAC)

,
<<
7S

is adopted to determine if cluster c is a far-field, where 6 is a user-specified parameter. The Taylor
expansion is applied only if the MAC is satisfied, otherwise the treecode will recursively consider
the interactions between particle x; and the children of cluster c. If c is a leaf of the tree structure,
i.e., ¢ has no children, then such a cluster is identified as a near-field and the direct summation is
applied. In summary, the sum calculated via the treecode reads [20]
Z Z ¢;G(x|x;) + Z Z (x5,%Xc)m lc‘ (4.5)
cEN; X;€cC cEF; |k|=0
where N; and F; are two sets of clusters considered as near-field and far-field associated with
particle x;, respectively. In the formulation of the proposed scheme, we also need to compute the
derivatives of ¢, which can be similarly obtained through the above strategy, see [20]. For example,

a high order mixed partial derivative can be calculated via

0yd; = > qidkG(x;]x;)

i#j

\1| k+ 1! gkt k
~ YD adkGxilxi) + Y Z (%, Xc)mE. (4.6)
cEN; X;€cC c€F; [k|=0

4.2 Formulations of Fully Discrete Schemes

In this subsection, we formulate the fully discrete schemes for potential w with both direct and
indirect approaches. These are common approaches in boundary integral methods, and we refer the
readers to [2], [36] for more details. In particular, the direct method is based on the reformulation

of the solution to (3.3) or (3.4, while the indirect method is based on an ansatz consisting of
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a single layer potential. We will see that both methods can handle problems with the perfectly
conducting boundary conditions, but the indirect method is more convenient when dealing with
the Silver-Miiller boundary conditions. We choose to illustrate the main idea of the algorithm for

the cubic domain [0, 1]3, but the idea can also be applied to complex geometries.
4.2.1 Direct Approach for a Perfectly Conducting Cube

We start with a simple case in which the cubic domain has six perfectly conduction faces, and p
and J are 0. Due to symmetry, we only consider the first component of w denoted by w;. Since
the boundary is perfectly conducting, i.e., w x n = 0, we can formulate a decoupled boundary
condition for wy. On the four boundary faces o =0, zo = 1, 3 =0, and x3 = 1, we have w; = 0.
In other words, on those four faces, we have the homogeneous Dirichlet boundary conditions. For
the other two faces, the continuity equation translates to the divergence-free constraint on
w, i.e., Oy, w1 + Og,w2 + Oz,ws = 0 when p = 0. Moreover, since w X n = 0, we have wy = 0 and
ws = 0. Thus, 0, w; = 0 on the boundary faces 1 = 0 and x; = 1. In other words, w; satisfies the
homogeneous Neumann boundary condition % = 0 on faces z1 = 0 and 1 = 1. Now we consider

the second order dissipative scheme (3.3)) for the w; component, i.e.,

n Swf — 4wt w2
Wit (x) = — /962 < L 51752 1 ) G(x|y)dQy

n+1
—f (‘9“’1 G(x]y) — w?ﬂgG(xy)) dsy, x€Q (4.7)
o0

Ony ny

We denote volume integral in the formulation above as ¢1(x). This term can be computed by the
treecode algorithm described in the previous subsection. The unknown boundary data appearing
in are solved through the boundary integral equation. In particular, we denote the boundary
faces with the homogeneous Dirichlet boundary condition by I'p and the boundary faces with
homogeneous Neumann boundary condition by I'y. We further define the unknown Neumann
trace data on I'p by 7; and the unknown Dirichlet trace data on I'y by 79, then can be

rewritten as

" dwt! i1 OG
a0 =~ 0160~ § (2 —Glxiy) —ut™ 5 xly) ) dsy
y y

—— 00~ [ nGEs + [ )i s, xe (49

I'n Y
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where the homogeneous boundary conditions have been imposed. Let x approach the boundary,

we obtain the following boundary integral equations for v and ~s:

0= d(x) - / 7 (¥)Glxly)dsy + / vz<y>§i<x|y>dsy, x € Tp, (4.9)
%’m(X) =—¢1(x) — /rD 1 (y)G(x|y)dsy + /FN w(y)gnGy(XIY)dSw x €'y, (4.10)

where 2 in is divided by 2 to account for the singular nature of double layer potential. The
boundary integral equations and are then solved by a collocation method [9]. T'p and
'y are first divided into a set of small panels I';,, jp = 1,---, Mp and I';,, jy = 1,---, My,
respectively. The centers of panel I'j, and panel I';, are denoted by x;, and x;, , respectively.
The unknown boundary data v; and 79 are assumed to be constant along each panel, which are

denoted by 71, and 72 j, on panel I';,, and I';

jn» respectively. In order to solve unknown boundary

data 71, and 72, the boundary integral equation is discretized as

il b oG
d1(xip) == > 71,jD/F G(xiply)dsy + Y 72,jN/F on. Xiply)dsy, ip=1,---, Mp,
JiD IN y

Jjp=1 inN=1
(4.11)
ke 1 iy oG
¢1(XiN) = Z 71,]'[)/ G(X1N|Y)d5y - 572,2’]\7 + Z 72,]'1\1/ aT(XiNb,)dSya ZN = 1) Tty MN
jp=1 Tip =1 Tin Yy
(4.12)

All the surface integrals in (4.11)) and (4.12]) are approximated by a Gaussian quadrature rule. In

2" order of accuracy. At last, we

the simulations, we use a tensor-product quadrature rule with 1
obtain a linear system for v ;, and <2 j, , which can be solved by GMRES. Numerical experiments
show that the linear system is well-conditioned: if the error tolerance is set as 10~'4, GMRES will
only take 10-20 iterations to converge. The procedure for the dispersive scheme is similar and

omitted.

After the potential w"t! is obtained, as mentioned in Section |3 we can advance the electric

field by letting E"t! = 3/ 2Wn+172{;’: "Hw'T2  The magnetic field can be obtained by B"t! =
—%V x w4 BY. Two methods can be used to apply the Vx operator. We can reconstruct a
local polynomial interpolating w”*!, then apply the V x operator to the reconstructed polynomial.
In this case, the divergence-free property is attained in a discrete sense. Or we can apply the

1

V x operator to the integral representation of w”*!, i.e., the operator is applied to the Green’s

function directly. Hence B"*! is given by an integral formulation and the divergence-free property
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is attained in a point-wise sense. For example, consider the second order dissipative scheme, for

which the numerical solution can be written as an integral representation (4.8), we obtain

Bn+1(x) :BO—|—/ €

Q

5w’ — 4wn71 + wn72
ot2

> Vx x G(x|y)dQy (4.13)

n+1
+ 1}[ (({)WVX x G(x]y) — w"TV, x aG(x[y)) dsy.
N

€ Ony Ony
Note that even though the above formulation gives an explicit representation of B, it is still subject
to some numerical errors when evaluating the convolution integrals, which may result in some
divergence errors at the discrete level. In the simulations, we adopt the first method to solve for B.
So far, we have assumed that p = 0. The case of p # 0 can be treated similarly. Note that

w should satisfy the continuity equation. Recall that, in the MOLT framework, such a constraint

becomes
v. 3/2wntl —ow™ 4+ 1/2wn ! _
5t ’
for the dissipative scheme, or equivalently
3 n+1 n+1 n 1 n—1
§V-w =0tp"" +2V-w —§V-w (4.14)

where p"*! is given. We again take w; as an example. With the perfectly conducting boundary
condition, w; still satisfies the homogeneous Dirichlet boundary condition on faces zo = 0, 2o =1,
x3 = 0, and x3 = 1. The boundary conditions on faces ;1 = 0 and z1 = 1 can be obtained by
taking advantage of the divergence constraint . Since wy and w3 are both 0 on face 1 = 0
and x; = 1, constraint becomes

3 1 _
5833110?“ =6t p" T 4 205, WY — ~ 0w,

2
or
Owi™l _ 25 mir y 40uwf  10wi”)
On 3 30n 3 On ’

which is a non-homogeneous Neumann boundary condition on 21 = 0 and 1 = 1. The procedure
can be extended similarly to wg and ws.

For complex geometries, we again assume that the boundary is discretized by a set of panels I';.
The unit outward normal vector n; = (n; 1, nj2, n;3) along panel I'; is a constant. A boundary

panel I'; is assumed to be perfectly conducting, i.e., w x n; =0 on I';, or
’u)g’rlj73 - wgnjg = O, ’u)gnj71 - wlnm = 0, ’wlnjg - 'LUQle,l =0. (4.15)
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For simplicity, we assume the density p = 0. Hence the continuity equation will impose a divergence-

free constraint on w, i.e., Oy, w1 + O, w2 + Og;wz = 0. If n; 1 = 0, n;2 and n;3 cannot be both 0,

hence, w; = 0 on panel I'; from (4.15), which is a homogeneous Dirichlet boundary condition. If

nj1 # 0, (4.15) gives wy = %wl and w3 = Z%wl. We further take partial derivatives, and obtain

Oz, Wa = Zj—fﬁmwl and Oy w3 = Zj—f?amgwl, where we have used the fact that n; is constant along
7 J»

each panel. The divergence-free constraint gives

n;o n;s
75 7 _
Oz, w1 + Oz, W1 + Oz w1 =0,
n;1 n;1
J7 .77
or equivalently,
owy
78 = 07
n;

which is a homogeneous Neumann boundary condition for w;. The procedure can also be applied to
wp and w3. In summary, on a perfectly conducting panel I';, if n; ;. = 0, k = 1, 2, 3, then wy, satisfies
the homogeneous Dirchlet boundary condition, otherwise, the homogeneous Neumann boundary
condition holds true. If p # 0, we will get an inhomogeneous Neumann boundary condition for the

case of n; ;. # 0 instead.
4.2.2 Indirect Approaches for a Perfectly Conducting Cube

Now we formulate two indirect approaches for a perfectly conducting cube. As an alternative to

the representation formula (3.3)), we can assume w satisfies the following integral formulation

Fwh — 4wn 1 4 wn2
W) == [ (& ) ) Gy an, + f 016Gl (110
S= 000+ § )Gy, xeq (4.17)

where ®(x) denotes the particular solution of the modified Helmholtz equation and ~ is an unknown
vector density function associated with the single layer potential. We now propose two approaches
to solve for «. The first one is based on the fact that each component of w should satisfy either a
Dirichlet or a Neumann boundary condition on each of the discrete boundary panels. Note that we
utilized this fact when formulating the direct method above. We take the first component w; as

an example. The discretization of the boundary and the corresponding notations are the same as

the direct method. Similar to (4.9)-(4.10f), the unknown function ~ satisfies the following integral
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equations:

¢1(X) :AV1(y)G(X|y)dsy, X & FD7 (418)
agil(:) :%71(") +/F’71(Y)§i(><\>’)d8y> x €Ty, (4.19)

where v, is divided by 2 is to account for the singularity of the normal derivative of the single layer

potential. The corresponding discretization of the integral equations are given by

MD MN
G100i0) =3 [ Gxiply)dsy + Y gy [ Glxiply)dsy, ip =1, Mp, (420
j=1 iD Jn=1 Lin
M M
¢1(xiN> 1 = ~

Jjp=1 Jjn=1

(4.21)
where, ¢1(x;,) and %:V) are computed via the treecode. Similar to the direct method, the
obtained linear system is well-conditioned. Once w is solved, the electric field E and magnetic field
B can be obtained through the same procedure as described for the direct method.

The second approach is designed to solve for the three components of w at the same time.
Starting with the assumption (4.16f), let x approach boundary and take the cross-product with ny
to obtain

0=w""(x) x n, = —®(x) x ny —i—j{ Y(y)G(x]y) x nydsy, x€Tl¢, (4.22)
oN
where the perfectly conducting boundary condition has been used. Note that v is not uniquely
determined by (4.22); we still need to enforce other constraint to uniquely solve for v. We again
resort to the divergence-free constraint for the case p = 0. The case of p # 0 is similar and omitted.
Apply the divergence operator to (4.16|) and let x approach boundary, we have

0=V w'(x) = Vi ®(x) +7§
0N

1
Y(y) - VxG(x|y)dsy + iv(x) ‘ny, X € 01, (4.23)
where the integral has to be understood as a Cauchy principal value. A method proposed in [24] can
be used to approximate the singular integral. The extra term %v(x) -ny accounts for the singularity
of the derivatives of the single layer potential. Combining (4.22)) and (4.23) gives an integral

equation for «; a collocation method can be formulated for solving the integral equations. The

numerical evidence shows that the obtained linear system is still well-conditioned. The drawback
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of this approach is the need to solve a linear system with three times larger dimensions, however,
this approach can be easily extended to the Silver-Miiller boundary conditions as to be discussed

in the next subsection.
4.2.3 Indirect Approach for the Silver-Miiller Boundary Conditions

The Silver-Miiller boundary conditions can be treated as follows in a similar fashion to the perfectly
conducting boundary condition for the indirect approach. In the same spirit of the MOL” method,

we first discretize the time variable, e.g., applying a second order finite difference discretization to

(2.22), we obtain

(3/2w"+1 — 2w+ 1/2wn!
St

—|—1(wa"+1 Xn)) xn=(B(0,x) xn+g)xn, (4.24)
€

or

(gwn"'1 + o (V x wtl % n)> Xn= <5tB(O,X) Xxn+g+2w" — ;w”_1> X n, (4.25)
€

=R x n,

where R is known and can be treated as a source term. Again, we start with the ansatz (4.16)).

Since a single layer potential is continuous across the boundary, we have

w' T (x) = —®(x) +/ Y(y)G(x|y)dsy, xe€Tl4. (4.26)
o0

Then we apply the Vx X operator to (4.16]), take the cross-product with ny, and let x approach

the boundary. This gives

1
Vx X W'TH(x) x ny = =V x &(x) x ny + 57(}() + Vx x (7(y)G(x]y)) x nxdsy

9]
oG

= —Vx X ®(x) X nx + %V(X) + ]ém v(y)aTx(XIY) —7(y) nxVxG(x[y)dsy, x€Tla, (4.27)

where the extra term %'y(x) is due to the singularity of the derivative of the single layer potential.

Again the integral exists as a Cauchy principal value. Substituting (4.26)) and (4.27) into (4.25)

gives

(;@(x) + ﬁvx X ®(x) X nx + R) X Ny
€

~ (5604 ¢ (310160 + % (1) 5 (xly) = 1(3) 1TuGxy) ) ) sy ) e x €T
(4.28)
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Similar to the case of the perfectly conducting boundary condition, cannot uniquely deter-
mine v; the continuity equation on the boundary I'4, i.e. (4.23)) should be enforced for the case
when p = 0. We remark that it is not trivial to formulate a proper boundary integral equation
in the setting of the direct method or the first approach of the indirect method, when the Silver-
Miiller boundary condition is considered. Also note that, unlike the perfectly conducting boundary
condition, the time derivative J;w appears in the Silver-Miiller boundary condition, which makes
it difficult to formulate a dispersive scheme. For simplicity, we only consider the dissipative scheme
for the problem with the Silver-Miiller boundary condition.

Lastly, when both types of boundary conditions are imposed, we have

d(x) X ny = 7{ 7(y)G(x|y) x nxdsy, xe€Tl¢, (4.29)
o0
(g@(x) + ﬁvx X ®(x) X ng + R) X Ny
€

ot 3 ot oG
(5009 + § S90IGee) + T (1) (cly) 13 maVaGlxly) ) dsy ) X ma x € T,
2¢ o0 2 € 8nx
(4.30)
together with the divergence constraint on w (4.23). The resulting system can be computed by

collocation methods and linear solvers. This completes the description of our algorithms.
4.2.4 Remarks on the Formulations with ¢y and A

At the end of this section, we remark on the fully discrete schemes in terms of potential ) and A.
Since we can not obtain decoupled boundary conditions for 1) and A, it is impossible to formulate
a direct approach; the only practical way is to adopt the indirect approach. Moreover, similar to
w, in order to uniquely determine 1) and A, we need to enforce the gauge condition in the integral
formulations, which will result in a linear system with dimension one third larger than that from
the formulation of w. Therefore, the use of w seems more efficient than ¢ and A. On the other
hand, the time integral V( fg pds) in the formulation of w may lead to potential difficulty for plasma

simulations.

5 Numerical Examples

In this section, we consider two numerical examples to demonstrate the performance of the proposed
schemes. The rescaled Maxwell’s equations ([2.17) are solved numerically on a unit cube [0, 1] with

different initial and boundary conditions.
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Problem 1. The first test case [10] has perfectly conducting boundaries on all six faces. The
charge and current densities are set to be zero. The initial conditions for E and B are given by

cos(mzy) sin(mxe) sin(—27x3)
E(0,x) = | sin(mzy)cos(mze)sin(—27z3) |, B(0,x)=0.
sin(mzy ) sin(rze) cos(—2mx3)

Note that both E and B satisfy the divergence-free condition initially. The exact solution is

E(t,x) = cos(wt)E(0, x),

— sin(mwzy ) cos(mxe) cos(—2mxs)
B(t,x) = \/gsin(wt) cos(mzy ) sin(mxe) cos(—2mx3) ,

0

where w = @. Recall that w(t,x) = fot E(s,x)dt. The exact solution for w can be obtained by

integrating E in time:

w(t,x) = %sin(wt)E(O,X).

Problem 2. The second test case [1] is a cubic waveguide, in which a TE;(y mode propagates
in the xs-direction. The charge and current densities are set to be zero. The analytical expression

of the TE field is given by

sin(mzy) sin(rrs — wt) 1 0
E(t,x) = 0 , B(t,x) = — | sin(mze)sin(rzs —wt) |,
0 V2 cos(mxa) cos(mas — wt)
where w = @ The exact expression for w can be obtained by integrating E(¢) in time
L sin(mrzs)(cos(rzg — wt) — cos(mxs))
w(t,x) = 0

0

We prescribe the perfectly conducting boundary condition on the four side faces (1 = 0, z1 = 1,
x9 = 0, and z9 = 1), while at the bottom (z3 = 0) and the top (z3 = 1), the Silver-Miiller boundary

conditions are imposed, i.e.,
1 .
<8tw+ -V X w X n> xn=(B(0,x) xn+g)xn, with
€
( V242
g= 2
V2 -2
2

sin(mxy) sin(wt), 0, 0)1 on a3 =0,

sin(rxz) sin(wt), 0, 0)7 on a3 =1.

(_
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Problem 3. The last test case considered in this paper is a simple case of the problem 2 studied
in [I0]. The computational domain is still a unit cube, but a current bar with zero thickness is
posed across the domain in the zs-direction. We let J = (0,0,6(x1 — 1/2)d(z2 — 1/2) cos(27t))
and p = 0. We prescribe the absorbing Silver-Miiller boundary conditions on the four side faces
(1 =0, 21 =1, 29 =0, and x2 = 1), i.e., we let g = 0, while at the bottom (xz3 = 0) and the top
(3 = 1), the perfectly conducting boundary condition is imposed. We set zero initial conditions

for both E and B, and hence w is set to be zero.

In our simulations, we consider both the direct and indirect approaches. For simplicity, we
use uniformly distributed particles in the unit cube and let h be the mesh size in one coordinate
direction. However, the scheme can also accommodate non-uniformly distributed particles. The
time step 0t is chosen as §t = CFL - h. Note that for the test cases, choosing a small dimensionless
parameter € is equivalent to choosing a large CFL number, since the frequency w = O(%) Therefore,
we set € = 1 in all simulations and test the schemes with large CFL numbers. For the treecode
algorithm, the MAC parameter 6 is set to be 0.5 and the order of Taylor approximation p is set to
be 9.

5.1 Direct Approach for Problem 1

For the first numerical test, we let CFL=3.2 for the dissipative scheme. In Figure 5.1 we plot the
time evolution of the numerical solutions wy and Ej at an arbitrarily chosen point (v/3/2, v/2/2, v/2/4)
computed with the different number of particles. The solution value at this point is calculated from
the integral formulation - once we solve the unknown boundary potential. It is observed
the numerical solution converges to the exact solution when adding more particles. Due to the sym-
metry of this test, we only report the first component of the numerical solutions for brevity. In
Table we report the convergence study of the proposed scheme. Second order of convergence

for wy, Fh and B; are observed, where errors are measured using the following norm

leG Ol = [I(le(x D)l @)l Loepo,ry- (5.1)

We also ran the simulations using the second order dispersive scheme for this test. Note that, we
can use a larger CFL number for the dispersive scheme and obtain comparable numerical results. In

the simulation, we set CFL=4.2. In Figure the time evolution of the numerical solution at the
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Figure 5.1: Problem 1. The time evolution of w; (left) and E; (right) at the location
(V3/2, v/2/2, v/2/4). Second order dissipative scheme. Direct approach. CFL = 3.2.

Table 5.1: Problem 1. The L' errors and the corresponding orders of accuracy for wy, Ey, and Bj.
T = 1. Second order dissipative scheme. Direct approach. CFL=3.2.

wi Eq By
N LY error order | LY error order | LT error order
30% | 3.06E-02 - 1.68E-01  — | 2.71E-01 -

40% | 1.96E-02 1.55 | 1.10E-01  1.47 | 1.78E-01  1.46
503 | 1.23E-02 2.08 | 6.65E-02 2.25 | 1.13E-01 2.03
60° | 8.33E-03 2.14 | 4.33E-02 2.35 | 7.48E-02 2.33
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location (v/3/2, v/2/2, v/2/4) is reported. Again, using more particles can generate more accurate
solutions. The convergence study is also presented in Table and second order of convergence is
observed as expected. Then, we compare the performance of two second order schemes for a long
time simulation, for which we compute the numerical solution up to 7 periods. We set CFL=3.2
and use 60> particles for both schemes. In Figure we plot the numerical solutions wy and E; by
both schemes at the location (v/3/2, v/2/2, v/2/4). Tt is observed that the amplitude of the wave
is dissipated for the dissipative scheme and the corresponding dissipation error becomes significant
after a long time simulation. On the other hand, the dispersive scheme can maintain the amplitude

of the wave to some extent, while the phase error can be observed after some time.

Dispersive Scheme: W,
N=30°
N=40°
——<—— N=50°
N=60°
Exact

Dispersive Scheme: E;

0l

0.05

-0.05

_0.17\\\l\\\l\\\l\\\l\\\l L vy

Figure 5.2: Problem 1. The time evolution of w; (left) and E; (right) at the location
(v/3/2, v/2/2, v/2/4). Second order dispersive scheme. Direct approach. CFL = 4.2.

Table 5.2: Problem 1. The L' errors and the corresponding orders of accuracy for wy, Ey, and Bj.
T = 1. Second order dispersive scheme. Direct approach. CFL=4.2.

w1 Er B
N | LT error order | LT error order | L' error  order
30% | 3.68E-02  — | 2.14E-01 - |3.27E-01 -
40° | 2.37E-02 1.53 | 1.21E-01 1.98 | 2.16E-01 1.44
50% | 1.48E-02 2.11 | 7.41E-02 2.19 | 1.36E-01  2.07
60° | 8.99E-03 2.73 | 4.52E-02 2.71 | 8.31E-02 2.70
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Figure 5.3: Problem 1. The time evolution of w; (left) and E; (right) at the location

(V3/2, v/2/2, v/2/4) up to about 7 periods. 603 particles are used for computation. Direct ap-
proach. CFL = 3.2.

5.2 Indirect Approach for Problem 1

We use the first indirect method to solve the first problem and set CFL=3.2. For brevity, we
only consider the second order dissipative scheme. In Figure [5.4, we plot the time evolution
of numerical solutions w; and E; at the location (\/§/2, \/i/ 2, \/5/4) Comparable numerical
results are observed to the direct method. In Table we report the convergence study for the
indirect scheme, for which we observe 1.5t order of convergence for w; and Ej, and second order of
convergence for By. We will investigate the reason for the reduction of accuracy in the future. We
also noted that the magnitude of errors is a little larger than that by the direct method. For brevity,

we do not report the numerical result for the second indirect approach, which gives comparable

numerical results to the first indirect approach.

Table 5.3: Problem 1. The L' errors and the corresponding orders of accuracy for wy, E, and
By. T =1. Second order dissipative scheme. The first indirect approach. CFL=3.2.

w1 E1 B1
N LY error order | LY error  order | L' error order
303 | 3.51E-02 1.93E-01 3.07E-01

40°% | 2.56E-02 1.10 | 1.43E-01 1.04 | 2.28E-01 1.46
503 | 1.99E-02 1.12 | 1.09E-01 1.22 | 1.79E-01 2.03
60 | 1.51E-02 1.51 | 8.30E-02 1.50 | 1.37E-01 2.33
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4: Problem 1.

Dissipative Scheme: E;

N=30°
N=40°

The time evolution of w; (left) and FE; (right) at the location

(V3/2, v/2/2, v/2/4). Second order dissipative scheme. The first indirect approach. CFL = 3.2.

5.3 Indirect Approach for Problem 2

Now, we apply the proposed indirect approach for solving problem 2. To save space, we only report

the results of the dissipative scheme. Table summarizes the convergence study of the proposed

scheme with a large CFL number 4.9. Second order of convergence is observed for wy, £ and Bs.

Several plots of the two-dimensional cuts at x = 0.51 for the numerical solution E; are shown in

Figure Here we use 50% particles in the simulation and let CFL=5. The numerical results are

consistent with the exact solution.

Table 5.4: Problem 2. The L' errors and the corresponding orders of accuracy for wy, E1, and Bs.
T = 1.5. Second order dissipative scheme. Indirect approach. CFL=4.9.

w1 E1 32
N | LT error order | LT error order | LT error  order
30° | 4.59E-02 — 2.12E-01 - 1.59E-01 -
403 | 2.97E-02 1.50 | 1.24E-01 1.86 | 9.46E-02 1.80
50% | 1.68E-02 2.56 | 7.26E-02 2.37 | 5.43E-02 2.49

5.4 Indirect Approach for Problem 3

Lastly, we present the numerical result for problem 3. Similar to problem 2, we use proposed

indirect approach to solve this problem. In the simulation, we use 303 particles and let CFL=3.
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Figure 5.5: Problem 2. The contour plots of two-dimensional cuts of £ at 1 = 0.51. A TE;g mode
is propagating in the cubic waveguide. 503 particles. Second order dissipative scheme. Indirect

approach. CFL = 5.0.
In Figure we report the contour plots of two-dimensional cuts of By at w3 = 0.2 at several
instances of time. For this problem, the behavior of B can be explained by the Biot-Savart law
[10], that is the magnetic field created by the current bar is
1o Jxr
Bx)="— | —dl
(X) 47T /C ’I'|3 Yy

where r = x — y. Therefore, if we denote the orthogonal projection of x on the current bar by
x' =(1/2,1/2,x3) and let r’ = x — X/, then the Biot-Savart law gives
cos(2mt) —(22-1/2)

TR (x1 —1/2)

B(x) x =
0

37



It can be observed from Figure that at x9 = 1/2, By vanishes horizontally at 9 = 1/2. Also
note that the Silver-Miiller absorbing boundary condition is only first order, i.e., only plane waves
with normal incidence can be absorbed at the boundary, see [I8], [10]. We can still observe some

reflection near the boundary.

6 Conclusions and future work

In this paper, we develop AP schemes for Maxwell’s equations in the potential form. The methods
are implicit, allow large time steps, and are shown to recover the Darwin limit at the semi-discrete
level when the dimensionless parameter ¢ = ©/c goes to 0. By using the MOL” framework, we
obtain the integral formulation for the vector potential, which are then solved by the treecode
algorithm. Although the schemes are only second order accurate in space and time, it is possible to
improve the spatial accuracy by using higher order quadrature in the Nystrom method framework
and temporal accuracy by the successive convolution technique [6]. Other future directions include
extension of the methods to the scalar and vector potential forms with the Lorentz and Coulomb

gauge, as well as incorporation of the schemes in kinetic plasma simulations.
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Figure 5.6: Problem 3. The contour plots of two-dimensional cuts of B; at 3 = 0.2. 30 particles.
Second order dissipative scheme. Indirect approach. CFL = 3.0.
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