
An Asymptotic Preserving Maxwell Solver Resulting in the Darwin Limit of

Electrodynamics

Yingda Cheng1, Andrew J. Christlieb2, Wei Guo3, Benjamin Ong4

Abstract

In plasma simulations, where the speed of light divided by a characteristic length is at a much

higher frequency than other relevant parameters in the underlying system, such as the plasma

frequency, implicit methods begin to play an important role in generating efficient solutions in these

multi-scale problems. Under conditions of scale separation, one can rescale Maxwell’s equations in

such a way as to give a magneto static limit known as the Darwin approximation of electromagnetics.

In this work, we present a new approach to solve Maxwell’s equations based on a Method of Lines

Transpose (MOLT ) formulation, combined with a fast summation method with computational

complexity O(N logN), where N is the number of grid points (particles). Under appropriate

scaling, we show that the proposed schemes result in asymptotic preserving methods that can

recover the Darwin limit of electrodynamics.
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1 Introduction

In this paper, we develop asymptotic preserving (AP) numerical methods for Maxwell’s equations

which can recover the Darwin limit of electrodynamics under an appropriate scaling limit. AP

schemes are also known as temporal multi-scale methods in the literature, see [25] for review and

recent development of such methods. The main attractive features lie in the ability to preserve

the asymptotic limit of the underlying equation at the discrete level, permitting large time step

evolution even when the scaling parameter becomes small in the system. There has been lots

of success of AP schemes in the kinetic simulations, in which the Knudsen number ε is used to

characterize the kinetic scales. As ε goes to 0, the AP scheme is designed in a way that it becomes

a consistent discretization of the limiting hydrodynamic models, which, in fact, is mimicking the

asymptotic limiting procedure on the partial differential equation (PDE) level. As a result, the AP

scheme is uniformly stable with respect to ε. Recent development of AP schemes for kinetic models

include a penalty method for solving the Boltzmann equation with general collisional operator [19],

the macro-micro decomposition technique for the BGK model [4], among many others [31, 32, 40].

Based on similar ideas, AP schemes were also developed for the Euler-Poisson and Euler-Maxwell

models in [16, 15] to recover the quasi-neutral limit of the incompressible Euler model as the Debye

length λD goes to 0.

This paper, on the other hand, concerns the construction of numerical schemes for Maxwell’s

equations which can capture asymptotic limit to the Darwin model. The Darwin model is a well-

known approximate model to Maxwell’s equations [13]. It is obtained from Maxwell’s equations

by neglecting the solenoidal, i.e., the divergence-free part of the displacement current in Ampère’s

law. This results in a set of elliptic equations with separated electric and magnetic fields which are

easier to solve than full Maxwell’s equations. In [17], Degond et al. showed that the Darwin model

approximates Maxwell’s equations up to second order for the magnetic field and third order for the

electric field with respect to the dimensionless parameter ε = v̄
c in a three-dimensional bounded

simply connected domain, where v̄ is a characteristic velocity and c is the speed of light. Such an

analysis in fact verifies the effectiveness of the Darwin model when no high frequency phenomenon

or rapid change occurs in the physics system. Many research efforts have been devoted to the

development of numerical schemes for solving the Darwin model. For instance, in [11], a finite

element method was proposed and the well-posedness of the associated variational problems was also
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established. In plasma physics, numerical schemes to the Vlasov-Darwin model, which is a simplified

model for the Vlasov-Maxwell system, have been considered in [39, 38, 5]. In [33, 34], a hierarchy

of approximate models for Maxwell’s equations are established with the perfectly conducting and

the Silver-Müller boundary conditions. The quasistatic Darwin models are proven to be first and

second order approximation to Maxwell’s equations with respect to ε. It is therefore, of great

interest to applications, to construct efficient Maxwell solvers that can capture the Darwin limit

automatically.

The approach we use in this paper consists of several important components, including the

development and the extension of the Method of Line Transpose (MOLT ) framework, the investi-

gation of the scalar and vector potential formulations of Maxwell’s equations and their asymptotic

limit as key steps to ensure the solver to capture the correct Darwin limit, and an efficient treecode

algorithm to further accelerate the computation. The MOLT method we consider in this paper is

also known as transverse MOL, and Rothe’s method in the literature [35, 37]. As the name implies,

discretization is carried out in an orthogonal fashion, where the time variable is first discretized, fol-

lowed by solving the resulting boundary value problems (BVPs) at discrete time levels. The MOLT

approach is advantageous when coupled with the integral method framework since one can employ

many fast summation methods, such as the fast multipole method [23] (FMM) and the treecode [3]

to reduce the computational complexity of evaluation from O(N2) to O(N) or O(N logN). In [7],

the MOLT method was developed for the wave equations, in which the BVP is first split into a series

of one-dimensional BVPs via the alternating direction implicit (ADI) technique, then the proposed

one-dimensional solver is applied to the split BVPs at a price of splitting errors. The resulting

method is A-stable, easy to implement and the computation complexity can be reduced to O(N)

by utilizing the analytical properties of the one-dimensional Green’s function, see [8]. Arbitrary

temporal accuracy is attained by successive convolutions in [6]. However, there are still several

challenges for the extension of this method to Maxwell’s equations. To employ the framework for

the wave equation, first we need the potential formulations of Maxwell’s equations. They also turn

out to be crucial to achieve AP properties for the schemes. Second, the ADI splitting strategy

used in [7] is no longer suitable when the Silver-Müller boundary condition is imposed. Instead,

we shall invert the three-dimensional Helmholtz operator. Note that there is a huge amount of

literature on integral methods for Maxwell’s equations in the frequency domain, where very fast
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algorithms have been developed, such as the FMM [12, 30, 29]. However, the FMM deals with

the oscillating free-space Green’s function. While, in our case, the associated Green’s function

exhibits exponential decay and has been recently incorporated in both FMM [22] and treecode [26]

algorithms. We use the treecode algorithm to speed up our calculation, and similar to the scheme

in [7], the newly proposed scheme is unconditionally stable due to the implicit treatment in the

MOLT framework, which is a highly desirable property in the plasma simulations, since 1
ε is at a

much higher frequency than the relevant parameters in the underlying system, such as the plasma

frequency. In [27, 21], the treecode is used to solve the Darwin model in plasma simulations.

The rest of the paper is organized as follows. In Section 2, we introduce the underlying mod-

els including Maxwell’s equations and the Darwin model. In particular, we consider Maxwell’s

equations which are written in terms of potentials. We show that, under a suitable scaling, the

potential forms of Maxwell’s equations are consistent with the Darwin model up to certain orders

of the dimensionless parameter ε. In Section 3, we formulate the semi-discrete schemes for solv-

ing the rescaled potential forms of Maxwell’s equations in the MOLT framework. Through formal

asymptotic analysis, we show that the semi-discrete schemes are AP in the sense that the schemes

can capture the Darwin limit as ε goes to 0. In Section 4, we propose several fully discrete schemes

and utilize the treecode to speed up the computations. Two numerical examples are presented in

Section 5 to verify the performance of our methods. We end with concluding remarks and future

work in Section 6.

2 The Models

In this section, we review Maxwell’s equations, their potential formulations, and the asymptotic

limit to the Darwin model.
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2.1 Maxwell’s Equations and the Potential Formulations

We are interested in Maxwell’s equations defined on Ω ⊂ R3, which can be written in MKS units

as follows:

− 1

c2

∂E

∂t
+∇×B = µ0J, (2.1a)

∂B

∂t
+∇×E = 0, (2.1b)

∇ ·E =
ρ

εo
, (2.1c)

∇ ·B = 0, (2.1d)

subject to the continuity equation

∂ρ

∂t
+∇ · J = 0, (2.2)

where c is the speed of light, µ0 and εo are the magnetic permeability and the electric permittivity,

respectively. Note that µ0 and εo are related to c according to µ0εoc
2 = 1.

We consider two types of boundary conditions: the perfectly conducting boundary condition

E× n = 0 on ΓC , (2.3)

where n is outward unit normal vector on the boundary, and the Silver-Müller boundary conditions

(E− cB× n)× n = g × n on ΓA, (2.4)

where g is a given function. Note that in the case of g = 0, the Silver-Müller boundary conditions

correspond to the absorbing boundary condition. Here, ΓC and ΓA denote the subsets of the

boundary on which the perfect conducting and Silver-Müller boundary conditions are imposed.

Next, we review several potential formulations of Maxwell’s equations for the purpose of devel-

oping our numerical schemes. First, we consider the potential formulation proposed in [14]. Let

w be the time integral of the electric field, i.e., w(t,x) =
∫ t

0 E(s,x)ds. A useful property of w

is that both the electric and magnetic fields can be represented by such a single vector poten-

tial. Therefore, it is relatively easy to impose boundary conditions. In particular, substituting
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w(t,x) =
∫ t

0 E(s,x)ds into (2.1), we obtain a set of evolution equations for w as follows.

1

c2

∂2w

∂t2
+∇× (∇×w) = ∇×B(0,x)− µ0J, (2.5a)

∇ ·
(
∂w

∂t

)
=

ρ

ε0
, (2.5b)

w(0,x) = 0, (2.5c)

∂tw(0,x) = E(0,x). (2.5d)

Note that the electric and magnetic fields can be conveniently expressed in terms of w as E(t,x) =

∂tw(t,x), and B(t,x) = −∇×w(t,x)+B(0,x). In other words, one can just solve for w and obtain

E and B by a numerical differentiation procedure. The perfectly conducting boundary condition

(2.3) becomes

w × n = 0 on ΓC , (2.6)

and the Silver-Müller boundary conditions (2.4) become

(∂tw + c (∇×w)× n)× n = (cB(0,x)× n + g)× n on ΓA. (2.7)

We remark that equations (2.5) also have an equivalent wave formulation:

1

c2

∂2w

∂t2
−∆w = −∇

(∫ t

0

ρ

ε0
ds

)
+∇×B(0,x)− µ0J, (2.8a)

∇ ·
(
∂w

∂t

)
=

ρ

ε0
, (2.8b)

w(0,x) = 0, (2.8c)

∂tw(0,x) = E(0,x). (2.8d)

Notice that here the source term involves the time integral of the density function, and the constraint

∇ ·
(
∂w
∂t

)
= ρ

ε0
is necessary to enforce the continuity equation. The numerical scheme discussed in

this paper will be based on the wave equation formulation (2.8). A numerical scheme for (2.5) will

be considered in future work.

Besides the vector potential formulation introduced above, we can also consider the more com-

mon scalar ψ and vector potential A defined by

E = −∇ψ − ∂A

∂t
, B = ∇×A.

Here, gauge conditions are important to uniquely determine the potentials ψ and A. For example,

with the Lorentz gauge

∇ ·A +
1

c2

∂ψ

∂t
= 0, (2.9)
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Maxwell’s equations can be written as a set of wave equations for the potential ψ and A:

1

c2

∂2ψ

∂t2
−∆ψ =

ρ

ε0
, (2.10a)

1

c2

∂2A

∂t2
−∆A = µ0J. (2.10b)

This formulation is especially suited for a particle code, where ρ and J are linear combinations of

Dirac delta functions. Another common choice is to take the Coulomb gauge

∇ ·A = 0. (2.11)

Under this gauge, the evolution equations for the potentials can be written as

−∆ψ =
ρ

ε0
, (2.12a)

1

c2

∂2A

∂t2
−∆A = µ0J−

1

c2
∇
(
∂ψ

∂t

)
, (2.12b)

where the first equation (2.12a) is simply Poisson’s equation for the scalar potential ψ, and the

second equation (2.12b) is a set of wave equations for each component of the vector potential A.

Note that (2.12b) involves ∇
(
∂ψ
∂t

)
, which is not simple to compute for a particle code.

As for the boundaries, we have

(∇×A) · n = 0, (2.13)

from B · n = 0. If A is obtained, the perfectly conducting boundary condition becomes

∇ψ × n = −∂tA× n on ΓC , (2.14)

from E×n = 0. For the Silver-Müller conditions, by replacing E and B in (2.4) with ψ and A, we

have

(∇ψ + ∂tA + c∇×A× n)× n = −g × n on ΓA. (2.15)

Comparing with the potential formulation for w, we can see that it is non-trivial to impose

boundary conditions on ψ and A in a decoupled manner. Obviously, the coupling between ψ

and A poses implementation challenges. Therefore, in this paper, we only implement the scheme

derived from the w formulation, and leave the implementation of the ψ,A formulation to future

work. However, for completeness, we provide theoretical analysis for both potential formulations

in Sections 2 and 3.
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2.2 The Darwin Model

In this subsection, we review the Darwin model while omitting the details of derivation. The

readers are referred to [17] for more discussions about the model and its well-posedness. Consider

the Helmholtz decomposition, E = Eirr + Esol, where ∇×Eirr = 0 and ∇ ·Esol = 0, i.e., Eirr and

Esol refer to the irrotational and solenoidal components of the electric field E, respectively. Then,

we have the following elliptic equations.

∆ψ =
ρ

ε0
, Eirr = −∇ψ,

ψ|ΓCi
= αi, 0 ≤ i ≤ m,

where ΓCi denote the connected components of the boundary ΓC , and ΓC0 denotes the outer

boundary. {αi, i = 0, . . .m} are solutions of the differential system

m∑
j=0

cij
dαj
dt

=
1

ε0

∫
Ω
J · ∇χi dx,

αi(t = 0) = αi0, 0 ≤ i ≤ m.

Here {χi, i = 0, . . .m} are the solutions of

∆χi = 0,

χi|ΓCi
= δij , 0 ≤ j ≤ m,

and αi0 depends on the initial value of Eirr, and the capacitance coefficients cij =
∫

ΓCj

∂χi

∂n ds.

The Darwin model can be derived from Maxwell’s equations by neglecting the transverse com-

ponent ∂Esol
∂t of ∂E

∂t in (2.1a). In particular, the magnetic field B satisfies

∇×∇×B = µ0∇× J, ∇ ·B = 0,

B · n = B(0,x) · n, (∇×B)× n = µ0J× n on ΓC .

Esol satisfies

∇×∇×Esol = − ∂

∂t
∇×B, ∇ ·Esol = 0.

Esol × n = 0 on ΓC ,

∫
ΓCi

Esol · nds = 0 0 ≤ i ≤ m.

Imposing the Silver-Müller boundary conditions is more complicated, which was discussed in

[34]. For example, B satisfies

(c2∇×B− c∂tB× n)× n =
1

ε0
J× n + ∂tg × n on ΓA,
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while Esol satisfies

(∂tEsol + c(∇×Esol)× n)× n = ∂tg × n on ΓA.

2.3 Asymptotic Analysis of the Models

The goal of this paper is to develop implicit AP Maxwell solvers that can recover the Darwin limit

under appropriate scaling limit. To serve the purpose, we will review the asymptotic analysis of

Maxwell’s equations and the potential formulations, and establish their connection with the Darwin

model in this subsection.

2.3.1 A Scaling

First, we describe a scaling for Maxwell’s equations and apply it to various potential formulations

and the Darwin model. Similar to [34], we let

L̄ = characteristic length

t̄ = characteristic time

v̄ = characteristic speed = L̄/t̄

ρ̄, J̄ = charge and current densities scaling factors

Ē, B̄ = electric and magnetic fields scaling factors

and assume that

ε0
Ē

L̄ρ̄
= 1,

J̄

ρ̄
= c,

Ē

B̄
= c. (2.16)

The dimensionless Maxwell’s equations become

− ε∂E
∂t

+∇×B = J, (2.17a)

ε
∂B

∂t
+∇×E = 0, (2.17b)

∇ ·E = ρ, (2.17c)

∇ ·B = 0, (2.17d)

where ε = v̄
c . The rescaled continuity equation is

ε
∂ρ

∂t
+∇ · J = 0. (2.18)
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The boundary conditions are the same as (2.3) and (2.4) if we let ḡ = Ē. Note that the scaling

considered in this paper is different from the Poiswell model [28] developed for quantum mechanics,

in which −ε∂E∂t +∇×B = εJ. Such limit is different from the regime we are considering, and we

do not consider it in this paper.

Under the same scaling (2.16), the curl-curl formulation for the vector potential w with

w̄ = t̄Ē

becomes

ε2
∂2w

∂t2
+∇× (∇×w) = ε∇×B(0,x)− εJ, (2.19a)

∇ ·
(
∂w

∂t

)
= ρ, (2.19b)

E(t,x) = ∂tw(t,x), (2.19c)

B(t,x) = −1

ε
∇×w(t,x) + B(0,x) (2.19d)

or equivalently, the wave equation formulation for w becomes

ε2
∂2w

∂t2
−∆w = −∇(

∫ t

0
ρds) + ε∇×B(0,x)− εJ, (2.20a)

∇ ·
(
∂w

∂t

)
= ρ, (2.20b)

E(t,x) = ∂tw(t,x), (2.20c)

B(t,x) = −1

ε
∇×w(t,x) + B(0,x). (2.20d)

The perfectly conducting boundary condition (2.6) scales as

w × n = 0 on ΓC , (2.21)

and the Silver-Müller boundary conditions (2.7) scale as

(∂tw +
1

ε
(∇×w)× n)× n = (B(0,x)× n + g)× n on ΓA, (2.22)

if ḡ = Ē. Similarly, with the scaling

Ā = B̄L̄, ψ̄ = cĀ = ĒL̄,
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the evolution equations for the potentials ψ and A under the Lorentz gauge (2.10) become

ε2
∂2ψ

∂t2
−∆ψ = ρ, (2.23a)

ε2
∂2A

∂t2
−∆A = J, (2.23b)

∇ ·A + ε
∂ψ

∂t
= 0, (2.23c)

E = −∇ψ − ε∂A
∂t

, B = ∇×A. (2.23d)

The evolution equations for ψ and A under the Coulomb gauge (2.24) become

−∆ψ = ρ, (2.24a)

ε2
∂2A

∂t2
−∆A = J− ε∇(

∂ψ

∂t
), (2.24b)

∇ ·A = 0, (2.24c)

E = −∇ψ − ε∂A
∂t

, B = ∇×A. (2.24d)

Lastly, the Darwin model scales as

−∆ψ = ρ, Eirr = −∇ψ, (2.25a)

∇×∇×B = ∇× J, ∇ ·B = 0, (2.25b)

∇×∇×Esol = −ε ∂
∂t
∇×B, ∇ ·Esol = 0, (2.25c)

while for the boundary conditions, we have

ψ|ΓCi
= αi, with

m∑
j=0

cij
dαj
dt

=
1

ε

∫
Ω
J · ∇χi dx, 0 ≤ i ≤ m on ΓC ,

B · n = B(0,x) · n, (∇×B)× n = J× n on ΓC ,

Esol × n = 0 on ΓC ,

∫
ΓCi

Esol · nds = 0 0 ≤ i ≤ m,

(∇×B− ε∂tB× n)× n = J× n + ε∂tg × n on ΓA,

(ε∂tEsol + (∇×Esol)× n)× n = ε∂tg × n on ΓA.

2.3.2 Asymptotic Expansion

In this subsection, asymptotic expansions of the models will be performed under the scaling in-

troduced in the previous subsection. Such expansions follow the procedure proposed in [17]. For

simplicity, we apply the expansions to equations in free space without boundary conditions. We

11



impose the ansatz that variables can be expanded in terms of the dimensionless parameter ε,

f = f0 + εf1 + ε2f2 + · · · .

We first perform an asymptotic expansion on the Darwin model (2.25). Matching the asymptotic

expansion, we obtain

O(1) :



−∆ψ0 = ρ0,
(Eirr)0 = −∇ψ0,
∇×∇×B0 = ∇× J0,
∇ ·B0 = 0,
∇×∇× (Esol)0 = 0,
∇ · (Esol)0 = 0,

O(ε) :



−∆ψ1 = ρ1,
(Eirr)1 = −∇ψ1,
∇×∇×B1 = ∇× J1,
∇ ·B1 = 0,

∇×∇× (Esol)1 = − ∂
∂t∇×B0,

∇ · (Esol)1 = 0,

O(εk), k ≥ 2 :



−∆ψk = ρk,
(Eirr)k = −∇ψk,
∇×∇×Bk = ∇× Jk,
∇ ·Bk = 0,

∇×∇× (Esol)k = − ∂
∂t∇×Bk−1,

∇ · (Esol)k = 0.

Similarly, we perform an asymptotic expansion for the potential formulation w in (2.19) and

obtain

O(1) :



∇× (∇×w0) = 0,

∇ ·
(
∂w0
∂t

)
= ρ0,

E0 = ∂tw0,
∇×w0 = 0,
∇ · J0 = 0,

O(ε) :



∇× (∇×w1) = ∇×B(0,x)− J0,

∇ ·
(
∂w1
∂t

)
= ρ1,

E1 = ∂tw1,
B0 = −∇×w1 + B(0,x),
∂ρ0
∂t +∇ · J1 = 0,

O(εk), k ≥ 2 :



∂2wk−2

∂t2
+∇× (∇×wk−1) = −Jk−1,

∇ ·
(
∂wk
∂t

)
= ρk,

Ek = ∂twk,
Bk−1 = −∇×wk,
∂ρk−1

∂t +∇ · Jk = 0.

We now verify that the expansion for the potential formulation agrees with the Darwin model up to

second order. For the O(1) terms, ∇·E0 = ρ0, and ∇×E0 = 0. Hence, there must exist a potential

function ψ0, such that E0 = −∇ψ0. Since ∇·E0 = ρ0, we recover −∆ψ0 = ρ0. For the O(ε) terms,

∇×B0 = −∇×∇×w1 +∇×B(0,x) = J0, and ∇×∇×E1 = ∂t(∇×B(0,x)− J0) = −∂tJ0 =

−∂t∇ × B0, and ∇ · E1 = ρ1. Performing a Helmholtz decomposition on E1 = (Eirr)1 + (Esol)1

recovers the O(ε) expansion for the Darwin model. Similar derivation goes through for the wave

formulation (2.20) and is omitted here.
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Consider now the scalar and vector potential formulations. An asymptotic expansion with the

Lorentz gauge (2.23) gives

O(1) :



−∆ψ0 = ρ0,
−∆A0 = J0,
∇ ·A0 = 0,
∇ · J0 = 0,
E0 = −∇ψ0,
B0 = ∇×A0,

O(ε) :



−4ψ1 = ρ1,
−∆A1 = J1,

∇ ·A1 + ∂ψ0

∂t = 0,
∂ρ0
∂t +∇ · J1 = 0,

E1 = −∇ψ1 − ∂A0
∂t ,

B1 = ∇×A1.

O(εk), k ≥ 2 :



∂2ψk−2

∂t2
−∆ψk = ρk,

∂2Ak−2

∂t2
−∆Ak = Jk,

∇ ·Ak +
∂ψk−1

∂t = 0,
∂ρk−1

∂t +∇ · Jk = 0,

Ek = −∇ψk − ∂Ak−1

∂t ,
Bk = ∇×Ak.

This expansion agrees with the Darwin model up to O(ε) term if we take (Eirr)0 = E0, (Esol)0 = 0,

(Eirr)1 = −∇ψ1, and (Esol)1 = −∂A0
∂t . Observe

∇×B0 = ∇×∇×A0 = ∇(∇ ·A0)−∆A0 = J0.

Hence,

∇×∇×B0 = ∇× J0,

and

∇ ·B0 = ∇ · (∇×A0) = 0

agree with the magneto static model on first order. However, on the first order, the Darwin

equations are not consistent with the continuity equation.

Applying our procedure with the Coulomb gauge

O(1) :



−∆ψ0 = ρ0,
−∆A0 = J0,
∇ ·A0 = 0,
∇ · J0 = 0,
E0 = −∇ψ0,
B0 = ∇×A0,

O(ε) :



−∆ψ1 = ρ1,

−∆A1 = J1 −∇(∂ψ0

∂t ),
∇ ·A1 = 0,
∂ρ0
∂t +∇ · J1 = 0,

E1 = −∇ψ1 − ∂A0
∂t ,

B1 = ∇×A1,

O(εk), k ≥ 2 :



−∆ψk = ρk,
∂2Ak−2

∂t2
−∆Ak = Jk −∇(

∂ψk−1

∂t ),
∇ ·Ak = 0,
∂ρk−1

∂t +∇ · Jk = 0,

Ek = −∇ψk − ∂Ak−1

∂t ,
Bk = ∇×Ak.
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We can see that for O(1) terms, the model is the same as the Lorentz gauge. For the O(ε) terms, a

simple check yields that it still agrees with the Darwin model if we take (Eirr)0 = E0, (Esol)0 = 0,

(Eirr)1 = −∇ψ1, (Esol)1 = −∂A0
∂t .

3 Semi-discrete Schemes

In this section, we extend the implicit solver for the wave equation recently developed in [7] to

Maxwell’s equations. We focus on the semi-discrete scheme in the MOLT framework, i.e., we only

discretize the time variable and leave the space variable continuous.

3.1 Method of Lines Transpose for Wave Equations

The key idea of the proposed scheme is to utilize MOLT which yields a semi-discrete system that

can be solved using an integral formulation. To illustrate the MOLT approach, consider a scalar

wave equation in R3,

∂2u

∂t2
− k2∆u = f,

subject to some properly imposed boundary conditions, where u is the unknown function and k is

a positive constant representing the wave speed.

Applying a second order finite difference approximation to utt and evaluating ∆u at time level

n+ 1 gives,

∆un+1 − 2

k2δt2
un+1 =

1

k2δt2
(
−5un + 4un−1 − un−2

)
− fn+1

k2
,

with a one step truncation error of O(δt3), where δt denotes the time step. un+1 can now be

represented in an integral formulation.

un+1(x) = −
∫

Ω

(
5un − 4un−1 + un−2

k2δt2
+
fn+1

k2

)
G(x|y) dΩy

−
∮
∂Ω

(
∂un+1

∂ny
G(x|y)− un+1 ∂G

∂ny
(x|y)

)
dsy, x ∈ Ω, (3.1)

where G(x|y), the free space Green’s function for the modified Helmholtz operator L(·) = (∆ −
2

k2δt2
)(·), is

G(x|y) = − 1

4πr
exp

(
−
√

2r

kδt

)
in R3. Here, r = |x − y|. Note that, different from the fast oscillatory Green’s function for

the Helmholtz operator, G(x|y) exhibits exponential decay with respect to r, leading to efficient
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computation of the convolution integrals. Equation (3.1) is known as a second order dissipative

scheme, which has been proposed and analyzed in [7].

Another purely dispersive scheme with second order temporal accuracy can simply be obtained

by centering the term ∆u in time via

∆un ∼ 1

2
∆(un+1 + un−1) .

The solution of un+1 + un−1 is then given as,

(un+1 + un−1)(x) =−
∫

Ω

(
4un

k2δt2
+
fn−1 + fn+1

k2

)
G(x|y) dΩy (3.2)

−
∮
∂Ω

(
∂(un+1 + un−1)

∂ny
G(x|y)− (un+1 + un−1)

∂G

∂ny
(x|y)

)
dsy, x ∈ Ω,

The unknown function at time level tn+1 appearing in the boundary integrals in equations (3.1)

and (3.2) are then solved by imposing the boundary conditions, which will be discussed in detail in

Section 4. Similar to [9] on particle-based methods for the Vlasov-Poisson system, we will evaluate

the volumetric and boundary integrals using a midpoint approximation. The discrete forms of

(3.1) and (3.2) can be interpreted as a collection of N interacting point charges. The resulting

summations can be computed using a fast summation algorithm, such as the treecode algorithm to

be described in Section 4. Thanks to the implicit treatment in the MOLT approach, the proposed

method is able to take time steps much larger than an explicit integrator.

3.2 Method of Lines Transpose for Maxwell’s Equations in Potential Formula-
tion

Using similar ideas, we can apply the MOLT approach to Maxwell’s equations formulated using the

potential formulation w. Applying the second order dissipative MOLT approximation to (2.20),

the integral solution for w is given by

wn+1(x) =−
∫

Ω

(
ε2
(

5wn − 4wn−1 + wn−2

δt2

)
+ Tn+1

)
G(x|y) dΩy (3.3)

−
∮
∂Ω

(
∂wn+1

∂ny
G(x|y)−wn+1 ∂G

∂ny
(x|y)

)
dsy, x ∈ Ω,
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where Tn = −∇(
∫ tn

0 ρds) + ε∇ × B0 − εJn, G(x|y) = − 1
4πr exp

(
−
√

2εr
δt

)
with r = |x − y|. If we

apply the second order dispersive scheme, the solution becomes

(wn+1 + wn−1)(x) =−
∫

Ω

(
ε2
(

4wn

δt2

)
+ Tn−1 + Tn+1

)
G(x|y) dΩy (3.4)

−
∮
∂Ω

(
∂(wn+1 + wn−1)

∂ny
G(x|y)− (wn+1 + wn−1)

∂G

∂ny
(x|y)

)
dsy, x ∈ Ω.

Then, by making use of the relation between potential w and E, B, we can further obtain the

approximations of E and B via

En+1 =
3/2wn+1 − 2wn + wn−1/2

δt
, Bn+1 = −1

ε
∇×wn+1 + B0.

Note that is a second order accurate scheme in time for E, and the temporal accuracy for B is the

same as w.

Remark 3.1. We mention a subtle point here for enforcing the additional constraint ∇·
(
∂w
∂t

)
= ρ.

This is the key for charge continuity and also necessary to uniquely determine the solution as shown

in Section 4. We find that the best way is to enforce this relation using the same temporal scheme

for E, i.e. we require

∇ ·
(

3/2wn+1 − 2wn + 1/2wn−1

δt

)
= ρn+1. (3.5)

In computations, we will only enforce (3.5) on the boundaries instead of the whole domain. Such

practice is justified if the discrete charge and current densities ρ, j satisfy the continuity equation

(which is true if they are both zero). Otherwise, a divergence cleaning procedure is needed, and we

will discuss the detailed procedure in our future work.

Similarly, we can obtain the integral formulations for potential ψ and A with the Lorentz gauge

and Coulomb gauge. For example, the second order dissipative scheme with the Lorentz gauge

writes

ψn+1(x) =−
∫

Ω

(
ε2
(

5ψn − 4ψn−1 + ψn−2

δt2

)
+ ρn+1

)
G(x|y) dΩy (3.6)

−
∮
∂Ω

(
∂ψn+1

∂ny
G(x|y)− ψn+1 ∂G

∂ny
(x|y)

)
dsy, x ∈ Ω,

An+1(x) =−
∫

Ω

(
ε2
(

5An − 4An−1 + An−2

δt2

)
+ Jn+1

)
G(x|y) dΩy (3.7)

−
∮
∂Ω

(
∂An+1

∂ny
G(x|y)−An+1 ∂G

∂ny
(x|y)

)
dsy, x ∈ Ω.
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The second order dissipative scheme with the Coulomb gauge writes

ψn+1(x) =−
∫

Ω
ρn+1G0(x|y)dΩy −

∮
∂Ω

(
∂ψn+1

∂ny
G0(x|y)− ψn+1∂G0

∂ny
(x|y)

)
dsy, x ∈ Ω, (3.8)

An+1(x) =−
∫

Ω

(
ε2
(

5An − 4An−1 + An−2

δt2

)
+ Jn+1 − ε∇

(
3/2ψn+1 − 2ψn + ψn−1/2

δt

))
G(x|y) dΩy

(3.9)

−
∮
∂Ω

(
∂An+1

∂ny
G(x|y)−An+1 ∂G

∂ny
(x|y)

)
dsy, x ∈ Ω,

where G0(x|y) = − 1
4πr denotes the Green’s function associated with the Laplace operator ∆. Once

ψ and A are obtained, we can also advance E and B through

En+1 = −∇ψn+1 − ε3/2An+1 − 2An + An−1/2

δt
, Bn+1 = ∇×An+1.

Again, we require discrete gauge conditions, such as

∇ ·An+1 + ε

(
3/2ψn+1 − 2ψn + 1/2ψn−1

δt

)
= 0,

for the Lorentz gauge, and ∇ ·An = 0 for the Coulomb gauge.

3.3 Formal Asymptotic Analysis of the Semi-discrete Schemes

We now verify that the semi-discrete schemes in Section 3.2 are AP. In particular, we fix the time

step size δt, and let ε→ 0.

We first focus on schemes (3.3) and (3.4). For simplicity, we neglect the boundary terms, but

in principle, the argument holds when we include the boundary integrals. Expanding the Green’s

function G(x|y) with respect to ε, we get

G(x|y) = − 1

4π|x− y|
(1−

√
2ε|x− y|
δt

+ . . .),

Therefore, G0(x|y) = − 1
4π|x−y| , G1(x|y) =

√
2

4πδt , · · · . Note that, G0(x|y) is the Green’s function

associated with the Laplace operator. For scheme (3.3), asymptotic matching gives

O(1) : wn+1
0 (x) = −

∫
Ω
∇

(∫ tn+1

0
ρ0ds

)
G0(x|y) dΩy

O(ε) : wn+1
1 (x) =−

∫
Ω

(
∇

(∫ tn+1

0
ρ1ds

)
−∇×B0 + Jn+1

0

)
G0(x|y) dΩy

−
∫

Ω
∇

(∫ tn+1

0
ρ0ds

)
G1(x|y) dΩy.
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Hence,

−∆wn+1
0 = ∇

(∫ tn+1

0
ρ0ds

)
, −∆wn+1

1 = ∇

(∫ tn+1

0
ρ1ds

)
−∇×B0 + Jn+1

0 .

We can also derive

En+1
0 =

3/2wn+1
0 − 2wn

0 + 1/2wn−1
0

δt
,

En+1
1 =

3/2wn+1
1 − 2wn

1 + 1/2wn−1
1

δt
,

∇×wn+1
0 = 0,

Bn+1
0 = −∇×wn+1

1 + B0.

Assume condition (3.5) is satisfied, then

∇ ·
(

3/2wn+1
0 − 2wn

0 + 1/2wn−1
0

δt

)
= ρn+1

0 , (3.10)

∇ ·
(

3/2wn+1
1 − 2wn

1 + 1/2wn−1
1

δt

)
= ρn+1

1 . (3.11)

This implies

∇ ·En+1
0 = ρn+1

0 , ∇ ·En+1
1 = ρn+1

1 .

Since ∇ × wn+1
0 = 0, this gives ∇ × En+1

0 = 0, and hence there must exist ψn+1
0 such that

−∆ψn+1
0 = ρn+1

0 , En+1
0 = −∇ψn+1

0 . For Bn+1
0 ,

∇×Bn+1
0 =−∇×∇×wn+1

1 +∇×B0

=−∇∇ ·wn+1
1 + ∆wn+1

1 +∇×B0

=−∇∇ ·wn+1
1 +∇

∫ tn+1

0
ρ1ds+ Jn+1

0 (3.12)

Note that (3.11) is the second order backward differentiation formulae for equation

∂t∇ ·w1 = ρ1,

whose the exact solution is ∇ ·w1(t) =
∫ t

0 ρ1ds due to the zero initial condition. Hence,

∇
∫ tn+1

0
ρ1ds−∇∇ ·wn+1

1 = O(δt2),

and we obtain

∇×Bn+1
0 = Jn+1

0 −∇∇ ·wn+1
1 +∇

∫ tn+1

0
ρ1ds = Jn+1

0 +O(δt2).
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For En+1
1 ,

∇×∇×En+1
1 =∇×∇×

(
3/2wn+1

1 − 2wn
1 + 1/2wn−1

1

δt

)
=∇∇ ·

(
3/2wn+1

1 − 2wn
1 + 1/2wn−1

1

δt

)
−∆

(
3/2wn+1

1 − 2wn
1 + 1/2wn−1

1

δt

)
=∇ρn+1

1 − 1

δt
∇
(

3/2

∫ tn+1

0
ρ1ds− 2

∫ tn

0
ρ1ds+ 1/2

∫ tn−1

0
ρ1ds

)
−
(

3/2Jn+1
0 − 2Jn0 + 1/2Jn−1

0

δt

)
.

Substituting (3.12) into the above equation, we obtain

∇×∇×En+1
1 =−∇×

(
3/2Bn+1

0 − 2Bn
0 + 1/2Bn−1

0

δt

)
+∇ρn+1

1 −∇∇ ·
(

3/2wn+1
1 − 2wn

1 + 1/2wn−1
1

δt

)
= −∇×

(
3/2Bn+1

0 − 2Bn
0 + 1/2Bn−1

0

δt

)
= −∂t∇×Bn+1

0 +O(δt2)

due to (3.11). Therefore, the scheme is a consistent discretization for the Darwin model (2.25)

taking into account ∇·En+1
1 = ρn+1

1 and the Helmholtz decomposition for E1. A similar derivation

holds for the dispersive scheme (3.4) and is omitted. In summary, we obtain the following theorem.

Theorem 3.2. If equation (3.5) is satisfied, the implicit schemes (3.3), (3.4) or their dispersive

versions will reduce to schemes for the Darwin equation in the limit as ε → 0. Therefore, the

schemes are AP.

Similarly, we can repeat the procedure for schemes (3.6)-(3.7), which yields

O(1) : ψn+1
0 (x) =

∫
Ω
− ρn+1

0 (y)G0(x|y) dΩy,

An+1
0 (x) =

∫
Ω
− Jn+1

0 (y)G0(x|y) dΩy,

O(ε) : ψn+1
1 (x) =

∫
Ω
−ρn+1

1 (y)G0(x|y)− ρn+1
0 (y)G1(x|y) dΩy,

An+1
1 (x) =

∫
Ω
−Jn+1

1 (y)G0(x|y)− Jn+1
0 (y)G1(x|y) dΩy.

Hence,

−∆ψn+1
0 = ρn+1

0 , −∆ψn+1
1 = ρn+1

1 ,
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and

−∆An+1
0 = Jn+1

0 , −∆An+1
1 = Jn+1

1 .

We can also obtain

En+1
0 = −∇ψn+1

0 ,

En+1
1 = −∇ψn+1

1 − 3/2An+1
0 − 2An

0 + 1/2An−1
0

δt
,

Bn+1
0 = ∇×An+1

0 ,

Bn+1
1 = ∇×An+1

1 .

To show that the scheme is consistent with the Darwin model, observe

∇×∇×En+1
1 =−∇×∇×

(
3/2An+1

0 − 2An
0 + 1/2An−1

0

δt

)
=−∇×

(
3/2Bn+1

0 − 2Bn
0 + 1/2Bn−1

0

δt

)
=− ∂t∇×Bn+1

0 +O(δt2).

Under the assumption that the following discrete version of the Lorentz gauge condition (2.23c) is

satisfied, i.e.,

∇ ·An+1 + ε

(
3/2ψn+1 − 2ψn + 1/2ψn−1

δt

)
= 0, (3.13)

then

∇ ·An+1
0 = 0 and ∇ ·An+1

1 +
3/2ψn+1

0 − 2ψn0 + 1/2ψn−1
0

δt
= 0.

For Bn+1
0 ,

∇×Bn+1
0 =∇×∇×An+1

0 = ∇∇ ·An+1
0 −∆An+1

0 = Jn+1
0 .

Similarly, for Bn+1
1 ,

∇×Bn+1
1 =∇×∇×An+1

1 = ∇∇ ·An+1
1 −∆An+1

1 = −∇
(

3/2ψn+1
0 − 2ψn0 + 1/2ψn−1

0

δt

)
+ Jn+1

1 .

Hence, we obtain

∇×∇×Bn+1
0 = ∇× Jn+1

0 , ∇×∇×Bn+1
1 = ∇× Jn+1

1 .

If (Eirr)
n+1
0 = En+1

0 , (En+1
sol )0 = 0, (En+1

irr )1 = −∇ψn+1
1 , and (En+1

sol )1 = −3/2An+1
0 −2An

0 +1/2An−1
0

δt ,

then ∇ · (En+1
sol )1 = −∇ ·

(
3/2An+1

0 −2An
0 +1/2An−1

0
δt

)
= 0, because of the gauge condition (3.13).
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Therefore, we have shown that the semi-discrete scheme is a consistent discretization of the Darwin

model up to second order. The proof for the dispersive scheme is similar and is omitted.

For the dissipative scheme with the Coulomb gauge (3.8)-(3.9), we first obtain

−∆ψn+1
0 = ρn+1

0 , −∆ψn+1
1 = ρn+1

1 ,

−∆An+1
0 = Jn+1

0 , −∆An+1
1 = Jn+1

1 −∇
(

3/2ψn+1
0 − 2ψn0 + ψn−1

0 /2

δt

)
.

By performing a similar asymptotic analysis, we can verify that, if the gauge condition ∇ ·An = 0

holds, or ∇ ·An
0 = 0 and ∇ ·An

1 = 0, then the scheme is consistent with the Darwin model up to

second order. Again, we can prove in a similar way that the dispersive scheme is also a consistent

discretization for the Darwin model. Therefore, we arrive at the following theorem.

Theorem 3.3. If the discrete gauge conditions are satisfied, the implicit dissipative schemes (3.6)-

(3.7) with the Lorentz gauge and scheme (3.8)-(3.9) with the Coulomb gauge or their dispersive

versions will reduce to schemes for the Darwin model in the limit ε → 0. Therefore, the schemes

are AP.

4 Fully Discrete Schemes

In this section, we formulate the fully discrete schemes based on semi-discrete schemes (3.3) and

(3.4) for the vector potential w.

4.1 The Treecode Algorithm

The treecode algorithm is a fast summation algorithm, which is useful for approximating the volume

integrals in (3.3) and (3.4). First, the domain Ω is partitioned into a set of small cells Ωi, i =

1, . . . , N . The solution w is discretized by the associated macro particles with locations at the

centers of each cell, which are denoted by xi, i = 1, · · · , N . Assume that the source T is known at

the locations of particles, which is denoted by Ti at xi. Then, the particular solution is given by

the convolution of the source T with the free space Green’s function

Φ(x) =

∫
Ω
T(y)G(x|y)dΩ.

The integral is discretized using the mid-point rule:

Φ(x) =
∑
i

ωiTiG(x|yi), (4.1)
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where ωi is the quadrature weight. Φ at the location of a particle xj should be calculated by

Φ(xj) = aTj +
∑
i 6=j

ωiTiG(xj |yi), (4.2)

where a =
∫

Ωj
G(xj |y)dΩ. Note that even though the Green’s function is singular when y ap-

proaches xj , it is still integrable. In the simulation, integral a is computed using a Gaussian

quadrature rule based on the spherical coordinates. Higher order accuracy can be achieved by

using a higher order quadrature formula.

Equation (4.2) can be computed via direct summation, which leads to computational cost on

the order of O(N2). In order to speed up the calculation, a treecode [26] can be adopted. Below,

we summarize the treecode algorithm for computing the sum

φj =
∑
i 6=j

qiG(xj |xi), (4.3)

where qi denotes the charge associated with the particle xi. In a treecode, particles are divided into a

hierarchy of clusters. Based on the tree structure, particle-particle interactions with computational

complexity of O(N2) are replaced by particle-cluster interactions with complexity of O(N logN).

Once the hierarchical clusters are formed, the treecode efficiently computes the sum (4.3). For a

cluster c with center xc, the contribution from c can be approximated using a high-dimensional

Taylor expansion.

∑
xi∈c

qiG(xj |xi) =
∑
xi∈c

qiG(xj |xc + (xi − xc))

≈
∑
xi∈c

qi

p∑
|k|=0

1

k!
∂kyG(xj |xc)(xi − xc)

k

=

p∑
|k|=0

1

k!
∂kyG(xj |xc)

∑
xi∈c

qi(xi − xc)
k

.
=

p∑
|k|=0

ak(xj ,xc)m
k
c , (4.4)

where p is the order of approximation, ak(xj ,xc) are the Taylor coefficients of the Green’s function,

and mk
c are the cluster moments associated with the cluster c. Note that the moments are indepen-

dent of the particle xj and the Taylor coefficients are independent of the number of particles inside

the cluster, leading to the speedup of the treecode. Another attractive aspect of the treecode is
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that the Taylor coefficients can be computed via a recurrence relation, which significantly reduces

computational cost. See [26] for a detailed discussion.

We note that the error of the approximation (4.4) is O((rc/R)p), where rc = maxxi∈c |xi − xc|

denotes the radius of the cluster and R = |xj − xc| denotes particle-cluster distance. In particular,

if rc/R is small, i.e., the cluster c is considered as a far-field with respect to particle xj , then the

Taylor expansion (4.4) can generate a good approximation. Otherwise, if rc/R is large, then the

error becomes larger accordingly, and hence the Taylor expansion is inefficient. In the treecode,

φj is computed using the recursive divide-conquer strategy. The standard multiple acceptance

criterion (MAC)

rc
R
≤ θ

is adopted to determine if cluster c is a far-field, where θ is a user-specified parameter. The Taylor

expansion is applied only if the MAC is satisfied, otherwise the treecode will recursively consider

the interactions between particle xj and the children of cluster c. If c is a leaf of the tree structure,

i.e., c has no children, then such a cluster is identified as a near-field and the direct summation is

applied. In summary, the sum calculated via the treecode reads [20]

φj ≈
∑
c∈Nj

∑
xi∈c

qjG(xj |xi) +
∑
c∈Fj

p∑
|k|=0

ak(xj ,xc)m
k
c , (4.5)

where Nj and Fj are two sets of clusters considered as near-field and far-field associated with

particle xj , respectively. In the formulation of the proposed scheme, we also need to compute the

derivatives of φ, which can be similarly obtained through the above strategy, see [20]. For example,

a high order mixed partial derivative can be calculated via

∂lxφj =
∑
i 6=j

qi∂
l
xG(xj |xi)

≈
∑
c∈Nj

∑
xi∈c

qi∂
l
xG(xj |xi) +

∑
c∈Fj

p∑
|k|=0

(−1)|l|
(k + l)!

k!
ak+l(xj ,xc)m

k
c . (4.6)

4.2 Formulations of Fully Discrete Schemes

In this subsection, we formulate the fully discrete schemes for potential w with both direct and

indirect approaches. These are common approaches in boundary integral methods, and we refer the

readers to [2, 36] for more details. In particular, the direct method is based on the reformulation

of the solution to (3.3) or (3.4), while the indirect method is based on an ansatz consisting of
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a single layer potential. We will see that both methods can handle problems with the perfectly

conducting boundary conditions, but the indirect method is more convenient when dealing with

the Silver-Müller boundary conditions. We choose to illustrate the main idea of the algorithm for

the cubic domain [0, 1]3, but the idea can also be applied to complex geometries.

4.2.1 Direct Approach for a Perfectly Conducting Cube

We start with a simple case in which the cubic domain has six perfectly conduction faces, and ρ

and J are 0. Due to symmetry, we only consider the first component of w denoted by w1. Since

the boundary is perfectly conducting, i.e., w × n = 0, we can formulate a decoupled boundary

condition for w1. On the four boundary faces x2 = 0, x2 = 1, x3 = 0, and x3 = 1, we have w1 = 0.

In other words, on those four faces, we have the homogeneous Dirichlet boundary conditions. For

the other two faces, the continuity equation (2.20b) translates to the divergence-free constraint on

w, i.e., ∂x1w1 + ∂x2w2 + ∂x3w3 = 0 when ρ = 0. Moreover, since w × n = 0, we have w2 = 0 and

w3 = 0. Thus, ∂x1w1 = 0 on the boundary faces x1 = 0 and x1 = 1. In other words, w1 satisfies the

homogeneous Neumann boundary condition ∂w1
∂n = 0 on faces x1 = 0 and x1 = 1. Now we consider

the second order dissipative scheme (3.3) for the w1 component, i.e.,

wn+1
1 (x) =−

∫
Ω
ε2
(

5wn1 − 4wn−1
1 + wn−2

1

δt2

)
G(x|y)dΩy

−
∮
∂Ω

(
∂wn+1

1

∂ny
G(x|y)− wn+1

1

∂G

∂ny
(x|y)

)
dsy, x ∈ Ω (4.7)

We denote volume integral in the formulation above as φ1(x). This term can be computed by the

treecode algorithm described in the previous subsection. The unknown boundary data appearing

in (4.7) are solved through the boundary integral equation. In particular, we denote the boundary

faces with the homogeneous Dirichlet boundary condition by ΓD and the boundary faces with

homogeneous Neumann boundary condition by ΓN . We further define the unknown Neumann

trace data on ΓD by γ1 and the unknown Dirichlet trace data on ΓN by γ2, then (4.7) can be

rewritten as

wn+1
1 (x) =− φ1(x)−

∮
∂Ω

(
∂wn+1

1

∂ny
G(x|y)− wn+1

1

∂G

∂ny
(x|y)

)
dsy

=− φ1(x)−
∫

ΓD

γ1(y)G(x|y)dsy +

∫
ΓN

γ2(y)
∂G

∂ny
(x|y)dsy, x ∈ Ω, (4.8)
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where the homogeneous boundary conditions have been imposed. Let x approach the boundary,

we obtain the following boundary integral equations for γ1 and γ2:

0 =− φ1(x)−
∫

ΓD

γ1(y)G(x|y)dsy +

∫
ΓN

γ2(y)
∂G

∂ny
(x|y)dsy, x ∈ ΓD, (4.9)

1

2
γ2(x) =− φ1(x)−

∫
ΓD

γ1(y)G(x|y)dsy +

∫
ΓN

γ2(y)
∂G

∂ny
(x|y)dsy, x ∈ ΓN , (4.10)

where γ2 in (4.10) is divided by 2 to account for the singular nature of double layer potential. The

boundary integral equations (4.9) and (4.10) are then solved by a collocation method [9]. ΓD and

ΓN are first divided into a set of small panels ΓjD , jD = 1, · · · , MD and ΓjN , jN = 1, · · · , MN ,

respectively. The centers of panel ΓjD and panel ΓjN are denoted by xjD and xjN , respectively.

The unknown boundary data γ1 and γ2 are assumed to be constant along each panel, which are

denoted by γ1,jD and γ2,jN on panel ΓjD and ΓjN , respectively. In order to solve unknown boundary

data γ1,jD and γ2,jN , the boundary integral equation is discretized as

φ1(xiD) =−
MD∑
jD=1

γ1,jD

∫
ΓjD

G(xiD |y)dsy +

MN∑
jN=1

γ2,jN

∫
ΓjN

∂G

∂ny
(xiD |y)dsy, iD = 1, · · · , MD,

(4.11)

φ1(xiN ) =−
MD∑
jD=1

γ1,jD

∫
ΓjD

G(xiN |y)dsy −
1

2
γ2,iN +

MN∑
jN=1

γ2,jN

∫
ΓjN

∂G

∂ny
(xiN |y)dsy, iN = 1, · · · , MN .

(4.12)

All the surface integrals in (4.11) and (4.12) are approximated by a Gaussian quadrature rule. In

the simulations, we use a tensor-product quadrature rule with 12th order of accuracy. At last, we

obtain a linear system for γ1,jD and γ2,jN , which can be solved by GMRES. Numerical experiments

show that the linear system is well-conditioned: if the error tolerance is set as 10−14, GMRES will

only take 10-20 iterations to converge. The procedure for the dispersive scheme (3.4) is similar and

omitted.

After the potential wn+1 is obtained, as mentioned in Section 3, we can advance the electric

field by letting En+1 = 3/2wn+1−2wn+wn+1/2
δt . The magnetic field can be obtained by Bn+1 =

−1
ε∇ ×wn+1 + B0. Two methods can be used to apply the ∇× operator. We can reconstruct a

local polynomial interpolating wn+1, then apply the ∇× operator to the reconstructed polynomial.

In this case, the divergence-free property is attained in a discrete sense. Or we can apply the

∇× operator to the integral representation of wn+1, i.e., the operator is applied to the Green’s

function directly. Hence Bn+1 is given by an integral formulation and the divergence-free property
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is attained in a point-wise sense. For example, consider the second order dissipative scheme, for

which the numerical solution can be written as an integral representation (4.8), we obtain

Bn+1(x) =B0 +

∫
Ω
ε

(
5wn − 4wn−1 + wn−2

δt2

)
∇x ×G(x|y)dΩy (4.13)

+
1

ε

∮
∂Ω

(
∂wn+1

∂ny
∇x ×G(x|y)−wn+1∇x ×

∂G

∂ny
(x|y)

)
dsy.

Note that even though the above formulation gives an explicit representation of B, it is still subject

to some numerical errors when evaluating the convolution integrals, which may result in some

divergence errors at the discrete level. In the simulations, we adopt the first method to solve for B.

So far, we have assumed that ρ = 0. The case of ρ 6= 0 can be treated similarly. Note that

w should satisfy the continuity equation. Recall that, in the MOLT framework, such a constraint

becomes

∇ ·
(

3/2wn+1 − 2wn + 1/2wn−1

δt

)
= ρn+1,

for the dissipative scheme, or equivalently

3

2
∇ ·wn+1 = δtρn+1 + 2∇ ·wn − 1

2
∇ ·wn−1 (4.14)

where ρn+1 is given. We again take w1 as an example. With the perfectly conducting boundary

condition, w1 still satisfies the homogeneous Dirichlet boundary condition on faces x2 = 0, x2 = 1,

x3 = 0, and x3 = 1. The boundary conditions on faces x1 = 0 and x1 = 1 can be obtained by

taking advantage of the divergence constraint (4.14). Since w2 and w3 are both 0 on face x1 = 0

and x1 = 1, constraint (4.14) becomes

3

2
∂x1w

n+1
1 = δt ρn+1 + 2∂x1w

n
1 −

1

2
∂x1w

n−1
1 ,

or

∂wn+1
1

∂n
=

2

3
δt ρn+1 +

4

3

∂wn1
∂n
− 1

3

∂wn−1
1

∂n
,

which is a non-homogeneous Neumann boundary condition on x1 = 0 and x1 = 1. The procedure

can be extended similarly to w2 and w3.

For complex geometries, we again assume that the boundary is discretized by a set of panels Γj .

The unit outward normal vector nj = (nj,1, nj,2, nj,3) along panel Γj is a constant. A boundary

panel Γj is assumed to be perfectly conducting, i.e., w × nj = 0 on Γj , or

w2nj,3 − w3nj,2 = 0, w3nj,1 − w1nj,3 = 0, w1nj,2 − w2nj,1 = 0. (4.15)

26



For simplicity, we assume the density ρ = 0. Hence the continuity equation will impose a divergence-

free constraint on w, i.e., ∂x1w1 + ∂x2w2 + ∂x3w3 = 0. If nj,1 = 0, nj,2 and nj,3 cannot be both 0,

hence, w1 = 0 on panel Γj from (4.15), which is a homogeneous Dirichlet boundary condition. If

nj,1 6= 0, (4.15) gives w2 =
nj,2

nj,1
w1 and w3 =

nj,3

nj,1
w1. We further take partial derivatives, and obtain

∂x2w2 =
nj,2

nj,1
∂x2w1 and ∂x3w3 =

nj,3

nj,1
∂x3w1, where we have used the fact that nj is constant along

each panel. The divergence-free constraint gives

∂x1w1 +
nj,2
nj,1

∂x2w1 +
nj,3
nj,1

∂x3w1 = 0,

or equivalently,

∂w1

∂nj
= 0,

which is a homogeneous Neumann boundary condition for w1. The procedure can also be applied to

w2 and w3. In summary, on a perfectly conducting panel Γj , if nj,k = 0, k = 1, 2, 3, then wk satisfies

the homogeneous Dirchlet boundary condition, otherwise, the homogeneous Neumann boundary

condition holds true. If ρ 6= 0, we will get an inhomogeneous Neumann boundary condition for the

case of nj,k 6= 0 instead.

4.2.2 Indirect Approaches for a Perfectly Conducting Cube

Now we formulate two indirect approaches for a perfectly conducting cube. As an alternative to

the representation formula (3.3), we can assume w satisfies the following integral formulation

wn+1(x) =−
∫

Ω

(
ε2
(

5wn − 4wn−1 + wn−2

δt2

)
+ Tn+1

)
G(x|y) dΩy +

∮
∂Ω
γ(y)G(x|y)dsy (4.16)

.
=− Φ(x) +

∮
∂Ω
γ(y)G(x|y)dsy, x ∈ Ω, (4.17)

where Φ(x) denotes the particular solution of the modified Helmholtz equation and γ is an unknown

vector density function associated with the single layer potential. We now propose two approaches

to solve for γ. The first one is based on the fact that each component of w should satisfy either a

Dirichlet or a Neumann boundary condition on each of the discrete boundary panels. Note that we

utilized this fact when formulating the direct method above. We take the first component w1 as

an example. The discretization of the boundary and the corresponding notations are the same as

the direct method. Similar to (4.9)-(4.10), the unknown function γ satisfies the following integral
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equations:

φ1(x) =

∫
Γ
γ1(y)G(x|y)dsy, x ∈ ΓD, (4.18)

∂φ1(x)

∂nx
=

1

2
γ1(x) +

∫
Γ
γ1(y)

∂G

∂nx
(x|y)dsy, x ∈ ΓN , (4.19)

where γ1 is divided by 2 is to account for the singularity of the normal derivative of the single layer

potential. The corresponding discretization of the integral equations are given by

φ1(xiD) =

MD∑
j=1

γ1,jD

∫
ΓjD

G(xiD |y)dsy +

MN∑
jN=1

γ1,jN

∫
ΓjN

G(xiD |y)dsy, iD = 1, · · · , MD, (4.20)

φ1(xiN )

∂nx
=

1

2
γ1,iN +

MD∑
jD=1

γ1,jD

∫
ΓjD

∂G

∂nx
(xiN |y)dsy +

MN∑
jN=1

γ1,jN

∫
ΓjN

∂G

∂nx
(xiN |y)dsy, iN = 1, · · · , MN ,

(4.21)

where, φ1(xiD) and
φ1(xiN

)

∂nx
are computed via the treecode. Similar to the direct method, the

obtained linear system is well-conditioned. Once w is solved, the electric field E and magnetic field

B can be obtained through the same procedure as described for the direct method.

The second approach is designed to solve for the three components of w at the same time.

Starting with the assumption (4.16), let x approach boundary and take the cross-product with nx

to obtain

0 = wn+1(x)× nx = −Φ(x)× nx +

∮
∂Ω
γ(y)G(x|y)× nxdsy, x ∈ ΓC , (4.22)

where the perfectly conducting boundary condition has been used. Note that γ is not uniquely

determined by (4.22); we still need to enforce other constraint to uniquely solve for γ. We again

resort to the divergence-free constraint for the case ρ = 0. The case of ρ 6= 0 is similar and omitted.

Apply the divergence operator to (4.16) and let x approach boundary, we have

0 = ∇x ·wn+1(x) = −∇x · Φ(x) +

∮
∂Ω
γ(y) · ∇xG(x|y)dsy +

1

2
γ(x) · nx, x ∈ ∂Ω, (4.23)

where the integral has to be understood as a Cauchy principal value. A method proposed in [24] can

be used to approximate the singular integral. The extra term 1
2γ(x) ·nx accounts for the singularity

of the derivatives of the single layer potential. Combining (4.22) and (4.23) gives an integral

equation for γ; a collocation method can be formulated for solving the integral equations. The

numerical evidence shows that the obtained linear system is still well-conditioned. The drawback
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of this approach is the need to solve a linear system with three times larger dimensions, however,

this approach can be easily extended to the Silver-Müller boundary conditions as to be discussed

in the next subsection.

4.2.3 Indirect Approach for the Silver-Müller Boundary Conditions

The Silver-Müller boundary conditions can be treated as follows in a similar fashion to the perfectly

conducting boundary condition for the indirect approach. In the same spirit of the MOLT method,

we first discretize the time variable, e.g., applying a second order finite difference discretization to

(2.22), we obtain(
3/2wn+1 − 2wn + 1/2wn−1

δt
+

1

ε

(
∇×wn+1 × n

))
× n = (B(0,x)× n + g)× n, (4.24)

or (
3

2
wn+1 +

δt

ε

(
∇×wn+1 × n

))
× n =

(
δtB(0,x)× n + g + 2wn − 1

2
wn−1

)
× n, (4.25)

.
= R× n,

where R is known and can be treated as a source term. Again, we start with the ansatz (4.16).

Since a single layer potential is continuous across the boundary, we have

wn+1(x) = −Φ(x) +

∫
∂Ω
γ(y)G(x|y)dsy, x ∈ ΓA. (4.26)

Then we apply the ∇x× operator to (4.16), take the cross-product with nx, and let x approach

the boundary. This gives

∇x ×wn+1(x)× nx = −∇x × Φ(x)× nx +
1

2
γ(x) +

∮
∂Ω
∇x × (γ(y)G(x|y))× nxdsy

= −∇x × Φ(x)× nx +
1

2
γ(x) +

∮
∂Ω
γ(y)

∂G

∂nx
(x|y)− γ(y) · nx∇xG(x|y)dsy, x ∈ ΓA, (4.27)

where the extra term 1
2γ(x) is due to the singularity of the derivative of the single layer potential.

Again the integral exists as a Cauchy principal value. Substituting (4.26) and (4.27) into (4.25)

gives(
3

2
Φ(x) +

δt

ε
∇x × Φ(x)× nx + R

)
× nx

=

(
δt

2ε
γ(x) +

∮
∂Ω

(
3

2
γ(y)G(x|y) +

δt

ε

(
γ(y)

∂G

∂nx
(x|y)− γ(y) · nx∇xG(x|y)

))
dsy

)
× nx, x ∈ ΓA.

(4.28)
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Similar to the case of the perfectly conducting boundary condition, (4.28) cannot uniquely deter-

mine γ; the continuity equation on the boundary ΓA, i.e. (4.23) should be enforced for the case

when ρ = 0. We remark that it is not trivial to formulate a proper boundary integral equation

in the setting of the direct method or the first approach of the indirect method, when the Silver-

Müller boundary condition is considered. Also note that, unlike the perfectly conducting boundary

condition, the time derivative ∂tw appears in the Silver-Müller boundary condition, which makes

it difficult to formulate a dispersive scheme. For simplicity, we only consider the dissipative scheme

for the problem with the Silver-Müller boundary condition.

Lastly, when both types of boundary conditions are imposed, we have

Φ(x)× nx =

∮
∂Ω
γ(y)G(x|y)× nxdsy, x ∈ ΓC , (4.29)(

3

2
Φ(x) +

δt

ε
∇x × Φ(x)× nx + R

)
× nx

=

(
δt

2ε
γ(x) +

∮
∂Ω

3

2
γ(y)G(x|y) +

δt

ε

(
γ(y)

∂G

∂nx
(x|y)− γ(y) · nx∇xG(x|y)

)
dsy

)
× nx, x ∈ ΓA,

(4.30)

together with the divergence constraint on w (4.23). The resulting system can be computed by

collocation methods and linear solvers. This completes the description of our algorithms.

4.2.4 Remarks on the Formulations with ψ and A

At the end of this section, we remark on the fully discrete schemes in terms of potential ψ and A.

Since we can not obtain decoupled boundary conditions for ψ and A, it is impossible to formulate

a direct approach; the only practical way is to adopt the indirect approach. Moreover, similar to

w, in order to uniquely determine ψ and A, we need to enforce the gauge condition in the integral

formulations, which will result in a linear system with dimension one third larger than that from

the formulation of w. Therefore, the use of w seems more efficient than ψ and A. On the other

hand, the time integral ∇(
∫ t

0 ρds) in the formulation of w may lead to potential difficulty for plasma

simulations.

5 Numerical Examples

In this section, we consider two numerical examples to demonstrate the performance of the proposed

schemes. The rescaled Maxwell’s equations (2.17) are solved numerically on a unit cube [0, 1]3 with

different initial and boundary conditions.
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Problem 1. The first test case [10] has perfectly conducting boundaries on all six faces. The

charge and current densities are set to be zero. The initial conditions for E and B are given by

E(0,x) =

 cos(πx1) sin(πx2) sin(−2πx3)
sin(πx1) cos(πx2) sin(−2πx3)
sin(πx1) sin(πx2) cos(−2πx3)

 , B(0,x) = 0.

Note that both E and B satisfy the divergence-free condition initially. The exact solution is

E(t,x) = cos(ωt)E(0,x),

B(t,x) =

√
3

2
sin(ωt)

 − sin(πx1) cos(πx2) cos(−2πx3)
cos(πx1) sin(πx2) cos(−2πx3)

0

 ,

where ω =
√

6π
ε . Recall that w(t,x) =

∫ t
0 E(s,x)dt. The exact solution for w can be obtained by

integrating E in time:

w(t,x) =
1

ω
sin(ωt)E(0,x).

Problem 2. The second test case [1] is a cubic waveguide, in which a TE10 mode propagates

in the x3-direction. The charge and current densities are set to be zero. The analytical expression

of the TE field is given by

E(t,x) =

 sin(πx2) sin(πx3 − ωt)
0
0

 , B(t,x) =
1√
2

 0
sin(πx2) sin(πx3 − ωt)
cos(πx2) cos(πx3 − ωt)

 ,

where ω =
√

2π
ε . The exact expression for w can be obtained by integrating E(t) in time

w(t,x) =

 1
ω sin(πx2)(cos(πx3 − ωt)− cos(πx3))

0
0

 .

We prescribe the perfectly conducting boundary condition on the four side faces (x1 = 0, x1 = 1,

x2 = 0, and x2 = 1), while at the bottom (x3 = 0) and the top (x3 = 1), the Silver-Müller boundary

conditions are imposed, i.e.,(
∂tw +

1

ε
∇×w × n

)
× n = (B(0,x)× n + g)× n, with

g =


(−
√

2 + 2

2
sin(πx2) sin(ωt), 0, 0)T on x3 = 0,

(−
√

2− 2

2
sin(πx2) sin(ωt), 0, 0)T on x3 = 1.
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Problem 3. The last test case considered in this paper is a simple case of the problem 2 studied

in [10]. The computational domain is still a unit cube, but a current bar with zero thickness is

posed across the domain in the x3-direction. We let J = (0, 0, δ(x1 − 1/2)δ(x2 − 1/2) cos(2πt))

and ρ = 0. We prescribe the absorbing Silver-Müller boundary conditions on the four side faces

(x1 = 0, x1 = 1, x2 = 0, and x2 = 1), i.e., we let g = 0, while at the bottom (x3 = 0) and the top

(x3 = 1), the perfectly conducting boundary condition is imposed. We set zero initial conditions

for both E and B, and hence w is set to be zero.

In our simulations, we consider both the direct and indirect approaches. For simplicity, we

use uniformly distributed particles in the unit cube and let h be the mesh size in one coordinate

direction. However, the scheme can also accommodate non-uniformly distributed particles. The

time step δt is chosen as δt = CFL · h. Note that for the test cases, choosing a small dimensionless

parameter ε is equivalent to choosing a large CFL number, since the frequency ω = O(1
ε ). Therefore,

we set ε = 1 in all simulations and test the schemes with large CFL numbers. For the treecode

algorithm, the MAC parameter θ is set to be 0.5 and the order of Taylor approximation p is set to

be 9.

5.1 Direct Approach for Problem 1

For the first numerical test, we let CFL=3.2 for the dissipative scheme. In Figure 5.1, we plot the

time evolution of the numerical solutions w1 and E1 at an arbitrarily chosen point (
√

3/2,
√

2/2,
√

2/4)

computed with the different number of particles. The solution value at this point is calculated from

the integral formulation (4.11)-(4.12) once we solve the unknown boundary potential. It is observed

the numerical solution converges to the exact solution when adding more particles. Due to the sym-

metry of this test, we only report the first component of the numerical solutions for brevity. In

Table 5.1, we report the convergence study of the proposed scheme. Second order of convergence

for w1, E1 and B1 are observed, where errors are measured using the following norm

‖e(x, t)‖ = ‖(‖e(x, t)‖L1(Ω))‖L∞[0,T ]. (5.1)

We also ran the simulations using the second order dispersive scheme for this test. Note that, we

can use a larger CFL number for the dispersive scheme and obtain comparable numerical results. In

the simulation, we set CFL=4.2. In Figure 5.2, the time evolution of the numerical solution at the
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Figure 5.1: Problem 1. The time evolution of w1 (left) and E1 (right) at the location
(
√

3/2,
√

2/2,
√

2/4). Second order dissipative scheme. Direct approach. CFL = 3.2.

Table 5.1: Problem 1. The L1 errors and the corresponding orders of accuracy for w1, E1, and B1.
T = 1. Second order dissipative scheme. Direct approach. CFL=3.2.

w1 E1 B1

N L1 error order L1 error order L1 error order

303 3.06E-02 – 1.68E-01 – 2.71E-01 –

403 1.96E-02 1.55 1.10E-01 1.47 1.78E-01 1.46

503 1.23E-02 2.08 6.65E-02 2.25 1.13E-01 2.03

603 8.33E-03 2.14 4.33E-02 2.35 7.48E-02 2.33
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location (
√

3/2,
√

2/2,
√

2/4) is reported. Again, using more particles can generate more accurate

solutions. The convergence study is also presented in Table 5.2, and second order of convergence is

observed as expected. Then, we compare the performance of two second order schemes for a long

time simulation, for which we compute the numerical solution up to 7 periods. We set CFL=3.2

and use 603 particles for both schemes. In Figure 5.3, we plot the numerical solutions w1 and E1 by

both schemes at the location (
√

3/2,
√

2/2,
√

2/4). It is observed that the amplitude of the wave

is dissipated for the dissipative scheme and the corresponding dissipation error becomes significant

after a long time simulation. On the other hand, the dispersive scheme can maintain the amplitude

of the wave to some extent, while the phase error can be observed after some time.
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-0.1

-0.05

0

0.05

0.1 N=303

N=403

N=503

N=603

Exact

Dispersive Scheme: W1

t

E
1

0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6 N=303

N=403

N=503

N=603

Exact

Dispersive Scheme: E1

Figure 5.2: Problem 1. The time evolution of w1 (left) and E1 (right) at the location
(
√

3/2,
√

2/2,
√

2/4). Second order dispersive scheme. Direct approach. CFL = 4.2.

Table 5.2: Problem 1. The L1 errors and the corresponding orders of accuracy for w1, E1, and B1.
T = 1. Second order dispersive scheme. Direct approach. CFL=4.2.

w1 E1 B1

N L1 error order L1 error order L1 error order

303 3.68E-02 – 2.14E-01 – 3.27E-01 –

403 2.37E-02 1.53 1.21E-01 1.98 2.16E-01 1.44

503 1.48E-02 2.11 7.41E-02 2.19 1.36E-01 2.07

603 8.99E-03 2.73 4.52E-02 2.71 8.31E-02 2.70
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Figure 5.3: Problem 1. The time evolution of w1 (left) and E1 (right) at the location
(
√

3/2,
√

2/2,
√

2/4) up to about 7 periods. 603 particles are used for computation. Direct ap-
proach. CFL = 3.2.

5.2 Indirect Approach for Problem 1

We use the first indirect method to solve the first problem and set CFL=3.2. For brevity, we

only consider the second order dissipative scheme. In Figure 5.4, we plot the time evolution

of numerical solutions w1 and E1 at the location (
√

3/2,
√

2/2,
√

2/4). Comparable numerical

results are observed to the direct method. In Table 5.3, we report the convergence study for the

indirect scheme, for which we observe 1.5th order of convergence for w1 and E1, and second order of

convergence for B1. We will investigate the reason for the reduction of accuracy in the future. We

also noted that the magnitude of errors is a little larger than that by the direct method. For brevity,

we do not report the numerical result for the second indirect approach, which gives comparable

numerical results to the first indirect approach.

Table 5.3: Problem 1. The L1 errors and the corresponding orders of accuracy for w1, E1, and
B1. T = 1. Second order dissipative scheme. The first indirect approach. CFL=3.2.

w1 E1 B1

N L1 error order L1 error order L1 error order

303 3.51E-02 – 1.93E-01 – 3.07E-01 –

403 2.56E-02 1.10 1.43E-01 1.04 2.28E-01 1.46

503 1.99E-02 1.12 1.09E-01 1.22 1.79E-01 2.03

603 1.51E-02 1.51 8.30E-02 1.50 1.37E-01 2.33
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Figure 5.4: Problem 1. The time evolution of w1 (left) and E1 (right) at the location
(
√

3/2,
√

2/2,
√

2/4). Second order dissipative scheme. The first indirect approach. CFL = 3.2.

5.3 Indirect Approach for Problem 2

Now, we apply the proposed indirect approach for solving problem 2. To save space, we only report

the results of the dissipative scheme. Table 5.4 summarizes the convergence study of the proposed

scheme with a large CFL number 4.9. Second order of convergence is observed for w1, E1 and B2.

Several plots of the two-dimensional cuts at x = 0.51 for the numerical solution E1 are shown in

Figure 5.5. Here we use 503 particles in the simulation and let CFL=5. The numerical results are

consistent with the exact solution.

Table 5.4: Problem 2. The L1 errors and the corresponding orders of accuracy for w1, E1, and B2.
T = 1.5. Second order dissipative scheme. Indirect approach. CFL=4.9.

w1 E1 B2

N L1 error order L1 error order L1 error order

303 4.59E-02 – 2.12E-01 – 1.59E-01 –

403 2.97E-02 1.50 1.24E-01 1.86 9.46E-02 1.80

503 1.68E-02 2.56 7.26E-02 2.37 5.43E-02 2.49

5.4 Indirect Approach for Problem 3

Lastly, we present the numerical result for problem 3. Similar to problem 2, we use proposed

indirect approach to solve this problem. In the simulation, we use 303 particles and let CFL=3.
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Figure 5.5: Problem 2. The contour plots of two-dimensional cuts of E1 at x1 = 0.51. A TE10 mode
is propagating in the cubic waveguide. 503 particles. Second order dissipative scheme. Indirect
approach. CFL = 5.0.

In Figure 5.6, we report the contour plots of two-dimensional cuts of B1 at x3 = 0.2 at several

instances of time. For this problem, the behavior of B can be explained by the Biot-Savart law

[10], that is the magnetic field created by the current bar is

B(x) =
µ0

4π

∫
C

J× r

|r|3
dly,

where r = x − y. Therefore, if we denote the orthogonal projection of x on the current bar by

x′ = (1/2, 1/2, x3) and let r′ = x− x′, then the Biot-Savart law gives

B(x) ∝ cos(2πt)

|r′|2

 −(x2 − 1/2)
(x1 − 1/2)

0

 .
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It can be observed from Figure 5.6 that at x2 = 1/2, B1 vanishes horizontally at x2 = 1/2. Also

note that the Silver-Müller absorbing boundary condition is only first order, i.e., only plane waves

with normal incidence can be absorbed at the boundary, see [18, 10]. We can still observe some

reflection near the boundary.

6 Conclusions and future work

In this paper, we develop AP schemes for Maxwell’s equations in the potential form. The methods

are implicit, allow large time steps, and are shown to recover the Darwin limit at the semi-discrete

level when the dimensionless parameter ε = v̄/c goes to 0. By using the MOLT framework, we

obtain the integral formulation for the vector potential, which are then solved by the treecode

algorithm. Although the schemes are only second order accurate in space and time, it is possible to

improve the spatial accuracy by using higher order quadrature in the Nyström method framework

and temporal accuracy by the successive convolution technique [6]. Other future directions include

extension of the methods to the scalar and vector potential forms with the Lorentz and Coulomb

gauge, as well as incorporation of the schemes in kinetic plasma simulations.
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[34] P.-A. Raviart and E. Sonnendrücker. A hierarchy of approximate models for the Maxwell

equations. Numerische Mathematik, 73(3):329–372, 1996.

[35] A. J. Salazar, M. Raydan, and A. Campo. Theoretical analysis of the Exponential Transver-

sal Method of Lines for the diffusion equation. Numerical Methods for Partial Differential

Equations, 16(1):30–41, 2000.

[36] S. Sauter and C. Schwab. Boundary element methods. Springer, 2011.

[37] M. Schemann and F. Bornemann. An adaptive Rothe method for the wave equation. Com-

puting and Visualization in Science, 1(3):137–144, 1998.

[38] H. Schmitz and R. Grauer. Darwin–Vlasov simulations of magnetised plasmas. Journal of

Computational Physics, 214(2):738–756, 2006.

41
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Figure 5.6: Problem 3. The contour plots of two-dimensional cuts of B1 at x3 = 0.2. 303 particles.
Second order dissipative scheme. Indirect approach. CFL = 3.0.
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