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Abstract

Concise and explicit formulas for dyadic Green’s functions, representing the electric and mag-
netic fields due to a dipole source placed in layered media, are derived in this paper. First, the
electric and magnetic fields in the spectral domain for the half space are expressed using Fresnel
reflection and transmission coefficients. Each component of electric field in the spectral domain
constitutes the spectral Green’s function in layered media. The Green’s function in the spatial
domain is then recovered involving Sommerfeld integrals for each component in the spectral do-
main. By using Bessel identities, the number of Sommerfeld integrals are reduced, resulting in
much simpler and more efficient formulas for numerical implementation compared with previous
results. This approach is extended to the three-layer Green’s function. In addition, the singular
part of the Green’s function is naturally separated out so that integral equation methods devel-
oped for free space Green’s functions can be used with minimal modification. Numerical results
are included to show efficiency and accuracy of the derived formulas.

Keywords: Maxwell’s equations, Dyadic Green’s functions, Sommerfeld integrals, Layered
media

1. Introduction

Multi-layered media is a fundamental structure for many applications such as meta-materials,
photonic crystals [1], solar cells [2, 3], light emitting diodes [4], and plasmonic devices and
others. Numerical simulation of wave propagation in such media poses much challenge due
to large number of scatters, the treatment of radiation condition at the infinite, and the field
discontinuity at layer interfaces in meta-materials consisting of meta-atoms. Integral equation
methods have been shown to be versatile to address these issues in computing the wave scattering
in the layered media. To implement the integral equation formulation of the scattering problem,
it is imperative to have a concise formulation and efficient computational algorithm to compute
the dyadic Green’s functions for the Maxwell’s equations in the three-dimension (3-D). In this
paper, we will present explicit and compact formulas for the two- and three-layer dyadic Green’s
functions in terms of high order Hankel transforms and relevant numerical method for their
computations.

The dyadic Green’s function for a two-layer structure [5] and multi-layered media [6] have
been explicitly presented. However, the formula for the three or more layers was not provided
in Ref. [5]. Also, the derivations in these work used an analytical formula for Sommerfeld
integrals for two layers in order to reduce the total number of Sommerfeld integrals to 10. As
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a consequence, extension to multi-layered media for sources on top of the layered media as
well as in the middle layer is not obvious. As a result, multi-layered media Green’s function
requires extra Sommerfeld integrals. The multi-layered media Green’s function in [6] requires
total 16 Sommerfeld integrals. The new formula proposed in this paper utilizes the second order
Hankel transform to reduce the number of integrals needed and the singular and nonsingular parts
of the Green’s function are clearly separated. This allows easy use of many integral equation
algorithms and codes developed using free space Green’s function [7] or periodizing schemes
for periodic objects [8, 9] for the multi-layered media problems. Moreover, our approach in
principle, with some more bookkeeping associated with the layers, can be extended to the multi-
layered media when the source is on top of the layered media. Discussion on various numerical
issues of implementing the integral equations can be found in Ref. [10, 11] and it is not repeated
here. For numerical contour integration of Sommerfeld integrals in the Fourier k-space, adaptive
generalized Gaussian quadrature rules [12, 13] are used to obtain high accuracy using quadrature
points only on the real axis. This avoids complex number operations and reduces computation
time. In other words, near the surface poles of the spectral dyadic Green’s functions, generalized
Gaussian quadrature rule is applied while traditional Gaussian quadrature is applied in other parts
of the contour.

The derivation for the dyadic Green’s function in this paper is rather cumbersome and tedious.
However, it is unavoidable for multi-layered media simulation and much needed in practice of
integral equations using dyadic Green’s functions. Every effort is made to simplify the final
formula so the readers can implement them easily. The same notation as in Ref. [5] will be used
and modified as necessary throughout the paper.

The rest of the paper is organized as follows. In the next section, the free-space Green’s
function is transformed to one in the spectral domain using the Sommerfeld identity. Then, the
two-layer Green’s functions will be derived using the free-space Green’s function and Fresnel re-
flection coefficients [14, 15] in Section 3. In Section 4, extension will be given for the three-layer
Green’s functions with generalized Fresnel reflection coefficients [16] due to multiple reflections
from the interfaces. Finally, in Appendix, several Bessel identities used for the derivations are
provided.

2. Free-space Green’s function

The free-space Green’s function serves as a primary singular field for the multi-layered media
Green’s function. In multi-layered media, the free-space Green’s function will be “corrected”
with reflected and transmitted contribution. Thus, in this section, the dyadic Green’s function for
the free space is studied. First, it is rewritten in the spectral domain. Then, the spatial domain
Green’s function is recovered by taking the inverse Fourier transform. The same process will
be applied for multi-layered media. For convenience, the free space will be referred as a one-
layer problem that has relative permittivity ε1 and permeability µ1. Let a unit dipole be placed at
r′ = (x′, y′, z′) and oriented along α̂′ = (α′x, α

′
y, α

′
z). Then, the electric EP

1 = (EP
1x, E

P
1y, E

P
1z) and

magnetic HP
1 = (HP

1x,H
P
1y,H

P
1z) fields in the free space at r = (x, y, z) can be written as

EP
1 (r) =

iωµ0µ1

4π
(I +
∇∇

k2
1

) · α̂′
eik1 |r−r′ |

|r − r′|
, HP

1 (r) =
1

4π
∇ × α̂′

eik1 |r−r′ |

|r − r′|
, (1)
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where k1 = k
√
ε1µ1 in the dielectric and k = ω

√
ε0µ0 is the wave number in vacuum, respec-

tively. Using the Sommerfeld identity [17, 16],

eik1 |r−r′ |

|r − r′|
=

i
2π

∫ +∞

−∞

∫ +∞

−∞

dkxdky
eikx(x−x′)+iky(y−y′)+ik1z |z−z′ |

k1z
, (2)

where k2
s = k2

x + k2
y and k1z =

√
k2

1 − k2
s , the EP

1z can be written as

EP
1z(r) =

∫ +∞

−∞

∫ +∞

−∞

dkxdky

−ωµ0µ1

8π2

ẑ · α̂′ + 1
k2

1

∂z∇ · α̂
′

 eikx(x−x′)+iky(y−y′)+ik1z |z−z′ |

k1z

 , (3)

where ẑ is a unit vector along the z-axis. The integrand in Eq. (3) is the spectral component of
electric field in the z-direction, which is denoted by

ẼP
1z =

ẑ · α̂′ + 1
k2

1

∂z∇ · α̂
′

 g̃P
1 , (4)

where

g̃P
1 = −

ωµ0µ1

8π2

eikx(x−x′)+iky(y−y′)+ik1z |z−z′ |

k1z
. (5)

A similar derivation yields the magnetic field as

H̃P
1z =

1
iωµ0µ1

ẑ · ∇s × α̂
′g̃P

1 , (6)

where ∇s = (∂x, ∂y). From Maxwell’s equations, the transverse components ẼP
1s = (ẼP

1x, Ẽ
P
1y) and

H̃P
1s = (H̃P

1x, H̃
P
1y) can be written using the Ẽ1z and H̃1z as

ẼP
1s =

1
k2

s

(
∇s∂zẼP

1z − iωµ0µ1ẑ × ∇sH̃P
1z

)
, (7)

H̃P
1s =

1
k2

s

(
∇s∂zH̃P

1z + iωε0ε1ẑ × ∇sẼP
1z

)
. (8)

These two relations reduce the problem to an one-dimensional problem in the spectral domain
because only the z-component of electric and magnetic fields is required to completely determine
the fields in the spectral domain. By substituting Eqs. (4) and (6) into Eqs. (7) and (8), the electric
field in the spectral domain ẼP = (ẼP

1x, Ẽ
P
1y, Ẽ

P
1z) can be explicitly written in terms of the spectral

Green’s function, that is,
ẼP

1x
ẼP

1y
ẼP

1z

 = G̃Pα′ =


G̃P

xx G̃P
xy G̃P

xz
G̃P

yx G̃P
yy G̃P

yz
G̃P

zx G̃P
zy G̃P

zz


 α

′
x
α′y
α′z

 , (9)

where

G̃P =

I +
∇∇

k2
1

 g̃P
1 . (10)
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Figure 1: A two-layer structure. The free space is divided at z = 0 into the top and bottom layer. A dipole is located at
r′ = (x′, y′, z′) and the top layer has ε1 and µ1 and the bottom layer has ε2 and µ2.

Finally, the electric field in the spatial domain in Eq. (1) can be recovered by taking double
integrals

GP
i j =

∫ +∞

−∞

∫ +∞

−∞

G̃P
i jdkxdky, i, j = x, y, z, (11)

on each component of Eq. (10). This will constitute the free-space dyadic Green’s function in
the spatial domain. Note that this integral is well known as a Sommerfeld integral. The double
integral can be reduced to a single integral using cylindrical coordinate. The resulting integral
involves Bessel function or Hankel function depending on convenience and is sometimes referred
as the Hankel transform.

3. Green’s function for a two-layer structure

In this section, the free-space Green’s function is modified with the reflected and transmitted
parts of the Green’s function for a two-layer structure depicted in Fig. 1. Overall the process
of computing the Green’s function is the same as the free space. Due to symmetry, the source
is assumed to be in the first layer. First, in the spectral domain, using Fresnel reflection and
transmission coefficients, z-component of reflected electric field in the first layer and the trans-
mitted field in the second layer are found. Then, all the transverse components in each layer are
derived using Eqs. (7) and (8). Now the spatial domain Green’s function can be found by taking
Sommerfeld integral for each component. Finally, in the first layer, primary field is added with
reflected field from the second layer to complete derivation.

3.1. Fields in the spectral domain

The z-component of electric and magnetic fields in the first layer are

Ẽ1z = ẼP
1z + ẼR

1z, H̃1z = H̃P
1z + H̃R

1z, (12)

where the superscript P and R denote the primary and reflected parts, respectively. Similarly,
The z-component of electric and magnetic fields in the second layer are

Ẽ2z = ẼT
2z, H̃2z = H̃T

2z, (13)

where the superscript T denotes the transmitted part. The ẼP
1z and H̃P

1z are the primary fields
given in the previous section. Using the Fresnel reflection and transmission coefficients between
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the first and the second layer,

RT M
12 =

ε2k1z − ε1k2z

ε2k1z + ε1k2z
, RT E

12 =
µ2k1z − µ1k2z

µ2k1z + µ1k2z
,T T M

12 =
2ε2k2z

ε2k1z + ε1k2z
, T T E

12 =
2µ2k2z

µ2k1z + µ1k2z
, (14)

the reflected and transmitted parts can be found as

ẼR
1z =

ẑ · α̂′′ + 1
k2

1

∂z∇ · α̂
′′

 g̃R
1,T M , ẼT

2z =

ẑ · α̂′′′ + 1
k2

2

∂z∇ · α̂
′′′

 g̃T
2,T M , (15)

H̃R
1z = −

1
iωµ0µ1

ẑ · ∇s × α̂
′′g̃R

1,T E , H̃T
2z =

1
iωµ0µ2

µ1

µ2

k2z

k1z
ẑ · ∇s × α̂

′′′g̃T
2,T E , (16)

where

g̃R
1,T M,T E = −RT M,T E

12
ωµ0µ1

8π2

eikx(x−x′)+iky(y−y′)+ik1z(z+z′)

k1z
, (17)

g̃T
2,T M,T E = −T T M,T E

12
ωµ0µ2

8π2

eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′

k1z
, (18)

α̂′′ = (−α′x,−α
′
y, αz), α̂′′′ = (

k1z

k2z
α′x,

k1z

k2z
α′y, αz). (19)

The α̂′′ for the reflected part and α̂′′′ for the transmitted part ensure the boundary conditions
between layers. The transverse component ẼR

1s = (ẼR
1x, Ẽ

R
1y) can be expressed using the z-

components in Eqs. (15) and (16) using Eq. (7) as before by simply replacing the subindex
with either 1 or 2 and superscript with either R or T as

ẼR
1s =

1
k2

s
∇s∂z

ẑ · α̂′′ + 1
k2

1

∂z∇ · α̂
′′

 g̃R
1,T M +

1
k2

s
ẑ × ∇s

(
ẑ · ∇s × α̂

′′) g̃R
1,T E . (20)

Then, x- and y-components can be explicitly written out as

ẼR
1x =

1
k2

1

k2
1z

k2
s
∂2

xg̃R
1,T M −

k2
1

k2
s
∂2

y g̃R
1,T E

α′x +
1
k2

1

k2
1z

k2
s
∂x∂yg̃R

1,T M +
k2

1

k2
s
∂x∂yg̃R

1,T E

α′y +
1
k2

1

∂x∂zg̃R
1,T Mα

′
z

(21)

ẼR
1y =

1
k2

1

k2
1z

k2
s
∂x∂yg̃R

1,T M +
k2

1

k2
s
∂x∂yg̃R

1,T E

α′x +
1
k2

1

k2
1z

k2
s
∂2

y g̃R
1,T M −

k2
1

k2
s
∂2

xg̃R
1,T E

α′y +
1
k2

1

∂y∂zg̃R
1,T Mα

′
z

(22)

By listing all the components of the electric field in the spectral domain, the Green’s function in
the first layer can be found as Ẽ1x

Ẽ1y

Ẽ1z

 =


ẼP

1x + ẼR
1x

ẼP
1y + ẼR

1y
ẼP

1z + ẼR
1z

 =

(
G̃P −

1
8π2ωε0ε1

G̃R
1

)
α′

=




G̃P
xx G̃P

xy G̃P
xz

G̃P
yx G̃P

yy G̃P
yz

G̃P
zx G̃P

zy G̃P
zz

 − 1
8π2ωε0ε1


G̃R

1xx G̃R
1xy G̃R

1xz
G̃R

1yx G̃R
1yy G̃R

1yz
G̃R

1zx G̃R
1zy G̃R

1zz



 α

′
x
α′y
α′z

 , (23)
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where G̃P is the same as Eq. (10) and all the components of G̃R
1 are given by

G̃R
1xx =

∂2
x
k1z

k2
s

RT M
12 − ∂

2
y

k2
1

k2
s k1z

RT E
12

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′), (24)

G̃R
1yy =

∂2
y

k1z

k2
s

RT M
12 − ∂

2
x

k2
1

k2
s k1z

RT E
12

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′), (25)

G̃R
1zz =

(
k2

s

k1z
RT M

12

)
eikx(x−x′)+iky(y−y′)+ik1z(z+z′), (26)

G̃R
1xy = G̃R

1yx = ∂x∂y

k1z

k2
s

RT M
12 +

k2
1

k2
s k1z

RT E
12

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′), (27)

G̃R
1xz = −G̃R

1zx = ∂x∂z

RT M
12

k1z

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′), (28)

G̃R
1yz = −G̃R

1zy = ∂y∂z

RT M
12

k1z

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′). (29)

In the second layer, the transverse component ẼT
2s = (ẼT

2x, Ẽ
T
2y) is

ẼT
2s =

1
k2

s
∇s∂z

ẑ · α̂′′′ + 1
k2

2

∂z∇ · α̂
′′′

 g̃T
2,T M −

1
k2

s

µ1

µ2

k2z

k1z
ẑ × ∇s

(
ẑ · ∇s × α̂

′′′) g̃T
2,T E . (30)

Then, x- and y-components can be explicitly written out as

ẼT
2x =

1
k2

2

−∂2
x
k1zk2z

k2
s

g̃T
2,T M − ∂

2
y

k2
2

k2
s

µ1

µ2
g̃T

2,T E

α′x +
1
k2

2

−∂x∂y
k1zk2z

k2
s

g̃T
2,T M + ∂x∂y

k2
2

k2
s

µ1

µ2
g̃T

2,T E

α′y
+

1
k2

2

∂x∂zg̃T
2,T Mα

′
z, (31)

ẼT
2y =

1
k2

2

−∂x∂y
k1zk2z

k2
s

g̃T
2,T M + ∂x∂y

k2
2

k2
s

µ1

µ2
g̃T

2,T E

α′x +
1
k2

2

−∂2
y

k1zk2z

k2
s

g̃T
2,T M − ∂

2
x
k2

2

k2
s

µ1

µ2
g̃T

2,T E

α′y
+

1
k2

2

∂y∂zg̃T
2,T Mα

′
z. (32)

Thus, the spectral Green’s function in the second layer is Ẽ2x

Ẽ2y

Ẽ2z

 =


ẼT

2x
ẼT

2y
ẼT

2z

 = −
1

8π2ωε0ε2
G̃T

2 α̂
′ = −

1
8π2ωε0ε2


G̃T

2xx G̃T
2xy G̃T

2xz
G̃T

2yx G̃T
2yy G̃T

2yz
G̃T

2zx G̃T
2zy G̃T

2zz


 α

′
x
α′y
α′z

 , (33)
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where

G̃T
2xx =

−∂2
x
k2z

k2
s

T T M
12 − ∂

2
y

k2
2

k1zk2
s

µ1

µ2
T T E

12

 eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , (34)

G̃T
2yy =

−∂2
y

k2z

k2
s

T T M
12 − ∂

2
x

k2
2

k1zk2
s

µ1

µ2
T T E

12

 eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , (35)

G̃T
2zz =

(
k2

s

k1z
T T M

12

)
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , (36)

G̃T
2xy = G̃T

2,yx =

−∂x∂y
k2z

k2
s

T T M
12 + ∂x∂y

k2
2

k1zk2
s

µ1

µ2
T T E

12

 eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , (37)

G̃T
2xz = ∂x∂z

T T M
12

k1z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , G̃T

2yz = ∂y∂z
T T M

12

k1z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , (38)

G̃T
2zx = ∂z∂x

T T M
12

k2z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , G̃T

2zy = ∂z∂y
T T M

12

k2z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ . (39)

3.2. Fields in the spatial domain

In this subsection, Sommerfeld integrals/Hankel transforms are used to convert the spectral
Green’s function found in the previous subsection to the spatial domain Green’s function. Sev-
eral useful Bessel identities are listed in Appendix A and used in the derivation.

• In the first layer, the first component GR
1xx can be found by taking double integral as follows

GR
1xx =

∫ +∞

−∞

∫ +∞

−∞

G̃R
1xxdkxdky

=

∫ +∞

−∞

∫ +∞

−∞

∂2
x
k1z

k2
s

RT M
12 − ∂

2
y

k2
1

k2
s k1z

RT E
12

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′)dkxdky

= 1©− 2©, (40)

where

1© =

∫ +∞

−∞

∫ +∞

−∞

∂2
x
k1z

k2
s

RT M
12 eikx(x−x′)+iky(y−y′)+ik1z(z+z′)dkxdky, (41)

2© =

∫ +∞

−∞

∫ +∞

−∞

∂2
y

k2
1

k2
s k1z

RT E
12 eikx(x−x′)+iky(y−y′)+ik1z(z+z′)dkxdky. (42)

For all double integrals throughout the paper, the cylindrical coordinate transform

kx = ks cos φ, ky = ks sin φ, (x − x′) = ρ cos θ, (y − y′) = ρ sin θ, (43)

7



is used to reduce double integrals into single integrals. Now the integral 1© is simplified as

1© =

∫ +∞

−∞

∫ +∞

−∞

∂2
x
k1z

k2
s

RT M
12 eikx(x−x′)+iky(y−y′)+ik1z(z+z′)dkxdky,

= −

∫ ∞

0
ksk1zRT M

12 eik1z(z+z′)
∫ 2π

0
eiksρ cos (φ−θ) cos2 φdφdks

= −

∫ ∞

0
ksk1zRT M

12 eik1z(z+z′) (πJ0(ksρ) − πJ2(ksρ) cos 2θ) dks

= −
1
2

2π
∫ ∞

0
ksg̃R

1,1J0(ksρ)eik1z(z+z′)dks + π(1 − 2 sin2 θ)
∫ ∞

0
k3

s
k1z

k2
s

RT M
12 J2(ksρ)eik1z(z+z′)dks

= −
1
2

gR
1,1 + π

(
1 − 2

(y − y′)2

ρ2

) ∫ ∞

0
k3

s g̃R
1,2J2(ksρ)eik1z(z+z′)dks

= −
1
2

gR
1,1 +

(
1
2
ρ2 − (y − y′)2

)
2π

∫ ∞

0
k3

s g̃R
1,2

J2(ksρ)
ρ2 eik1z(z+z′)dks

= −
1
2

gR
1,1 +

(
1
2
ρ2 − (y − y′)2

)
gR

1,2, (44)

where

gR
1,1 = 2π

∫ ∞

0
ksg̃R

1,1J0(ksρ)eik1z(z+z′)dks, gR
1,2 = 2π

∫ ∞

0
k3

s g̃R
1,2

J2(ksρ)
ρ2 eik1z(z+z′)dks,

g̃R
1,1 = k1zRT M

12 , g̃R
1,2 =

k1zRT M
12

k2
s

. (45)

Similar derivation yields the integral 2© as follows

2© =

∫ +∞

−∞

∫ +∞

−∞

∂2
y

k2
1

k2
s k1z

RT E
12 eikx(x−x′)+iky(y−y′)+ik1z(z+z′)dkxdky

= −
1
2

gR
1,3 −

(
1
2
ρ2 − (y − y′)2

)
gR

1,4. (46)

where

gR
1,3 = 2π

∫ ∞

0
ksg̃R

1,3J0(ksρ)eik1z(z+z′)dks, gR
1,4 = 2π

∫ ∞

0
k3

s g̃R
1,3

J2(ksρ)
ρ2 eik1z(z+z′)dks,

g̃R
1,3 =

k2
1

k1z
RT E

12 , g̃
R
1,4 =

k2
1

k2
s k1z

RT E
12 . (47)

Therefore

GR
xx = −

1
2

gR
1,1 +

(
1
2
ρ2 − (y − y′)2

)
gR

1,2 +
1
2

gR
1,3 +

(
1
2
ρ2 − (y − y′)2

)
gR

1,4

= −
1
2

(
gR

1,1 − gR
1,3

)
+

(
1
2
ρ2 − (y − y′)2

) (
gR

1,2 + gR
1,4

)
= −

1
2

gR
1,5 +

(
1
2
ρ2 − (y − y′)2

)
gR

1,6, (48)
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where

gR
1,5 = 2π

∫ ∞

0
ksg̃R

1,5J0(ksρ)eik1z(z+z′)dks, gR
1,6 = 2π

∫ ∞

0
k3

s g̃R
1,6

J2(ksρ)
ρ2 eik1z(z+z′)dks,

g̃R
1,5 = k1zRT M

12 −
k2

1

k1z
RT E

12 , g̃
R
1,6 =

k1zRT M
12

k2
s

+
k2

1

k2
s k1z

RT E
12 . (49)

Thus, the GR
xx can be computed with only two Sommerfeld integrals.

Absolutely, the same derivation applies to GR
1yy, that is,

GR
1yy =

∫ +∞

−∞

∫ +∞

−∞

G̃R
1yydkxdky

=

∫ +∞

−∞

∫ +∞

−∞

∂2
y

k1z

k2
s

RT M
12 − ∂

2
x

k2
1

k2
s k1z

RT E
12

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′)dkxdky

= −
1
2

gR
1,5 −

(
1
2
ρ2 − (y − y′)2

)
gR

1,6. (50)

The derivation of GR
1zz is straightforward as there is no derivative in G̃R

1zz.

GR
1zz =

∫ +∞

−∞

∫ +∞

−∞

(
k2

s

k1z
RT M

12

)
eikx(x−x′)+iky(y−y′)+ik1z(z+z′)dkxdky

=

∫ ∞

0
ksg̃R

1,7eik1z(z+z′)
∫ 2π

0
eiksρ cos (φ−θ)dφdks

= 2π
∫ ∞

0
ksg̃R

1,7J0(ksρ)eik1z(z+z′)dks = gR
1,7, (51)

where

gR
1,7 = 2π

∫ ∞

0
ksg̃R

1,7J0(ksρ)eik1z(z+z′)dks, g̃R
1,7 =

k2
s

k1z
RT M

12 . (52)

The GR
1xy = GR

1yx can be derived using g̃R
1,6 that is already defined in Eq. (49) as

GR
1xy = GR

1yx =

∫ +∞

−∞

∫ +∞

−∞

∂x∂y

k1z

k2
s

RT M
12 +

k2
1

k2
s k1z

RT E
12

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′)dkxdky

=

∫ ∞

0

∫ 2π

0
−k2

s cos φ sin φg̃R
1,6eiksρ cos (φ−θ)eik1z(z+z′)ksdksdφ

= −
1
2

∫ ∞

0
k3

s g̃R
1,6eik1z(z+z′)

∫ 2π

0
eiksρ cos (φ−θ) sin 2φdφdks

= −
1
2

∫ ∞

0
k3

s g̃R
1,6eik1z(z+z′) (−2πJ2(ksρ) sin 2θ) dks

= sin θ cos θ2π
∫ ∞

0
k3

s g̃R
1,6J2(ksρ)eik1z(z+z′)dks

= (x − x′)(y − y′)2π
∫ ∞

0
k3

s g̃R
1,6

J2(ksρ)
ρ2 eik1z(z+z′)dks = (x − x′)(y − y′)gR

1,6. (53)
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The GR
1xz and GR

1zx can be derived at the same time as

GR
1xz = −GR

1zx =

∫ +∞

−∞

∫ +∞

−∞

∂x∂z
RT M

12

k1z
eikx(x−x′)+iky(y−y′)+ik1z(z+z′)dkxdky

= −

∫ ∞

0
k2

s RT M
12 eik1z(z+z′)

∫ 2π

0
eiksρ cos (φ−θ) cos φdφdks

= −2πi cos θ
∫ ∞

0
k2

s RT M
12 J1(ksρ)eik1z(z+z′)dks

= −2πi(x − x′)
∫ ∞

0
k2

s g̃R
1,8

J1(ksρ)
ρ

eik1z(z+z′)dks = −i(x − x′)gR
1,8, (54)

where

gR
1,8 = 2π

∫ ∞

0
k2

s g̃R
1,8

J1(ksρ)
ρ

eik1z(z+z′)dks, g̃R
1,8 = RT M

12 . (55)

Finally, the GR
1yz and GR

1zy can be derived using symmetry as

GR
1yz = −GR

1zy =

∫ +∞

−∞

∫ +∞

−∞

∂y∂z
RT M

12

k1z
eikx(x−x′)+iky(y−y′)+ik1z(z+z′)dkxdky = −i(y − y′)gR

1,8. (56)

• In the second layer, the derivation of transmitted part GT
2 is absolutely similar to the reflected

part. Therefore, most of derivations are omitted unless there are notable differences.

GT
2xx =

∫ +∞

−∞

∫ +∞

−∞

−∂2
x
k2z

k2
s

T T M
12 − ∂

2
y

k2
2

k1zk2
s

µ1

µ2
T T E

12

 eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′dkxdky (57)

=
1
2

gT
2,5 − (

1
2
ρ2 − (y − y′)2)gT

2,6, (58)

where

gT
2,5 = 2π

∫ ∞

0
ksg̃T

2,5J0(ksρ)e−ik2z+ik1z′dks, gT
2,6 = 2π

∫ ∞

0
k3

s g̃T
2,6

J2(ksρ)
ρ2 e−ik2z+ik1z′dks, (59)

g̃T
2,5 = k2zT T M

12 +
k2

2

k1z

µ1

µ2
T T E

12 , g̃
T
2,6 =

k2zT T M
12

k2
s
−

k2
2

k1zk2
s

µ1

µ2
T T E

12 . (60)

Similarly,

GT
2yy =

∫ +∞

−∞

∫ +∞

−∞

−∂2
y

k2z

k2
s

T T M
12 − ∂

2
x

k2
2

k1zk2
s

µ1

µ2
T T E

12

 eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′

=
1
2

gT
2,5 + (

1
2
ρ2 − (y − y′)2)gT

2,6. (61)

The GT
2zz can be obtained by

GT
2zz =

∫ +∞

−∞

∫ +∞

−∞

(
k2

s

k1z
T T M

12

)
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′dkxdky

= 2π
∫ ∞

0
ksg̃T

2,7J0(ksρ)e−ik2zz+ik1zz′dks = gT
2,7, (62)
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where

gT
2,7 = 2π

∫ ∞

0
ksg̃T

2,7J0(ksρ)e−ik2z+ik1z′dks, g̃T
2,7 =

k2
s

k1z
T T M

12 . (63)

Again, the GT
2xy = GT

2yx can be written using g̃T
2,6 as

GT
2xy = GT

2yx =

∫ +∞

−∞

∫ +∞

−∞

−∂x∂y

k2z

k2
s

T T M
12 −

k2
2

k1zk2
s

µ1

µ2
T T E

12

 eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′dkxdky

=

∫ +∞

−∞

∫ +∞

−∞

kxkyg̃T
2,6eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′dkxdky = −(x − x′)(y − y′)gT

2,6. (64)

The GT
2xz and GT

2yz can be found at the same time using their symmetry

GT
2xz =

∫ +∞

−∞

∫ +∞

−∞

∂x∂z
T T M

12

k1z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′dkxdky

=

∫ ∞

0
k2

s
k2zT T M

12

k1z
e−ik2zz+ik1zz′

(∫ 2π

0
eiksρ cos (φ−θ) cos φdφ

)
dks

= 2πi cos θ
∫ ∞

0
k2

s g̃T
2,8J1(ksρ)e−ik2zz+ik1zz′dks

= i(x − x′)gT
2,8, (65)

GT
2yz =

∫ +∞

−∞

∫ +∞

−∞

∂y∂z
T T M

12

k1z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′dkxdky

= i(y − y′)gT
2,8, (66)

where

gT
2,8 = 2π

∫ ∞

0
k2

s g̃T
2,8

J1(ksρ)
ρ

e−ik2zz+ik1zz′dks, g̃T
2,8 =

k2zT T M
12

k1z
. (67)

The GT
2zx is derived as

GT
2zx =

∫ +∞

−∞

∫ +∞

−∞

∂z∂x
T T M

12

k2z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′dkxdky

=

∫ ∞

0
k2

s g̃T
2,9e−ik2zz+ik1zz′

(∫ 2π

0
eiksρ cos (φ−θ) cos φdφ

)
dks

= 2πi cos θ
∫ ∞

0
k2

s g̃T
2,9J1(ksρ)e−ik2zz+ik1zz′dks

= i(x − x′)gT
2,9, (68)

where

gT
2,9 = 2π

∫ ∞

0
k2

s g̃T
2,9

J1(ksρ)
ρ

e−ik2zz+ik1zz′dks, g̃T
2,9 = T T M

12 . (69)

Similarly, GT
2zy can by found by replacing x by y in GT

2zx as

GT
2zy =

∫ +∞

−∞

∫ +∞

−∞

∂z∂y
T T M

12

k2z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′dkxdky = i(y − y′)gT

2,9. (70)
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3.3. Summary and numerical results for a two-layer structure

The Green’s function for a two-layer structure is summarized here.
•In the first layer

GR
1xx = −

1
2

gR
1,5 +

(
1
2
ρ2 − (y − y′)2

)
gR

1,6 (71)

GR
1yy = −

1
2

gR
1,5 −

(
1
2
ρ2 − (y − y′)2

)
gR

1,6, (72)

GR
1zz = gR

1,7, (73)

GR
1xy = GR

1yx = (x − x′)(y − y′)gR
1,6, (74)

GR
1xz = −GR

1zx = −i(x − x′)gR
1,8, (75)

GR
1yz = −GR

1zy = −i(y − y′)gR
1,8. (76)

•In the second layer

GT
2xx =

1
2

gT
2,5 − (

1
2
ρ2 − (y − y′)2)gT

2,6, (77)

GT
2yy =

1
2

gT
2,5 + (

1
2
ρ2 − (y − y′)2)gT

2,6, (78)

GT
2zz = gT

2,7, (79)

GT
2xy = −(x − x′)(y − y′)gT

2,6, (80)

GT
2xz = i(x − x′)gT

2,8, GT
2yz = i(y − y′)gT

2,8, (81)

GT
2zx = i(x − x′)gT

2,9, GT
2zy = i(y − y′)gT

2,9. (82)

Then, the dyadic Green’s function for two layers is

G(r, r′) =

GP − 1
8π2ωε0ε1

GR
1 , z ≥ 0

− 1
8π2ωε0ε2

GT
2 , z < 0

,

where GP is the free-space Green’s function and each component of GR
1 and GT

2 is given by Eqs.
(71) ∼ (82).

Four Sommerfeld integrals (gR
1,5 ∼ gR

1,8) and five Sommerfeld integrals (gT
1,5 ∼ gT

1,9) are re-
quired to compute reflected fields and transmitted parts, respectively. One less Sommerfeld inte-
gral is required than the formula presented in Ref. [5]. Moreover, reflection coefficient for two
layers is not assumed to reduce number of Sommerfeld integrals. As a consequence, it can be
extended to multi-layered media without increasing the number of Sommerfeld integrals. Nu-
merical integration of Sommerfeld integrals are performed with the adaptive quadrature method
developed for the Helmholtz equation in Ref. [12, 13].

As a numerical test, a dipole source is placed at r′ = (0.1,−0.2, 1.5) and oriented along
α′ = (1/2, 1/2, 1/

√
2). Then, electric field is computed for −5 ≤ x ≤ 5 and −3 ≤ z ≤ 3

for a fixed y = 1.2 with ε1 = 1, ε2 = 4, and λ = 1 in Fig. 2. The continuity of the fields
are checked by computing the electric field at the interface in Fig. 3. First, the electric field
is computed at the layer interface z = 0 with the formula for the top layer, E(x, y, 0+), and
the formula for the bottom layer, E(x, y, 0−). The tangential components Ex and Ey must be

12
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Figure 2: Electric fields in a two-layer structure. A dipole source is placed at r′ = (0.1,−0.2, 1.5) and oriented along
α′ = (1/2, 1/2, 1/

√
2) and Fields are computed for −5 ≤ x ≤ 5 and −3 ≤ z ≤ 3 for a fixed y = 1.2 with ε1 = 1, ε2 = 4,

and λ = 1.

continuous and the normal component Ez must have a jump of ε2/ε1 (in this example, the jump
should be 4). Figs. 3(a), 3(b), and 3(c) plot |Ex(x, y, 0+)−Ex(x, y, 0−)|, |Ey(x, y, 0+)−Ey(x, y, 0−)| ,
and |Ez(x, y, 0+) − 4Ez(x, y, 0−)|, respectively. About 10−10 agreement was achieved. Throughout
the paper, agreement of numerical solutions at the interface will be used as accuracy of the
method. In the next section, the Green’s function for a three-layer structure is presented.

4. Green’s function for a three-layer structure

In this section, Green’s function for a two-layer structure is extended to a three-layer struc-
ture. In principle, multi-layered structure will be a straightforward consequence of three-layer
structure. We will begin the case when a dipole source is placed in the first layer. The multiple
reflection from the second layer is accommodated with generalized Fresnel coefficients and the
continuity of the fields are ensured with by modifying α′. Note that if the source is in the second
layer, all the formulas should be reorganized to accommodate reflection from both the first and
third layer into the second layer. If the source is in the third layer, symmetry can be used. In the
next subsection, the Green’s function when the source is placed on top of a three-layer structure
is derived and it is modified to consider the case when the source is in the second layer in the
following subsection.
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Figure 3: Continuity of electric fields at interface. (a) |Ex(x, y, 0+) − Ex(x, y, 0−)|, (b) |Ey(x, y, 0+) − Ey(x, y, 0−)|, and (c)
|Ez(x, y, 0+) − 4Ez(x, y, 0−)|. A dipole source is placed at r′ = (0.1,−0.2, 1.5) and oriented along α′ = (1/2, 1/2, 1/

√
2)

and fields are computed for −5 ≤ x ≤ 5 for a fixed y = 1.2 at the layer interface z = 0 and with ε1 = 1, ε2 = 4, and λ = 1.

4.1. Source on top of a three-layer structure

Consider a case depicted in Fig. 4. A three-layer structure is defined by two interfaces located
at z = 0 and z = −d. Assume the top most layer is the first layer with ε1 and µ1, the middle layer
is the second layer with ε2 and µ2, and the bottom most layer is the third layer with ε3 and µ3.
Let a dipole source is placed at r′ = (x′, y′, z′) in the first layer oriented along α̂′ = (α′x, α

′
y, α

′
z).

4.1.1. Green’s function in the spectral domain
The z-components of reflected electric and magnetic fields in the spectral domain in each

layer are

Ẽ1z = ẼP
1z + ẼR

1z, Ẽ2z = ẼR
2z + ẼT

2z, Ẽ3z = ẼT
3z, (83)

H̃1z = H̃P
1z + H̃R

1z, H̃2z = H̃R
2z + H̃T

2z, H̃3z = H̃T
3z, (84)

where the superscript P, R, and T denote the primary, reflected, and transmitted parts, respec-
tively. The primary fields ẼP

1z and H̃P
1z are the same as the free-space ones. The reflected part in

the first and second layers must be modified with the generalized reflection coefficient given by

R̄T M,T E
12 =

RT M,T E
12 + RT M,T E

23 e2ik2zd

1 + RT M,T E
12 RT M,T E

23 e2ik2zd
, (85)

to accommodate multiple reflection and transmission from all the layers below the first layer.
Consequently, reflected fields in the first and second layer can be expressed as

ẼR
1z =

ẑ · α̂′′1R +
1
k2

1

∂z∇ · α̂
′′
1R

 g̃R
1,T M , H̃R

1z = −
1

iωµ0µ1
ẑ · ∇s × α̂

′′
1Rg̃R

1,T E , (86)

ẼR
2z =

ẑ · α̂′′2R +
1
k2

2

∂z∇ · α̂
′′
2R

 g̃R
2,T M , H̃R

2z = −
1

iωµ0µ2

k2z

k1z
ẑ · ∇s × α̂

′′
2Rg̃R

2,T E , (87)
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Figure 4: Three-layer structure

where

g̃R
1,T M,T E = −RT M,T E

1
ωµ0µ1

8π2

eikx(x−x′)+iky(y−y′)+ik1z(z+z′)

k1z
, (88)

g̃R
2,T M,T E = −RT M,T E

2
ωµ0µ2

8π2

eikx(x−x′)+iky(y−y′)+ik2zz+ik1zz′+2ik2zd

k1z
, (89)

α̂′′1R = (−α′x,−α
′
y, α

′
z), α̂

′′
2R = (−

k1z

k2z
α′x,−

k1z

k2z
α′y, α

′
z), (90)

RT M,T E
1 = R̄T M,T E

12 , RT M,T E
2 = AT M,T E

2 RT M,T E
23 , AT M,T E

2 =
T T M,T E

12

1 − RT M,T E
21 RT M,T E

23 e2ik2zd
. (91)

The transmitted parts in the second and third layer must be modified to

ẼT
jz =

ẑ · α̂′′′jT +
1
k2

j

∂z∇ · α̂
′′′
jT

 gT
j,T M , H̃T

jz =
1

iωµ0µ j

µ1

µ j

k jz

k1z
ẑ · ∇s × α̂

′′′
jT gT

j,T E , j = 2, 3, (92)

where

g̃T
2,T M,T E = −AT M,T E

2
ωµ0µ2

8π2

eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′

k1z
, (93)

g̃T
3,T M,T E = −AT M,T E

3
ωµ0µ3

8π2

eikx(x−x′)+iky(y−y′)−ik3zz+ik1zz′

k1z
, (94)

α′′′jT =

(
k1z

k jz
α′x,

k1z

k jz
α′y, α

′
z

)
, j = 2, 3, (95)

AT M,T E
3 = AT M,T E

2 (1 + RT M,T E
23 )eik2zd−ik3zd. (96)

All the reflection and transmission coefficients are changed to enforce multiple reflections in Eqs.
(91) and (96). At the same time, in each layer α′ is modified to correctly ensure the continuity
of the fields at the interfaces. The transverse components can be derived using Eq. (7) using the
new z-components listed above in each layer. In the following, all components are presented in
each layer.
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• In the first layer, the transverse components of reflected parts is found by

ẼR
1s =

1
k2

s

[
∇s∂zẼR

1z − iωµ0µ1ẑ × ∇sH̃R
1z

]
=

1
k2

s
∇s∂z

ẑ · α̂′′1R +
1
k2

1

∂z∇ · α̂
′′
1R

 g̃R
1,T M +

1
k2

s
ẑ × ∇s

(
ẑ · ∇s × α̂

′′
1Rg̃R

1,T E

)
. (97)

Each component is exactly the same as the two-layer structure except the definition of the reflec-
tion coefficients. Thus the reflected parts of the Green’s function in the first layer can be simply
rewritten by replacing RT M

12 and RT E
12 by the generalized reflection coefficient RT M

1 = R̃T M
12 and

RT E
1 = R̃T E

12 , respectively. Therefore, the electric field in the spectral domain in the first layer is Ẽ1x

Ẽ1y

Ẽ1z

 =


ẼP

1x + ẼR
1x

ẼP
1y + ẼR

1y
ẼP

1z + ẼR
1z

 =

(
G̃P −

1
8π2ωε0ε1

G̃R
1

)
α′

=




G̃P
xx G̃P

xy G̃P
xz

G̃P
yx G̃P

yy G̃P
yz

G̃P
zx G̃P

zy G̃P
zz

 − 1
8π2ωε0ε1


G̃R

1xx G̃R
1xy G̃R

1xz
G̃R

1yx G̃R
1yy G̃R

1yz
G̃R

1zx G̃R
1zy G̃R

1zz



 α

′
x
α′y
α′z

 , (98)

where G̃P is the same as Eq. (10) and G̃R
1 is defined by

G̃R
1xx =

∂2
x
k1z

k2
s

RT M
1 − ∂2

y
k2

1

k2
s k1z

RT E
1

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′), (99)

G̃R
1yy =

∂2
y

k1z

k2
s

RT M
1 − ∂2

x
k2

1

k2
s k1z

RT E
1

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′), (100)

G̃R
1zz =

(
k2

s

k1z
RT M

1

)
eikx(x−x′)+iky(y−y′)+ik1z(z+z′), (101)

G̃R
1xy = G̃R

1yx = ∂x∂y

k1z

k2
s

RT M
1 +

k2
1

k2
s k1z

RT E
1

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′), (102)

G̃R
1xz = −G̃R

1zx = ∂x∂z

RT M
1

k1z

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′), (103)

G̃R
1yz = −G̃R

1zy = ∂y∂z

RT M
1

k1z

 eikx(x−x′)+iky(y−y′)+ik1z(z+z′). (104)

• In the second layer, there are both reflected and transmitted parts (Ẽ2 = ẼR
2 + ẼT

2 ), Ẽ2x

Ẽ2y

Ẽ2z

 =


ẼR

2x + ẼT
2x

ẼR
2y + ẼT

2y
ẼR

2z + ẼT
2z

 = −
1

8π2ωε0ε2

(
G̃R

2 + G̃T
2

)
α′

= −
1

8π2ωε0ε2




G̃R
2xx G̃R

2xy G̃R
2xz

G̃R
2yx G̃R

2yy G̃R
2yz

G̃R
2zx G̃R

2zy G̃R
2zz

 +


G̃T

2xx G̃T
2xy G̃T

2xz
G̃T

2yx G̃T
2yy G̃T

2yz
G̃T

2zx G̃T
2zy G̃T

2zz



 α

′
x
α′y
α′z

 . (105)

The transmitted part assumes the same form as for the two-layer case. Thus, the transmitted part
of the Green’s function can be simply found by replacing the transmission coefficient T T M,T E

12 by
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the AT M,T E
2 as

G̃T
2xx =

−∂2
x
k2z

k2
s

AT M
2 − ∂2

y
k2

2µ1

k2
sµ2k1z

AT E
2

 eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , (106)

G̃T
2yy =

−∂2
y

k2z

k2
s

AT M
2 − ∂2

x
k2

2µ1

k2
sµ2k1z

AT E
2

 eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , (107)

G̃T
2zz =

(
k2

s

k1z
AT M

2

)
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , (108)

G̃T
2xy = G̃T

2yx =

−∂x∂y
k2z

k2
s

AT M
2 + ∂x∂y

k2
2µ1

k2
sµ2k1z

AT E
2

 eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , (109)

G̃T
2xz = ∂x∂z

AT M
2

k1z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , G̃T

2yz = ∂y∂z
AT M

2

k1z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , (110)

G̃T
2zx = ∂z∂x

AT M
2

k2z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ , G̃T

2zy = ∂z∂y
AT M

2

k2z
eikx(x−x′)+iky(y−y′)−ik2zz+ik1zz′ . (111)

However, there are some changes in the reflected parts in the second layer since the definition of
α̂′′ of the reflected parts in the first layer is changed to α̂′′2R. Fortunately, the reflected part takes
a similar form as the transmitted part because of −k1z/k2z in α̂′′2R. By carefully re-deriving the
transverse component of reflected parts in the second layer, the spectral Green’s function can be
found as

G̃R
2xx =

∂2
x
k2z

k2
s

RT M
2 − ∂2

y
k2

2

k2
s k1z

RT E
2

 eikx(x−x′)+iky(y−y′)+ik2zz+ik1z′+2ik2zd, (112)

G̃R
2yy =

∂2
y

k2z

k2
s

RT M
2 − ∂2

x
k2

2

k2
s k1z

RT E
2

 eikx(x−x′)+iky(y−y′)+ik2zz+ik1z′+2ik2zd, (113)

G̃R
2zz =

(
k2

s

k1z
RT M

2

)
eikx(x−x′)+iky(y−y′)+ik2zz+ik1z′+2ik2zd, (114)

G̃R
2xy = G̃R

2yx =

∂x∂y
k2z

k2
s

RT M
2 + ∂x∂y

k2
2

k2
s k1z

RT E
2

 eikx(x−x′)+iky(y−y′)+ik2zz+ik1z′+2ik2zd, (115)

G̃R
2xz = ∂x∂z

RT M
2

k1z
eikx(x−x′)+iky(y−y′)+ik2zz+ik1z′+2ik2zd, G̃R

2yz = ∂y∂z
RT M

2

k1z
eikx(x−x′)+iky(y−y′)+ik2zz+ik1z′+2ik2zd,

(116)

G̃R
2zx = −∂x∂z

RT M
2

k2z
eikx(x−x′)+iky(y−y′)+ik2zz+ik1z′+2ik2zd, G̃R

2zy = −∂y∂z
RT M

2

k2z
eikx(x−x′)+iky(y−y′)+ik2zz+ik1z′+2ik2zd.

(117)

• In the third layer, the transverse component of the transmitted part takes the same form as
the transmitted part of the second layer. They can be simply found by changing the index in
the transmitted part of the second layer. By combining all the components, the spectral Green’s
function in the third layer can be expressed by Ẽ3x

Ẽ3y

Ẽ3z

 =


ẼT

3x
ẼT

3y
ẼT

3z

 = −
1

8π2ωε0ε3
G̃T

2α
′ = −

1
8π2ωε0ε3


G̃T

3xx G̃T
3xy G̃T

3xz
G̃T

3yx G̃T
3yy G̃T

3yz
G̃T

3zx G̃T
3zy G̃T

3zz


 α

′
x
α′y
α′z

 , (118)
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where

G̃T
3xx =

−∂2
x
k3z

k2
s

AT M
3 − ∂2

y
k2

3µ1

k2
sµ3k1z

AT E
3

 eikx(x−x′)+iky(y−y′)−ik3zz+ik1zz′ , (119)

G̃T
3yy =

−∂2
y

k3z

k2
s

AT M
3 − ∂2

x
k2

3µ1

k2
sµ3k1z

AT E
3

 eikx(x−x′)+iky(y−y′)−ik3zz+ik1zz′ , (120)

G̃T
3zz =

k2
s

k1z
AT M

3 eikx(x−x′)+iky(y−y′)−ik3zz+ik1zz′ , (121)

G̃T
3xy = G̃T

3yx =

−∂x∂y
k3z

k2
s

AT M
3 + ∂x∂y

k2
3µ1

k2
sµ3k1z

AT E
3

 eikx(x−x′)+iky(y−y′)−ik3zz+ik1zz′ , (122)

G̃T
3xz = ∂x∂z

AT M
3

k1z
eikx(x−x′)+iky(y−y′)−ik3zz+ik1zz′ , G̃T

3yz = ∂y∂z
AT M

3

k1z
eikx(x−x′)+iky(y−y′)−ik3zz+ik1zz′ , (123)

G̃T
3zx = ∂z∂x

AT M
3

k3z
eikx(x−x′)+iky(y−y′)−ik3zz+ik1zz′ , G̃T

3zy = ∂z∂y
AT M

3

k3z
eikx(x−x′)+iky(y−y′)−ik3zz+ik1zz′ . (124)

4.1.2. Green’s function in the spatial domain
The inverse Fourier transform is taken to recover the Green’s function in the spatial domain

as before. In the spectral domain, the reflected part in the first layer and transmitted part in
the second and third layer have the exactly same form as the two-layer Green’s function. Thus,
the spatial domain Green’s function can be simply found by replacing the reflection and trans-
mission coefficient and index without actual derivation. The reflected part in the second layer
has almost identical form as the transmitted part in the second layer due to similar definition of
α′′2R = (− k1z

k2z
α′x,−

k1z
k2z
α′y, α

′
z) and α′′2T = ( k1z

k2z
α′x,

k1z
k2z
α′y, α

′
z). Therefore, by carefully changing the sign

of transmitted part Green’s function formula, one can find the reflected part in the second layer.

• In the first layer, the reflected part Green’s function is given by

GR
1xx = −

1
2

gR
1,5 +

(
1
2
ρ2 − (y − y′)2

)
gR

1,6, (125)

GR
1yy = −

1
2

gR
1,5 −

(
1
2
ρ2 − (y − y′)2

)
gR

1,6, (126)

GR
1zz = gR

1,7, (127)

GR
1xy = GR

1yx = (x − x′)(y − y′)gR
1,6, (128)

GR
1xz = −GR

1zx = −i(x − x′)gR
1,8, (129)

GR
1yz = −GR

1zy = −i(y − y′)gR
1,8, (130)

where

g̃R
1,5 = k1zRT M

1 −
k2

1

k1z
RT E

1 , g̃R
1,6 =

k1z

k2
s

RT M
1 +

k2
1

k2
s k1z

RT E
1 , g̃R

1,7 =
k2

s

k1z
RT M

1 , g̃R
1,8 = RT M

1 ,

gR
1,5 = 2π

∫ ∞

0
ksg̃R

1,5J0(ksρ)eik1z(z+z′)dks, gR
1,6 = 2π

∫ ∞

0
k3

s g̃R
1,6

J2(ksρ)
ρ2 eik1z(z+z′)dks,

gR
1,7 = 2π

∫ ∞

0
ksg̃R

1,7J0(ksρ)eik1z(z+z′)dks, gR
1,8 = 2π

∫ ∞

0
k2

s g̃R
1,8

J1(ksρ)
ρ

eik1z(z+z′)dks. (131)
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• In the second layer, the transmitted part has the same form as the two layers case. Therefore,
the Green’s function can be found simply replacing T T M

12 and T T E
12 by AT M

2 and AT E
2 as

GT
2xx =

1
2

gT
2,5 − (

1
2
ρ2 − (y − y′)2)gT

2,6, (132)

GT
2yy =

1
2

gT
2,5 + (

1
2
ρ2 − (y − y′)2)gT

2,6, (133)

GT
2zz = gT

2,7, (134)

GT
2xy = GT

2yx = −(x − x′)(y − y′)gT
2,6, (135)

GT
2xz = i(x − x′)gT

2,8, GT
2yz = i(y − y′)gT

2,8, (136)

GT
2zx = i(x − x′)gT

2,9, GT
2zy = i(y − y′)gT

2,9, (137)

where

g̃T
2,5 = k2zAT M

2 +
k2

2

k1z

µ1

µ2
AT E

2 , g̃T
2,6 =

k2z

k2
s

AT M
2 −

k2
2

k1zk2
s

µ1

µ2
AT E

2 ,

g̃T
2,7 =

k2
s

k1z
AT M

2 , g̃T
2,8 =

k2zAT M
2

k1z
, g̃T

2,9 = AT M
2 ,

gT
2,5 = 2π

∫ ∞

0
ksg̃T

2,5J0(ksρ)e−ik2zz+ik1zz′dks, gT
2,6 = 2π

∫ ∞

0
k3

s g̃2,6
J2(ksρ)
ρ2

T

e−ik2zz+ik1zz′dks,

gT
2,7 = 2π

∫ ∞

0
ksg̃T

2,7J0(ksρ)e−ik2zz+ik1zz′dks, gT
2,8 = 2π

∫ ∞

0
k2

s g̃T
2,8

J1(ksρ)
ρ

e−ik2zz+ik1zz′dks,

gT
2,9 = 2π

∫ ∞

0
k2

s g̃T
2,8

J1(ksρ)
ρ

e−ik2zz+ik1zz′dks. (138)

The reflected part in the second layer is derived by observing the similarity between the trans-
mitted part and reflected parts in the second layer, one can change the sign of transmitted part to
obtain the Green’s function or one can take actual double integral and derive the same formulas.

GR
2xx = −

1
2

gR
2,5 +

(
1
2
ρ2 − (y − y′)2

)
gR

2,6, (139)

GR
2yy = −

1
2

gR
2,5 −

(
1
2
ρ2 − (y − y′)2

)
gR

2,6, (140)

GR
2zz = gR

2,7, (141)

GR
2xy = GR

2yx = (x − x′)(y − y′)gR
2,6, (142)

GR
2zx = i(x − x′)gR

2,8,G
R
2zy = i(y − y′)gR

2,8, (143)

GR
2xz = −i(x − x′)gR

2,9,G
R
2yz = −i(y − y′)gR

2,9, (144)
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where

g̃R
2,5 = k2zRT M

2 −
k2

2

k1z
RT E

2 , g̃R
2,6 =

k2z

k2
s

RT M
2 +

k2
2

k2
s k1z

RT E
2 ,

g̃R
2,7 =

k2
s

k1z
RT M

2 , g̃R
2,8 = RT M

2 , g̃R
2,9 =

k2z

k1z
RT M

2 ,

gR
2,5 = 2π

∫ ∞

0
ksg̃R

2,5J0(ksρ)eik2zz+ik1zz′+2ik2zddks, gR
2,6 = 2π

∫ ∞

0
k3

s g̃R
2,6

J2(ksρ)
ρ2 eik2zz+ik1zz′+2ik2zddks,

gR
2,7 = 2π

∫ ∞

0
ksg̃R

2,7J0(ksρ)eik2zz+ik1zz′+2ik2zddks, gR
2,8 = 2π

∫ ∞

0
k2

s g̃R
2,8

J1(ksρ)
ρ

eik2zz+ik1zz′+2ik2zddks,

gR
2,9 = 2π

∫ ∞

0
k2

s g̃R
2,9

J1(ksρ)
ρ

eik2zz+ik1zz′+2ik2zddks. (145)

• In the third layer, again the spectral Green’s function have the same form as any transmitted
fields in the second layer. Thus, Green’s function can be expressed as

GT
3xx =

1
2

gT
3,5 − (

1
2
ρ2 − (y − y′)2)gT

3,6, (146)

GT
3yy =

1
2

gT
3,5 + (

1
2
ρ2 − (y − y′)2)gT

3,6, (147)

GT
3zz = gT

3,7, (148)

GT
3xy = GT

3xy = −(x − x′)(y − y′)gT
3,6, (149)

GT
3xz = i(x − x′)gT

3,8, GT
3yz = i(y − y′)gT

3,8, (150)

GT
3zx = i(x − x′)gT

3,9, GT
3zy = i(y − y′)gT

3,9, (151)

where

g̃T
3,5 = k3zAT M

3 +
k2

3

k1z

µ1

µ3
AT E

3 , g̃T
3,6 =

k3z

k2
s

AT M
3 −

k2
3

k1zk2
s

µ1

µ3
AT E

3 ,

g̃T
3,7 =

k2
s

k1z
AT M

3 , g̃T
3,8 =

k3zAT M
3

k1z
, g̃T

3,9 = AT M
3 ,

gT
3,5 = 2π

∫ ∞

0
ksg̃T

3,5J0(ksρ)e−ik3zz+ik1zz′dks, gT
3,6 = 2π

∫ ∞

0
k3

s g̃3,6
J2(ksρ)
ρ2

T

e−ik3zz+ik1zz′dks,

gT
3,7 = 2π

∫ ∞

0
ksg̃T

3,7J0(ksρ)e−ik3zz+ik1zz′dks, gT
3,8 = 2π

∫ ∞

0
k2

s g̃T
3,8

J1(ksρ)
ρ

e−ik3zz+ik1zz′dks,

gT
3,9 = 2π

∫ ∞

0
k2

s g̃T
3,9

J1(ksρ)
ρ

e−ik3zz+ik1zz′dks. (152)

4.2. Numerical results
A three-layer structure is considered by placing two interfaces at z = 0 and z = −1. The

relative permittivity is assigned as ε1 = 1, ε2 = 4, ε3 = 1.1 in each layer. The relative per-
meability {µi}

3
i=1 is assumed to be 1 in all layers. The wavelength λ is set to be 1. The electric

field is computed when a source is placed on top of the layered media at r′ = (0.1,−0.2, 0.5) and
oriented along α̂′ = (1/2, 1/2, 1/

√
2). In Fig. 5, all the components of electric field are plotted
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Figure 5: Electric fields in a three-layer structure with layer interface at z = 0 and z = −1. A dipole source is placed at
r′ = (0.1,−0.2, 0.5) and oriented along α′ = (1/2, 1/2, 1/

√
2) and fields are computed for −5 ≤ x ≤ 5 and −3 ≤ z ≤ 3

for a fixed y = 1.0 with ε1 = 1, ε2 = 4, ε3 = 1.1, and λ = 1.

over −5 ≤ x ≤ 5 and −3 ≤ z ≤ 3 for a fixed y = 1.0. The continuity of the fields are checked at
both interfaces z = 0 and z = −1 in Fig. 6 as accuracy of the Green’s function. In all components,
approximately 10−10 absolute error is obtained.

4.3. Source in the second layer

When a dipole source is placed in the second layer, the formula derived in the previous
subsections must be modified to accommodate multiple reflection and transmission from the first
and second interfaces. In the following, the electric field in each layer in the spectral domain
are provided. Then, taking Sommerfeld integrals derives the electric field in the spatial domain.
That will complete the derivation of Dyadic Green’s function for a three-layer structure.

4.3.1. Green’s function in the spectral domain
Let a dipole source is located in the second layer, then in the first and third layer, there are

only transmitted fields. However, in the second layer, there are primary field, reflected fields
from the bottom interface and the top interface. The reflected fields from the bottom interface
and top interface are an up-going and a down-going waves, respectively. Thus, in each layer, the
z-components of field can be represented by

Ẽ1z = ẼT
1z, Ẽ2z = ẼP

2z + ẼU
2z + ẼD

2z, Ẽ3z = ẼT
3z, (153)

H̃1z = H̃T
1z, H̃2z = H̃P

2z + H̃U
2z + H̃D

2z, Ẽ3z = H̃T
3z. (154)
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Figure 6: Continuity of electric fields at both interfaces at z = 0 and z = −1. (a) |Ex(x, y, 0+) − Ex(x, y, 0−)|,
(b) |Ey(x, y, 0+) − Ey(x, y, 0−)|, (c) |Ez(x, y, 0+) − 4Ez(x, y, 0−)|, (d) |Ex(x, y,−1+) − Ex(x, y,−1−)|, (e) |Ey(x, y,−1+) −
Ey(x, y,−1−)|, (f) |Ez(x, y,−1+) − 1.1

4 Ez(x, y,−1−)|. A dipole source is placed at r′ = (0.1,−0.2, 0.5) and oriented along
α′ = (1/2, 1/2, 1/

√
2) and fields are computed for −5 ≤ x ≤ 5 for a fixed y = 1.0 at the layer interface z = 0 and z = −1

and with ε1 = 1, ε2 = 4, ε3 = 1.1, and λ = 1.

The primary field ẼP
2z is the same as the primary field in the free space. The field in the second

layer can be expressed using new reflection coefficients UT M,T E and DT M,T E that represent the
amplitude of the up- and down-going waves, respectively.

ẼU
2z =

ẑ · α̂′′ + 1
k2

2

∂z∇ · α̂
′′

 g̃U
2,T M , H̃U

2z = −
1

iωµ0µ2
ẑ · ∇s × α̂

′′g̃U
2,T E , (155)

ẼD
2z =

ẑ · α̂′′ + 1
k2

2

∂z∇ · α̂
′′

 g̃D
2,T M , H̃D

2z = −
1

iωµ0µ2
ẑ · ∇s × α̂

′′g̃D
2,T E , (156)

where

α̂′′ = (−α′x,−α
′
y, α

′
z), (157)

g̃U
2,T M,T E = −

ωµ0µ2

8π2 UT M,T E eikx(x−x′)+iky(y−y′)

k2z
eik2zz, (158)

g̃D
2,T M,T E = −

ωµ0µ2

8π2 DT M,T E eikx(x−x′)+iky(y−y′)

k2z
e−ik2zz. (159)
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In the first and third layer, the transmitted parts are given by

ẼT
1z =

ẑ · α̂′′′1 +
1
k2

1

∂z∇ · α̂
′′′
1

 g̃T
1,T M , H̃T

1z =
1

iωµ0µ1

k1z

k2z
ẑ · ∇s × α̂

′′′
1 g̃T

1,T E , (160)

ẼT
3z =

ẑ · α̂′′′3 +
1
k2

3

∂z∇ · α̂
′′′
3

 g̃T
3,T M , H̃T

3z =
1

iωµ0µ3

k3z

k2z
ẑ · ∇s × α̂

′′′
3 g̃T

3,T E , (161)

where

α̂′′′1 = (
k2z

k1z
α′x,

k2z

k1z
α′y, α

′
z), α̂

′′′
3 = (

k2z

k3z
α′x,

k2z

k3z
α′y, α

′
z), (162)

g̃T
1,T M,T E = −

ωµ0µ1

8π2 AT M,T E
1

eikx(x−x′)+iky(y−y′)

k2z
eik1zz, (163)

g̃T
3,T M,T E = −

ωµ0µ3

8π2 AT M,T E
3

eikx(x−x′)+iky(y−y′)

k2z
e−ik3zz. (164)

In the above, AT M,T E
1 , AT M,T E

3 , DT M,T E , and UT M,T E (See the Ref. [16] for their derivation) are
given by

AT M,T E
1 =

T T M,T E
21

(
e−ik2zz′ ± RT M,T E

23 eik2zz′+2ik2zd
)

1 − RT M,T E
23 RT M,T E

21 e2ik2zd
, (165)

DT M,T E =
RT M,T E

21

(
e−ik2zz′ ± RT M,T E

23 eik2zz′+2ik2zd
)

1 − RT M,T E
23 RT M,T E

21 e2ik2zd
, (166)

UT M,T E =
RT M,T E

23 e2ik2zd
(
eik2zz′ ± RT M,T E

21 e−ik2zz′
)

1 − RT M,T E
23 RT M,T E

21 e2ik2zd
, (167)

AT M,T E
3 =

T T M,T E
23 ei(k2z−k3z)d

(
eik2zz′ ± RT M,T E

21 e−ik2zz′
)

1 − RT M,T E
23 RT M,T E

21 e2ik2zd
. (168)

In each layer, again the transverse component must be derived using Maxwell’s equations. The
final simplified formula is presented in the following:

• In the first layer, the electric field in the spectral domain is Ẽ1x

Ẽ1y

Ẽ1z

 =


ẼT

1x
ẼT

1y
ẼT

1z

 = −
1

8π2ωε0ε1
G̃T

1α
′ = −

1
8π2ωε0ε1


G̃T

1xx G̃T
1xy G̃T

1xz
G̃T

1yx G̃T
1yy G̃T

1yz
G̃T

1zx G̃T
1zy G̃T

1zz


 α

′
x
α′y
α′z

 , (169)
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where

G̃T
1xx =

−∂2
x
k1z

k2
s

AT M
1 − ∂2

y
k2

1

k2
s k2z

AT E
1

 eikx(x−x′)+iky(y−y′)eik1zz, (170)

G̃T
1yy =

−∂2
y

k1z

k2
s

AT M
1 − ∂2

x
k2

1

k2
s k2z

AT E
1

 eikx(x−x′)+iky(y−y′)eik1zz, (171)

G̃T
1zz =

(
k2

s

k2z
AT M

1

)
eikx(x−x′)+iky(y−y′)eik1zz, (172)

G̃T
1xy = G̃T

yx =

−∂x∂y
k1z

k2
s

AT M
1 + ∂x∂y

k2
1

k2
s k2z

AT E
1

 eikx(x−x′)+iky(y−y′)eik1zz, (173)

G̃T
1xz =

∂x∂z
AT M

1

k2z

 eikx(x−x′)+iky(y−y′)eik1zz, G̃T
1yz =

∂y∂z
AT M

1

k2z

 eikx(x−x′)+iky(y−y′)eik1zz, (174)

G̃T
1zx =

∂x∂z
AT M

1

k1z

 eikx(x−x′)+iky(y−y′)eik1zz, G̃T
1zy =

∂y∂z
AT M

1

k1z

 eikx(x−x′)+iky(y−y′)eik1zz. (175)

• In the third layer, the same calculation applies and the electric field in the spectral domain is Ẽ3x

Ẽ3y

Ẽ3z

 =


ẼT

3x
ẼT

3y
ẼT

3z

 = −
1

8π2ωε0ε3
G̃T

3α
′ = −

1
8π2ωε0ε3


G̃T

3xx G̃T
3xy G̃T

3xz
G̃T

3yx G̃T
3yy G̃T

3yz
G̃T

3zx G̃T
3zy G̃T

3zz


 α

′
x
α′y
α′z

 , (176)

where

G̃T
3xx =

−∂2
x
k3z

k2
s

AT M
3 − ∂2

y
k2

3

k2
s k2z

AT E
3

 eikx(x−x′)+iky(y−y′)e−ik3zz, (177)

G̃T
3yy =

−∂2
y

k3z

k2
s

AT M
3 − ∂2

x
k2

3

k2
s k2z

AT E
3

 eikx(x−x′)+iky(y−y′)e−ik3zz, (178)

G̃T
3zz =

k2
s AT M

3

k2z

 eikx(x−x′)+iky(y−y′)e−ik3zz, (179)

G̃T
3xy = G̃T

yx =

−∂x∂y
k3z

k2
s

AT M
3 + ∂x∂y

k2
3

k2
s k2z

AT E
3

 eikx(x−x′)+iky(y−y′)e−ik3zz, (180)

G̃T
3xz =

∂x∂z
AT M

3

k2z

 eikx(x−x′)+iky(y−y′)e−ik3zz, G̃T
3yz =

∂y∂z
AT M

3

k2z

 eikx(x−x′)+iky(y−y′)e−ik3zz, (181)

G̃T
3zx =

∂x∂z
AT M

3

k3z

 eikx(x−x′)+iky(y−y′)e−ik3zz, G̃T
3zy =

∂y∂z
AT M

3

k3z

 eikx(x−x′)+iky(y−y′)e−ik3zz. (182)

• In the second layer, the electric field has three parts that can be expressed using the Green’s
function notation. The derivation of the up-going wave Green’s function (G̃U

2 ) and the down-
going wave Green’s function (G̃D

2 ) are similar to that of reflection fields in both two- and three-
layer structures. Derivation are not so difficult but needs some attention on k2z because there is
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k2z in the denominator of g̃U,D
2,T M,T E and g̃T

3,T M,T E instead of k1z compared with the case when the
source is in the first layer. In the following, both the up- and down-going wave Green’s functions
are listed.

 Ẽ2x

Ẽ2y

Ẽ2z

 =


ẼP

2x + ẼD
2x + ẼU

2x
ẼP

2y + ẼD
2y + ẼU

2y
ẼP

2z + ẼD
2z + ẼU

2z

 =

[
G̃P

2 −
1

8π2ωε0ε2

(
G̃D

2 + G̃U
2

)]
α̂′

=

G̃P
2 −

1
8π2ωε0ε2




G̃D
2xx G̃D

2xy G̃D
2xz

G̃D
2yx G̃D

2yy G̃D
2yz

G̃D
2zx G̃D

2zy G̃D
2zz

 +


G̃U

2xx G̃U
2xy G̃U

2xz
G̃U

2yx G̃U
2yy G̃U

2yz
G̃U

2zx G̃U
2zy G̃U

2zz




 α

′
x
α′y
α′z

 , (183)

where

G̃D
2xx =

∂2
x
k2z

k2
s

DT M − ∂2
y

k2
2

k2
s k2z

DT E

 eikx(x−x′)+iky(y−y′)e−ik2zz, (184)

G̃D
2yy =

∂2
y

k2z

k2
s

DT M − ∂2
x

k2
2

k2
s k2z

DT E

 eikx(x−x′)+iky(y−y′)e−ik2zz, (185)

G̃D
2zz =

(
k2

s DT M

k2z

)
eikx(x−x′)+iky(y−y′)e−ik2zz, (186)

G̃D
2xy = G̃D

2yx =

∂x∂y
k2z

k2
s

DT M + ∂x∂y
k2

2

k2
s k2z

DT E

 eikx(x−x′)+iky(y−y′)e−ik2zz, (187)

G̃D
2xz = −G̃D

2zx = ∂x∂z
DT M

k2z
eikx(x−x′)+iky(y−y′)e−ik2zz, (188)

G̃D
2yz = −G̃D

2zy = ∂y∂z
DT M

k2z
eikx(x−x′)+iky(y−y′)e−ik2zz, (189)

and

G̃U
2xx =

∂2
x
k2z

k2
s

UT M − ∂2
y

k2
2

k2
s k2z

UT E

 eikx(x−x′)+iky(y−y′)eik2zz, (190)

G̃U
2yy =

∂2
y

k2z

k2
s

UT M − ∂2
x

k2
2

k2
s k2z

UT E

 eikx(x−x′)+iky(y−y′)eik2zz, (191)

G̃U
2zz =

(
k2

s UT M

k2z

)
eikx(x−x′)+iky(y−y′)eik2zz, (192)

G̃U
2xy = G̃U

2yx =

∂x∂y
k2z

k2
s

UT M + ∂x∂y
k2

2

k2
s k2z

UT E

 eikx(x−x′)+iky(y−y′)eik2zz, (193)

G̃U
2xz = −G̃U

2zx = ∂x∂z
UT M

k2z
eikx(x−x′)+iky(y−y′)eik2zz, (194)

G̃U
2yz = −G̃U

2zy = ∂y∂z
UT M

k2z
eikx(x−x′)+iky(y−y′)eik2zz. (195)

4.3.2. Green’s function in the spatial domain
As expected from the previous sections, the inverse Fourier transform are applied to the

spectral Green’s function to obtain the one in the spatial domain. Most of basic computations are
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already performed while deriving the two- and three-layer Green’s functions. Therefore, without
any derivation, the Green’s function in the spatial domain is presented below.

• In the first layer,

GT
1xx =

1
2

gT
1,5 −

(
1
2
ρ2 − (y − y′)2

)
gT

1,6, (196)

GT
1yy =

1
2

gT
1,5 +

(
1
2
ρ2 − (y − y′)2

)
gT

1,6, (197)

GT
1zz = gT

1,7, (198)

GT
1xy = GT

1yx = −(x − x′)(y − y′)gT
1,6, (199)

GT
1xz = −i(x − x′)gT

1,8,G
T
1yz = −i(y − y′)gT

1,8, (200)

GT
1zx = −i(x − x′)gT

1,9,G
T
1zy = −i(y − y′)gT

1,9, (201)

where

g̃T
1,5 = k1zAT M

1 +
k2

1

k2z
AT E

1 , g̃T
1,6 =

k1zAT M
1

k2
s
−

k2
1

k2zk2
s

AT E
1 , g̃T

1,7 =
k2

s

k2z
AT M

1 , g̃T
1,8 =

k1z

k2z
AT M

1 , g̃T
1,9 = AT M

1 ,

gT
1,5 = 2π

∫ ∞

0
ksg̃T

1,5J0(ksρ)eik1zzdks, gT
1,6 = 2π

∫ ∞

0
k3

s g̃T
1,6

J2(ksρ)
ρ2 eik1zzdks

gT
1,7 = 2π

∫ ∞

0
ksg̃T

1,7J0(ksρ)eik1zzdks, gT
1,8 = 2π

∫ ∞

0
k2

s g̃T
1,8

J1(ksρ)
ρ

eik1zzdks,

gT
1,9 = 2π

∫ ∞

0
k2

s g̃T
1,9

J1(ksρ)
ρ

eik1zzdks. (202)

• In the third layer, all the formulas take almost same form as the first layer except the direction
of the field. Therefore, they are given by

GT
3xx =

1
2

gT
3,5 −

(
1
2
ρ2 − (y − y′)2

)
gT

3,6, (203)

GT
3yy =

1
2

gT
3,5 +

(
1
2
ρ2 − (y − y′)2

)
gT

3,6, (204)

GT
3zz = gT

3,7, (205)

GT
3xy = GT

3yx = −(x − x′)(y − y′)gT
3,6, (206)

GT
3xz = i(x − x′)gT

3,8,G
T
3yz = i(y − y′)gT

3,8, (207)

GT
3zx = i(x − x′)gT

3,9,G
T
3zy = i(y − y′)gT

3,9, (208)
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where

g̃T
3,5 = k3zAT M

3 +
k2

3

k2z
AT E

3 , g̃T
3,6 =

k3zAT M
3

k2
s
−

k2
3

k2zk2
s

AT E
3 , g̃T

3,7 =
k2

s

k2z
AT M

3 , g̃T
3,8 =

k3z

k2z
AT M

3 , g̃T
3,9 = AT M

3 ,

gT
3,5 = 2π

∫ ∞

0
ksg̃T

3,5J0(ksρ)e−ik3zzdks, gT
3,6 = 2π

∫ ∞

0
k3

s g̃T
3,6

J2(ksρ)
ρ2 e−ik3zzdks,

gT
3,7 = 2π

∫ ∞

0
ksg̃T

3,7J0(ksρ)e−ik3zzdks, gT
3,8 = 2π

∫ ∞

0
k2

s g̃T
3,8

J1(ksρ)
ρ

e−ik3zzdks,

gT
3,9 = 2π

∫ ∞

0
k2

s g̃T
3,9

J1(ksρ)
ρ

e−ik3zzdks. (209)

• In the second layer, both the up- and down-going waves are reflected wave from the interface.
Thus, the Green’s function follows similar formula as the reflected field in both two- and three-
layer structures. However, again one must be careful about the sign because of direction. The
up-going wave Green’s function is obtained as

GU
2xx = −

1
2

gU
2,5 +

(
1
2
ρ2 − (y − y′)2

)
gU

2,6, (210)

GU
2yy = −

1
2

gU
2,5 −

(
1
2
ρ2 − (y − y′)2

)
gU

2,6, (211)

GU
2zz = gU

2,7, (212)

GU
2xy = GU

2yx = (x − x′)(y − y′)gU
2,6, (213)

GU
2xz = −GU

2zx = −i(x − x′)gU
2,8, (214)

GU
2yz = −GU

2zy = −i(y − y′)gU
2,8, (215)

where

g̃U
2,5 = k2zUT M −

k2
2

k2z
UT E , g̃U

2,6 =
k2zUT M

k2
s

+
k2

2

k2
s k2z

UT E , g̃U
2,7 =

k2
s

k2z
UT M , g̃U

2,8 = UT M ,

gU
2,5 = 2π

∫ ∞

0
ksg̃U

2,5J0(ksρ)eik2zzdks, gU
2,6 = 2π

∫ ∞

0
k3

s g̃U
2,6

J2(ksρ)
ρ2 eik2zzdks,

gU
2,7 = 2π

∫ ∞

0
ksg̃U

2,7J0(ksρ)eik2zzdks, gU
2,8 = 2π

∫ ∞

0
k2

s g̃U
2,8

J1(ksρ)
ρ

eik2zzdks. (216)

The down-going wave Green’s function is given by

GD
2xx = −

1
2

gD
2,5 +

(
1
2
ρ2 − (y − y′)2

)
gD

2,6, (217)

GD
2yy = −

1
2

gD
2,5 −

(
1
2
ρ2 − (y − y′)2

)
gD

2,6, (218)

GD
2zz = gD

2,7, (219)

GD
2xy = GD

2yx = (x − x′)(y − y′)gD
2,6, (220)

GD
2xz = −GD

2zx = i(x − x′)gD
2,8, (221)

GD
2yz = −GD

2zy = i(y − y′)gD
2,8, (222)
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Figure 7: Electric fields in a three-layer structure with layer interface at z = 0 and z = −1. A dipole source is placed at
r′ = (0.1,−0.2,−0.5) and oriented along α′ = (1/2, 1/2, 1/

√
2) and fields are computed for −5 ≤ x ≤ 5 and −3 ≤ z ≤ 3

for a fixed y = 1.0 with ε1 = 1, ε2 = 2, ε3 = 4, and λ = 1.

where

g̃D
2,5 = k2zDT M −

k2
2

k2z
DT E , g̃D

2,6 =
k2zDT M

k2
s

+
k2

2

k2
s k2z

DT E , g̃D
2,7 =

k2
s

k2z
DT M , g̃D

2,8 = DT M ,

gD
2,5 = 2π

∫ ∞

0
ksg̃D

2,5J0(ksρ)e−ik2zzdks, gD
2,6 = 2π

∫ ∞

0
k3

s g̃D
2,6

J2(ksρ)
ρ2 e−ik2zzdks,

gD
2,7 = 2π

∫ ∞

0
ksg̃D

2,7J0(ksρ)e−ik2zzdks, gD
2,8 = 2π

∫ ∞

0
k2

s g̃D
2,8

J1(ksρ)
ρ

e−ik2zzdks. (223)

4.3.3. Numerical results
The Green’s function is computed when the source is placed in the second layer. Consider a

three-layer structure defined by two interfaces located at z = 0 and z = −1. The relative permit-
tivity in each layer is ε1 = 1, ε2 = 2, ε3 = 4 and a dipole source is placed at r′ = (0.1,−0.2,−0.5)
oriented along α̂′ = (1/2, 1/2, 1/

√
2) in the second layer. The relative permeability {µi}

3
i=1 is

assumed to be 1 in all layers. The wavelength is set as λ = 1. In Fig. 7, all the components of
total electric field are plotted over −5 ≤ x ≤ 5 and −3 ≤ z ≤ 3 for a fixed y = 1.0. The continuity
of the fields are checked at both interfaces z = 0 and z = −1 in Fig. 8. In all components, about
10−7 is achieved.
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Figure 8: Continuity of electric fields at both interfaces at z = 0 and z = −1. (a) |Ex(x, y, 0+) − Ex(x, y, 0−)|,
(b) |Ey(x, y, 0+) − Ey(x, y, 0−)|, (c) |Ez(x, y, 0+) − 2Ez(x, y, 0−)|, (d) |Ex(x, y,−1+) − Ex(x, y,−1−)|, (e) |Ey(x, y,−1+) −
Ey(x, y,−1−)|, (f) |Ez(x, y,−1+) − 2Ez(x, y,−1−)|. A dipole source is placed at r′ = (0.1,−0.2,−0.5) and oriented along
α′ = (1/2, 1/2, 1/

√
2) and fields are computed for −5 ≤ x ≤ 5 for a fixed y = 1.0 at the layer interface z = 0 and z = −1

and with ε1 = 1, ε2 = 4, ε3 = 1.1, and λ = 1.

5. Conclusion

The electric field dyadic Green’s function for a two- and three-layer structure in 3-D are pre-
sented. The two-layer Green’s function is simpler than the one in Ref. [5] and uses one less
Sommerfeld integral. An adaptive generalized quadrature rule is applied to Sommerfeld integral
to obtain very high accuracy. Therefore, the proposed method is more accurate and fast. Also
it can be easily extended multi-layered media without any modification except replacing the re-
flection and transmission coefficient. As an example, a three-layer Green’s function is presented
to show the easy extension to multi-layered media. The singular part is naturally separated as a
primary field that is the free-space Green’s function. Therefore, the Green’s function is readily
applicable to integral equation methods. The Lippmann-Schwinger type volume integral equa-
tion used for the free space in Ref. [7] is being modified with the new Green’s function to study
many scatterers embedded in layered media.

As a relevant research issue, a fast solver will be developed using the derived formulas for
the Green’s function for large-scale problems. Either a new fast multipole method type method
[18, 19, 20] or a preconditioner [21] based method could be considered to accelerate an iterative
matrix solver.
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Appendix A. Bessel identities

A derivation of the dyadic Green’s function in multi-layered media is very tedious but it is
required for a proper implementation. The Bessel identities play a key role in the derivation and
they are based on a integral representation of the Bessel function and recurrence relation (See
Ref. [22]), namely,

Jn(z)einθ =
1

2π

∫ 2π

0
eiz cos (φ−θ)+inφ−in π

2 dφ, (A.1)

Jn+2(z) =
n + 2

z
Jn+1(z) − Jn(z), (A.2)

respectively. For convenience, the most often used identities are listed in the following∫ 2π

0
eiz cos (φ−θ) dφ = 2πJ0(z), (A.3)∫ 2π

0
eiz cos (φ−θ) cos φ dφ = 2πiJ1(z) cos θ, (A.4)∫ 2π

0
eiz cos (φ−θ) sin φ dφ = 2πiJ1(z) sin θ, (A.5)∫ 2π

0
eiz cos (φ−θ) cos 2φ dφ = −2πJ2(z) cos 2θ, (A.6)∫ 2π

0
eiz cos (φ−θ) sin 2φ dφ = −2πJ2(z) sin 2θ, (A.7)∫ 2π

0
eiz cos (φ−θ) cos2 φ dφ = πJ0(z) − πJ2(z) cos 2θ, (A.8)∫ 2π

0
eiz cos (φ−θ) sin2 φ dφ = πJ0(z) + πJ2(z) cos 2θ. (A.9)
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