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Abstract

Concise and explicit formulas for dyadic Green’s functions, representing the electric and mag-
netic fields due to a dipole source placed in layered media, are derived in this paper. First, the
electric and magnetic fields in the spectral domain for the half space are expressed using Fresnel
reflection and transmission coefficients. Each component of electric field in the spectral domain
constitutes the spectral Green’s function in layered media. The Green’s function in the spatial
domain is then recovered involving Sommerfeld integrals for each component in the spectral do-
main. By using Bessel identities, the number of Sommerfeld integrals are reduced, resulting in
much simpler and more efficient formulas for numerical implementation compared with previous
results. This approach is extended to the three-layer Green’s function. In addition, the singular
part of the Green’s function is naturally separated out so that integral equation methods devel-
oped for free space Green’s functions can be used with minimal modification. Numerical results
are included to show efficiency and accuracy of the derived formulas.

Keywords: Maxwell’s equations, Dyadic Green’s functions, Sommerfeld integrals, Layered
media

1. Introduction

Multi-layered media is a fundamental structure for many applications such as meta-materials,
photonic crystals [1]], solar cells [2} [3], light emitting diodes [4], and plasmonic devices and
others. Numerical simulation of wave propagation in such media poses much challenge due
to large number of scatters, the treatment of radiation condition at the infinite, and the field
discontinuity at layer interfaces in meta-materials consisting of meta-atoms. Integral equation
methods have been shown to be versatile to address these issues in computing the wave scattering
in the layered media. To implement the integral equation formulation of the scattering problem,
it is imperative to have a concise formulation and efficient computational algorithm to compute
the dyadic Green’s functions for the Maxwell’s equations in the three-dimension (3-D). In this
paper, we will present explicit and compact formulas for the two- and three-layer dyadic Green’s
functions in terms of high order Hankel transforms and relevant numerical method for their
computations.

The dyadic Green’s function for a two-layer structure [S]] and multi-layered media [6] have
been explicitly presented. However, the formula for the three or more layers was not provided
in Ref. [S]. Also, the derivations in these work used an analytical formula for Sommerfeld
integrals for two layers in order to reduce the total number of Sommerfeld integrals to 10. As
Preprint submitted to Elsevier October 17, 2016



a consequence, extension to multi-layered media for sources on top of the layered media as
well as in the middle layer is not obvious. As a result, multi-layered media Green’s function
requires extra Sommerfeld integrals. The multi-layered media Green’s function in [6] requires
total 16 Sommerfeld integrals. The new formula proposed in this paper utilizes the second order
Hankel transform to reduce the number of integrals needed and the singular and nonsingular parts
of the Green’s function are clearly separated. This allows easy use of many integral equation
algorithms and codes developed using free space Green’s function [7]] or periodizing schemes
for periodic objects [8, 9] for the multi-layered media problems. Moreover, our approach in
principle, with some more bookkeeping associated with the layers, can be extended to the multi-
layered media when the source is on top of the layered media. Discussion on various numerical
issues of implementing the integral equations can be found in Ref. [10,|11]] and it is not repeated
here. For numerical contour integration of Sommerfeld integrals in the Fourier k-space, adaptive
generalized Gaussian quadrature rules [12][13]] are used to obtain high accuracy using quadrature
points only on the real axis. This avoids complex number operations and reduces computation
time. In other words, near the surface poles of the spectral dyadic Green’s functions, generalized
Gaussian quadrature rule is applied while traditional Gaussian quadrature is applied in other parts
of the contour.

The derivation for the dyadic Green’s function in this paper is rather cumbersome and tedious.
However, it is unavoidable for multi-layered media simulation and much needed in practice of
integral equations using dyadic Green’s functions. Every effort is made to simplify the final
formula so the readers can implement them easily. The same notation as in Ref. [S]] will be used
and modified as necessary throughout the paper.

The rest of the paper is organized as follows. In the next section, the free-space Green’s
function is transformed to one in the spectral domain using the Sommerfeld identity. Then, the
two-layer Green’s functions will be derived using the free-space Green’s function and Fresnel re-
flection coefficients [[14}15] in Section 3. In Section 4, extension will be given for the three-layer
Green’s functions with generalized Fresnel reflection coeflicients [16] due to multiple reflections
from the interfaces. Finally, in Appendix, several Bessel identities used for the derivations are
provided.

2. Free-space Green’s function

The free-space Green’s function serves as a primary singular field for the multi-layered media
Green’s function. In multi-layered media, the free-space Green’s function will be “corrected”
with reflected and transmitted contribution. Thus, in this section, the dyadic Green’s function for
the free space is studied. First, it is rewritten in the spectral domain. Then, the spatial domain
Green’s function is recovered by taking the inverse Fourier transform. The same process will
be applied for multi-layered media. For convenience, the free space will be referred as a one-
layer problem that has relative permittivity £; and permeability u;. Let a unit dipole be placed at
r' = (x,y’,7') and oriented along & = (a, @}, ). Then, the electric Ef = (Efx,Efy,Efz) and

magnetic HY = (H? Hﬁ -~ HY ) fields in the free space at r = (x, y,z) can be written as
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where k; = k+/eju; in the dielectric and k = w +/egup is the wave number in vacuum, respec-
tively. Using the Sommerfeld identity [17, [16],
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where Z is a unit vector along the z-axis. The integrand in Eq. is the spectral component of
electric field in the z-direction, which is denoted by
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A similar derivation yields the magnetic field as
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where V = (0, d,). From Maxwell’s equations, the transverse components Ef s = (EP o Efy) and

HY = (AF, HP) can be written using the £/, and A, as
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These two relations reduce the problem to an one-dimensional problem in the spectral domain
because only the z-component of electric and magnetic fields is required to completely determine
the fields in the spectral domain. By substituting Eqs. (@) and (6 into Egs. (7) and (8)), the electric
field in the spectral domain E = (E? EP LE?) can be explicitly written in terms of the spectral
Green’s function, that is,
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Figure 1: A two-layer structure. The free space is divided at z = 0 into the top and bottom layer. A dipole is located at
r’ = (x,y’,7’) and the top layer has €| and y; and the bottom layer has &, and y5.

Finally, the electric field in the spatial domain in Eq. can be recovered by taking double
integrals

+00 +00
6= [ [ Ghandn. =y (1)

on each component of Eq. (I0). This will constitute the free-space dyadic Green’s function in
the spatial domain. Note that this integral is well known as a Sommerfeld integral. The double
integral can be reduced to a single integral using cylindrical coordinate. The resulting integral
involves Bessel function or Hankel function depending on convenience and is sometimes referred
as the Hankel transform.

3. Green’s function for a two-layer structure

In this section, the free-space Green’s function is modified with the reflected and transmitted
parts of the Green’s function for a two-layer structure depicted in Fig. Overall the process
of computing the Green’s function is the same as the free space. Due to symmetry, the source
is assumed to be in the first layer. First, in the spectral domain, using Fresnel reflection and
transmission coefficients, z-component of reflected electric field in the first layer and the trans-
mitted field in the second layer are found. Then, all the transverse components in each layer are
derived using Eqgs. and (8). Now the spatial domain Green’s function can be found by taking
Sommerfeld integral for each component. Finally, in the first layer, primary field is added with
reflected field from the second layer to complete derivation.

3.1. Fields in the spectral domain

The z-component of electric and magnetic fields in the first layer are

E\.=E} +E}, H,=H +H} (12)

1z> 1z>

where the superscript P and R denote the primary and reflected parts, respectively. Similarly,
The z-component of electric and magnetic fields in the second layer are

EZZ = Egzs HZZ = ng’ (13)

where the superscript 7' denotes the transmitted part. The ETZ and ﬁfz are the primary fields
given in the previous section. Using the Fresnel reflection and transmission coefficients between
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the first and the second layer,
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the reflected and transmitted parts can be found as
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The &"” for the reflected part and &’ for the transmitted part ensure the boundary conditions
between layers. The transverse component ER (Efx, ER) can be expressed using the z-

components in Eqs. (I3) and (I6) using Eq. (IZ[) as before by simply replacing the subindex
with either 1 or 2 and superscript with either R or T as

= 1 AI/ ~ Al
Elfﬁkﬂf’( +Eav )glRTM+k2z><v (2-Vyxa") gk, (20)

Then, x- and y-components can be explicitly written out as
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By listing all the components of the electric field in the spectral domain, the Green’s function in
the first layer can be found as
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where G” is the same as Eq. 1| and all the components of (}If are given by
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In the second layer, the transverse component E7 = (ET ,ET ) is
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Then, x- and y-components can be explicitly written out as
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Thus, the spectral Green’s function in the second layer is
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3.2. Fields in the spatial domain

In this subsection, Sommerfeld integrals/Hankel transforms are used to convert the spectral
Green’s function found in the previous subsection to the spatial domain Green’s function. Sev-
eral useful Bessel identities are listed in[Appendix_A]and used in the derivation.

e In the first layer, the first component G’f)wC can be found by taking double integral as follows
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For all double integrals throughout the paper, the cylindrical coordinate transform
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is used to reduce double integrals into single integrals. Now the integral (D is simplified as
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Similar derivation yields the integral @ as follows
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Thus, the G can be computed with only two Sommerfeld integrals.
Absolutely, the same derivation applies to GR that is,
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The derivation of G’fzz is straightforward as there is no derivative in G’f,z
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The G’fxz and G’fzx can be derived at the same time as
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e In the second layer, the derivation of transmitted part GzT is absolutely similar to the reflected
part. Therefore, most of derivations are omitted unless there are notable differences.
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where
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3.3. Summary and numerical results for a two-layer structure

The Green’s function for a two-layer structure is summarized here.
eln the first layer

G = —%g'f,s + (%pz ~(- y’)z) ghs (71)
G, = —%g’ﬁs - (%p2 -0- y’)z) gte (72)
GY.. = 817, (73)
G, =G = (x—x)y =Ygl (74)
GY. = -G}, = —ilx = X)gfy, (75)
Gy, = ~Gf,y = =iy =Y )gls. (76)
eIn the second layer
T 1 T 1 2 AVAPWA
Grx = 5825~ (5P =0 =)) %26 (77)
Glyy = %gfis + (%p2 ~ 0 =yg5e (78)
Gyz: = 827 (79)
Gl =—(x=xX)y—Y)egs (80)
Gy, = ix = x)835. Goy =10y = Y)g3s, 81)
Gy = ix=X)g39. Go\ =iy =) )g30- (82)

Then, the dyadic Green’s function for two layers is

P_ _ 1 R
G A G 8n2wene) Gl » Z2 0
(r,xr’) = ,
— ;GT 7 < 0
8mlwegey 27

where G” is the free-space Green’s function and each component of G’f and Gg is given by Eqs.
T ~ €.

Four Sommerfeld integrals (g} 5 ~ gf's) and five Sommerfeld integrals (g{5 ~ g7 ) are re-
quired to compute reflected fields and transmitted parts, respectively. One less Sommerfeld inte-
gral is required than the formula presented in Ref. [5|]. Moreover, reflection coefficient for two
layers is not assumed to reduce number of Sommerfeld integrals. As a consequence, it can be
extended to multi-layered media without increasing the number of Sommerfeld integrals. Nu-
merical integration of Sommerfeld integrals are performed with the adaptive quadrature method
developed for the Helmholtz equation in Ref. [12,[13].

As a numerical test, a dipole source is placed at r' = (0.1,—0.2,1.5) and oriented along
@ = (1/2,1/2,1/V2). Then, electric field is computed for -5 < x < Sand -3 <z <3
for a fixedy = 1.2 withg; = 1, &, = 4, and 1 = 1 in Fig. The continuity of the fields
are checked by computing the electric field at the interface in Fig. [3] First, the electric field
is computed at the layer interface z = 0 with the formula for the top layer, E(x,y,0%), and
the formula for the bottom layer, E(x,y,07). The tangential components E, and E, must be

12
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Figure 2: Electric fields in a two-layer structure. A dipole source is placed at r’ = (0.1,-0.2, 1.5) and oriented along
@ =(1/2,1/2,1/2) and Fields are computed for -5 < x < Sand -3 <z<3forafixedy = 1.2 withe) = 1, & =4,
and A= 1.

continuous and the normal component E, must have a jump of &;/g; (in this example, the jump
should be 4). Figs. 3[a), 3[b), and[3|c) plot |E(x,y,0%) = E.(x, y,07)l, |[Ey(x,y,0%) = Ey(x, y,07)] ,
and |E.(x,y,0%) — 4E_(x,y,07)|, respectively. About 10~'° agreement was achieved. Throughout
the paper, agreement of numerical solutions at the interface will be used as accuracy of the
method. In the next section, the Green’s function for a three-layer structure is presented.

4. Green’s function for a three-layer structure

In this section, Green’s function for a two-layer structure is extended to a three-layer struc-
ture. In principle, multi-layered structure will be a straightforward consequence of three-layer
structure. We will begin the case when a dipole source is placed in the first layer. The multiple
reflection from the second layer is accommodated with generalized Fresnel coefficients and the
continuity of the fields are ensured with by modifying @’. Note that if the source is in the second
layer, all the formulas should be reorganized to accommodate reflection from both the first and
third layer into the second layer. If the source is in the third layer, symmetry can be used. In the
next subsection, the Green’s function when the source is placed on top of a three-layer structure
is derived and it is modified to consider the case when the source is in the second layer in the
following subsection.

13
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Figure 3: Continuity of electric fields at interface. (a) |[Ex(x,y,0%) — Ex(x,y,07)l, (b) [Ey(x,y,0%) — Ey(x,y,07)], and (c)

|E;(x,y,0%) — 4E (x,y,07)|. A dipole source is placed at r’ = (0.1,-0.2, 1.5) and oriented along &’ = (1/2,1/2,1/ V2)
and fields are computed for —5 < x < 5 for a fixed y = 1.2 at the layer interface z = O and withe] = 1,6, =4,and 1 = 1.

4.1. Source on top of a three-layer structure

Consider a case depicted in Fig. ] A three-layer structure is defined by two interfaces located
at z = 0 and z = —d. Assume the top most layer is the first layer with €, and y;, the middle layer
is the second layer with &, and u,, and the bottom most layer is the third layer with €3 and 3.
Let a dipole source is placed at r’ = (x’,’, z’) in the first layer oriented along & = (¢}, @), ).

4.1.1. Green’s function in the spectral domain
The z-components of reflected electric and magnetic fields in the spectral domain in each
layer are

E.=E} +E{, Ey,=E5 +E}, E3, = E}, (83)
H\.=H{ + Y, Hy, = HY + H} , H;, = H}, (84)

where the superscript P, R, and T denote the primary, reflected, and transmitted parts, respec-
tively. The primary fields Efz and H fz are the same as the free-space ones. The reflected part in
the first and second layers must be modified with the generalized reflection coefficient given by
TMTE |, pTMTE Diky.d

R + Ry et

RIMTE _ 12
12 - . ’
1+ RPTERIMTE o2ikecd

(85)

to accommodate multiple reflection and transmission from all the layers below the first layer.
Consequently, reflected fields in the first and second layer can be expressed as

- 1 . 1

EY =z -ap+ 0.V -alp 85Xy HY = —- 2V X &8N s 86
1z ( IR k% z lR]gl,TM Iz iotop s 1R81.TE (86)

R = (2 alfp v 509 6|8 AR = ——— 229 a3 (87)
2z 2R k% z 2R |52, TM> 2z iwﬂ0ﬂ2 klz g S 2R52,TE>
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Figure 4: Three-layer structure

where
ik (x—x")+iky(y—y' ) +iki (z+7

" __grurE Gl € <= )ik (=Y )ik ()

I,TM,TE 1 8712 ki, ’

R Ty E WHOM: eikx(x—x’)+iky(y—y’)+ik2;z+ik17z'+2ik21d
g =-R,™

2, TM,TE 2 872 ki >

ki ki

Al 7 ’ ’ Al ’ ’
a]R - (_axa _ay7 alz)’ Q2R - (_k_ax, k aya CVZ),
2z 2z
TM,TE
_ le

TMTE _ RTMTE pTMTE TMTE pTMTE 4TMTE
R™ =R, ", R =A" "R, ",A " = .
1 12 M2 2 23 2 1— R;M,TE R;M,TE o2ikecd

The transmitted parts in the second and third layer must be modified to

~ 1 - 1wk
T _ s am At | T T _ 1 "z A Arr T .
Ej.=|2-ap+ k_zaZV Q7 | 8rms H Ve XAr8irgs J = 2,3,
J

R iwpop; pj ki

ik (X=X )ik (y=y =ik z+iky .2

gT — _ATMTE W2 €
2,TMTE 2 87T2 klz ’
ik (x—x")+iky(y—y")—iks z+iki .2
gT B _ATM,TE WHoM3 € . V+iky (y=y")—iks z+ik
3, TMTE 3 82 ko ,
ki ki
17 4 ’ z ’ ’ .
= (k_ax’ G )= 2,3,
Jjz Jjz

TMTE _ ,TMTE TM,TE\ iky,d—iks,d
ATMTE _ ATMITE (| 4 RTMTE), .

(88)

(89)

(90)

oD

92)

(93)

(94)

95)

(96)

All the reflection and transmission coefficients are changed to enforce multiple reflections in Eqgs.
(1) and (©@6). At the same time, in each layer @’ is modified to correctly ensure the continuity
of the fields at the interfaces. The transverse components can be derived using Eq. (7) using the
new z-components listed above in each layer. In the following, all components are presented in

each layer.
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o In the first layer, the transverse components of reflected parts is found by
_ 1 L . N
E’fs = 2 [Vs(')zEfz — iwlop Z X VSHfz]
s

1
R

A 1 | = 1, . i
V0. (z A+ 50 a/’l’R) rm+ 7% Vs (2- Vo x a1p8tre)- (97)
1 s
Each component is exactly the same as the two-layer structure except the definition of the reflec-
tion coefficients. Thus the reflected parts of the Green’s function in the first layer can be simply
rewritten by replacing R7 and RTF by the generalized reflection coefficient RT™ = RTM and

RTE = RTE  respectively. Therefore, the electric field in the spectral domain in the first layer is
- - FP L PR
A I e B T B
’
o= €}Jy+€1ley Z(G " 8n2wee Gi)e
Elz L E11+Elz
~ ~ ~ <R <R <R
R I i M o ||
— - ’
- GN'};X G%Dy G%Z 8rlwepe; G~}eyx G~}eyy G“}eyz oz%, ’ ©%)
sz Gzy Gzz Glzx Glzy Glzz @
where G” is the same as Eq. 1i and G’f is defined by
GR azklzRTM 62 k% RTE ik (x—x")+iky(y—y' ) +ik1(z+7) (99)
— < _ e y ) z s
lxx xkg 1 yk%klz 1
~R 2kiz ot ki TE | ik (x=x")+iky(y=y )+ikyz(z+2)
Gy = |0 @ R = Ougg R [, (100)
s shz
R_ (K o) ik ysik oy k()
~ _ s ik (x—x")+iky(y—y ) +iky (z+2
Glzz_(ERl )e’ Ry R (101)
Z
~R =R kiz orm k% TE | iky(x=x)+iky (y=y )+ikio(z+7)
Gl =Gy, =00y | R + ——R| " [e™ YTy )T , (102)
k2 k2ky,
RTMY . .
G, =-Gf, =d.0. (—kl Jel’w‘x Wik =y tikiz(47) (103)
1z
RTMY , ,
G’fyz = _szy = 0,0, (_kl ) kX=X ik (= )+ k1o (z+2) (104)
Iz
e In the second layer, there are both reflected and transmitted parts (E, = E’; + Eg ),
. “r o mT A
b b:%ex ! E~2Tx 1 AR T
’
By =) BB |~ g (G4 6o
E,, E21+E21 ]
© AR AR AR AT AT AT
1 G Gy Gac | | o Gay Goc ||| 4
Qe | e S e T R e e S || T S
’
L GZZx GZZy GZZZ G2:x GZZ)' GZzz a;

The transmitted part assumes the same form as for the two-layer case. Thus, the transmitted part
of the Green’s function can be simply found by replacing the transmission coefficient TszM’TE by
16



the A;M’TE as
~ k2 2:“1 . N N - ’
GT — 82 Z TM 62 ATE elkx(x—x V+iky (y=y")—iky.z+ik .2 , 106
2xx ( X k2 2 y kz,qulz 2 ( )
~ k2 k%,ul . N N o
GT 62 Z 82 ATE ik (x—x")+iky(y=y')~ika z+iki;Z , 107
Zyy [ y k2 xkzllzklz ( )
2 k(s
G’“T — _SATM é (X=X ) +iky (y—y")—ikp z+iky 2 , 108
22z klz 2 ( )
- ~ k 2 NP
ngy = GzTyx = ( 0,0, k22z ATM 0,9, k22 - A;E okl ik =y )=ikaczrikicd (109)
H2K17
TM ATM
G2 _ 6 6 zkx(x—x’)Jriky(y—y’)—ikzzeriklzz' GZT = 9.0 2 eikx(x—x’)Jriky(y—y’)—ikzzz+ik|zz' (110)
x ks e = 0T
ATM . . . ATM . . .
ngx — 6Zaxﬁezk,r(x—x V+iky(y=y")—iko z+iki 2 , G;z) — 6zayﬁezkx(x—x )ik =y )=ikaztikiz (111)

However, there are some changes in the reflected parts in the second layer since the definition of
@" of the reflected parts in the first layer is changed to &3,. Fortunately, the reflected part takes
a similar form as the transmitted part because of —k|, /k2Z in @y. By carefully re-deriving the
transverse component of reflected parts in the second layer, the spectral Green’s function can be

found as

k k3 P
282z nTM 2 2 TE lkX(X—X V+iky (Y=Y )+iko z+ik 2 +2iko.d
Gk = (a v SR -8 klzR : , (112)
2 "2z TM 2 TE | ,iky(x=x")+iky(y=y')+iko z+ik 2’ +2iko.d
2\) (6 k2 2 6xk2klzR ) ’ (113)
k2 A A L A
G~§ — (_\'R;M) elkx(x—x/)+lky(y—y')+lkzzz+lk1Z’+21k2;d (114)
22 ’
ki
~R ~R kzZ M k2 zk w(x=x")+iky (y=y")+iko z+ik 2 +2iko.d
G5 = Giyy = |00 15 Rs ’k2k s : o, (115)
RTM RTM
_ ik (x—=x")+iky(y=y' )+iko,z+ik 2 +2iko.d AR _ 2 ik (x=x")+iky (y=y')+iko z+ik 2’ +2iko.d
2xz 66 o *r =X )tk (=Y )ikaeztiki 2 + 2k GZyz 5.0 oKX )ik =y )ik ztiki 2 12’
1z Iz
(116)
TM RTM
lk (x=x")+iky(y=y")+iko,z+ik 2’ +2iky.d 1k<w(x—x’)+ik\»(y—y’)+ik  z+ik 7 +2iko.d
GR = -0,0.—— st dd GR = 5, 2 Oy kit 4 2ikecd,
2z 2z
(117)

e In the third layer, the transverse component of the transmitted part takes the same form as
the transmitted part of the second layer. They can be simply found by changing the index in
the transmitted part of the second layer. By combining all the components, the spectral Green’s
function in the third layer can be expressed by

~ ~T AT ~T AT ’
E3x E%x 1 1 G%‘xx G%ggr G%xz a'x
o _ » _ ~T 1 ~ ’
By |=| B |=-gm—Gla'=—po | G Gl G || o) |, (19)
E £ 8mlwepes 8mlwepes ar A
3z 3z 3zx 3z) 3zz @

17



~ k3 k%,ul . N N .
GT — _BZ;ZATM _ 92 3 ATE elkx(X—X )+iky(y=y')—iks z+iky 2 , 119
o ( e YKk, (119)
~ k3 k%ﬂl i AN} A i} ’
GT, — (_aZ_ZATM _ (92 ATE elkx(x—x V+iky (y=y')—iks z+ik 2 , (]20)
3yy ¥ k? 3 Xk§#3klz 3
k2
G’“gzz — _SAgMeikl(x—x’)+ikv(y—y’)—ik3zz+iklzz" (121)
klz
2
G =¢GT =1-6.0 ]& ATM L 5 9 k3,u| ATE | piks(x=x')+iky (y=y")=iksiz+iki 2! (122)
3xy 3yx X yk% 3 X yk%/«Bklz 3 ’
ATM , I ATM , I
Gl = 950, et hanibd GY = 9,0, —E el rbOnibri - (123)
klz klz
ATM ) oo ATM ) o
Gl = 00y =IO G = 9,9, MmO (124)
4 3z

4.1.2. Green’s function in the spatial domain
The inverse Fourier transform is taken to recover the Green’s function in the spatial domain
as before. In the spectral domain, the reflected part in the first layer and transmitted part in
the second and third layer have the exactly same form as the two-layer Green’s function. Thus,
the spatial domain Green’s function can be simply found by replacing the reflection and trans-
mission coefficient and index without actual derivation. The reflected part in the second layer
has almost identical form as the transmitted Eart in the second layer due to similar definition of
1 b "> = ai, a2). Therefore, by carefully changing the sign

"o _1& _ Kz ’ A & Kiz
@y, = ( B X kzqay,az) and @, = (kzzax, @y

of transmitted part Green’s function formula, one can find the reflected part in the second layer.

o In the first layer, the reflected part Green’s function is given by

1 1 )
Gl = 5815+ (5102 - (- )2) g6 (125)
GR _ 1 R 1 2 N2 R 126
1yy—_§gl,5_ EP -0=-¥))ge (126)
GY, =&l (127)
GR, =GR =(x—x)-))gf 128
Ixy = Ylyx — y gl,()’ ( )
Gf. = -G}, = —i(x - x)gly. (129)
GY. = -Gf, = =iy =y )gls (130)
where
R ™ k% TE ~R kl ™ % TE ~R kz TM ~R ™
~ ~ z ~ s ~
815 = klle - k]le »816 = k_le + kgklle 817 = k_]le 818 = Rl ,

* fon(ose ® 3 r k) ierr
grs=2n f k@ sJolksp)e™ - dk, gf ¢ = 2m f &Y —2'(0;’) ) iiserd) g,
0 0

© Rz © Tksp) s ore
g =2 f kgt sJo(ksp)e™ = dk,, g¥ o = 21 f kgt —‘(p P) ke g, (131)
0 0
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e In the second layer, the transmitted part has the same form as the two layers case. Therefore,
the Green’s function can be found simply replacing T, and T7,° by A7 and AT as

1 1 ,
G = 585~ (5P =0 =3)Mgse (132)
1 1 ,
Gl = 385+ (50" ==Y )gse (133)
G, = &7 (134)
Gh,y =Gl = —(x = x)y =Y )gre: (135)
Gsz = l(x - x’)ngB, Ggyz = l(y - y/)ggg’ (136)
Gl =i(x—x')g,, ngy =iy —))g o (137)
where
k2 k 2
=T ™ 2 M1, TE T K2z 4TM 2 M1
= kA ACE, - TLATE
825 = K24 klzﬂz 2 28267 et k2 oo =
k2 k ATM
5’57 s ATM ~T _ %28 . _ ATM

¥ — 8
k2 0S8 T T 29 =

” o ztite. Ja(k
ggﬁ = 27Tf ksgg,SJO(ksp)eﬂkzZZﬂklZZ dks, g£6 = Zﬂf %~26 2( T'O) *lkz z+iki 2 dks,
0

” ezt Ji(k it
ey =2 [ ke gl = [ i, O 1( o) v g,

Ji(k,
g§,9:2ﬂfo K&y l(p £ e Mt e (138)

The reflected part in the second layer is derived by observing the similarity between the trans-
mitted part and reflected parts in the second layer, one can change the sign of transmitted part to
obtain the Green’s function or one can take actual double integral and derive the same formulas.

1 1 ,
Gl = =585 (2p2 —0-y )2) 86 (139)
GE =tk (12— o y) ek (140)
2yy 2g2,5 2p y gzyﬁs
G, = &7 (141)
Gl = Gl = (x=X) = ¥)8s 142
2xy T Y2yx T X=X )(y y )g2 62 ( )
ngx i(x = x )gz 8> zzy =i(y—y )gz 8> (143)
GY. = —i(x = x)gho. G5 . = —i(y — ¥ )gho. (144)
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where

k2 k 2
=R ™ 2 pTE =R 2z pTM 2 pTE
=k, R" — —=R)", ==R" + R",
825 = Kozl k. 2 826 K2 2 2k, 2

k2 ko
~R TM =R TM =R  TM
827 = ks R, »828 = R, »829 = k ZRz )
1z 1z

0 T o Jr(k Iy
g§’5 — 27Tf k.vglze’sJ()(ksp)elkzzz"—lklzz +21k2zddks’ 812?’6 — 271_‘[ ki’gl;ﬁ 2(p;p) elkZzZ‘HklzZ +21k21ddks’
0 0
R v R ko z+iky 2 +2ikozd R T2k NKP) ik
87 = 2r ksgszQ(ksp)e e ¢ dks,gz,g =2r ksgz,gTe T “dks,
0 0
0 Ji(k, . i
g§,9 — 27Tf k?glg’g l(pép) elkzzZJrlk];Z +2[k22ddks. (145)
0

e In the third layer, again the spectral Green’s function have the same form as any transmitted
fields in the second layer. Thus, Green’s function can be expressed as

Gh = %gis - (%;o2 -G =Ygk (146)
Gy = %g; + (%p2 - =y))gke (147)
Gl =g (148)
Gh, =G = —(x=x)(y—y)ghe (149)
Giy = i(x = X)gig G3y, =iy =¥ )gas, (150)
Gi, = ix=xX)ghg, Gi, =iy —)Y)gs (151)
where

=T ™ k% M1, TE ~T ks: crm k% M1 TE

&35 = k3 A37 + k_lz/l_3A3 2836 = k_% M- k1zk?/d_3 TE,

g7 = gAg”’,gig = %,g; = ATM

. .

T o_ T —ikaz+iki? To_ R (O M
835 = 2n ksg3,5fo(ksp)€ : < dks, 836 = 2n ksg3,6p—2 e < dks,
0 0

T Jiksp) ik

837 =21 f kgl 1 Jo(kgp)e *xst b g ol = 2 f kgt e ik,
0 0

« Jy (ks T rikn 2
g%:g — zﬂ_f k%g%"’g 1(p ,0) e—1k3zz+zklzz dk,. (152)
0

4.2. Numerical results

A three-layer structure is considered by placing two interfaces at z = 0 and z = —1. The
relative permittivity is assigned as €, = 1, &, = 4, &3 = 1.1 in each layer. The relative per-
meability {,u,-}?:1 is assumed to be 1 in all layers. The wavelength A is set to be 1. The electric
field is computed when a source is placed on top of the layered media at r’ = (0.1, -0.2,0.5) and
oriented along & = (1/2,1/2,1/V?2). In Fig. , all the components of electric field are plotted
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Figure 5: Electric fields in a three-layer structure with layer interface at z = 0 and z = —1. A dipole source is placed at

r' = (0.1,-0.2,0.5) and oriented along o’ = (1/2,1/2,1/ \/5) and fields are computed for -5 < x < 5and -3 <z<3
forafixedy=1.0withe; = 1,6 =4,e3=1.1,and 1 = 1.

over -5 < x < 5and -3 < z < 3 for a fixed y = 1.0. The continuity of the fields are checked at
both interfaces z = 0 and z = —1 in Fig. [|as accuracy of the Green’s function. In all components,
approximately 10~!'? absolute error is obtained.

4.3. Source in the second layer

When a dipole source is placed in the second layer, the formula derived in the previous
subsections must be modified to accommodate multiple reflection and transmission from the first
and second interfaces. In the following, the electric field in each layer in the spectral domain
are provided. Then, taking Sommerfeld integrals derives the electric field in the spatial domain.
That will complete the derivation of Dyadic Green’s function for a three-layer structure.

4.3.1. Green’s function in the spectral domain

Let a dipole source is located in the second layer, then in the first and third layer, there are
only transmitted fields. However, in the second layer, there are primary field, reflected fields
from the bottom interface and the top interface. The reflected fields from the bottom interface
and top interface are an up-going and a down-going waves, respectively. Thus, in each layer, the
z-components of field can be represented by

E\.=E| E»=E5 +E} +E) Es. = E, (153)
H\.=H|, H.=H, +H) +H) E;, = Hy,. (154)
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Figure 6: Continuity of electric fields at both interfaces at z = 0 and z = —1. (a) |Ex(x,y,0") — E(x,y,07)|,

(d) 1Ey(x,y,0%) = Ey(x,y,07)], (¢) |E;(x,y,0%) = 4E;(x,y,07)l, (d) |Ex(x,y,=17) = Ex(x,y, =17, (e) IEy(x,y,~17) =
Ey(x,y, =17, () |[E-(x,y,—17) - %Ez(x, y,—17)|. A dipole source is placed at ¥’ = (0.1,—0.2,0.5) and oriented along
«@ =(1/2,1/2,1/V?2) and fields are computed for =5 < x < 5 for a fixed y = 1.0 at the layer interface z = O and z = —1
andwithe; =1,y =4,e3=1.1,and A1 = 1.

The primary field E~§Z is the same as the primary field in the free space. The field in the second
layer can be expressed using new reflection coefficients UTMTE and D™MTE that represent the
amplitude of the up- and down-going waves, respectively.

. 1 ~ 1
EU: 2_&//+_av_dll ~U ,HUZ— 2V X&’I~U ) 155
= ( ke ]gZ’TM %7 Tiopopn Y 821 (155)
- 1 _ 1
Ep =|2-&" + 50V -&" |8y HY = ———2- VX & & rp, 156
2z ( k% z )gZ,TM 22 g0t 5 8271E (156)
where
A — (—a;, —(1;, (12), (157)
iky(x—x")+iky(y—y")
U WUOMD Ty TE € : oz
= vt e, 158
82, TMTE 82 o (158)
iky(x—x")+iky(y—y")
=D WUOM2 M TE € y itz
=" b e, 159
82TMTE 82 o, (159)
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In the first and third layer, the transmitted parts are given by

B~ (car s

T _ o A A/// ~T
k3 = (Z 6 V- ]83 TM>
3

where

In the above, AlTM’TE
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, AgM’TE , DTMTE "and UTMTE (See the Ref. [[16] for their derivation) are

(165)

(166)

(167)

(168)

In each layer, again the transverse component must be derived using Maxwell’s equations. The
final simplified formula is presented in the following:

o In the first layer, the electric field in the spectral domain is
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e In the third layer, the same calculation applies and the electric field in the spectral domain is
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¢ In the second layer, the electric field has three parts that can be expressed using the Green’s
function notation. The derivation of the up-going wave Green’s function ((}g ) and the down-
going wave Green’s function ((~}12) ) are similar to that of reflection fields in both two- and three-
layer structures. Derivation are not so difficult but needs some attention on k,, because there is
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k; in the denominator of gé’ ’;) g and gigT w7 instead of ki, compared with the case when the
source is in the first layer. In the following, both the up- and down-going wave Green’s functions
are listed.
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4.3.2. Green’s function in the spatial domain
As expected from the previous sections, the inverse Fourier transform are applied to the
spectral Green’s function to obtain the one in the spatial domain. Most of basic computations are
25



already performed while deriving the two- and three-layer Green’s functions. Therefore, without
any derivation, the Green’s function in the spatial domain is presented below.

o In the first layer,

1
G{xx - Eg{,S

1 1
T T 2
G,y = 7815 + (EP -0-

T _ T
Glzz gl 7°
GT

Ixy = Y lyx

T N.T AT _
G, = —ilx—x )g1,8’G1\z =

T . T
G, =-ilx—x )81,9’ lzy =
where

2 ™ 2
2l = kAT 4 k_lATE i = kizA] _ ky
1.5 fal| kZz 1 »381,6 — k% kzzk%

TE
1

>

1 2
(b0

=G, = —(x =X\ -

® : ok
gls=2n fo kg1 soksp)e™ = dk, g1 ¢ = 21 fo S zi)zp) "1k,

o0 , Ji(ky .
g, =2n f kg| 7 Jo(kp)e™  dks, g1 g = 21 f kgl ——— 1( p) Mk,
0 0

Jiks
Ty =21 f gl 2P iz gy
' 0 p

y’)z)g{,é, (196)
y’)z)g{6, (197)
(198)
Y81 6 (199)
—i(y - y)g] 5. (200)
—i(y-y )glg: (201)

_ k? k ~
IT!7 — _ATM,g]TS — leTM T9 — ATM

k2z k2z

(202)

e In the third layer, all the formulas take almost same form as the first layer except the direction

of the field. Therefore, they are given by
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e In the second layer, both the up- and down-going waves are reflected wave from the interface.
Thus, the Green’s function follows similar formula as the reflected field in both two- and three-
layer structures. However, again one must be careful about the sign because of direction. The
up-going wave Green’s function is obtained as
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The down-going wave Green’s function is given by
1 1 ,
G = _EgzD,s + (EP2 -y )2) gzD,(,, 217)
1 1 ,
Gé’w = ‘585,5 —(EPZ—(y—y )z)gé},, (218)
G, = 857 (219)
GZDXy = GZDyx = (x - 'x’)(y - y,)g2D’6’ (220)
Gy, = G2 = i(x - X')gbs, 221)
Gh. = -Ghy = i(y—y)ghs. (222)

27



(a) Re(E:) (d) Im(E,)

2 2 .
; 02 . F 4 03
€1 = 1 , 0.1 0.2
0 ’ 0 "—'—pv—v* .
eg=2 *F 0 1 . - z !
-1 -
eg3=4 — -0.1 \\ v/ -0.1
-2 — 02 [ i
—— - N -0.2
-3 03 3 0 s 5
-5 0 5 B
(b) Re(E,) (e) Im(E,)
2 03 2
1 02 1 0.2
0 01 o
1 LAY - o N 0
- S : N
-~ -0.1 N
-2 \\v ” -0.2 -2 \\f - 0.2
3 \\\_/ -3 SN—
-5 0 5 -5 0 5
(c) Re(E:) (£) Im(E.)
2 03 2 03
1 0.2 0.2
0 & 0.1 0 0.1
LAY i o AW Wi
— ) —— ’
-2 . -0.2
// 0.2 //'
3 0 5 -5 0 5
T x
Figure 7: Electric fields in a three-layer structure with layer interface at z = 0 and z = —1. A dipole source is placed at

r’ = (0.1,-0.2,-0.5) and oriented along ¢’ = (1/2,1/2,1/ V2) and fields are computed for -5 < x <5and -3 <z7<3
forafixedy=10withe; =1, =2,e3 =4,and A1 = 1.
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4.3.3. Numerical results

The Green’s function is computed when the source is placed in the second layer. Consider a
three-layer structure defined by two interfaces located at z = 0 and z = —1. The relative permit-
tivity in each layer is &) = 1, &, = 2, &3 = 4 and a dipole source is placed atr’ = (0.1, -0.2, -0.5)
oriented along & = (1/2,1/2,1/ \/5) in the second layer. The relative permeability {/li}?:l is
assumed to be 1 in all layers. The wavelength is set as A = 1. In Fig. [7] all the components of
total electric field are plotted over —5 < x < 5 and —3 < z < 3 for a fixed y = 1.0. The continuity
of the fields are checked at both interfaces z = 0 and z = —1 in Fig. [§] In all components, about
1077 is achieved.
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Figure 8: Continuity of electric fields at both interfaces at z = 0 and z = —1. (a) |Ex(x,y,0%) — E(x,y,07)|,

(0) |Ey(x,y,0%) = Ey(x,y,07), (©) |E(x,y,0%) = 2E;(x,y,07)], (d) |Ex(x,y,=1%) = Ex(x,y, =17)L, (e) |Ey(x,y, =1*) =
Ey(x,y, =17, (f) |[E;(x,y,—1") = 2E;(x,y,—17)|. A dipole source is placed at r’ = (0.1, 0.2, -0.5) and oriented along
o =(1/2,1/2,1/ \/i) and fields are computed for —5 < x < 5 for a fixed y = 1.0 at the layer interface z = 0 and z = —1
andwithe; = 1,& =4,e3=1.1,and A = 1.

5. Conclusion

The electric field dyadic Green’s function for a two- and three-layer structure in 3-D are pre-
sented. The two-layer Green’s function is simpler than the one in Ref. [3] and uses one less
Sommerfeld integral. An adaptive generalized quadrature rule is applied to Sommerfeld integral
to obtain very high accuracy. Therefore, the proposed method is more accurate and fast. Also
it can be easily extended multi-layered media without any modification except replacing the re-
flection and transmission coefficient. As an example, a three-layer Green’s function is presented
to show the easy extension to multi-layered media. The singular part is naturally separated as a
primary field that is the free-space Green’s function. Therefore, the Green’s function is readily
applicable to integral equation methods. The Lippmann-Schwinger type volume integral equa-
tion used for the free space in Ref. [[7] is being modified with the new Green’s function to study
many scatterers embedded in layered media.

As a relevant research issue, a fast solver will be developed using the derived formulas for
the Green’s function for large-scale problems. Either a new fast multipole method type method
[181[19,20] or a preconditioner [21] based method could be considered to accelerate an iterative
matrix solver.
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Appendix A. Bessel identities

A derivation of the dyadic Green’s function in multi-layered media is very tedious but it is
required for a proper implementation. The Bessel identities play a key role in the derivation and
they are based on a integral representation of the Bessel function and recurrence relation (See
Ref. [22]]), namely,

21
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271' 0
n+2
Jn+2(Z) = T n+1(Z) - ]n(Z)’ (A2)
respectively. For convenience, the most often used identities are listed in the following
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