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Abstract

An adaptive moving mesh finite element method is proposed for the numerical solution of

the regularized long wave (RLW) equation. A moving mesh strategy based on the so-called

moving mesh PDE is used to adaptively move the mesh to improve computational accuracy

and efficiency. The RLW equation represents a class of partial differential equations containing

spatial-time mixed derivatives. For the numerical solution of those equations, a C0 finite element

method cannot apply directly on a moving mesh since the mixed derivatives of the finite element

approximation may not be defined. To avoid this difficulty, a new variable is introduced and

the RLW equation is rewritten into a system of two coupled equations. The system is then

discretized using linear finite elements in space and the fifth-order Radau IIA scheme in time. A

range of numerical examples in one and two dimensions, including the RLW equation with one or

two solitary waves and special initial conditions that lead to the undular bore and solitary train

solutions, are presented. Numerical results demonstrate that the method has a second order

convergence and is able to move and adapt the mesh to the evolving features in the solution.

AMS 2010 Mathematics Subject Classification. 65M50,65M60, 35G61

Key Words. regularized long wave equation, RLW equation, moving mesh, adaptation, finite

element method

Abbreviated title. An adaptive moving mesh FE solution of RLW

1 Introduction

We consider the adaptive moving mesh finite element (FE) solution of the regularized long wave

(RLW) equation (which is also called the Benjamin-Bona-Mahony or BBM equation) in one and

two dimensions. The initial-boundary value problem of the 2D RLW equation [2, 10, 18] reads as
ut + αux + βuy + γuux + δuuy − µuxxt − µuyyt = 0, (x, y) ∈ Ω, t ∈ (0, T ]

u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T ]

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω

(1)
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where Ω is a bounded polygonal domain and α, β, γ, δ, µ are constants with |γ| + |δ| > 0, and

µ > 0, and u0 and g are given functions. The RLW equation has been used to model ion acoustic

waves and magnetohydrodynamics waves in plasmas, longitudinal dispersive waves in elastic rods,

pressure waves in liquid gas bubbles, and nonlinear transverse waves in shallow water; for example

see [5, 6, 41]. The RLW equation was proposed first by Peregrine [41] and later by Benjamin et al.

[5] as a model for small amplitude long waves on the surface of water in a channel. Generalizations

such as the generalized regularized long wave equation (gRLW) or the modified regularized long

wave equation (MRLW) [2, 10, 18] and generalized Rosenau-Kawhara-RLW equation [42] also arise

from various applications.

The RLW equation is related to the Korteweg-de Vries (KdV) equation but has distinct features.

For example, Medeiros and Miranda [36] discuss the problem of periodic solution and show that

RLW can almost cover all the application of KdV. On the other hand, Olver [40] proves that

RLW can have only three non-trivial independent conservation laws. This is very different from

KdV which is known to have an infinite number of conservation laws. Moreover, KdV is known to

possess single and multiple solitons that maintain their shapes and velocities after their interactions

and can have inelastic collision. RLW does not appear to admit an inverse-scattering theory which

would lead to an analytical representation for solitary wave solutions. Nevertheless, the initial-value

problem of RLW posed on the whole real line still has the property that initial disturbances resolve

into a train of solitary waves and a dispersive tail (e.g., see [7]; also see Examples 4.4 and 4.7 in

section 4). Much effort has been made to understand whether or not RLW has the characteristics

of solitons. For example, Abdulloev [1] shows that two solitons of RLW can have inelastic collision.

Analytical solutions have also been obtained by various researchers; e.g., see [34, 35, 47, 48].

The numerical solution of the RLW equation and its variants and generalizations have been

considered extensively in recent decades. Among many existing works, we mention Eilbeck and

McGuire [14, 15] (finite difference methods), Guo and Cao [21] (a Fourier pseudospectral method

with a restrain operator), Luo and Liu [33] (a mixed Galerkin), Zaki [49] (combined splitting with

cubic B-spline FEM), Dogan [13] (linear FEM), Daǧ et al. [11] (cubic B-spline collation), Gu and

Chen [20] (a least squares mixed Galerkin), Gao et al. [16] (local Discontinuous Galerkin), Mei et

al. [17, 37, 38, 39] (mixed Galerkin), and Siraj-ul-Islam et al. [44] (meshfree method). These works

are for RLW, gRLW, or MRLW in 1D, and much less work has been done in 2D. Dehghan and

Salehi [12] consider the numerical solution of 2D RLW in fluids and plasmas using the boundary

knot method (a meshless boundary-type radial basis function collocation technique).

The objective of this paper is twofold. The first is to study the numerical solution of RLW

using an adaptive moving mesh method. The method works for a general spatial dimension but

we focus only on 1D and 2D in this work. As will be seen in section 4, a large spatial domain

often has to be used in the numerical solution to reduce the boundary effects and to cover the

evolving features for the whole time period under consideration. This requires a large number of

mesh elements for a reasonable level of computational accuracy especially in multi-dimensions. To

improve computational efficiency, it is natural to employ an adaptive moving mesh technique which

dynamically adapts the mesh to the local, evolving features in the solution of RLW. In this work,

we will employ the so-called moving mesh PDE (MMPDE) method [27, 28, 29] that moves the mesh
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continuously in time and orderly in space using a PDE formulated as the gradient flow equation of

a meshing functional. We will use a newly developed discretization of the MMPDE [25] that makes

the implementation of the MMPDE method not only significantly simpler in multi-dimensions but

also much more reliable in the sense that there is a theoretical guarantee for mesh nonsingularity.

The second objective of the paper is to study how to discretize space-time mixed derivatives

using finite elements on moving meshes. RLW (1) represents a class of PDEs containing space-time

mixed derivatives. In addition to RLW, this class includes Boussinesq [9], modified Buckley-Leverett

[45], and Sobolev [43] equations. A feature of these PDEs is that space-time mixed derivatives are

involved in their both strong and weak formulations. When the mesh is moving, these derivatives

of a C0 finite element approximation are not defined (cf. section 2.1). There are various ways to

overcome this difficulty. We utilize a new variable (see (2) below) and demonstrate numerically

that the resulting linear finite element discretization gives a second order convergence on moving

meshes. Since (2) is not tailored to the special structure of RLW, we may expect that this idea of

treating space-time mixed derivatives can also be used for the moving mesh solution of Boussinesq,

modified Buckley-Leverett, and Sobolev equations.

It is worth mentioning that a number of moving mesh methods have been developed in the past

and there is a considerable literature in the area. Instead of going over the literature, we refer the

interested reader to the books/review articles [3, 4, 8, 29, 46] and references therein.

An outline of the paper is as follows. The adaptive moving mesh finite element method is

described in Section 2. The transformation of RLW into a system of two coupled PDEs, the

discretization of the PDE system on moving meshes via linear finite elements, and the conservation

laws possessed by RLW are discussed in the section. The generation of adaptive moving meshes

using a new implementation of the MMPDE method is discussed in section 3. 1D and 2D numerical

examples of RLW (and MRLW) are presented in section 4. Finally, section 5 contains conclusions

and further comments.

2 An adaptive moving mesh finite element method

In this section we describe the adaptive moving mesh FE method for the numerical solution of the

RLW equation. We first describe the basic procedure of the method and then elaborate on the

linear FE discretization of the RLW equation on moving meshes, followed by a discussion on the

conservation laws possessed by the RLW equation. An MMPDE-based moving mesh strategy will

be discussed in the next section. To be specific, we describe the method in two dimensions. The

one dimensional formulation is similar.

We start with introducing a new variable

v = u− µuxx − µuyy (2)

and rewriting (1) into
vt + αux + βuy + γuux + δuuy = 0, (x, y) ∈ Ω, t ∈ (0, T ]

v = u− µuxx − µuyy, (x, y) ∈ Ω, t ∈ (0, T ]

u = g, (x, y) ∈ ∂Ω, t ∈ (0, T ].

(3)
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The weak formulation is to find u(·, t) ∈ H1(Ω) ∩ {u|∂Ω = g} and v(·, t) ∈ H1(Ω) for 0 < t ≤ T

such that {∫
Ω (vt + αux + βuy + γuux + δuuy)φdxdy = 0, ∀φ ∈ H1(Ω), t ∈ (0, T ]∫
Ω ((v − u)ψ − µuxψx − µuyψy) dxdy = 0, ∀ψ ∈ H1

0 (Ω), t ∈ (0, T ].
(4)

The basic procedure of the the adaptive moving mesh FE method for solving (4) is as follows.

1. Given an initial mesh T 0
h and an initial time step ∆t0.

2. For n = 0, 1, ...

(a) An MMPDE-based moving mesh strategy (cf. section 3) is used to generate the new

mesh T n+1
h based on the current mesh T nh and the numerical solution unh ≈ u(·, tn)

defined thereon. Note that T n+1
h and T nh have the same number of the elements (N),

the same number of the vertices (Nv), and the same connectivity. They differ only in

the location of the vertices, (xi, yi), i = 1, ..., Nv.

(b) For t ∈ [tn, tn+1] with tn+1 = tn + ∆tn, the coordinates and velocities of the vertices are

defined as

xi(t) =
tn+1 − t

∆tn
xni +

t− tn

∆tn
xn+1
i , yi(t) =

tn+1 − t
∆tn

yni +
t− tn

∆tn
yn+1
i , i = 1, ..., Nv

ẋi(t) =
xn+1
i − xni

∆tn
, ẏi(t) =

yn+1
i − yni

∆tn
, i = 1, ..., Nv.

The corresponding mesh is denoted by Th(t) (tn ≤ t ≤ tn+1).

(c) The RLW equation (4) is discretized in space using linear finite elements and then

integrated in time for one step using the fifth-order Radau IIA method (e.g., see Hairer

and Wanner [22]). A standard procedure is used for the selection of the time step size,

together with a two-step error estimator of González-Pinto et al. [19]. If the actual step

size (denoted by ∆̃tn) is smaller than ∆tn, the time and mesh are updated as

tn+1 ← tn + ∆̃tn, xn+1
i ← xni + ∆̃tnẋi, yn+1

i ← yni + ∆̃tnẏi, i = 1, ..., Nv.

The predicted time step size will be used as ∆tn+1.

The FEM discretization of the RLW equation on Th(t) is discussed in the next subsection while

the generation of T n+1
h using the MMPDE-based moving mesh strategy will be given in section 3.

2.1 Linear finite element discretization on Th(t)

For notational simplicity, we assume that the vertices of Th(t) are ordered in a way that the first

Nvi vertices are interior vertices. Let φi = φi(x, y, t) be the linear basis function associated with

the i-th vertex (xi, yi). Define

V h(t) = span{φ1, ..., φNv}, (5)
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V h
0 (t) = V h(t) ∩ {v|∂Ω = 0} ≡ span{φ1, ..., φNvi}, (6)

V h
g (t) = V h(t) ∩ {v(xi, yi, t) = g(xi, yi, t), i = Nvi + 1, ..., Nv}. (7)

The linear finite element approximation of (4) is to find uh(·, t) ∈ V h
g (t) and vh(·, t) ∈ V h(t),

t ∈ (0, T ] such that
∫

Ω

(
∂vh
∂t + α∂uh∂x + β ∂uh∂y + γuh

∂uh
∂x + δuh

∂uh
∂y

)
φ dxdy = 0, ∀φ ∈ V h(t), t ∈ (0, T ]∫

Ω

(
(vh − uh)ψ − µ∂uh∂x

∂ψ
∂x − µ

∂uh
∂y

∂ψ
∂y

)
dxdy = 0, ∀ψ ∈ V h

0 (t), t ∈ (0, T ].
(8)

To cast (8) in a matrix form, we express uh and vh as

uh =

Nv∑
i=1

ui(t)φi(x, y, t), vh =

Nv∑
i=1

vi(t)φi(x, y, t), (9)

subject to the boundary condition

ui = g(xi, yi, t), i = Nvi + 1, ..., Nv. (10)

Notice that

∂vh
∂t

=

Nv∑
i=1

dvi
dt
φi +

Nv∑
i=1

vi
∂φi
∂t

.

It is not difficult to show (e.g., see Jimack and Wathen [31]) that

∂φi
∂t

= −∇φi · Ẋ, a.e. in Ω (11)

where Ẋ is a piecewise linear mesh velocity defined by

Ẋ =

Nv∑
i=1

[
ẋi
ẏi

]
φi. (12)

Using this we can rewrite ∂vh/∂t as

∂vh
∂t

=

Nv∑
i=1

dvi
dt
φi −∇vh · Ẋ. (13)

Inserting (9), (10), and (13) into (8) and taking φ = φi (i = 1, ..., Nv) and ψ = φi (i = 1, ..., Nvi)

successively, we get

[
MII MIB

MBI MBB

]
d
dt

[
vI

vB

]
+

[
f I

fB

]
= 0,

[
MII MIB

]([vI
vB

]
−

[
uI

uB

])
−
[
AII AIB

] [uI
uB

]
= 0,

uB = gB,

(14)
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where the vectors and matrices in (14) are partitioned according to the entries associated with the

interior vertices (with symbol “I”) and those associated with the boundary vertices (with symbol

“B”), u = (u1, ..., uNvi , ..., uNv)T and v = (v1, ..., vNvi , ..., vNv)T are the unknown vectors, M and

A are the mass and stiffness matrices, respectively, and the entries of M , A, f , and g are given by
Mi,j =

∫
Ω φiφjdxdy, Ai,j =

∫
Ω

(
µ∂φi∂x

∂φj
∂x + µ∂φi∂y

∂φj
∂y

)
dxdy,

fi =
∫

Ω

(
α∂uh∂x + β ∂uh∂y + γuh

∂uh
∂x + δuh

∂uh
∂y −∇uh · Ẋ

)
φidxdy,

gi = g(xi, yi, t).

(15)

When the mesh is fixed, both the mass and stiffness matrices are time independent. In this

case, by differentiating the second equation of (14) with respect to time and subtracting it from

the first equation we get

(MII +AII)
duI
dt

+ f I = 0. (16)

Since both MII and AII are symmetric and positive definite, MII +AII is invertible and (16) forms

an ODE system. As a result, the solution existence and uniqueness of (14) can be derived from

that of the ODE system (16). Moreover, it is not difficult to show that (16) can also be obtained

by applying the linear finite element discretization directly to the original equation (1).

When the mesh is varying with time, both M and A depend on time too. In this case, (14)

cannot reduce to (16) in general. Nevertheless, from the second and third equations of (14) we get

uI = (MII +AII)
−1 (MIIvI +MIBvB − (MIB +AIB)gB) . (17)

Notice that f is a function of u = (uTI ,u
T
B)T and can be written as f = f(uI ,uB). Inserting (17)

into the first equation of (14) we obtain

M
dv

dt
+ f((MII +AII)

−1 ([MII MIB]v − (MIB +AIB)gB) , gB) = 0, (18)

which is also an ODE system. Then, the solution existence and uniqueness of (14) can be derived

from that of the ODE system (18). Once v has been obtained, we can find uI from (17).

In our computation, (14) is solved directly, which is a DAE (differential-algebraic equation)

system. It is integrated using the fifth-order Radau IIA method with a variable step size determined

by a two-step error estimator of Gonzalez-Pinto et al. [19].

Remark 2.1. On a moving mesh, a C0 finite element method cannot be applied to the original

equation (1) directly. Indeed, the weak formulation of (1) takes the form∫
Ω

((ut + αux + βuy + γuux + δuuy)φ+ µuxtφx + µuytφy) dxdy = 0, ∀φ ∈ H1
0 (Ω).

Then a finite element approximation will contain space-time mixed derivatives

∂2uh
∂x∂t

,
∂2uh
∂y∂t

, (19)
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tn

tn+1

t

xnj−1 xnj xnj+1

xn+1
j−1 xn+1

j xn+1
j+1

Figure 1: An illustration of the movement of element boundaries.

where uh is a finite element approximation to u. Notice that uh is piecewise continuous and ∇uh
is discontinuous across element boundaries. Since these boundaries vary with time for a moving

mesh, ∇uh has jumps in the time direction for spatial points where the element boundaries sweep

through (see Fig. 1) and cannot be differentiated with respect to time at these points (even in weak

sense). Thus, the terms in (19) are not defined on Ω, and a moving mesh finite element method

does not apply to (1) directly.

Remark 2.2. Several other choices of new variables have been used in the numerical solution of

the RLW equation. For example, Luo and Liu [33] (also see Gu and Chen [20] for a least squares

mixed FEM) use the new variable p = au2/2 − δuxt for a mixed finite element approximation of

the 1D RLW equation

ut + auux − δuxxt = 0,

subject to a homogeneous Dirichlet boundary condition. They use the weak formulation{∫
Ω(utφ− pφx)dx = 0, ∀φ ∈ H1

0 (Ω)∫
Ω

(
p− a

2u
2 + δuxt

)
ψdx = 0, ∀ψ ∈ L2(Ω).

It does not work with a moving mesh finite element method since it contains space-time mixed

derivatives. More recently, Gao and Mei [17] define p = ux for the 1D RLW equation

ut + ux + 6u2ux − µuxxt = 0

with a homogeneous Dirichlet boundary condition. They use the weak formulation{∫
Ω(p− ux)φxdx = 0, ∀φ ∈ H1

0 (Ω)∫
Ω

(
ptψ − pψx − 6u2pψx + µpxtψx

)
dx = 0, ∀ψ ∈ H1(Ω)

which once again does not work with a moving mesh finite element method since it contains a

space-time mixed derivative.
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2.2 Conservation laws

Olver [40] shows that the RLW equation possesses three non-trivial independent conservation laws.

Each of such laws corresponds to an invariant quantity if the solution vanishes on the boundary

(i.e., g ≡ 0). The first two for (1) are

E1(t) =

∫
Ω
udxdy, E2(t) =

∫
Ω

(u2 + µu2
x + µu2

y)dxdy, (20)

which can readily be verified by multiplying (1) with 1 and u, respectively, integrating the resulting

equation over Ω, and performing integration by parts.

We first consider if these quantities are conserved by the finite element approximation on a

fixed mesh. For this case, Ẋ ≡ 0 and both A and M are independent of time. Summing the rows

of (16) and using (15) and uh =
∑Nvi

j=1 ujφj , we have

Nvi∑
i=1

∫
Ω

[
φi
∂uh
∂t

+∇φi · ∇
∂uh
∂t

+

(
α
∂uh
∂x

+ β
∂uh
∂y

+ γuh
∂uh
∂x

+ δuh
∂uh
∂y

)
φi

]
dxdy = 0.

This can be rewritten as

Nv∑
i=1

∫
Ω

[
φi
∂uh
∂t

+∇φi · ∇
∂uh
∂t

+

(
α
∂uh
∂x

+ β
∂uh
∂y

+ γuh
∂uh
∂x

+ δuh
∂uh
∂y

)
φi

]
dxdy

=

Nv∑
i=Nvi+1

∫
Ω

[
φi
∂uh
∂t

+∇φi · ∇
∂uh
∂t

+

(
α
∂uh
∂x

+ β
∂uh
∂y

+ γuh
∂uh
∂x

+ δuh
∂uh
∂y

)
φi

]
dxdy.

Noticing that
∑Nv

i=1 φi ≡ 1 and using the divergence theorem and the fact that uh|∂Ω = 0, we obtain

d

dt

∫
Ω
uhdxdy

=

Nv∑
i=Nvi+1

∫
Ω

[
φi
∂uh
∂t

+∇φi · ∇
∂uh
∂t

+

(
α
∂uh
∂x

+ β
∂uh
∂y

+ γuh
∂uh
∂x

+ δuh
∂uh
∂y

)
φi

]
dxdy. (21)

Thus, E1 is not conserved by (16) since the right-hand side does not vanish in general. An estimate

of the derivation can be obtained as follows. Noticing that E1(t) = E1(0) and using Schwarz’s

inequality, we have∣∣∣∣∫
Ω
uh(x, y, t)dxdy −

∫
Ω
uh(x, y, 0)dxdy

∣∣∣∣
≤
∫

Ω
|uh(x, y, t)− u(x, y, t)|dxdy +

∫
Ω
|uh(x, y, 0)− u(x, y, 0)|dxdy

≤
(
‖eh(·, t)‖L2(Ω) + ‖eh(·, 0)‖L2(Ω)

)
|Ω|

1
2 .

Assuming that the finite element error is second order in L2 norm, we have

∆E1(t) ≡
∫

Ω
uh(x, y, t)dxdy −

∫
Ω
uh(x, y, 0)dxdy = O(h2), (22)
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where h is the maximal diameter of the elements. It is interesting to point out that the numerical

examples in section 4 show that the difference decreases much faster than what shown in (22) as

N →∞. This may be attributed to the cancellation between terms on the right-hand side of (21)

and the fact that uh and its derivatives are getting smaller on the boundary elements which are

getting closer to the boundary as N increases.

Similarly, multiplying the i-th row of (16) with ui and summing all of the resulting rows we can

get

d

dt

∫
Ω

[
u2
h + µ

(
∂uh
∂x

)2

+ µ

(
∂uh
∂y

)2
]
dxdy = 0, (23)

which implies that E2 is conserved by (16). It is noted that this conservation holds only for the

semi-discrete scheme (16). It may not necessarily hold for the fully discrete scheme. Nevertheless,

(23) implies that the difference will be small when the time step is small.

We now consider the moving mesh situation. Generally speaking, Ẋ 6≡ 0 and both A and M

are time dependent for this case. In principle, we can perform a similar analysis as for the fixed

mesh case. Since the derivation is very tedious and the results are not that useful, we choose to

not give the analysis here. Instead, we simply state that the finite element method with a moving

mesh does not conserve either quantity. This will be verified by the numerical examples. Moreover,

assuming that the finite element error is second order in L2 norm and first order in semi-H1 norm,

we can show that the FE approximation on a moving mesh possesses the property (22) and

∆E2(t) ≡
∫

Ω

[
u2
h + µ

(
∂uh
∂x

)2

+ µ

(
∂uh
∂y

)2
]

(x, y, t)dxdy

−
∫

Ω

[
u2
h + µ

(
∂uh
∂x

)2

+ µ

(
∂uh
∂y

)2
]

(x, y, 0)dxdy = O(h). (24)

Moreover, the numerical examples show that both ∆E1(t) and ∆E2(t) decreases much faster than

what indicated in (22) and (24). Particularly, ∆E1(t) behaves similarly for both fixed and moving

meshes.

3 An MMPDE-based moving meshes strategy

In this section we describe the generation of T n+1
h based on T nh and un using an MMPDE-based

moving mesh strategy. The strategy uses a metric tensor (a symmetric and uniformly positive

definite matrix-valued function) to specify the information of the size shape, and orientation of the

elements throughout the domain. We take a Hessian-based metric tensor as

M = det(αhI + |H(unh)|)−
1
6 (αhI + |H(unh)|), (25)

where I is the identity matrix, det(·) denotes the determinant of a matrix, H(unh) is a recovered

Hessian from the finite element solution unh, |H(unh)| = Qdiag(|λ1|, |λ2|)QT with Qdiag(λ1, λ2)QT

being the eigen-decomposition of H(unh), and αh is a regularization parameter defined through the

9



equation ∑
K∈Th

|K|det(M)
1
2 ≡

∑
K∈Th

|K| det(αhI + |H(unh)|)
2
3 = 2

∑
K∈Th

|K|det(|H(unh)|)
2
3 .

It is noted that the above equation equation uniquely defines αh and can be solved using, for

instance, the bisection method. Moreover, the metric tensor (25) is optimal for the L2 norm of

linear interpolation error [30]. Furthermore, in our computation H(unh) at any vertex is recovered

by differentiating a quadratic polynomial that fits the values of unh at the neighboring vertices in

the least square sense (e.g., see [32]).

A key of the MMPDE-based moving mesh strategy is to view any nonuniform mesh as a uniform

one in the metric M. To explain this, we consider a physical mesh Th and a computational mesh Tc,
either of which can be viewed as a deformation of the other. Then, Th is said to be an M-uniform

mesh in the metric M (e.g., see [24, 29]) if it satisfies

|K|det(MK)
1
2 =
|Kc|σh
|Ωc|

, ∀K ∈ Th (26)

1

2
tr
(
(F ′K)−1M−1

K (F ′K)−T
)

= det
(
(F ′K)−1M−1

K (F ′K)−T
) 1

2 , ∀K ∈ Th (27)

where K is an element of Th, Kc is the element of Tc corresponding to K, |K| and |Kc| denote

the volumes of K and Kc, respectively, |Ωc| =
∑

Kc∈Tc |Kc|, σh =
∑

K∈Th |K| det(MK)
1
2 , F ′K is the

Jacobian matrix of the affine mapping FK : Kc → K, MK is the average of M over K, and tr(·)
denotes the trace of a matrix. The condition (26) is referred to as the equidistribution condition

which determines the size of elements through the metric tensor M. The bigger det(MK)
1
2 is, the

smaller the element K is. On the other hand, (27) is called the alignment condition, which requires

K, when measured in the metric MK , to be similar to Kc and in this way, determines the shape

and orientation of K though MK and Kc.

The meshing strategy we use is to generate a mesh satisfying (26) and (27) as closely as possible.

This is done by minimizing the energy

Ih(Th, Tc) =
1

3

∑
K

|K| det(MK)
1
2 (tr((F ′K)−1M−1

K (F ′K)−T ))2 +
4

3

∑
K

|K|det(MK)−
1
2 det(F ′K)−2,

(28)

which is a Riemann sum of a continuous functional developed in [23] based on equidistribution

and alignment for variational mesh generation and adaptation. Instead of minimizing Ih(Th, Tc)
directly, we define the mesh equation as a gradient system of Ih(Th, Tc) (the MMPDE approach).

For example, assume that we have chosen a quasi-uniform reference computational mesh T̂c. Then

Ih(Th, T̂c) is a function of Th or the coordinates of its vertices, xi, i = 1, ..., Nv. The mesh equation

is
dxi
dt

= −det(M(xi))
1
2

τ

(
∂Ih
∂xi

)T
, i = 1, ..., Nv (29)

where ∂Ih/∂xi is considered as a row vector and τ is a parameter used for adjusting the time scale

for the mesh movement to respond the changes in M. This x-formulation of the mesh equation,

10



under suitable modifications for the boundary vertices (to keep them on the boundary), can be

integrated from tn to tn+1 (starting with T nh ) to obtain the new mesh T n+1
h . Moreover, it is shown

in [26] that T n+1
h is nonsingular and its minimal volume and minimal height of the elements have

positive lower bounds that depend only on the number of elements, the initial mesh, and the metric

tensor.

A major disadvantage of the above x-formulation is that we need to consider the dependence

of M on x when computing the derivatives ∂Ih/∂xi. The metric tensor M needs to be updated

constantly (through interpolation) during the integration of (29) since M is typically available only

at the vertices of T nh . To avoid this difficulty, we use the so-called ξ-formulation where we take

Th = T nh and consider Ih(T nh , Tc) as a function of the coordinates of the computational vertices, ξi,

i = 1, ..., Nv. The mesh equation is defined as

dξi
dt

= −det(M(xi))
1
2

τ

(
∂Ih
∂ξi

)T
, i = 1, ..., Nv. (30)

This equation, under suitable modifications for the boundary vertices (to keep them on the bound-

ary), can be integrated from tn to tn+1 (starting with T̂c) to obtain the new mesh T n+1
c . Note that

T nh is kept fixed and there is no need to update M during the integration. Denote the correspon-

dence between T n+1
c and T nh by Φh, i.e., T nh = Φh(T n+1

c ). The new physical mesh is defined as

T n+1
h = Φh(T̂c), which can be computed using linear interpolation.

Numerical experiment has shown that both x- and ξ-formulations are effective in producing

adaptive meshes. However, the latter will lead to simpler formulas since there is no need to

consider the dependence on M when calculating ∂Ih/∂ξi. Using the notion of scalar-by-matrix

differentiation, we can find the analytical expressions for these derivatives; the interested reader is

referred to [25] for the detailed derivation. With those formulas, we can rewrite (30) into

dξi
dt

=
det(M(xi))

1
2

τ

∑
K∈ωi

|K|vKiK , (31)

where ωi is the element patch associated with the vertex xi, iK is the local index of xi in K and

the local velocities vKiK are given by[
(vK1 )T

(vK2 )T

]
= −E−1

K

∂G

∂J
− ∂G

∂ det(J)

det(EKc)

det(EK)
E−1
Kc
, vK0 = −vK1 − vK2 . (32)

Here, EK = [xK1 − xK0 ,xK2 − xK0 ] and EKc = [ξK1 − ξK0 , ξK2 − ξK0 ] are the edge matrices of K and

Kc, respectively, and the function G = G(J,det(J)) (with J = (F ′K)−1 = EKcE
−1
K ) is associated

with the energy (28). It and its derivatives are given by

G(J,det(J)) =
1

3
det(M)

1
2 (tr(JM−1

K )JT )2 +
4

3
det(MK)−

1
2 det(J)2,

∂G

∂J
=

4

3
det(M)

1
2 tr(JM−1

K JT )M−1
K JT ,

∂G

∂ det(J)
=

8

3
det(MK)−

1
2 det(J).

11



In actual computation, the edge matrices and local velocities are first computed for all elements.

Then the nodal mesh velocities are assembled according to (31).

4 Numerical results

In this section we present numerical results obtained with the moving mesh finite element method

described in the previous sections for a number of 1D and 2D examples for the RLW and MRLW

equations. We shall demonstrate the second order convergence of the method in space and its ability

to concentrate mesh points in needed regions. The error in the numerical solution is measured in

the (global) L2 and L∞ norm, i.e.,∫ T

0
‖eh(·, t)‖L2(Ω)dt,

∫ T

0
‖eh(·, t)‖L∞(Ω)dt.

The parameter τ for mesh movement is taken as τ = 10−4 for 1D examples and τ = 10−2 for 2D

examples.

Example 4.1. (1D RLW with a single soliton) We consider the 1D RLW equation

ut + ux + γuux − µuxxt = 0, (33)

with γ = 2, µ = 1, and Ω = (−100, 150). The Dirichlet boundary condition is chosen such that the

exact solution is a solitary wave

u(x, t) =
3c

2
sech2 (k(x− vt− x0)) ,

where k = 1
2

√
v

µ(v+1) , v = c + 1, x0 = 40, and c = 0.1. The soliton has an amplitude 3c
2 and a

propagation velocity v. A large spatial domain is chosen so that the solution is almost zero at the

boundary and the example can be used to check the conservation of E1 and E2. The computation

is performed with T = 20.

The error and convergence order are listed in Table 1 for both fixed and moving meshes. It

can be seen that while both types of mesh lead to the same second order of convergence, moving

meshes produce more accurate solutions (with the error being an order of magnitude smaller) than

fixed meshes. A typical numerical solution and the corresponding mesh trajectories are shown in

Fig. 2. It can be seen that the mesh points are concentrated in the peak area of the soliton for the

whole time, demonstrating the mesh adaptation ability of the method.

In Fig. 3(a), the difference of the conserved quantities is plotted as a function of t for N = 200.

Notice that ∆E1(t) for fixed and moving meshes (blue solid and dashed lines) and ∆E2(t) for the

fixed mesh are indistinguishable. (In fact, they are almost at the level of roundoff error.) The

difference of the conserved quantities is plotted as a function of N in Fig. 3(b). We can see that

∆E1(T ) for both fixed and moving meshes and ∆E2(T ) for moving meshes are quite significant for

relatively small N . However, ∆E1(T ) decreases quickly to the level of roundoff error as N increases

for both fixed and moving meshes. On the other hand, with fixed meshes ∆E2(T ) remains very

small for the considered range of N , consistent with the fact that E2 is conserved on a fixed mesh by

12



the semi-discrete system of the method. With moving meshes, ∆E2(T ) is much bigger, reflecting

the fact that E2 is not conserved by the method on moving meshes. Nevertheless, it decreases

at a rate O(N−1.6), much faster than the first order predicted in (24). Thus far we have seen

that this example the fixed mesh method has better conservation properties than the moving mesh

method but gives less accurate solutions. It could be interesting to explore what advantages the

conservation of the quantities gives to the scheme for the RLW equation.

Table 1: Example 4.1. L2 and L∞ error and convergence order on moving and fixed meshes.

Moving Mesh Fixed Mesh

N L2 error order L∞ error order L2 error order L∞ error order

20 2.62E-1 1.09E-1 4.86E-0 1.28E-0

40 5.44E-2 2.27 2.04E-2 2.42 1.57E-0 1.63 5.94E-1 1.11

80 1.29E-2 2.08 4.51E-3 2.17 3.34E-1 2.17 1.82E-1 1.71

160 3.15E-3 2.03 1.08E-3 2.07 7.86E-2 2.14 4.75E-2 1.94

320 7.84E-4 2.01 2.66E-4 2.02 1.91E-2 2.04 1.93E-2 1.99

640 1.96E-4 2.00 6.23E-5 2.00 4.76E-3 2.01 2.98E-3 2.00

(a): Computed solution
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(b): Mesh trajectories
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Figure 2: Example 4.1. The numerical solution and mesh trajectories are obtained with the moving

mesh finite element method (N = 200) for the 1D RLW equation with a single soliton.

Example 4.2. (1D RLW with interaction of two solitary waves) In this example, we study the

interaction of two solitary waves for the 1D RLW equation (33) with a homogeneous Dirichlet

boundary condition and the initial condition

u(x, 0) =
2∑
j=1

3cjsech2 (kj(x− xj)) ,
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Solid: Moving mesh, Dashed: Fixed mesh
E1(t)-E1(0)(blue), E2(t)-E2(0)(red)

(b)

N: numbers of elements
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Figure 3: Example 4.1. The solid and dashed blue curves are for E1(T )− E1(0) with moving and

fixed meshes, respectively, while the solid and dashed red curves for E2(T ) − E2(0) with moving

and fixed meshes, respectively. (a) The difference of the conserved quantities for a mesh of N = 200

is plotted as a function of time. The solid blue, dashed blue, and dashed red curves are almost

indistinguishable for this relativelys fine mesh. (b) E1(T ) − E1(0) and E2(T ) − E2(0) are plotted

as functions of N .

where γ = µ = 1, kj = 1
2

√
γvj

µ(γvj+1) , vj = 1 + γcj , x1 = −177, x2 = −147, c1 = 0.2, and c2 = 0.1.

Initially, the solitons have the amplitude 3cj and location xj (j = 1, 2) and the larger soliton is

placed on the left of the smaller one. An interaction occurs as the larger one is catching up with

and eventually passes the smaller one. The simulation is performed on a domain Ω = (−400, 500)

until t = 400. The exact analytical solution is unavailable for this example.

A numerical solution at t = 0, 100, 200, 300, 400 and the mesh trajectories are shown in Fig. 4.

The interaction of the two solitons can be clearly seen from the figure. Moreover, the width of

the mesh concentration also changes with time, becoming narrower during the interaction. For

comparison purpose, the solutions obtained with fixed meshes of N = 800 and 8000 are plotted in

Fig. 5. Oscillations are visible along the x-axis in the solution with the fixed mesh of N = 800.

The differences, ∆E1(T ) and ∆E2(T ), are plotted as functions of N in Fig. 6. Once again, ∆E1(T )

for fixed and moving meshes and ∆E2(T ) for moving meshes are significant for small N . ∆E1(T )

drops quickly as N increases for both fixed and moving meshes. On the other hand, ∆E2(T ) stays

very small for fixed meshes. It is relatively large for moving meshes although it decreases at a rate

of about O(N−1.6), which is faster than what indicated by (24).

Example 4.3. (1D RLW with undular bore) We consider the development of an undular bore

(e.g., see [38]) for the 1D RLW equation (33) with the initial condition

u(x, 0) =
u0

2

(
1− tanh

(
x− x0

d

))
,

where γ = 1.5, µ = 1/6, u0 = 0.1, x0 = 0, and d = 2 or 5. The boundary condition is u = u0 at

x = −60 (upstream) and u = 0 at x = 300 (downstream). In this example, u can be thought as

the water depth above the equilibrium level and d as the slope between the still water and deeper

water. The computation is done until t = 250. Due to the continuous injection at the left boundary
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(a) Computed solution

x
-400 -300 -200 -100 0 100 200 300 400 500

u

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
t = 0
t = 100
t = 200
t = 300
t = 400

(b): Mesh trajectories
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Figure 4: Example 4.2. A numerical solution at t = 0, 100, 200, 300, 400 and the mesh trajectories

are obtained with the moving mesh finite element method with N = 800. As the value of N is

large, we only plot mesh trajectories every 4 nodes.

and the finite propagation velocity, the undular bore forms and then is expanding its range as time

evolves.

Numerical solutions at t = 250 and mesh trajectories with N = 200 are shown in Fig. 7 for

fixed and moving meshes. A solution obtained with the fixed mesh of N = 6000 is used as the

reference solution. It can be seen that the solution obtained with a moving mesh is more accurate

than that with a fixed mesh of the same number of elements and the mesh concentration reflects

correctly the development of the undular bore. The quantities E1 and E2 are plotted in Fig. 8.

As the water coming from the left boundary at a constant rate, these quantities grow linearly with

time. Nevertheless, E1 remains very small, almost indistinguishable from the x-axis. (Recall that

the error in preserving E1 on a moving mesh is at the level of roundoff error for a sufficiently fine

mesh.) Finally, numerical results show that the undular bore is very stable.

Example 4.4. (1D modified RLW with the Maxwellian initial condition) In this test, we consider

the 1D modified RLW (MRLW) equation

ut + ux + γu2ux − µuxxt = 0

subject to a homogeneous Dirichlet boundary condition and the Maxwellian initial condition [17]

u(x, 0) = e−(x−40)2 .

We take γ = 6 and µ = 1 or µ = 0.5. For the time being, the Maxwellian initial condition develops

into a train of solitary waves, with the wave number and amplitude depending on the value of µ.

The smaller µ is, the more solitary waves will form.
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(a) Computed solution with N = 800
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(b) Computed solution with N = 8000
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Figure 5: Example 4.2. Numerical solutions at t = 0, 100, 200, 300, 400 are obtained with fixed

meshes of N = 800 and 8000.

The computation is performed with T = 10 and Ω = (0, 100). Numerical results obtained with

fixed and moving meshes are shown in Fig. 9. It can be seen that the solution with a moving mesh

is more accurate than that with a fixed mesh and, indeed, the former is almost indistinguishable

from the reference solution which is obtained with a fixed mesh of N = 6000. Numerical experiment

also shows that the train of the solitons are stable.

Example 4.5. (2D RLW with two solitary waves) In this test we consider the 2D RLW equation

(1) with α = β = γ = δ = µ = 1. The Dirichlet and initial conditions are chosen such that the

exact solution is given by

u(x, y, t) =
2∑
j=1

3cjsech2 (kj(x+ y − vjt− xj − yj)) ,

where kj = 1
2

√
cj

2(1+cj) , vj = 2(1 + cj), c1 = 0.2, c2 = 0.4, v1 = 2.4, v2 = 2.8, x1 = y1 = 35, and

x2 = y2 = 55. Notice that 3cj is the maximum amplitude and vj is the circular frequency. The

computation is performed on Ω = (0, 120)× (0, 120) with T = 15.

Numerical results are shown in Table 2 and Fig. 10. They indicate that the finite element

method is second order for both fixed and moving meshes. Moreover, a moving mesh leads to more

accurate solutions, with roughly an order of magnitude smaller error, than a fixed mesh of the same

number of elements.

Example 4.6. (2D RLW with undular bore) This example is a two-dimensional generalization

of Example 4.3 (the 1D undular bore). The equation (1) is subject to a homogeneous Dirichlet

boundary condition and the initial condition

u(x, y, 0) =
u0

2

(
1− tanh

(
(x− x0)2 + (y − y0)2 − d2

))
,
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N: numbers of elements
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Solid: Moving mesh, Dashed: Fixed mesh
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Figure 6: Example 4.2. The solid and dashed blue curves are for E1(T )− E1(0) with moving and

fixed meshes, respectively, while the solid and dashed red curves for E2(T ) − E2(0) with moving

and fixed meshes, respectively.

E1(T )− E1(0) and E2(T )− E2(0) are plotted as functions of N .

Table 2: Example 4.5. L2 and L∞ error and convergence order for the 2D RLW equation.

Moving Mesh Fixed Mesh

N L2 error order L∞ error order L2 error order L∞ error order

100 3.59E-1 1.73E1 3.84E-1 1.77E1

400 1.02E-1 1.82 4.87E-0 1.82 2.77E-1 0.47 1.19E1 0.56

1600 1.45E-2 2.81 1.02E-0 2.25 1.32E-1 1.07 6.72E-0 0.83

6400 2.82E-3 2.36 1.97E-1 2.38 3.45E-2 1.93 2.20E-0 1.61

25600 6.24E-4 2.18 4.18E-2 2.24 8.34E-3 2.05 6.11E-1 1.85

where α = β = 1, γ = δ = 1.5, µ = 1/6, u0 = 0.1, x0 = y0 = 0, and d = 2. The computation is

performed on Ω = (−60, 300)× (−60, 300) with T = 250.

Fig. 11 shows the development and expansion of the 2D undular bore which propagates in a

northeast direction. Compared to the 1D situation, the propagation is slightly slower and the

amplitude is smaller. The mesh concentration correctly reflects the development of the undular

bore.

Example 4.7. (2D RLW with the Maxwellian initial condition) In this final example, we consider

the initial Maxwellian initial condition

u(x, y, 0) = e−((x−40)2+(y−40)2)

for the 2D MRLW equation

ut + ux + uy + γu2ux + δu2uy − µuxxt − µuyyt = 0,
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(a) d = 2 (fixed mesh)
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(b) d = 2 (moving mesh)

x
-50 0 50 100 150 200 250 300

u

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Moving mesh
 Reference

(c) d = 2

x
-50 0 50 100 150 200 250 300

t

0

50

100

150

200

250

(d) d = 5 (fixed mesh)
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(e) d = 5 (moving mesh)
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Figure 7: Example 4.3. The numerical solutions at t = 250 obtained with fixed and moving meshes

for the 1D RLW equation with undular bore (N = 200). The reference solution is obtained with a

fixed mesh of N = 6000.

where γ = δ = 6, and µ = 0.5 or µ = 1. A homogeneous Dirichlet boundary condition is used. The

computation is performed on Ω = (0, 100)× (0, 100) with T = 10.

The numerical results are shown in Fig. 12 for µ = 1 and Fig. 13 for µ = 0.5. It can be seen

that the train of solitary waves is developed mainly along the northeast direction. Moreover, it is

obvious that the mesh elements are concentrated in the peak region of the solitary waves.

5 Conclusions and further comments

In the previous sections we have studied an adaptive moving mesh finite element method for the

numerical solution of the RLW equation. The RLW equation represents a class of PDEs containing

spatial-time mixed derivatives. For the numerical solution of those PDEs, a C0 finite element

method cannot be applied on a moving mesh since the mixed derivatives of the finite element

approximation may not be defined. To avoid this difficulty, a new variable (2) was introduced

and the RLW equation was rewritten into a system of two coupled PDEs. The system was then

discretized in space using linear finite elements on a moving mesh which is generated with a new

implementation of the moving mesh PDE method. The ODE system was integrated in time using
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Figure 8: Example 4.3. The quantities E1 and E2 are plotted as functions of time. E1 is almost

zero and its graph is indistinguishable from the x-axis.

the fifth-order Radau IIA scheme.

A range of numerical examples in one and two dimensions were presented. They include the

RLW equation with one or two solitary waves and special initial conditions that lead to the undular

bore and solitary train solutions. Numerical results have demonstrated that the moving mesh finite

element method has a second order convergence as the mesh is being refined and is able to move

and adapt the mesh to the evolving features in the solution of the RLW equation. Moreover, the

method produces an error an order of magnitude smaller than that with a fixed mesh of the same

number of elements.

It should be mentioned that the finite element approximation with both fixed and moving meshes

does not preserve E1 (the mass) but the error quickly decreases to the level of roundoff error as the

mesh is refined. On the other hand, the moving mesh finite element method does a worse job to

conserve E2 (the energy) than the fixed mesh finite element method although the former is more

accurate. It would be interesting to know what advantages the conservation of this quantity may

give the scheme for the RLW equation. A major difficulty for the moving mesh method to conserve

E2 comes from the mesh movement, which makes the mass matrix time dependent and introduces

an extra convection term (see (13)). How to design a moving mesh method that conserves this

quantity will also be an interesting research topic.
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moving meshes of N = 200 for the 1D modified RLW equation with the Maxwellian initial condition.
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[11] İ. Daǧ, B. Saka, and D. Irk. Application of cubic B-splines for numerical solution of the RLW

equation. Appl. Math. Comput., 159:373–389, 2004.

[12] M. Dehghan and R. Salehi. The solitary wave solution of the two-dimensional regularized

long-wave equation in fluids and plasmas. Comput. Phys. Comm., 182:2540–2549, 2011.

[13] A. Dogan. Numerical solution of RLW equation using linear finite elements within Galerkin’s

method. Appl. Math. Modeling, 26:771–783, 2002.

[14] J. C. Eilbeck and G. R. McGuire. Numerical study of the regularized long-wave equation I:

Nnumerical methods. J. Comput. Phys., 19:43–57, 1975.

[15] J. C. Eilbeck and G. R. McGuire. Numerical study of the regularized long-wave equation II:

Iinteraction of solitary waves. J. Comput. Phys., 23:63–73, 1975.

21



[16] F. Gao, J. Qiu, and Q. Zhang. Local discontinuous Galerkin finite element method and error

estimates for one class of Sobolev equation. J. Sci. Comput., 41:436–460, 2009.

[17] Y. Gao and L. Mei. Mixed Galerkin finite element methods for modified regularized long wave

equation. Appl. Math. Comp., 258:267–281, 2015.

[18] J. A. Goldstein and B. J. Wichnoski. On the Benjamin-Bona-Mahony equation in higher

dimensions. Nonlinear Anal., 4:665–675, 1980.
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Figure 11: Example 4.6. Development of the 2D undular bore obtained with a moving mesh of

N = 14400. The left column is for the numerical solution, the middle column is for the contours of

the numerical solution, and the right column is for the mesh.
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Figure 12: Example 4.7. The numerical solution, its contours, and the mesh are shown at various

time instants for the 2D Maxwellian initial condition case with µ = 1. A moving mesh of N = 14400

is used.
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Figure 13: Example 4.7. The numerical solution, its contours, and the mesh are shown at various

time instants for the 2D Maxwellian initial condition case with µ = 0.5. A moving mesh of

N = 14400 is used.
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