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Abstract. We develop and analyze a new hybridizable discontinuous Galerkin

(HDG) method for solving third-order Korteweg-de Vries type equations. The
approximate solutions are defined by a discrete version of a characterization of

the exact solution in terms of the solutions to local problems on each element

which are patched together through transmission conditions on element inter-
faces. We prove that the semi-discrete scheme is stable with proper choices of

stabilization function in the numerical traces. For the linearized equation, we

carry out error analysis and show that the approximations to the exact solution
and its derivatives have optimal convergence rates. In numerical experiments,

we use an implicit scheme for time discretization and the Newton-Raphson

method for solving systems of nonlinear equations, and observe optimal con-
vergence rates for both the linear and the nonlinear third-order equations.

1. Introduction

In this paper, we develop and analyze a new hybridizable discontinuous Galerkin
(HDG) method for the following initial-boundary value problem of the Korteweg-de
Vries (KdV) type equation on a finite domain

ut + uxxx + F (u)x = f for x ∈ Ω := (a, b), t ∈ (0, T ],

u = u0 in Ω for t = 0,

u = uD on ∂Ω := {a, b},
ux = qN on ∂ΩN := {b}.

(1.1)

Here f ∈ L2(Ω) and F (u) = βum, where β is a constant and m ≥ 0 an integer.
The well-posedness of the problem (1.1) and properties of the solution have been
theoretically and numerically studied; see [4, 18, 3, 5, 17, 30] and references therein.

KdV type equations play an important role in applications, such as fluid me-
chanics [26, 7, 25], nonlinear optics [1, 19], acoustics [28, 33], plasma physics
[6, 37, 32, 29], and Bose-Einstein condensates [31, 21] among other fields. They
also have an enormous impact on the development of nonlinear mathematical sci-
ence and theoretical physics. Many modern areas were opened up as a consequence
of the basic research on KdV equations. Due to their importance in applications
and theoretical studies, there has been a lot of interest in developing accurate and
efficient numerical methods for KdV equations. In particular, an ongoing effort on
developing discontinuous Galerkin (DG) methods for KdV type equations has been
made in the last decade. The first DG method, the local discontinuous Galerkin
(LDG) method, for the KdV equation was introduced in 2002 by Yan and Shu in
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2 B. DONG

[36] and further studied for the linear case in [23, 34, 35, 20]. In [10], a DG method
for the KdV equation was devised by using repeated integration by parts. Recently,
several conservative DG methods [2, 9, 22] were developed for KdV type equations
to preserve quantities such as the mass and the L2-norm of the solutions. When
solving KdV equations, one can use these DG methods for spatial discretization
together with explicit schemes for time-marching if the coefficient before the third-
order derivative is very small. However, when such coefficient is of order one, for
example, implicit time-marching methods might be the methods of choice.

Traditional DG methods, despite their prominent features such as hp-adaptivity
and local conservativity, were criticized for having larger number of degrees of
freedom than continuous finite element methods when solving steady-state problems
or problems that require implicit-in-time solvers. Here, we develop an HDG method
which is very suitable for solving KdV equations when implicit time-marching is
used. HDG methods [13, 11, 15, 14] were first introduced for diffusion problems
and they provide optimal approximations to both the potential and the flux. Due
to the feature that the global coupled degrees of freedom only live on element
interfaces, they are significantly advantageous for solving steady-state problems or
time-dependent problems that require implicit time-marching. In [8], we introduced
the first family of HDG methods for stationary third-order linear equations, which
allow the approximations to the exact solution u and its derivatives ux and uxx
to have different polynomial degrees. We proved superconvergence properties of
these methods on projection of errors and numerical traces, and numerical results
indicate that the HDG method using the same polynomial degree k for all three
variables is quite robust with respect to the choice of the stabilization function
and provides a converging postprocessed solution with order 2k + 1 with the least
amount of degrees of freedom. This suggests that the HDG method using the
same polynomial degrees for all variables is the method of choice for solving one-
dimensional third-order problems. Therefore, in this paper we extend this HDG
method to time-dependent third-order KdV type equations.

To construct the HDG method for KdV equations, we follow the approach used
in [8] for stationary third-order equations. That is, given any mesh of the domain,
we show that the exact solution can be obtained by solving the equation on each
element with provided boundary data that are determined by transmission condi-
tions. Then we define HDG methods by a discrete version of this characterization,
which ensures that the only globally-coupled degrees of freedom are those associ-
ated to the numerical traces on element interfaces. In [8], it was shown that HDG
methods derived by providing boundary data to local problems in different ways
are indeed equivalent to each other when the stabilization function is finite and
nonzero. So here we just need to consider the one that takes the numerical trace
of u at both ends of the interval and the numerical trace of uxx at the right end
as boundary data for the local problems. Our method is different from the HDG
method in [27], which was designed from implementation point of view. That HDG
method involves two sets of numerical traces for ux, and there is no error analysis
for the method.

Our way of devising HDG methods from the characterization of the exact solu-
tion allows us to carry out stability and error analysis. We first apply an energy
argument to find conditions on the stabilization function in the numerical traces,
under which the HDG method has a unique solution for KdV type equations. Then
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by deriving four energy identities and combining them together, we prove that the
method has optimal approximations to u as well as its derivatives ux and uxx for lin-
ear equations; this technique is similar to that in [35]. In implementation, implicit
time-marching schemes such as BDF or DIRK methods can be used, and at each
time step a stationary third-order equation is solved by the HDG method together
with the Newton-Raphson method (see Appendix A). Due to the one-dimensional
setting of the KdV equations, the global matrix of the HDG method that needs to
be numerically inverted at each time step is independent of the polynomial degree
of the approximations, its size is only 2N + 1, where N is the number of intervals
of the mesh, and its condition number is of the order of h−2, where h denotes the
size of the intervals of the mesh.

The paper is organized as follows. In Section 2, we define the HDG method
for third-order KdV type equations and state and discuss our main results. The
details of all the proofs are given in Section 3. We show numerical results in Section
4 and some concluding remarks in Section 5. The details on implementation of the
method are in Appendix A.

2. Main Results

In this section, we state and discuss our main results. We begin by describing the
characterizations of the exact solution that the HDG method is a discrete version
of. We then introduce our HDG method for KdV type equations, and state our
stability result and optimal a priori error estimate.

2.1. Characterizations of the exact solution. To display the characterizations
of the exact solution we are going to work with, let us first rewrite our third-order
model equation as the following first-order system:

q − ux = 0, p− qx = 0, ut + px + F (u)x = f for x ∈ Ω, t ∈ (0, T ],(2.1a)

with the initial and boundary conditions

u = u0 in Ω for t = 0,(2.1b)

u = uD on ∂Ω,(2.1c)

q = qN on ∂ΩN .(2.1d)

We partition the domain Ω as

Th = {Ii := (xi−1, xi) : a = x0 < x1 < · · · < xN−1 < xN = b},

and introduce the set of the boundaries of its elements, ∂Th := {∂Ii : i = 1, . . . , N}.
We also set Eh := {xi}Ni=0, hi = xi − xi−1 and h := maxN

i=1 hi.
We know that, when f is smooth enough, if we provide the values {ûi}Ni=0 and

{p̂i}Ni=1 and, for each i = 1, . . . , N , solve the local problem

Q− Ux = 0, P −Qx = 0, Ut + Px + F (U)x = f in Ii,

U = u0 for t = 0, U(x+
i−1) = ûi−1, U(x−i ) = ûi, P (x−i ) = p̂i,

then (P,Q,U) coincides with the solution (p, q, u) of (2.1) if and only if the trans-
mission conditions

Q(x−i ) = Q(x+
i ), P (x−i ) = P (x+

i ), i = 1, . . . , N − 1
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and the boundary conditions

U = uD on ∂Ω, Q = qN on ∂ΩN

are satisfied. There are other possible characterizations of the exact solution cor-
responding to different choices of boundary data for the local problem; see [8].
Note that for these characterizations, the boundary data of the local problems are
the unknowns of a global problem obtained from the transmission conditions and
boundary conditions, and the system of equations for the global unknowns is square.

2.2. HDG method. To define our HDG method, we first introduce the finite
element spaces to be used. We let the approximations (uh, qh, ph, ûh, q̂h, p̂h) to
(u|Ω, q|Ω, p|Ω, u|Eh

, q|Eh
, p|Eh

) be in the space W k
h ×W k

h ×W k
h ×L2(Eh)×L2(∂Th)×

L2(∂Th) where

W k
h = {w ∈ L2(Th) : w|Ii ∈ Pk(Ii) ∀ i = 1, · · · , N}.

Here Pk(Ii) is the space of polynomials of degree at most k on the domain Ii.
For any function ζ lying in L2(∂Th), we denote its values on ∂Ii := {x+

i−1, x
−
i }

by ζ(x+
i−1) (or simply ζ+

i−1) and ζ(x−i ) (or simply ζ−i ). Note that ζ(x+
i ) is not

necessarily equal to ζ(x−i ). In contrast, for any η in the space L2(Eh), its value
at xi, η(xi) (or simply ηi) is uniquely defined; in this case, η(x−i ) or η(x+

i ) mean
nothing but η(xi).

To obtain the HDG formulation, we use a discrete version of the characterization
of the exact solution. Assuming that the values {ûhi}Ni=0 and {p̂ −hi }Ni=1 are given, for
each i = 1, . . . , N , we solve a local problem on the element Ii by using a Galerkin
method. To describe it, let us introduce the following notation. By (ϕ, v)Ii , we
denote the integral of ϕ times v on the interval Ii, and by 〈ϕ, vn〉∂Ii we simply
mean the expression ϕ(x−i )v(x−i )n(x−i ) + ϕ(x+

i−1)v(x+
i−1)n(x+

i−1). Here n denotes

the outward unit normal to Ii: n(x+
i−1) := −1 and n(x−i ) := 1.

On the element Ii = (xi−1, xi), we give f and the boundary data ûh i−1, ûh i and
p̂ −h i and take the HDG approximate solutions (ph, qh, uh) ∈ Pk(Ii)×Pk(Ii)×Pk(Ii)
to be the solution of the equations

(qh, v)Ii + (uh, vx)Ii − 〈ûh, vn〉∂Ii = 0,

(ph, z)Ii + (qh, zx)Ii − 〈q̂h, zn〉∂Ii = 0,

(uht, w)Ii − (ph + F (uh), wx)Ii + 〈p̂h + F̂h, wn〉∂Ii = (f, w)Ii ,

for all (v, z, w) ∈ Pk(Ii)×Pk(Ii)×Pk(Ii), where the remaining undefined numerical
traces are given by

p̂h = ph + τpu (ûh i−1 − uh)n at x+
i−1,

q̂h = qh + τqu (ûh i−1 − uh)n at x+
i−1,

q̂h = qh + τqu (ûh i − uh)n+ τqp (p̂ −h i − ph)n at x−i ,

F̂h = F (ûh)− τF (ûh, uh)(ûh − uh)n at x+
i−1 and x−i .

The functions τqu, τpu, τqp, and τF (ûh, uh) are defined on ∂Th and are called the
components of the stabilization function; they have to be properly chosen to ensure
that the above problem has a unique solution. In particular, due to the nonlinearity
of F , the function τF (·, ·) : ∂Th → R can be nonlinear in terms of ûh and uh. In
the case of F = 0, we simply take τF = 0.
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It remains to impose the transmission conditions

[[q̂h]](xi) = 0 and [[p̂h + F̂h]](xi) = 0 for all i = 1, . . . , N − 1,

and the boundary conditions

ûh = uD on ∂Ω and q̂h = qN on ∂ΩN .

Here, [[ζ]](xi) := ζ(x−i )− ζ(x+
i ). This completes the definition of the HDG methods

using the characterization of the exact solution. Note that this way of defining the
HDG methods immediately provides a way to implement them.

On the other hand, the above presentation of the HDG methods is not very well
suited for their analysis. Thus, we now rewrite it in a more compact form using
the notation

(ϕ, v) :=
N∑
i=1

(φ, v)Ii , 〈ϕ, vn〉 :=

N∑
i=1

〈ϕ, vn〉∂Ii .

Let

Mh(g) := {ζ ∈ L2(Eh) : ζ|∂Ω = g}, M̃h := L2(Eh \ {a}).

The approximation provided by the HDG method, (uh, qh, ph, ûh, p̂
−
h ), is the ele-

ment of W k
h ×W k

h ×W k
h ×Mh(uD)× M̃h which solves the equations

(qh, v) + (uh, vx)− 〈ûh, vn〉 = 0,(2.2a)

(ph, z) + (qh, zx)− 〈q̂h, zn〉 = 0,(2.2b)

(uht, w)− (ph + F (uh), wx) + 〈p̂h + F̂h, wn〉 = (f, w),(2.2c)

and

〈q̂h, µn〉 = 〈qN , µn〉∂ΩN
, 〈p̂h + F̂h, χn〉 =0(2.2d)

for all (v, z, w, µ, χ) ∈ W k
h ×W k

h ×W k
h × M̃h ×Mh(0), where, on ∂Th, we have

(2.2e)


p̂+
h = p+

h + τ+
pu (ûh − u+

h )n+,

q̂+
h = q+

h + τ+
qu (ûh − u+

h )n+,

q̂−h = q−h + τ−qu (ûh − u−h )n− + τ−qp (p̂−h − p
−
h )n−,

F̂h = F (ûh)− τF (ûh, uh) (ûh − uh)n.

It is not difficult to define HDG methods that are associated to other character-
izations of the exact solution, but these methods are actually the same, provided
that the corresponding stabilization function allows for the transition from one
characterization to the other; see [16, 8]. In fact, the choice of characterization to
use is more relevant for the actual implementation of the HDG method rather than
for its actual definition. The implementation of the HDG method (2.2) is discussed
in the Appendix.

When above scheme is discretized in time, we can choose the initial approxi-
mation (u0

h, q
0
h, p

0
h, û

0
h, p̂

0
h) to be the HDG approximate solutions of the stationary

equation v+vxxx+F (v)x = g, where g = u0 +(u0)xxx+F (u0)x and u0 is the initial
data of the time-dependent problem (1.1); see [8] for HDG methods on stationary
third-order equations. The initial approximation (u0

h, q
0
h, p

0
h, û

0
h, p̂

0
h), is the element
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of W k
h ×W k

h ×W k
h ×Mh(uD)× M̃h which solves the equations

(q0
h, v) + (u0

h, vx)− 〈û0
h, vn〉 = 0,

(p0
h, z) + (q0

h, zx)− 〈q̂0
h, zn〉 = 0,

(u0
h, w)− (p0

h + F (u0
h), wx) + 〈p̂0

h + F̂ 0
h , wn〉 = (g, w),

〈q̂0
h, µn〉 = 〈qN , µn〉∂ΩN

, 〈p̂0
h + F̂ 0

h , χn〉 = 0

for all (v, z, w, µ, χ) ∈ W k
h ×W k

h ×W k
h × M̃h ×Mh(0), where q̂0

h, p̂
0
h, and F̂ 0

h are

defined in the same ways as q̂h, p̂h, and F̂h in (2.2e). Note that the equations above
are almost the same as those in (2.2) except the third one. This way of choos-
ing initial data for time-dependent problems by solving corresponding stationary
problems has been used in [12, 9].

Next, we present our stability result and a priori error estimate of the HDG
method under some conditions on the stabilization function.

2.3. Stability. To discuss the L2-stability of the HDG method, we let

τ̃(uh, ûh) :=
1

(uh − ûh)2

∫ uh

ûh

(F (s)− F (ûh))nds.

We have the following stability result.

Theorem 2.1. Assume that uD = qN = 0. If the stabilization function satisfies

(τ+
F − τ̃

+)− τ+
pu −

1

2
(τ+

qu)2 ≥ 0, and

(τ−F − τ̃
−) +

1

2
(τ−qu)2 ≥ 0, (τ−F − τ̃

−)(τ−qp)2 + τ−quτ
−
qp −

1

2
≥ 0,

(2.3)

then for the HDG method (2.2), we have

d

dt
‖uh‖2 ≤ 2(f, uh).

Note that if the nonlinear term F = 0, then we have τF = τ̃ = 0 and the
condition (2.3) in the Theorem above can be simplified as

−τ+
pu −

1

2
(τ+

qu)
2 ≥ 0 and τ−quτ

−
qp −

1

2
≥ 0.(2.4)

If F (u) 6= 0, we just need to have τF ≥ τ̃ and take τ±qu, τ
+
pu and τ−qp to satisfy (2.4).

Since

τ̃ =
1

(uh − ûh)2

∫ uh

ûh

F ′(ξ)(s− ûh)nds ≤ 1

2
sup

s∈J(uh,ûh)

|F ′(s)|,

where J(uh, ûh) = [min{uh, ûh},max{uh, ûh}], the stabilization function τF satis-
fies the condition τF ≥ τ̃ if

τF ≥
1

2
sup

s∈J(uh,ûh)

|F ′(s)|.

For other choices of τF which satisfies the condition τF ≥ τ̃ , see [24].
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2.4. A priori error estimate for linear equations. Now we consider the con-
vergence properties of our HDG method for linear equations in which F = 0. We
proceed as follows. We first define an auxiliary projection and state its optimal
approximation property. Then, we provide an estimate for the L2-norm of the
projections of the errors in the primary and auxiliary variables.

Let us introduce a key auxiliary projection that is tailored to the numerical
traces. The projection of the function (u, q, p) ∈ H1(Th) × H1(Th) × H1(Th),
Π(u, q, p) := (Πu,Πq,Πp), is defined as follows. On an element Ii = (xi−1, xi),
the projection is the element of Pk(Ii)× Pk(Ii)× Pk(Ii) which solves the following
equations:

(δu, v)Ii = 0 ∀ v ∈ Pk−1(Ii),(2.5a)

(δq, z)Ii = 0 ∀ z ∈ Pk−1(Ii),(2.5b)

(δp, w)Ii = 0 ∀ w ∈ Pk−1(Ii),(2.5c)

δp − τ+
pu δu n = 0 on x+

i−1,(2.5d)

δq − τ+
qu δu n = 0 on x+

i−1,(2.5e)

δq − τ−qu δu n− τ−qp δp n = 0 on x−i ,(2.5f)

where we use the notation δω := ω − Πω for ω = u, q, and p. Note that the last
three equations have exactly the same structure as the numerical traces of the HDG
method in (2.2e).

The following result for the optimal approximation properties of the projection
Π was shown in [8]. To state it, we use the following notation. The Hs(D)-norm
is denoted by ‖ · ‖s,D. We drop the first subindex if s = 0, and the second one if
D = Ω or D = Th.

Lemma 2.2. Suppose that

(2.6) τ+
qu + τ−qu − τ+

puτ
−
qp 6= 0.

Then the projection Π in (2.5) is well defined on any interval Ii. In addition, if
τ+
qu, τ

−
qu, τ

+
pu and τ−qp are constants, we have that, for ω = u, q and p, there is a

constant C such that

‖ω −Πω‖Ii ≤ C hs+1 for s ∈ [1, k],

provided ω ∈ Hs+1(Ii).

Next, we provide estimates for the L2-norm of the projection of the errors

εu := Πu− uh, εq := Πq − qh, εp := Πp− ph,

and deduce from them the estimates for the L2-norm of the errors

eu := u− uh, eq := q − qh, ep := p− ph.

Theorem 2.3. Suppose that F (u) = 0 in the problem (2.1) and the exact solution
(u, q, p) ∈W 2,∞((0, T ];Hk+1(Th))×W 1,∞((0, T ];Hk+1(Th))×W 1,∞((0, T ];Hk+1(Th)).
If the stabilization function of the HDG method (2.2) satisfies the condition

τ−qu > 0, τ−quτ
−
qp = 1, and

τ+
qu ∈ [0, 1], τ+

pu ∈ [−1−
√

1− τ+
qu

2
,−1

2
− 1

2
τ+
qu

2
],

(2.7)
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then for k > 0 and h small enough, we have

‖εu(t)‖+ ‖εq(t)‖+ ‖εp(t)‖+ ‖εut(t)‖ ≤ Chk+1 for 0 ≤ t ≤ T,
where C is independent of h.

It is easy to see that if the stabilization function satisfies the condition (2.7),
then it also satisfies the conditions (2.4) and (2.6). Using Lemma 2.2, Theorem 2.3
and the triangle inequality, we immediately get the following L2 error estimate for
the actual errors.

Theorem 2.4. Suppose that the hypotheses of Theorem 2.3 are satisfied. Then we
have

‖eu(t)‖+ ‖eq(t)‖+ ‖ep(t)‖+ ‖eut
(t)‖ ≤ Chk+1 for 0 ≤ t ≤ T,

where C is independent of h.

3. Proofs

In this section, we provide detailed proofs of our main results. We first prove
Theorem 2.1 on the L2-stability of the HDG method for general KdV type equa-
tions. Then we combine several energy identities to prove the error estimate in
Theorem 2.3 for linear third-order equations.

3.1. L2-stability. Now let us prove Theorem 2.1 on the stability of the HDG
method for the KdV equation. We treat the nonlinear term in a way similar to
that in [24].

Proof. Taking ω = uh, v = −ph and z = qh in (2.2a)–(2.2c) and adding the three
equations together, we get

(f, uh) =(uht, uh)− (ph + F (uh), uhx) + 〈p̂h + F̂h, uhn〉
− (qh, ph)− (uh, phx) + 〈ûh, phn〉
+ (ph, qh) + (qh, qhx)− 〈q̂h, qhn〉.

Using integration by parts and (2.2d), we have

(f, uh) =
1

2

d

dt
‖uh‖2 − (F (uh), uhx)− 〈p̂h + F̂h − ph, (ûh − uh)n〉

+
1

2
〈(q̂h − qh)2, n〉+

1

2
q̂ 2
h (0).

(3.1)

Let G(s) be such that dG(s)/ds = F (s). It is easy to see that

−(F (uh), uhx) = −(
d

dx
G(uh), 1) = −〈G(uh), n〉 = −〈

∫ uh

ûh

F (s)ds, n〉.

Using it for the second term on the right hand side of (3.1), we get that

(f, uh) =
1

2

d

dt
‖uh‖2 + Φ +

1

2
q̂h(0)2,

where

Φ =− 〈
∫ uh

ûh

(F (s)− F (ûh))ds, n〉 − 〈F̂h − F (ûh), (ûh − uh)n〉

− 〈p̂h − ph, (ûh − uh)n〉+
1

2
〈(q̂h − qh)2, n〉.



HDG method for KdV equations 9

Next, we just need to show that Φ ≥ 0. Let

τ̃ :=
1

(ûh − uh)2

∫ uh

ûh

(F (s)− F (ûh))nds.

Using the definition of F̂h in (2.2e), we have

Φ = 〈τF − τ̃ , (ûh − uh)2〉 − 〈p̂h − ph, (ûh − uh)n〉+
1

2
〈(q̂h − qh)2, n〉.

By the definition of p̂h and q̂h in (2.2e), we get

Φ+ := Φ|∂T+
h

=〈τ+
F − τ̃

+ − τ+
pu −

1

2
(τ+

qu)2, (ûh − uh)2〉∂T+
h
,

Φ− := Φ|∂T−
h

=〈τ−F − τ̃
− +

1

2
(τ−qu)2, (ûh − uh)2〉∂T−

h
+ 〈1

2
(τ−qp)2, (p̂h − ph)2〉∂T−

h

+ 〈τ−quτ−qp − 1, (p̂h − ph)(ûh − uh)n〉∂T−
h
.

It is easy to check that if the stabilization function satisfies the condition (2.3),
then we get Φ+ ≥ 0 and Φ− ≥ 0. This shows that

1

2

d

dt
‖uh‖2 ≤ (f, uh).

�

3.2. Error analysis. In this section, we prove the optimal error estimate for the
projections of the errors in Theorem 2.3 for linear equations with F = 0. First, we
obtain the equations for the projection of the errors.

3.2.1. The error equations. From the equations defining the HDG method, (2.2a)–
(2.2c), and the fact that the exact solution also satisfy these equations, we obtain
the following error equations

(eq, v) + (eu, vx)− 〈êu, vn〉 = 0,

(ep, z) + (eq, zx)− 〈êq, zn〉 = 0,

(eut, w)− (ep, wx) + 〈êp, wn〉 = 0,

for all (v, z, w) ∈ W k
h ×W k

h ×W k
h , where êω = ω − ω̂h for ω = u, q, and p. From

(2.2e) and (2.2d), it is easy to see that
ê+
p = e+

p + τ+
pu (êu − e+

u )n+,

ê+
q = e+

q + τ+
qu (êu − e+

u )n+,

ê−q = e−q + τ−qu (êu − e−u )n− + τ−qp (ê−p − e−p )n−,

and

〈êq, µ n〉 = 0, 〈êp, χ n〉 = 0

for all (µ, χ) ∈ M̃h ×Mh(0). Now we set

ε̂u = êu and ε̂−p = ê−p ,

and let

(3.2)


ε̂+
p = ε+p + τ+

pu (ε̂u − ε+u )n+,

ε̂+
q = ε+q + τ+

qu (ε̂u − ε+h )n+,

ε̂−q = ε−q + τ−qu (ε̂u − ε−u )n− + τ−qp (ε̂−p − ε−p )n−.
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Using the equations (2.5d)–(2.5f), after some simple algebra manipulations we get
that

ε̂+
p = ê+

p and ε̂±q = ê±q .

Therefore, by the definition of the projection Π, (2.5a)–(2.5c), we easily obtain the
following equations for the projections of errors

(εq, v) + (δq, v) + (εu, vx)− 〈ε̂u, vn〉 = 0,(3.3a)

(εp, z) + (δp, z) + (εq, zx)− 〈ε̂q, zn〉 = 0,(3.3b)

(εut, w) + (δut, w)− (εp, wx) + 〈ε̂p, wn〉 = 0,(3.3c)

〈ε̂q, µ n〉 = 0, 〈ε̂p, χ n〉 = 0(3.3d)

for all (v, z, w, µ, χ) ∈ W k
h ×W k

h ×W k
h × M̃h ×Mh(0).

3.2.2. Energy identities. To prove the L2-error estimate in Theorem 2.3, we begin
by establishing a key identity involving the quantity

‖ε‖2 := ‖εu‖2 + ‖εq‖2 + ‖εp‖2 + ‖εut‖2

by energy arguments.

Lemma 3.1. We have that

1

2

d

dt
‖ε‖2 + S + Ψ = 0,

where

S =(δut, εu)− (δq, εp) + (δp, εq) + (δqt, εq) + (δp, εut)− (δut, εp)

+ (δpt, εp)− (δut, εqt) + (δqt, εut) + (δutt, εut)− (δqt, εpt) + (δpt, εqt),

Ψ =− 〈ε̂p − εp, (ε̂u − εu)n〉+
1

2
〈(ε̂q − εq)2, n〉

+ 〈ε̂q − εq, (ε̂ut − εut)n〉+
1

2
〈(ε̂p − εp)2, n〉

+ 〈ε̂qt − εqt, (ε̂p − εp)n〉+
1

2
〈(ε̂ut − εut)2, n〉

− 〈ε̂pt − εpt, (ε̂ut − εut)n〉+
1

2
〈(ε̂qt − εqt)2, n〉

+
1

2
ε̂ 2
q (x0) +

1

2
(ε̂p + ε̂qt)

2(x0)− 1

2
ε̂ 2
p (xN ).

Proof. Differentiating the error equations (3.3a)–(3.3c) with respect to t, we get

(εqt, v) + (δqt, v) + (εut, vx)− 〈ε̂ut, vn〉 = 0,(3.4a)

(εpt, z) + (δpt, z) + (εqt, zx)− 〈ε̂qt, zn〉 = 0,(3.4b)

(εutt, w) + (δutt, w)− (εpt, wx) + 〈ε̂pt, wn〉 = 0.(3.4c)

Next, we use (3.3) and (3.4) to get four energy identities.
(i) Taking w = εu, v = −εp, and z = εq in (3.3) and adding the three equations

together, we have

0 =(εut, εu) + (δut, εu)− (εp, εux) + 〈ε̂p, εun〉
− (εq, εp)− (δq, εp)− (εu, εpx) + 〈ε̂u, εpn〉
+ (εp, εq) + (δp, εq) + (εq, εqx)− 〈ε̂q, εqn〉.
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Using integration by parts, (3.3d), and the fact that

ε̂u|∂Ω = êu|∂Ω = 0, ε̂q|∂ΩN
= êq|∂ΩN

= 0,

we get

0 =
1

2

d

dt
‖εu‖2 + (δut, εu)− (δq, εp) + (δp, εq)

− 〈ε̂p − εp, (ε̂u − εu)n〉+
1

2
〈(ε̂q − εq)2, n〉+

1

2
ε̂ 2
q (x0).

(3.5)

(ii) Similar to (i), taking v = εq in (3.4a), z = εut in (3.3b), and w = −εp in
(3.3c) and adding the three equations together, we get

0 =
1

2

d

dt
‖εq‖2 + (δqt, εq) + (δp, εut)− (δut, εp)

+ 〈ε̂q − εq, (ε̂ut − εut)n〉+
1

2
〈(ε̂p − εp)2, n〉 − 1

2
ε̂ 2
p (xN ) +

1

2
ε̂ 2
p (x0).

(3.6)

(iii) Taking v = εut in (3.4a), z = εp in (3.4b), and w = −εqt in (3.3c) and
adding the equations together, we get

0 =
1

2

d

dt
‖εp‖2 + (δpt, εp) + (δqt, εut)− (δut, εqt)

+ 〈ε̂qt − εqt, (ε̂p − εp)n〉+
1

2
〈(ε̂ut − εut)2, n〉+ ε̂qtε̂p(x0).

(3.7)

(iv) Taking v = −εpt, z = εqt, and w = εut in (3.4a)–(3.4c) and adding the
equations together, we get

0 =
1

2

d

dt
‖εut‖2 + (δutt, εut)− (δqt, εpt) + (δpt, εqt)

− 〈ε̂pt − εpt, (ε̂ut − εut)n〉+
1

2
〈(ε̂qt − εqt)2, n〉+

1

2
ε̂ 2
qt(x0).

(3.8)

The proof is completed by adding the four equations (3.5)–(3.8) together. �

3.2.3. Proof of the L2-error estimate. Using Lemma 3.1, we first get the following
result.

Lemma 3.2. If the stabilization function satisfies the condition (2.7), then we have

‖ε(t)‖2 ≤‖ε(0)‖2 + Θ(0) +

∫ t

0

ε̂ 2
p (xN ) dt+ 2 |

∫ t

0

S dt| for 0 ≤ t ≤ T, ,

where

Θ = 〈τ+
qu − τ+

puτ
+
qu, (ε̂u − εu)2〉∂T+

h
+ 〈1, τ−qu(ε̂u − εu)2 + τ−qp(ε̂p − εp)2〉∂T−

h
,

and S is the same as in Lemma 3.1.

Proof. Using the definition of ε̂+p and ε̂q in (3.2), for the Ψ term in Lemma 3.1, we
have

Ψ = Ψ+ + Ψ−,
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where

Ψ+ =− 〈τ+
pu, (ε̂u − εu)2〉∂T+

h
− 1

2
〈(τ+

qu)2, (ε̂u − εu)2〉∂T+
h

+ 〈τ+
qu, (ε̂u − εu)(ε̂u − εu)t〉∂T+

h
− 1

2
〈(τ+

pu)2, (ε̂u − εu)2〉∂T+
h

− 〈τ+
puτ

+
qu, (ε̂u − εu)(ε̂u − εu)t〉∂T+

h
− 1

2
〈1, (ε̂ut − εut)2〉∂T+

h

− 〈τ+
pu, (ε̂ut − εut)2〉∂T+

h
− 1

2
〈(τ+

qu)2, (ε̂ut − εut)2〉∂T+
h

+
1

2
ε̂ 2
q (x0) +

1

2
(ε̂p + ε̂qt)

2(x0)

and

Ψ− =− 〈ε̂p − εp, ε̂u − εu〉∂T−
h

+
1

2
〈1, (τ−qu(ε̂u − εu) + τ−qp(ε̂p − εp))2〉∂T−

h

+ 〈τ−qu(ε̂u − εu) + τ−qp(ε̂p − εp), (ε̂u − εu)t〉∂T−
h

+
1

2
〈1, (ε̂p − εp)2〉∂T−

h

+ 〈τ−qu(ε̂u − εu)t + τ−qp(ε̂p − εp)t, ε̂p − εp〉∂T−
h

+
1

2
〈1, (ε̂ut − εut)2〉∂T−

h

− 〈ε̂pt − εpt, ε̂ut − εut〉∂T−
h

+
1

2
〈1, (τ−qu(ε̂ut − εut) + τ−qp(ε̂pt − εpt))2〉∂T−

h

− 1

2
ε̂ 2
p (xN ).

We can rewrite the term Ψ+ as

Ψ+ = Γ1 +
1

2

d

dt
Θ1,

where

Γ1 =〈−τ+
pu −

1

2
(τ+

qu)2 − 1

2
(τ+

pu)2, (ε̂u − εu)2〉∂T+
h

+ 〈−1

2
− τ+

pu −
1

2
(τ+

qu)2, (ε̂ut − εut)2〉∂T+
h

+
1

2
ε̂ 2
q (x0) +

1

2
(ε̂p + ε̂qt)

2(x0),

Θ1 =〈τ+
qu − τ+

puτ
+
qu, (ε̂u − εu)2〉∂T+

h
.

Similarly, if we assume that τ−quτ
−
qp = 1, after some calculations we get

Ψ− = Γ2 +
1

2

d

dt
Θ2 −

1

2
ε̂ 2
p (xN ),

where

Γ2 =〈(1

2
τ−qu)2, (ε̂u − εu)2〉∂T−

h
+ 〈1

2
,
(
τ−qp(ε̂p − εp) + (ε̂u − εu)t)

)2

〉∂T−
h

+ 〈(1

2
τ−qp)2, (ε̂pt − εpt)2〉∂T−

h
+ 〈1

2
,
(

(ε̂p − εp) + τ−qu(ε̂u − εu)t

)2

〉∂T−
h
,

Θ2 =〈1, τ−qu(ε̂u − εu)2 + τ−qp(ε̂p − εp)2〉∂T−
h
.

So from Lemma 3.1 we get

(3.9)
1

2

d

dt
(‖ε‖2 + Θ1 + Θ2) + Γ1 + Γ2 =

1

2
ε̂ 2
p (xN )− S.
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Now we integrate the equation (3.9) with respect to t and get

1

2

(
‖ε(t)‖2 + Θ1(t) + Θ2(t)

)
+

∫ t

0

(Γ1 + Γ2)dt

=
1

2

(
‖ε(0)‖2 + Θ1(0) + Θ2(0)

)
+

1

2

∫ t

0

ε̂ 2
p (xN )dt−

∫ t

0

S dt.

It is easy to check that if τ±qu, τ
+
pu and τ−qp satisfy the condition (2.7), we have

Θ1 ≥ 0, Θ2 ≥ 0, Γ1 ≥ 0, Γ2 ≥ 0 for any t ∈ [0, T ].

Therefore,

‖ε(t)‖2 ≤‖ε(0)‖2 + Θ(0) +

∫ t

0

ε̂ 2
p (xN ) dt+ 2 |

∫ t

0

S dt|,

where Θ = Θ1 + Θ2. �

To prove Theorem 2.3, we also need the following Lemma for error estimates of
the initial approximations at t = 0 (See Theorem 2.2 and Theorem 2.3 in [8]).

Lemma 3.3. If τ±qu, τ
+
pu, τ

−
qp satisfy the condition (2.6), then for k > 0,

‖εu(0)‖+ ‖εq(0)‖+ ‖εp(0)‖ ≤ Chk+2,

‖êu(0)‖Eh
+ ‖êq(0)‖Eh

+ ‖êp(0)‖Eh
≤ Ch2k+1.

In addition, let us get an estimate for εut at t = 0.

Lemma 3.4. If τ±qu, τ
+
pu, τ

−
qp satisfy the condition (2.6), then for k > 0

‖εut(0)‖ ≤ Chk+1.

Proof. Taking t = 0 and w = εut(0) in the error equation (3.3c), we have

(εut(0), εut(0)) + (δut(0), εut(0))− (εp(0), εutx(0)) + 〈ε̂p(0), εut(0)n〉 = 0.

By Cauchy inequality, trace inequality and inverse inequality, we get

‖εut(0)‖2 ≤ C‖δut(0)‖2 + Ch−2‖εp(0)‖2 + Ch−1‖ε̂p(0)‖2Eh
.

Then the conclusion follows by using Lemma 2.2 and Lemma 3.3.
�

Now let us finish the proof of Theorem 2.3 by estimating the right hand side of
the inequality in Lemma 3.2 and using Lemma 3.3 and Lemma 3.4.

Proof. We first estimate the term
∫ t

0
ε̂ 2
p (xN )dt. Taking ω to be ω1 := x−x0

xN−x0
in

(3.3c), we get

ε̂p(xN ) = −(εut, ω1)− (δut, ω1) + (εp,
1

xN − x0
)

by the fact that ω1(x0) = 0 and ω1(xN ) = 1. Using Cauchy inequality, we have

|ε̂p(xN )| ≤ |(εut, ω1)|+ |(δut, ω1)|+ |(εp,
1

xN − x0
)|

≤C(‖εut‖+ ‖δut‖+ ‖εp‖).
Then by the approximation property of the projection Π in Lemma 2.2, we obtain∫ t

0

ε̂ 2
p (xN ) dt ≤ Ch2k+2 +

∫ t

0

‖ε‖2dt.(3.10)
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Next, we estimate the term |
∫ t

0
S dt|. Let

S = S1 + S2,

where

S1 =(δut, εu)− (δq, εp) + (δp, εq) + (δqt, εq) + (δp, εut)− (δut, εp)

+ (δpt, εp) + (δqt, εut) + (δutt, εut),

S2 =− (δut, εqt)− (δqt, εpt) + (δpt, εqt).

Using Cauchy inequality and the approximation property of the projection Π in
Lemma (2.2), we get ∫ t

0

|S1|dt ≤ Chk+1

∫ t

0

‖ε‖dt.

Integrating S2 with respect to t, we have∫ t

0

S2dt =− (δut, εq)|t0 +

∫ t

0

(δutt, εq)dt− (δqt, εp)|t0 +

∫ t

0

(δqtt, εp)dt

+ (δpt, εq)|t0 −
∫ t

0

(δptt, εq)dt.

By the approximation property of the projection Π in Lemma 2.2,∣∣∣∣∫ t

0

S2dt

∣∣∣∣ ≤Ch2k+2 + C‖ε(0)‖2 +
1

4
‖ε(t)‖2 + Chk+1

∫ t

0

‖ε‖dt.

So we get ∣∣∣ ∫ t

0

Sdt
∣∣∣ ≤ ∫ t

0

|S1|dt+ |
∫ t

0

S2 dt|

≤ Ch2k+2 + C‖ε(0)‖2 +
1

4
‖ε(t)‖2 + Chk+1

∫ t

0

‖ε‖dt.
(3.11)

Applying (3.10) and (3.11) to Lemma 3.2, we have

‖ε(t)‖2 ≤C‖ε(0)‖2 + CΘ(0) + Ch2k+2 + C

∫ t

0

‖ε(t)‖2dt.

Since

Θ(0) ≤ C(‖ε̂u(0)‖2Eh
+ ‖ε̂p(0)‖2Eh

) + Ch−1(‖εu(0)‖2 + ‖εp(0)‖2)

by Lemma 3.3 and the trace inequality, we have

‖ε(t)‖2 ≤Ch2k+2 + C

∫ t

0

‖ε(t)‖2dt

using Lemma 3.3 and Lemma 3.4. Now we use Grönwall’s inequality and get

‖ε(t)‖2 ≤ Ch2k+2,

where C depends on t but not on h. This completes the proof of Theorem 2.3. �
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4. Numerical Results

In this section, we carry out several numerical experiments to study the accu-
racy and capability of our HDG method. In the first and the second numerical
experiments, we examine the orders of convergence of the method for linear and
nonlinear third-order problems. In the third and the fourth experiments, we ap-
ply the method to solve some well-known dispersive wave problems. For all the
experiments, we use the following second-order midpoint rule [2, 9] for time dis-
cretization. Let 0 = t0 < t1 < · · · < tJ = T be a partition of the interval [0, T ]
and ∆tj = tj+1 − tj . For j = 0, · · · , J − 1 and ω ∈ {uh, qh, ph}, let ωj+1 ∈ W k

h be
defined as

ωj+1 = 2ωj,1 − ωj ,

where ωj,1 is the solution of the equation

ωj,1 − ωj

1
2 ∆tj

+ (ωj,1)xxx + F (ωj,1)x = 0.

The components of the stabilization function, (τ+
qu, τ

+
pu, τ

−
qu, τ

−
qp) are taken to be

(0,−1, 1, 1) in all the following numerical tests.
Numerical experiment 1: In this test, we use the HDG method to solve the

time-dependent third-order linear problem

ut + uxxx = f,

where f is chosen so that the exact solution is u(x, t) = sin(x + t) on the domain
(x, t) ∈ [0, 1] × [0, 0.1]. The initial condition is u0 = sin(x) and the boundary
conditions are u(0, t) = sin(t), u(1, t) = sin(1+ t) and ux(1, t) = cos(1+ t). We take
h = 2−n for n = 1, · · · , 5. The step size for time discretization is ∆t = 0.1 ∗ h2 for
k = 0, 1, and ∆t = 0.1 ∗ h3 for k = 2, 3 so that the temporal errors are very small.
We compute the orders of convergence of uh, qh, ph at the final time T = 0.1, and
the orders we observe in the numerical experiments are listed in Table 1.

Our numerical results indicate that the orders of convergence of (eu, eq, ep) are
optimal as predicted by the error estimate in Theorem 2.4 for any k > 0. For k = 0,
although our error analysis is inclusive, we observe that the method converges
optimally in the numerical experiment.

Numerical experiment 2: Now we use the HDG method to solve the nonlinear
third-order equation

ut + uxxx + (3u2)x = f.

The function f , the initial condition and the boundary conditions are chosen so that
the exact solution is u(x, t) = sin(2x+t) in the domain (x, t) ∈ [0, π]×[0, 0.1]. Here,
we take the stabilization function τF = 3, given that F (u) = 3u2 and 1

2 |F
′(u)| =

3|u| ≤ 3 for the solution u. The mesh size for the HDG method is h = 2−n for
n = 3, · · · , 7. The step size for time discretization is ∆t = 0.1 ∗ h2 for k = 0, 1 and
∆t = 0.1 ∗ h3 for k = 2, 3 so that the temporal errors are much smaller than the
spatial errors. The orders of convergence of uh, qh, ph at the final time T = 0.1 are
displayed in Table 2. Our numerical results show that the orders of convergence of
(eu, eq, ep) are also optimal for any k ≥ 0 for the nonlinear problem.

In the previous two tests, we have observed optimal convergence rates of the
HDG method for both linear and nonlinear third-order problems. In the next two
tests, we apply the method to solve the KdV equation

(4.1) ut + uxxx + (3u2)x = 0.
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k eu Order eq Order ep Order

0

1.27e-01 - 1.07e-01 - 1.94e-01 -

6.87e-02 0.89 6.26e-02 0.77 1.13e-01 0.78

3.83e-02 0.84 3.52e-02 0.83 6.10e-02 0.89

2.08e-02 0.88 1.94e-02 0.86 3.31e-02 0.88

1.07e-02 0.96 1.03e-02 0.92 1.85e-02 0.84

1

1.13e-02 - 1.22e-02 - 6.83e-03 -

3.28e-03 1.79 3.08e-03 1.99 1.90e-03 1.85

8.62e-04 1.93 7.69e-04 2.00 4.87e-04 1.97

2.17e-04 1.99 1.92e-04 2.00 1.22e-04 1.99

5.44e-05 2.00 4.80e-05 2.00 3.06e-05 2.00

2

3.66e-04 - 3.27e-04 - 7.41e-04 -

4.59e-05 2.99 4.33e-05 2.92 6.99e-05 3.41

5.71e-06 3.01 5.50e-06 2.98 1.12e-05 2.64

7.10e-07 3.01 6.94e-07 2.99 1.49e-06 2.91

8.86e-08 3.00 8.73e-08 2.99 1.90e-07 2.97

3

1.97e-05 - 5.43e-05 - 7.32e-04 -

1.05e-06 4.23 2.24e-06 4.60 8.53e-05 3.10

6.50e-08 4.01 7.77e-08 4.85 4.19e-06 4.35

4.07e-09 4.00 3.88e-09 4.32 1.86e-07 4.49

2.55e-10 4.00 2.32e-10 4.06 5.68e-09 5.03

Table 1. The error (eu, eq, ep) and their convergence orders for
the linear problem in the numerical experiment 1.

Numerical experiment 3: In this test, we consider the KdV equation (4.1) in the
domain (x, t) ∈ [−10, 0] × [0, 2] with the initial condition u0 = 2 sech2(x − 4) and
the boundary conditions u(−10, t) = 2 sech2(−10− 4t+ 4), u(0, t) = 2 sech2(−4t+
4), ux(0, t) = −4 sech2(−4t + 4) tanh(−4t + 4). The exact solution to this initial-
boundary value problem is the classical solitary-wave solution [2, 27]

u(x, t) = 2 sech2(x− 4t+ 4).

In the computation, we use 100 elements, piecewise cubic polynomials, and time-
step size ∆t = 10−3, and take τF = (F ′(û))2+ 1

4 so that τF > 1
2 |F
′(ûh)|. The space-

time graphs of the computed solution (uh, qh, ph) as well as the exact solutions
(u, q, p) at the final time T = 2 are displayed in Figure 1. We observe a good match
between the approximate solutions and the exact solutions.

Numerical experiment 4: In this test, we simulate the interaction of two solitary
waves with different propagation speeds using our HDG method. We consider the
KdV equation (4.1) in the domain (x, t) ∈ [−20, 0]× [0, 2] with the initial condition

u0(x) = 5
4.5 csch2[1.5(x+ 14.5)] + 2 sech2(x+ 12)

{3 coth[1.5(x+ 14.5)]− 2 tanh(x+ 12)}2
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k eu Order eq Order ep Order

0

6.63e-01 - 1.34e-00 - 2.63e-00 -

4.08e-01 0.70 8.58e-01 0.64 1.79e-00 0.56

2.37e-01 0.78 5.17e-01 0.73 1.16e-00 0.64

1.32e-01 0.84 2.94e-01 0.82 6.78e-01 0.76

7.11e-02 0.90 1.59e-01 0.89 3.71e-01 0.87

1

5.35e-02 - 9.60e-02 - 2.31e-01 -

1.29e-02 2.05 2.36e-02 2.03 5.29e-02 2.12

3.18e-03 2.02 5.86e-03 2.01 1.28e-02 2.05

7.92e-04 2.01 1.47e-03 2.00 3.17e-03 2.01

1.98e-04 2.00 3.67e-04 2.00 7.92e-04 2.00

2

3.31e-03 - 5.81e-03 - 1.25e-02 -

4.01e-04 3.05 7.32e-04 2.99 1.61e-03 2.96

4.97e-05 3.01 9.20e-05 2.99 1.99e-04 3.01

6.20e-06 3.00 1.15e-05 3.00 2.48e-05 3.00

7.74e-07 3.00 1.44e-06 3.00 3.10e-06 3.00

3

1.54e-04 - 2.81e-04 - 6.52e-04 -

9.57e-06 4.01 1.77e-05 3.99 3.82e-05 4.09

5.97e-07 4.00 1.17e-06 3.99 2.39e-06 4.00

3.73e-08 4.00 6.97e-08 4.00 1.49e-07 4.00

2.33e-09 4.00 4.36e-09 4.00 1.03e-08 3.86

Table 2. The error (eu, eq, ep) and their convergence orders for
the nonlinear problem in the numerical experiment 2.

and boundary data u(−20, t), u(0, t), ux(0, t), which admits the solution (see [27])

u(x, t) = 5
4.5 csch2[1.5(x− 9t+ 14.5)] + 2 sech2(x− 4t+ 12)

{3 coth[1.5(x− 9t+ 14.5)]− 2tanh(x− 4t+ 12)}2
.

In our computation, we use 50 elements, piecewise cubic polynomials, and the
time-step size ∆t = 10−4. The stabilization function τF is taken in the same way as
in the previous test. The space-time graphs of the HDG approximate solutions and
the exact solutions are displayed in Figure 2. From the side-by-side comparison, we
see that the HDG solutions are good approximations to the exact solutions. They
show that the two waves are moving toward the same direction. The faster soliton
catches up with the slower one and they overlap around t = 0.5. Afterwards, the
faster soliton continues to propagate and the slower one falls behind.

5. Concluding remarks

In this paper, we develop a new HDG method for time-dependent third-order
equations in one space dimension based on the characterization of the exact solution
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(a)

(b)

(c)

Figure 1. Space-time graphs of one soliton in the domain (x, t) ∈
[−10, 0]× [0, 2]. Evolution of the HDG approximate solution (left)
and the exact solution (right) of (A): u, (B): q, and (C): p.

as the solutions to local problems that are “glued” together by transmission condi-
tions. We find conditions on the stabilization function under which the method is
L2 stable for KdV type equations. We also obtain optimal error estimates for the
linear third-order equation. Numerical results from computation verify the theoret-
ical error analysis and show that the method is able to accurately simulate solitary
wave solutions of the KdV equation. Our future work is to develop and analyze
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(a)

(b)

(c)

Figure 2. Space-time graphs of the interaction of two solitary
waves in the domain (x, t) ∈ [−20, 0] × [0, 2]. Evolution of the
HDG approximate solution (left) and the exact solution (right) of
(A): u, (B): q, and (C): p.

HDG methods for fifth-order KdV equations and third-order equations in multiple
dimensions and complex systems.
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Appendix A. Implementation

To implement the HDG method (2.2), we use an implicit scheme for the dis-
cretization of the time derivative. One may use high order BDF or an implicit
Runge-Kutta method for time discretization. Here, for simplicity we consider the
backward Euler method with time-step ∆t. At time-level tj , inserting the definition
of the numerical traces (2.2e) into (2.2a)–(2.2e), we obtain the equations

(qh, v) + (uh, vx)− 〈ûh, vn〉 = 0,

(ph, z) + (qh, zx)− 〈qh + τqu(ûh − uh)n, zn〉 − 〈τqp(p̂−h − ph), z〉∂T−
h

= 0,

1

∆t
(uh, w)− (ph + F (uh), wx) + 〈ph + τpu(ûh − uh)n,wn〉∂T+

h

+〈p̂−h , wn〉∂T−
h

+ 〈F (ûh)− τF (ûh, uh)(ûh − uh)n,wn〉 = (f, w) +
1

∆t
(uj−1

h , w),

from which (uh, qh, ph) can be locally solved in terms of f , ûh and p̂−h , and the
equations

〈qh + τqu(ûh − uh)n, µn〉+ 〈τqp(p̂−h − ph), µ〉∂T−
h

= 〈qN , µ n〉∂ΩN
,

〈p̂−h , χ n〉∂T−
h

+ 〈ph + τpu(ûh − uh)n, χn〉∂T+
h

+〈F (ûh)− τF (ûh, uh)(ûh − uh)n, χn〉 = 0,

which determine the globally coupled unknowns (ûh, p̂
−
h ).

Next, we apply the Newton-Raphson method to solve the above nonlinear sys-

tem. Denoting the approximations at the current iteration by (ūh, q̄h, p̄, ¯̂uh, ¯̂p
−
h ) ∈

W k
h×W k

h×W k
h×Mh(uD)×M̃h, we want to find the increments (δuh, δqh, δph, δûh, δp̂

−
h ) ∈

W k
h ×W k

h ×W k
h ×Mh(0)× M̃h such that

a1(δqh, v) + b1(δuh, v) + d1(δûh, v) = r1(v),

a2(δph, z)− b1(z, δqh) + c(δuh, z) + d2(δûh, z) + e2(δp̂−h , z) = r2(z),

a3(δuh, w) + b2(δph, w) + d3(δûh, w) + e3(δp̂−h , w) = r3(w),

and

g1(δph, µ) + g2(δqh, µ) + g3(δuh, µ) + d4(δûh, µ) + e4(δp̂−h , µ) = r4(µ),

g4(δph, χ) + g5(δuh, χ) + d5(δûh, χ) + e5(δp̂−h , χ) = r5(χ),
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for any (v, z, w, µ, χ) ∈ W k
h ×W k

h ×W k
h × M̃h ×Mh(0), where

a1(η, v) = (η, v), b1(σ, v) = (σ, vx), d1(λ, v) = −〈λ, vn〉,
a2(ρ, z) = (ρ, z) + 〈τqpρ, z〉∂T−

h
, c(σ, z) = 〈τquσ, z〉,

d2(λ, z) = −〈τquλ, z〉, e2(ζ, z) = −〈τqpζ, z〉∂T−
h
,

a3(σ,w) =
1

∆t
(σ,w)− (F ′(ūh)σ,wx)− 〈τpuσ,w〉∂T+

h
+ 〈(τ̄F − ∂2τ̄F (¯̂uh − ūh))σ,w〉,

b2(ρ, w) = −(ρ, wx)− 〈ρ, w〉∂T+
h
, e3(ζ, w) = 〈ζ, w〉∂T−

h
,

d3(λ,w) = 〈(F ′(¯̂uh)n− ∂1τ̄F (¯̂uh − ūh)− τ̄F )λ,w〉+ 〈τpuλ,w〉∂T+
h
,

g1(ρ, µ) = −〈τqpρ, µ〉∂T−
h
, g2(η, µ) = 〈η, µn〉, g3(σ, µ) = −〈τquσ, µ〉,

g4(ρ, χ) = 〈ρ, χn〉∂T+
h
, g5(σ, χ) = −〈τpuσ, χ〉∂T+

h
+ 〈(τ̄F − ∂2τ̄F (¯̂uh − ūh))σ, χ〉,

d4(λ, µ) = 〈τquλ, µ〉, e4(ζ, µ) = 〈τqpζ, µ〉∂T−
h
, e5(ζ, χ) = 〈ζ, χn〉∂T−

h
,

d5(λ, χ) = 〈τpuλ, χ〉∂T+
h

+ 〈(F ′(¯̂uh)n− ∂1τ̄F (¯̂uh − ūh − τ̄F ))λ, χ〉,

r1(v) = −(q̄h, v)− (ūh, vx) + 〈¯̂uh, vn〉,

r2(z) = −(p̄h, z) + (q̄hx, z) + 〈τqu(¯̂uh − ūh), z〉+ 〈τqp(¯̂p
−
h − p̄h), z〉∂T−

h
,

r3(w) = (f +
1

∆t
(uj−1

h − ūh), w) + (p̄h + F (ūh), wx)− 〈¯̂p−h , w〉∂T−
h

− 〈p̄hn+ τpu(¯̂uh − ūh), w〉∂T+
h
− 〈F (¯̂uh)n− τ̄F (¯̂uh − ūh), w〉,

r4(µ) = 〈qN , µn〉∂ΩN
− 〈q̄hn+ τqu(¯̂uh − ūh), µ〉 − 〈τqp(¯̂p

−
h − p̄h), µ〉∂T−

h
,

r5(χ) = −〈¯̂p−h , χn〉∂T−
h
− 〈p̄hn+ τpu(¯̂uh − ūh), χ〉∂T+

h

− 〈F (¯̂uh)− τ̄F (¯̂uh − ūh), χ〉.

Here we have used the notation τ̄F := τF (¯̂uh, ūh), and ∂1τ̄F (respectively, ∂2τ̄F )
denotes the first-order partial derivative of τF with respect to the first argument
(respectively, second argument) evaluated at (¯̂uh, ūh).

The discretization of the system above gives rise to matrix equations of the form

(A.1)

 0 A1 B1

A2 −BT
1 C

B2 0 A3

δphδqh
δuh

+

D1 0
D2 E2

D3 E3

[δûh
δp̂−h

]
=

R1

R2

R3

 ,
and

(A.2)

[
G1 G2 G3

G4 0 G5

]δphδqh
δuh

+

[
D4 E4

D5 E5

] [
δûh
δp̂−h

]
=

[
R4

R5

]
.

From (A.1), we get

(A.3)

δphδqh
δuh

 =

 0 A1 B1

A2 −BT
1 C

B2 0 A3

−1(R1

R2

R3

−
D1 0
D2 E2

D3 E3

[δûh
δp̂−h

])

We emphasize that the above inverse can be computed on each element indepen-
dently of each other since the matrices A1, A2, A3, B1, B2 and C are block-diagonal
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owing to the discontinuous nature of the approximation spaces. Applying (A.3) to
(A.2), we get the global linear system

K
[
δûh
δp̂−h

]
= F,

where

K =

[
D4 E4

D5 E5

]
−
[
G1 G2 G3

G4 0 G5

] 0 A1 B1

A2 −BT
1 C

B2 0 A3

−1 D1 0
D2 E2

D3 E3


and

F =

[
R4

R5

]
−
[
G1 G2 G3

G4 0 G5

] 0 A1 B1

A2 −BT
1 C

B2 0 A3

−1 R1

R2

R3

 .
Therefore, the only globally coupled degrees of freedom are those associated with
δûh and δp̂−h , which live only on element interfaces. Due to the one-dimensional
setting of the KdV equation, the size and the bandwidth of the global linear system
are independent of the degrees of polynomials used; it only depends on the number
of subintervals in the mesh. Once δûh and δp̂−h are obtained, (δph, δqh, δuh) can be
locally computed by using (A.3).
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