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Abstract In this paper, we consider the numerical approximation of a general
second order semilinear stochastic partial differential equation (SPDE) driven
by multiplicative and additive noise. Our main interest is on such SPDEs
where the nonlinear part is stronger than the linear part also called stochastic
reactive dominated transport equations. Most numerical techniques, including
current stochastic exponential integrators lose their good stability properties
on such equations. Using finite element for space discretization, we propose
a new scheme appropriated on such equations, called stochastic exponential
Rosenbrock scheme (SERS) based on local linearization at every time step
of the semi-discrete equation obtained after space discretization. We consider
noise with finite trace and give a strong convergence proof of the new scheme
toward the exact solution in the root-mean-square L2 norm. Numerical exper-
iments to sustain theoretical results are provided.
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1 Introduction

The strong numerical approximation of an Itô stochastic partial differential
equation defined in the bounded domain Λ ⊂ Rd (d = 1, 2, 3) is analyzed.
The domain Λ is assumed to be a convex polygon, or has smooth bound-
ary. Boundary conditions on the domain Λ are typically Neumann, Dirichlet
or Robin conditions. More precisely, we consider in the abstract setting the
following stochastic partial differential equation

dX(t) = [AX(t) + F (X(t))]dt+B(X(t))dW (t), X(0) = X0, t ∈ [0, T ],(1)

on H = L2(Λ), T > 0 is a final time, F and B are nonlinear functions, X0 is
the initial data which may be random, A is a linear operator, unbounded, not
necessarily self adjoint, and the generator of an analytic semigroup S(t) :=
etA, t ≥ 0. The noise W (t) = W (x, t) is a Q−Wiener process defined in a
filtered probability space (Ω,F ,P, {Ft}t≥0). The filtration is assumed to fulfill
the usual conditions (see [28, Definition 2.1.11]). We assume that the noise can
be represented as

W (x, t) =
∑
i∈Nd

√
qiei(x)βi(t), t ∈ [0, T ], (2)

where qi, ei, i ∈ Nd are respectively the eigenvalues and the eigenfunctions of
the covariance operator Q, and βi are independent and identically distributed
standard Brownian Motions. Precise assumptions on F , B, X0 and A will be
given in the next section to ensure the existence of the unique mild solution
X of (1) which has the following representation (see [26,28]) for t ∈ (0, T ]

X(t) = S(t)X0 +

∫ t

0

S(t− s)F (X(s))ds+

∫ t

0

S(t− s)B(X(s))dW (s). (3)

In few cases, exact solutions are explicitly available, so numerical techniques
are the only tools to provide good approximations in more general cases (see
for examples [13, 19, 20, 23, 27, 40–42]). Approximations are done at two lev-
els, spatial approximation and temporal approximation. For the spatial ap-
proximation, the finite difference, the finite element method and the Galerkin
spectral method are usually used [13, 20, 23, 32, 41, 42]. As for PDEs, stan-
dard explicit time stepping methods for SPDEs are usually unstable for stiff
problems and therefore severe time step constraint is needed. To overcome
that drawback, standard implicit Euler methods are usually used [20, 27, 39].
Although standard implicit Euler methods 1 are stable, their implementation
requires significantly more computational effort, specially full implicit meth-
ods, as Newton method is usually used to solve nonlinear algebraic equations

1 Full implicit or semi-implicit methods
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at each time step. Recently, stochastic exponential integrators [13, 23, 40] ap-
peared as non standard explicit methods efficient for SPDE (1). All stochastic
exponential integrators analyzed in the literature for SPDEs [13, 23, 40] are
bounded on the nonlinear problem as in (1) where the linear part A and the
nonlinear function F are explicitly known a priori. Such approach is justi-
fied in situations where the nonlinear function F is small. Indeed when F is
small the linear operator A drives the SPDE (1) and the good stability of
the exponential integrators and semi-implicit method are ensured. In fact, in
more realistic applications the nonlinear function F can be stronger. Typical
examples are semilinear advection diffusion reaction equations with stiff reac-
tion term. In such cases, the SPDE (1) is driven by the nonlinear operator F
and both exponential integrators [13, 23, 40] and semi-implicit Euler [27, 39]
will behave as explicit Euler-Maruyama scheme (see Section 2.3), therefore
their good stability properties are lost. To overcome this issue we propose
in this work a new scheme called Stochastic Exponential Rosenbrock Scheme
(SERS). Coupled with finite element for space discretization, the new scheme
is based on a local linearization of the drift term at each time step in the
corresponding semi-discrete problem of (1). The local linearization therefore
weakens the nonlinear part of the drift such that the linearized semi-discrete
problem is driven by its linear part, which change at each time step. The stan-
dard stochastic exponential scheme [23] is applied at the end to that linearized
semi-discrete problem and the corresponding scheme is our new scheme. The
challenge here is to deal with the new discrete semigroup which indeed is a
semigroup process, called stochastic perturbed semigroup. The key idea comes
from the deterministic exponential Rosenbrock method [10–12, 24, 29]. Note
that similar schemes for stochastic differential equations in finite dimensions
have been proposed in [2,3]. Using some deterministic tools from [24], we pro-
pose a strong convergence proof of the new schemes where the linear operator
A is not necessarily self adjoint. Note that the orders of convergence are the
same with stochastic exponential schemes proposed in [23]. The deterministic
part of this scheme is of order 2 in time and has been proven to be efficient and
robust in comparison to standard schemes in many applications [7, 35] where
the perturbed semigroup and related matrix functions have been computed
using the Krylov subspace technique [9] and fast Leja points technique [1,35].
For our new stochastic scheme, numerical simulations show its good stabil-
ity behavior compared with a stochastic exponential scheme proposed in [23],
where the stochastic perturbed semigroup and related matrix functions are
computed using Krylov subspace technique.
The rest of this paper is organized as follows. Section 2 is devoted to the math-
ematical setting, the numerical method and the main result. In Section 3 some
preparatory results and the proof of the main result are provided. In Section 4
we provide some numerical experiments to sustain our theoretical results. We
end the paper in Section 5 by providing a concluding remark.
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2 Mathematical setting and main results

2.1 Main assumptions and well posedness

Before we state the well posedness result, let us define key functional spaces,
norms and notations that will be used in the rest of the paper. Let (H, 〈., .〉H , ‖.‖)
be a separable Hilbert space. For all p ≥ 2 and for a Banach space U , we de-
note by Lp(Ω,U) the Banach space of all equivalence classes of p integrable
U -valued random variables. We denote by L(U,H) the space of bounded lin-
ear mappings from U to H endowed with the usual operator norm ‖.‖L(U,H).
By L2(U,H) := HS(U,H), we denote the space of Hilbert-Schmidt operators
from U to H. We equip L2(U,H) with the norm

‖l‖2L2(U,H) :=

∞∑
i=1

‖lψi‖2, l ∈ L2(U,H), (4)

where (ψi)
∞
i=1 is an orthonormal basis of U . Note that this definition is in-

dependent of the orthonormal basis of U . For simplicity, we use the nota-
tions L(U,U) =: L(U) and L2(U,U) =: L2(U). It is well known that for all
l ∈ L(U,H) and l1 ∈ L2(U), ll1 ∈ L2(U,H) and

‖ll1‖L2(U,H) ≤ ‖l‖L(U,H)‖l1‖L2(U). (5)

Throughout this paper W (t) is a Q-wiener process. We assume that the covari-
ance operator Q : H −→ H is positive and self-adjoint. The space of Hilbert-
Schmidt operators from Q1/2(H) to H is denoted by L0

2 := L2(Q1/2(H), H) =
HS(Q1/2(H), H) with the corresponding norm ‖.‖L0

2
defined by

‖l‖L0
2

:= ‖lQ1/2‖HS =

( ∞∑
i=1

‖lQ1/2ei‖2
)1/2

, l ∈ L0
2,

where (ei)
∞
i=1 is an orthonormal basis of H. This definition is independent of

the orthonormal basis of H. In the rest of the paper, we take H = L2(Λ).
In order to ensure the existence and the uniqueness of solution of (1) and for
the purpose of the convergence analysis, we make the following assumptions.

Assumption 1 [Linear operator A] A : D(A) ⊂ H −→ H is a negative
generator of an analytic semigroup S(t) := eAt.

Assumption 2 [Initial value X0] We assume that X0 ∈ Lp(Ω,D((−A)β/2)),
0 ≤ β ≤ 2, p ≥ 2.

As in the current literature on deterministic exponential Rosenbrock-Type
methods [10,11,24,30,31], we make the following assumption on the nonlinear
term.

Assumption 3 [Nonlinear term F ] We assume that the nonlinear map-
ping F : H −→ H is Fréchet differentiable with bounded derivative, i.e. there
exists a constant C > 0 such that

‖F ′(v)‖L(H) ≤ C, ∀ v ∈ H.
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Assumption 3 together with the mean value theorem show that there exists a
constant L > 0 such that

‖F (Y )− F (Z)‖ ≤ L‖Y − Z‖, Y, Z ∈ H. (6)

As a consequence of (6), there exists a positive constant C such that

‖F (Z)‖ ≤ ‖F (0)‖+ ‖F (Z)− F (0)‖
≤ ‖F (0)‖+ L‖Z‖ ≤ C(1 + ‖Z‖), Z ∈ H.

Following [26, Chapter 7] or [15, 20, 23, 41] we make the following assumption
on the diffusion term.

Assumption 4 [Diffusion term ] We assume that the operator B : H −→
L0
2 satisfies the global Lipschitz condition, i.e. there exists a positive constant

C such that

‖B(Y )−B(Z)‖L0
2
≤ C‖Y − Z‖, ∀ Y,Z ∈ H.

As a consequence, there exists a positive constant L > 0 such that

‖B(Z)‖L0
2
≤ ‖B(0)‖L0

2
+ ‖B(Z)−B(0)‖L0

2

≤ ‖B(0)‖L0
2

+ C‖Z‖ ≤ L(1 + ‖Z‖), ∀Z ∈ H.

To establish our L2 strong convergence result when dealing with multiplicative
noise, we will also need the following further assumption on the diffusion term
when β ∈ [1, 2), which was also used in [15,20,21,23].

Assumption 5 We assume that there exist two positive constants c > 0, and
γ ∈ (0, β10 ] small enough such that B(D(−A)γ/2) ⊂ HS(Q1/2(H),D(−A)γ/2)

and ‖(−A)γ/2B(v)‖L0
2
≤ c(1 + ‖(−A)γ/2v‖) for all v ∈ D((−A)γ/2), where β

is the parameter defined in Assumption 2.

Typical examples satisfying Assumption 5 are stochastic reaction diffusion
equations (see [15, Section 4]).

When dealing with additive noise, the strong convergence proof will make
use of the following assumption on the noise.

Assumption 6 We assume that the covariance operator Q : H −→ H satis-
fies the following estimate∥∥∥(−A)

β−1
2 Q

1
2

∥∥∥
L2(H)

<∞, (7)

where β is defined in Assumption 2.

We equip Vα := D((−A)α/2), α ∈ R with the norm ‖v‖α := ‖(−A)α/2v‖, for
all v ∈ H. It is well known that (Vα, ‖.‖α) is a Banach space [8].

To achieve optimal order when dealing with additive noise, we require the
nonlinear function F to satisfy the following further assumption, also used
in [36,38–40].



6 J. D. Mukam, A. Tambue

Assumption 7 We assume that the deterministic mapping F : H −→ H is
twice differentiable and there exists a positive constant C such that

‖F ′′(u)(v1, v2)‖−η ≤ C‖v1‖.‖v2‖, u, v1, v2 ∈ H, for some η ∈ [1, 2). (8)

Let us recall in the following proposition some semigroup properties of the
operator S(t) generated by A 2 that will be useful in the rest of the paper.

Proposition 1 [Smoothing properties of the semigroup] [8] Let α > 0,
δ ≥ 0 and 0 ≤ γ ≤ 1, then there exists a constant C > 0 such that

‖(−A)δS(t)‖L(H) ≤ Ct−δ, t > 0,

‖(−A)−γ(I− S(t))‖L(H) ≤ Ctγ , t ≥ 0,

(−A)δS(t) = S(t)(−A)δ on D((−A)δ),

‖Dl
tS(t)v‖δ ≤ Ct−l−(δ−α)/2‖v‖α, t > 0, v ∈ D((−A)α/2),

where l = 0, 1, and Dl
t =

dl

dtl
.

If δ ≥ γ then D((−A)δ) ⊂ D((−A)γ).

Theorem 8 [Well posedness result] [26, Theorem 7.4]
Let Assumption 1, Assumption 3 and Assumption 4 be satisfied. If X0 is a F0-

measurable H valued random variable, then there exists a unique mild solution
X of problem (1) of the form (3) and satisfying the following

P

[∫ T

0

‖X(s)‖2ds <∞

]
= 1,

and for any p ≥ 2 there exists a constant C = C(p, T ) > 0 such that

sup
t∈[0,T ]

E‖X(t)‖p ≤ C(1 + E‖X0‖p).

Furthermore from [15, Theorem 1] or [23, Theorem 2.6] it holds that for all
γ ∈ [0, 1), for all p ≥ 2 there exists a positive constant C such that(

E‖X(t)‖pγ
)1/p ≤ C (1 + (E‖X0‖pγ)1/p

)
, t ∈ [0, T ]. (9)

2.2 Finite element discretization

In the rest of this paper, to simplify the presentation, we assume that the linear
operator A is of second order. More precisely, we assume that our SPDE (1)
is a second order semilinear parabolic and takes the form

dX(t, x) = [∇ · (D∇X(t, x))− q · ∇X(t, x) + f(x,X(t, x))]dt

+ b(x,X(t, x))dW (t, x), x ∈ Λ, t ∈ [0, T ], (10)

2 The proposition indeed is general and provides some estimates for any semigroup and
its generator.
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where the functions f : Λ × R −→ R and b : Λ × R −→ R are continuously
differentiable with globally bounded derivatives. In the abstract framework
(1), the linear operator A takes the form

Au =

d∑
i,j=1

∂

∂xi

(
Dij(x)

∂u

∂xj

)
−

d∑
i=1

qi(x)
∂u

∂xi
, (11)

D = (Di,j)1≤i,j≤d q = (qi)1≤i≤d . (12)

where Dij ∈ L∞(Λ), qi ∈ L∞(Λ). We assume that there is a positive constant
c1 > 0 such that

d∑
i,j=1

Dij(x)ξiξj ≥ c1|ξ|2, ∀ξ ∈ Rd, x ∈ Ω.

The functions F : H −→ H and B : H −→ HS(Q1/2(H), H) are defined by

(F (v))(x) = f(x, v(x)) and (B(v)u)(x) = b(x, v(x)).u(x), (13)

for all x ∈ Λ, v ∈ H, u ∈ Q1/2(H), with H = L2(Λ). For an appropriate family

of eigenfunctions (ei) such that sup
i∈Nd

[
sup
x∈Λ
‖ei(x)‖

]
< ∞, it is well known [15,

Section 4] that the Nemystskii operator F related to f and the multiplication
operator B associated to b defined in (13) satisfy Assumption 3, Assumption
4 and Assumption 5. As in [6, 23], we introduce two spaces H and V , such
that H ⊂ V ; the two spaces depend on the boundary conditions of Λ and the
domain of the operator A. For Dirichlet (or first-type) boundary conditions
we take

V = H = H1
0 (Λ) = {v ∈ H1(Λ) : v = 0 on ∂Λ}.

For Robin (third-type) boundary conditions and Neumann (second-type) bound-
ary condition, which is a special case of Robin boundary conditions, we take
V = H1(Λ) and

H = {v ∈ H2(Λ) : ∂v/∂vA + α0v = 0, on ∂Λ}, α0 ∈ R,

where ∂v/∂vA is the normal derivative of v and vA is the exterior pointing
normal n = (ni) to the boundary of Λ given by

∂v/∂vA =

d∑
i,j=1

ni(x)Dij(x)
∂v

∂xj
, x ∈ ∂Λ.

Using the Green’s formula and the boundary conditions, the corresponding
bilinear form associated to −A is given by

a(u, v) =

∫
Λ

 d∑
i,j=1

Dij
∂u

∂xi

∂v

∂xj
+

d∑
i=1

qi
∂u

∂xi
v

 dx, u, v ∈ V,
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for Dirichlet and Neumann boundary conditions, and

a(u, v) =

∫
Λ

 d∑
i,j=1

Dij
∂u

∂xi

∂v

∂xj
+

d∑
i=1

qi
∂u

∂xi
v

 dx+

∫
∂Λ

α0uvdx, u, v ∈ V.

for Robin boundary conditions. Using the G̊arding’s inequality ( [33]), it holds
that there exist two positive constants c0 and λ0 such that

a(v, v) ≥ λ0‖v‖2H1(Λ) − c0‖v‖
2, ∀v ∈ V. (14)

By adding and substracting c0Xdt on the right hand side of (1), we have a
new linear operator that we still call A corresponding to the new bilinear form
that we still call a such that the following coercivity property holds

a(v, v) ≥ λ0‖v‖21, v ∈ V. (15)

Note that the expression of the nonlinear term F has changed as we included
the term −c0X in the new nonlinear term that we still denote by F . The
coercivity property (15) implies that A is sectorial on L2(Λ), i.e. there exist
C1, θ ∈ ( 1

2π, π) such that

‖(λI −A)−1‖L(L2(Λ)) ≤
C1

|λ|
, λ ∈ Sθ, (16)

where Sθ :=
{
λ ∈ C : λ = ρeiφ, ρ > 0, 0 ≤ |φ| ≤ θ

}
(see [8]). Then A is the

infinitesimal generator of a bounded analytic semigroup S(t) := etA on L2(Λ)
such that

S(t) := etA =
1

2πi

∫
C
etλ(λI −A)−1dλ, t > 0, (17)

where C denotes a path that surrounds the spectrum of A. The coercivity
property (15) also implies that −A is a positive operator and its fractional
powers are well defined for any α > 0, by (−A)−α = 1

Γ (α)

∫ ∞
0

tα−1etAdt,

(−A)α = ((−A)−α)−1,
(18)

where Γ (α) is the Gamma function (see [8]). Let’s now turn to the discretiza-
tion of our problem (1). We start by splitting the domain Λ in finite triangles.
Let Th be the triangulation with maximal length h satisfying the usual reg-
ularity assumptions, and Vh ⊂ V the space of continuous functions that are
piecewise linear over the triangulation Th. We consider the projection Ph from
H = L2(Λ) to Vh defined for every u ∈ H by

〈Phu, χ〉H = 〈u, χ〉H , ∀χ ∈ Vh. (19)

The discrete operator Ah : Vh −→ Vh is defined by

〈Ahφ, χ〉H = 〈Aφ, χ〉H = −a(φ, χ), ∀φ, χ ∈ Vh, (20)
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Like A, Ah is also a generator of a semigroup Sh(t) := etAh . As any semigroup
and its generator, Ah and Sh(t) satisfy the smoothing properties of Proposition
1 with a uniform constant C, independent of h. Following [4, 6, 22, 36], we
characterize the domain of the operator (−A)k/2, 1 ≤ k ≤ 2 as follow

D((−A)k/2) = H ∩Hk(Λ), (for Dirichlet boundary conditions),

D(−A) = H, D((−A)1/2) = H1(Λ), (for Robin boundary conditions).

The semi-discrete version of problem (1) consists to find Xh(t) ∈ Vh, t ∈ (0, T ]
such that Xh(0) = PhX0 and

dXh(t) = [AhX
h(t) + PhF (Xh(t))]dt+ PhB(Xh(t))dW (t), t ∈ (0, T ].(21)

We note that Ah and PhF satisfy the same assumptions as A and F respec-
tively. We also note that PhB satisfies Assumption 4. Therefore, Theorem 8
ensures the existence of the unique mild solution Xh(t) of (21) such that

‖Xh(t)‖ ≤ C(1 + ‖PhX0‖) ≤ C(1 + ‖X0‖), ∀t ∈ [0, T ]. (22)

The mild solution of (21) can be represented as follows

Xh(t) = Sh(t)Xh(0) +

∫ t

0

Sh(t− s)PhF (Xh(s))ds

+

∫ t

0

Sh(t− s)PhB(Xh(s))dW (s). (23)

The following lemma will be useful in our convergence analysis.

Lemma 1 The following estimate holds

‖(−Ah)αPhv‖ ≤ C‖(−A)αv‖, ∀ 0 ≤ α ≤ 1

2
, ∀ v ∈ D((−A)α).

Proof From the equivalence of norms (see [22, (3.12)]) we have

‖(−Ah)1/2Phv‖ ≤ C‖Phv‖H1(Λ), v ∈ H1(Λ). (24)

Note that

‖Phv‖2H1(Λ) = ‖Phv‖2L2(Λ) +

d∑
i=1

∥∥∥∥∂(Phv)

∂xi

∥∥∥∥2
L2(Λ)

, (25)

where ∂
∂xi

stands for the weak derivative. Let D(Λ) be the set of functions

ϕ ∈ C∞(Λ) with compact support in Λ. Let v ∈ L2(Λ), for all ϕ ∈ D(Λ), we
have 〈

∂(Phv)

∂xi
, ϕ

〉
= −

〈
Phv,

∂ϕ

∂xi

〉
= −

〈
v, P ∗h

∂ϕ

∂xi

〉
, (26)
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where 〈., .〉 is a duality pairing between D′(Λ) and D(Λ), and
∂ϕ

∂xi
is the deriva-

tive of ϕ in the classical sense. From [24, Remark 2.1] we have

P ∗h
∂ϕ

∂xi
=
∂(P ∗hϕ)

∂xi
,

since P ∗h is a linear operator. So from the equality (26) it holds that〈
∂(Phv)

∂xi
, ϕ

〉
= −

〈
v,
∂(P ∗hϕ)

∂xi

〉
=

〈
∂v

∂xi
, P ∗hϕ

〉
=

〈
Ph

∂v

∂xi
, ϕ

〉
. (27)

Since (27) holds for all ϕ ∈ D(Λ), it follows that

∂(Phv)

∂xi
= Ph

∂v

∂xi
in the weak sense. (28)

Inserting this latter relation in (25), using the fact that the projection Ph
is bounded with respect to the norm ‖.‖L2(Λ) and again the equivalence of
norm [22, (3.12)] yields

‖Phv‖2H1(Λ) = ‖Phv‖2L2(Λ) +

d∑
i=1

∥∥∥∥Ph ∂v∂xi
∥∥∥∥2
L2(Λ)

= ‖v‖2L2(Λ) +

d∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2
L2(Λ)

= ‖v‖2H1(Λ) ≤ C‖(−A)1/2v‖. (29)

We therefore have

‖(−Ah)1/2Phv‖ ≤ C‖(−A)1/2v‖. (30)

Note that (30) remains true if we replace 1
2 by 0. By interpolation theory we

have

‖(−Ah)αPhv‖ ≤ C‖(−A)αv‖, ∀ 0 ≤ α ≤ 1

2
, ∀v ∈ D((−A)α). (31)

Let us recall the following well known lemma.

Lemma 2 [Itô isometry] [28, Proposition 2.3.5]
For any t ∈ [0, T ] and for any L0

2-valued predictable process φ(s), s ∈ [0, t] the
following equality holds

E

[∥∥∥∥∫ t

0

φ(s)dW (s)

∥∥∥∥2
]

= E
[∫ t

0

‖φ(s)‖2L0
2
ds

]
.

The following two lemmas provide space and time regularity results of
the mild solution of the semi-discrete problem (21). These lemmas play an
important role in our convergence analysis. More results on the regularity of
the mild solution of problem (1) can be found in [15,21,26].
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Lemma 3 [Space regularity of the mild solution Xh(t)]
Let Assumption 1, Assumption 2, Assumption 3 and Assumption 4 be fulfilled

with β ∈ [0, 1), and p ≥ 2. Then for all t ∈ [0, T ], Xh(t) ∈ Lp(Ω,D((−A)β/2)).
Moreover, there exists a positive constant C independent of h such that

‖(−Ah)β/2Xh(t)‖Lp(Ω,H) ≤ C
(

1 + ‖(−A)β/2X0‖Lp(Ω,H)

)
, t ∈ [0, T ].(32)

Further, when dealing with additive noise (B = I), if Assumption 6 is fulfilled
with β ∈ [0, 2), then for all t ∈ [0, T ] Xh(t) ∈ Lp(Ω,D((−A)β/2)) and (32)
holds for β ∈ [0, 2).

Proof The proof follows the sames lines as that of [23, Lemma 2.6] or [15,
Theorem 1] or [21, Theorem 3.1] by making use of Lemma 1.

Lemma 4 [Time regularity of the mild solution Xh(t)] Let Xh be the
mild solution of (21). If Assumption 1, Assumption 2, Assumption 3 and As-
sumption 4 are fulfilled with the corresponding 0 < β ≤ 2. For 0 < β < 1,
there exists a positive constant C independent of h such that for t1, t2 ∈ [0, T ],
t1 < t2, we have

‖Xh(t2)−Xh(t1)‖Lp(Ω,H) ≤ C(t2 − t1)β/2(1 + ‖(−A)β/2X0‖Lp(Ω,H)). (33)

Moreover, if Assumption 5 is fulfilled with 1 ≤ β ≤ 2, then there exists a
positive constant C such that

‖Xh(t2)−Xh(t1)‖Lp(Ω,H) ≤ C(t2 − t1)1/2(1 + ‖(−A)β/2X0‖Lp(Ω,H)). (34)

For additive noise (B = I), if Assumption 1, Assumption 2, Assumption 3
and Assumption 6 are fulfilled, then the following time regularity holds

‖Xh(t2)−Xh(t1)‖Lp(Ω,H) ≤ C(t2 − t1)min(β,1)/2(1 + ‖(−A)β/2X0‖Lp(Ω,H)).

Proof The proof follows the same lines as that of [23, Lemma 2.7] or [15,
Theorem 1] or [21, Theorem 4.1] by making use of Lemma 1.

2.3 Current stable and efficient schemes for semilinear SPDEs

Recall that the simple efficient standard semi-implicit Euler-Maruyama scheme
for (1) is given by (see e.g. [27])

Zhm+1 = Sh,∆t
[
(I +∆t(1− θ)Ah)Zhm +∆tPhF (Zhm) + PhB(Zhm)∆Wm

]
,(35)

Sh,∆t = (I− θ∆tAh)
−1
, θ ∈ [0, 1]. (36)

The exponential integrators schemes developed in [23,33] are given by

Kh
m+1 = Sh(∆t)

(
Kh
m +∆tPhF (Kh

m) + PhB(Kh
m)∆Wm

)
, (37)
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and

Lhm+1 = Sh(∆t)
(
Lhm + PhB(Lhm)∆Wm

)
+∆tϕ1(∆tAh)PhF (Lhm), (38)

∆Wm := Wtm+1
−Wtm =

√
∆t
∑
i∈N

√
qiRi,mei,

where Ri,m are independent, standard normally distributed random variables
with mean 0 and variance 1, and the function ϕ1 is defined in (50). Note that
all the initial values in all the schemes are taken to be PhX0 and scheme (35)
is more stable for θ ≥ 1/2. If the linear operator A tends to the operator null3,
the corresponding discrete operator Ah tends also to null, Sh(∆t), Sh,∆t and
ϕ1(∆tAh) tend to the identical operator I. Therefore the numerical schemes
(35), (37) and (38) become the unstable explicit Euler-Maruyama scheme.

2.4 Novel fully discrete scheme

Let us build a more stable scheme, robust when the operator A tends to null.
For the time discretization, we consider the one-step method which provides
the numerical approximated solution Xh

m of Xh(tm) at discrete time tm =
m∆t, m = 0, · · · ,M . The method is based on the continuous linearization of
(21). More precisely we linearize (21) at each time step as

dXh(t) = [AhX
h(t) + JhmX

h(t) +Ghm(Xh(t))]dt+ PhB(Xh(t))dW (t),(39)

for all tm ≤ t ≤ tm+1, where Jhm is the Fréchet derivative of PhF at Xh
m and

Ghm is the remainder at Xh
m. Both Jhm and Ghm are random functions and are

defined for all ω ∈ Ω by

Jhm(ω) := (PhF )′(Xh
m(ω)) = PhF

′(Xh
m(ω)), (40)

Ghm(ω)(Xh(t)) := PhF (Xh(t))− Jhm(ω)Xh(t). (41)

Before building the new numerical scheme, let us recall the following important
lemma.

Lemma 5 For all m ∈ N and all ω ∈ Ω, the random linear operator Ah +

Jhm(ω) is the generator of a strongly continuous semigroup Shm(ω)(t) := e(Ah+J
h
m(ω))t

called random (or stochastic) perturbed semigroup and uniformly bounded on
[0, T ], i.e. there exists a positive constant C1 independent of h, m, ∆t and the
sample ω such that∥∥∥e(Ah+Jhm(ω))t

∥∥∥
L(H)

≤ C1, 0 ≤ t ≤ T.

Proof Using the boundedness of Ph and Assumption 3, it holds that

‖Jhm(ω)‖L(H) ≤ ‖F ′(Xh
m(ω))‖L(H) < C, m ∈ N, ω ∈ Ω. (42)

3 Think about for example a multiple of Laplace operator A = α∆, when α→ 0
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Therefore Jhm(ω) is a bounded linear operator. It follows then from [25, The-
orem 1.1, Chapter 3, Page 76] that Ah + Jhm(ω) is a generator of a strongly

continuous semigroup denoted by Shm(ω)(t) = e(Ah+J
h
m(ω))t. Since Ah is a gen-

erator of an analytic semigroup Sh(t) = eAht, there exist two constants K ≥ 0
and C0 ∈ R such that

‖eAh t‖L(H) ≤ KeC0 t, t ≥ 0. (43)

Finally using (42) and (43) it holds by applying again [25, Theorem 1.1, Chap-
ter 3, Page 76]) that∥∥∥e(Ah+Jhm(ω))t

∥∥∥
L(H)

≤ Ke(C0+‖Jhm(ω)‖L(H))t

≤ Ke(C0+C)t ≤ C1, t ∈ [0, T ], (44)

where C1 is a positive constant, independent of h, m, ω and ∆t. This complete
the proof of Lemma 5.

Given the solution Xh(tm) and the numerical solution Xh
m at tm, we obtain

from (39) the following mild representation form of Xh(tm+1)

Xh(tm+1) = e(Ah+J
h
m)∆tXh(tm) +

∫ tm+1

tm

e(Ah+J
h
m)(tm+1−s)Ghm(Xh(s))ds

+

∫ tm+1

tm

e(Ah+J
h
m)(tm+1−s)PhB(Xh(s))dW (s). (45)

We note that (45) is the exact solution of (21) at tm+1. To establish our
numerical method we use the following approximations

Ghm(Xh(tm + s)) ≈ Ghm(Xh
m), (46)

e(Ah+J
h
m)(tm+1−s)PhB(X(s)) ≈ e(Ah+J

h
m)∆tPhB(Xh

m). (47)

Therefore the deterministic integral part of (45) can be approximated as fol-
lows ∫ tm+1

tm

e(Ah+J
h
m)(tm+1−s)Ghm(Xh(s))ds

=

∫ ∆t

0

e(Ah+J
h
m)(∆t−s)Ghm(Xh(tm + s))ds

≈ Ghm(Xh
m)(Ah + Jhm)−1(e(Ah+J

h
m)∆t − I). (48)

Inserting (48) and (47) in (45) and using the approximation Xh(tm) ≈ Xh
m give

the following approximation Xh
m+1 of Xh(tm+1), called Stochastic Exponential

Rosenbrock Scheme (SERS)

Xh
m+1 = e(Ah+J

h
m)∆tXh

m + (Ah + Jhm)−1(e(Ah+J
h
m)∆t − I)Ghm(Xh

m)

+ e(Ah+J
h
m)∆tPhB(Xh

m)(Wtm+1
−Wtm), (49)
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with Xh
0 := Xh(0) = PhX0. The numerical scheme (49) can be rewritten in

the following equivalent form, which is efficient for implementation

Xh
m+1 = Xh

m + PhB(Xh
m)∆Wm

+ ϕ1(∆t(Ah + Jhm))
[
(Ah + Jhm)(Xh

m + PhB(Xh
m)∆Wm) +Ghm(Xh

m)
]
,

where

ϕ1(∆t(Ah + Jhm)) := (Ah + Jhm)−1(e∆t(Ah+J
h
m) − I)

=

∫ ∆t

0

e(∆t−s)(Ah+J
h
m)ds. (50)

Note that the operator ϕ1(∆t(Ah + Jhm(ω))) is uniformly bounded (indepen-
dently of h, m and ω), see e.g. [10, Lemma 2.4].

Remark 1 Note that the corresponding standard stochastic exponential scheme
(38) presented in [23] can be written as

Lhm+1 = Lhm + PhB(Lhm)∆Wm

+ ϕ1(∆tAh)
[
Ah
(
Lhm + PhB(Lhm)∆Wm

)
+ PhF (Lhm)

]
. (51)

This scheme will be called SETD1 and will be used in our numerical simula-
tions for comparison with SERS scheme.

Remark 2 If the deterministic part is also approximated as the diffusion part
(47), we will obtain the following new scheme

Uhm+1 = e(Ah+J
h
m)∆t

[
Uhm + PhB(Uhm)∆Wm +Ghm(Uhm))

]
. (52)

Our main result is also valid for scheme (52) and the extension of our proof
to that scheme is done as in [23] without any issue.

Having the numerical method (49) in hand, our goal is to analyze its strong
convergence toward the exact solution in the root-mean-square L2 sense. In
the following subsection we state our strong convergence results, which are in
fact our main results.

2.5 Main results

Throughout this paper we take tm = m∆t ∈ [0, T ], where T = M∆t for
m,M ∈ N, m ≤ M , T is fixed, C is a generic constant that may change
from one place to another and ε > 0 is a positive constant small enough.
The main results of this paper are formulated in the following theorems. For
multiplicative noise we have the following result.
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Theorem 9 Let X(tm) and Xh
m be respectively the mild solution (3) and the

numerical approximation given by (49) at tm = m∆t. Let Assumption 1, As-
sumption 2 (with 0 < β < 1 and p = 2), Assumption 3 and Assumption 4 be
fulfilled. Then the following error estimate holds

(E‖X(tm)−Xh
m‖2)1/2 ≤ C

(
hβ +∆tβ/2

)
.

Moreover, under a strong regularity of the initial data, that is Assumption 2
(with p = 2) and Assumption 5 are fulfilled with β ∈ [1, 2) and γ = β − 1, the
following error estimate holds

(E‖X(tm)−Xh
m‖2)1/2 ≤ C

(
hβ +∆t1/2

)
.

If β = 2 and Assumption 2 (with p = 2) and Assumption 5 are fulfilled with
γ = 1, then the following error estimate holds

(E‖X(tm)−Xh
m‖2)1/2 ≤ C

(
h2(1 + max(0, ln(tm/h

2))) +∆t1/2
)
.

As in [23, Remark 2.9], strong assumptions on the nonlinear function F
can allow to achieve a spatial error of order O(h2). Note that Assumption 5
in Theorem 9 is key to obtain optimal order of convergence. The following
remark provides the error estimate without Assumption 5.

Remark 3 If Assumption 1, Assumption 2 (with p = 2), Assumption 3 and
Assumption 4 are fulfilled with β ∈ [1, 2], then the following error estimate
holds

(E‖X(tm)−Xh
m‖2)1/2 ≤ C

(
h1−ε +∆t1/2−ε

)
,

where ε is a positive constant small enough.

For additive noise (that is B = I), we have the following result.

Theorem 10 Let X(tm) and Xh
m be respectively the mild solution (3) and

the numerical approximation given by (49) at tm = m∆t. For additive noise,
if Assumption 1, Assumption 2 (with 0 < β < 2 and p = 4), Assumption 3,
Assumption 6 and Assumption 7 are fulfilled, then the following error estimate
holds

(E‖X(tm)−Xh
m‖2)1/2 ≤ C(hβ +∆tβ/2−ε). (53)

Moreover if β = 2, the following error estimate holds

(E‖X(tm)−Xh
m‖2)1/2 ≤ C

(
h2(1 + max(0, ln(tm/h

2))) +∆t1−ε
)
. (54)
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Remark 4 For additive noise, we achieved suboptimal order O(h2−ε +∆t1−ε)
for β = 2, where ε is a positive number, small enough. The suboptimal order
1−ε in time was achieved in [14], where authors imposed a strong regularity on
the drift function (namely [14, Assumption 2]), but with less regular noise. The
recent works in [39, 40] achieved optimal order 1 in time with less restrictive
assumptions than [14, Assumption 2]. Here we have achieved suboptimal order
1 − ε in time with similar assumptions as in [39, 40]. Note that the current
work and the work in [39] use standard Brownian increments, while the works
in [14,40] use the linear functionals of the noise to achieve optimal order with
less regular noise.

Remark 5 Note that the semi-discrete problem (21) can be replaced by the
following semi-discrete problem where the noise is truncated

dXh(t) = [AhX
h(t) + PhF (Xh(t))]dt+ PhB(Xh(t))PhdW (t), t ∈ [0, T ].(55)

It was shown in [19] that in the case of additive noise with smooth covariance
operator kernel, this truncation can be done severely without loosing the spa-
tial accuracy of the finite element method. Applying our stochastic exponential
Rosenbrock scheme to (55) yields

Y hm+1 = e(Ah+J
h
m)∆tY hm + (Ah + Jhm)−1

(
e(Ah+J

h
m)∆t − I

)
Ghm(Y hm)

+ e(Ah+J
h
m)∆tPhB(Y hm)Ph(Wtm+1

−Wtm). (56)

We note that Theorem 9 and Theorem 10 also hold for the numerical scheme
(56). Parts of [36] can be used in the proof.

3 Proof of the main results

Before prove our main results, some preparatory results are needed.

3.1 Preparatory results

Lemma 6 The function Ghm(ω) defined by (41) satisfies the global Lipschitz
condition with a uniform constant, i.e. there exists a positive constant C > 0,
independent of h, m and ω such that

‖Ghm(ω)(uh)−Ghm(ω)(vh)‖ ≤ C‖uh − vh‖, ∀m ∈ N, ∀uh, vh ∈ Vh.

Proof Using Assumption 3 and relations (40)-(41), the proof is straightfor-
ward.

We introduce the Riesz representation operator Rh : V −→ Vh defined by

〈−ARhv, χ〉H = 〈−Av, χ〉H = a(v, χ), ∀v ∈ V, ∀χ ∈ Vh. (57)
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It is well known (see [22, 23]) that A and Ah are related by AhRh = PhA.
Under the regularity assumptions on the triangulation and in view of the V -
ellipticity (15), it is well known (see [6]) that for all r ∈ {1, 2} the following
errors estimates hold

‖Rhv − v‖+ h‖Rhv − v‖H1(Ω) ≤ Chr‖v‖Hr(Ω), v ∈ V ∩Hr(Ω). (58)

Let us consider the following deterministic linear problem : find u ∈ V such
that

du

dt
= Au, u(0) = v, t ∈ (0, T ]. (59)

The corresponding semi-discrete problem in space consists to find uh ∈ Vh
such that

duh
dt

= Ahuh, uh(0) = Phv, t ∈ (0, T ]. (60)

Let us define the following operator

Th(t) := S(t)− Sh(t)Ph = eAt − eAhtPh, (61)

so that u(t)− uh(t) = Th(t)v. The estimate (58) was used in [23] to prove the
key part of the following lemma.

Lemma 7 The following estimate holds

‖Th(t)v‖ ≤ Chrt−(r−α)/2‖v‖α, r ∈ [0, 2], α ≤ r, t ∈ (0, T ]. (62)

Proof The proof of Lemma 7 for r ∈ [1, 2] can be found in [23, Lemma 3.1].
Using the stability property of S(t) and Sh(t), and the fact that the projection
Ph is bounded, it follows that

‖S(t)v − Sh(t)Phv‖ ≤ C‖v‖. (63)

Inequality (63) shows that (62) holds for r = 0. Interpolating between r = 0
and r = 2 completes the proof of Lemma 7.

Lemma 8 Let X(t) and Xh(t) be the mild solutions given respectively by (3)
and (23).

(1) For multiplicative noise, assume that Assumption 1, Assumption 2, As-
sumption 3 and Assumption 4 are fulfilled. Then the following error esti-
mate holds:
(i) For 0 ≤ β < 1

‖X(t)−Xh(t)‖L2(Ω,H) ≤ Chβ , t ∈ (0, T ].

(ii) For 1 ≤ β < 2

‖X(t)−Xh(t)‖L2(Ω,H) ≤ Ch1−ε, t ∈ (0, T ],

where ε is a positive constant small enough.
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(iii) For 1 ≤ β < 2, if moreover Assumption 5 is fulfilled with γ = β− 1, we
have

‖X(t)−Xh(t)‖L2(Ω,H) ≤ Chβ , t ∈ (0, T ].

(iv) For β = 2 and if Assumption 5 is fulfilled with γ = 1, we have

‖X(t)−Xh(t)‖L2(Ω,H) ≤ Ch2(1 + max(0, ln(t/h2))), t ∈ (0, T ].

(2) For additive noise (B = I), if Assumption 1, Assumption 2, Assumption 3
and Assumption 6 are fulfilled, then the following error estimate holds:
(i) For 0 ≤ β < 2

‖X(t)−Xh(t)‖L2(Ω,H) ≤ Chβ . (64)

(ii) For β = 2

‖X(t)−Xh(t)‖L2(Ω,H) ≤ Ch2(1 + max(0, ln(t/h2))), t ∈ (0, T ].

Proof The proof of (1) (i) and (iii) can be found in [36, Theorem 6.1]. The
proof of (1) (ii) is similar to that of [36, Theorem 6.1] using Lemma 7. The
proof of (2) (i) and (ii) can be found in [19, Proposition 3.3].

Lemma 9 Under Assumption 1, for all ω ∈ Ω, the stochastic perturbed semi-
group Shm(ω)(t) satisfies the following stability properties

(i) For γ1, γ2 ≤ 1, such that 0 ≤ γ1 + γ2 ≤ 1, we have

‖(−Ah)−γ1(Shm(ω)(t)− I)(−Ah)−γ2‖L(H) ≤ Ctγ1+γ2 , t ∈ (0, T ].

(ii) For γ1 ≥ 0, we have

‖Shm(ω)(t)(−Ah)γ1‖L(H) ≤ Ct−γ1 , t ∈ (0, T ], γ1 ≥ 0,

(iii) For γ1 ≥ 0 and 0 ≤ γ2 < 1 such that γ2 − γ1 ≥ 0, we have

‖(−Ah)−γ1Shm(ω)(t)(−Ah)γ2‖L(H) ≤ Ctγ1−γ2 , t ∈ (0, T ].

(iv) For γ1, γ2 > 0 such that 0 ≤ γ2− γ1 ≤ 1, then the following estimate holds

‖(−Ah)−γ1(Shm(ω)(t)− I)(−Ah)γ2‖L(H) ≤ Ctγ1−γ2 , t ∈ (0, T ].

where C is a positive constant independent of h, m, ∆t and the sample ω.

Proof We recall that the perturbed semigroup satisfies the following variation
of parameters formula (see [5, Chapter 3, Corollary 1.7] or [25, Section 3.1,
Page 77])

Shm(ω)(t)v = Sh(t)v +

∫ t

0

Sh(t− s)Jhm(ω)Shm(ω)(s)vds, (65)
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for all v ∈ H and all t ≥ 0. Then it follows from (65) that

(Shm(ω)(t)− I)v = (Sh(t)− I)v +

∫ t

0

Sh(t− s)Jhm(ω)Shm(ω)(s)vds. (66)

It is obvious that (−Ah)−γ2v ∈ H for all v ∈ H. Then, replacing v in (66)
by (−Ah)−γ2v and pre-multiplying both right-hand sides of (66) by (−Ah)−γ1

yields

(−Ah)−γ1(Shm(ω)(t)− I)(−Ah)−γ2v

= (Sh(t)− I)(−Ah)−γ2−γ1v (67)

+

∫ t

0

(−Ah)−γ1Sh(t− s)Jhm(ω)Shm(ω)(s)(−Ah)−γ2vds.

Taking the norm in both sides of (67) and using Proposition 1, the fact that
(−Ah)−γ2 and Jhm(ω) are uniformly bounded, it follows that

‖(−Ah)−γ1(Shm(ω)(t)− I)(−Ah)−γ2v‖ ≤ Ctγ2+γ1‖v‖+ C

∫ t

0

‖v‖ds

≤ Ctγ2+γ1‖v‖.

Using the definition of the norm ‖.‖L(H) gives the desired result for (i). To
prove (ii), we replace v by (−A)γ1v in (65) and obtain

Shm(ω)(t)(−Ah)γ1v = Sh(t)(−Ah)γ1v

+

∫ t

0

Sh(t− s)Jhm(ω)Shm(ω)(s)(−Ah)γ1vds, (68)

for all v ∈ H and all t ≥ 0. Taking the norm in both sides of (68) and using
the stability property of Sh(t), Shm(ω)(t) with the uniformly boundedness of
Jhm(ω) gives

‖Shm(ω)(t)(−Ah)γ1v‖ ≤ Ct−γ1‖v‖

+ C

∫ t

0

‖Shm(ω)(s)(−Ah)γ1‖L(H)‖v‖ds. (69)

From (69) it holds that

‖Shm(ω)(t)(−Ah)γ1‖L(H) ≤ Ct−γ1 + C

∫ t

0

‖Shm(ω)(s)(−Ah)γ1‖L(H)ds. (70)

Applying the continuous Gronwall’s lemma to (70) completes the proof of (ii).
To prove (iii), we replace v in (65) by (−Ah)γ2v and pre-multiply both sides
by (−Ah)−γ1 . This yields

(−Ah)−γ1Shm(ω)(t)(−Ah)γ2v = (−Ah)−γ1Sh(t)(−Ah)γ2v (71)

+

∫ t

0

(−Ah)−γ1Sh(t− s)Jhm(ω)Shm(ω)(s)(−Ah)γ2vds.
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Taking the norm in both sides of (71), using the stability properties of Propo-
sition 1, the boundedness of (−Ah)−γ1 , Jhm and applying Lemma 9 (ii), it holds
that

‖(−Ah)−γ1Shm(ω)(t)(−Ah)γ2v‖ ≤ ‖(−Ah)−γ1Sh(t)(−Ah)γ2v‖

+ C

∫ t

0

‖Shm(ω)(s)(−Ah)γ2v‖ds

≤ Ctγ1−γ2‖v‖+ C

∫ t

0

s−γ2ds‖v‖

≤ C(tγ1−γ2 + t1−γ2)‖v‖, (72)

and for t ≤ T , since γ1 ≤ γ2 ≤ 1, t1−γ2 ≤ C(T )tγ1−γ2 . This ends the proof of
(iii). The proof of (iv) is similar to that of (i).

The following lemma is similar to [30, Lemma 4], but its proof is easier
than that of [30, Lemma 4] since we do not use any further lemmas in its
proof.

Lemma 10 Under Assumption 1 and Assumption 3, the perturbed semigroup
Shm(ω) satisfies the following stability property∥∥∥e(Ah+Jhm(ω))∆t · · · e(Ah+J

h
k (ω))∆t(−Ah)ν

∥∥∥
L(H)

≤ Ct−νm+1−k, 0 ≤ ν < 1,

where C is a positive constant independent of m, k, h, ∆t and the sample ω.

Proof As in [24] we set{
Shm,k(ω) := e(Ah+J

h
m(ω))∆t · · · e(Ah+Jhk (ω))∆t, if m ≥ k

Shm,k(ω) := I, if m < k

Using the telescoping sum, we can rewrite the composition of the perturbed
semigroup Shm,k(ω) as follow

Shm,k(ω) = eAh(tm+1−k) + eAh(tm+1−tk+1)
(
e(Ah+J

h
k (ω))∆t − eAh∆t

)
+

m∑
j=k+1

eAh(tm+1−tj+1)
(
e(Ah+J

h
j (ω))∆t − eAh∆t

)
Shj−1,k(ω). (73)

Multiplying both sides of (73) by (−Ah)ν yields

Shm,k(ω)(−Ah)ν

= eAhtm+1−k(−Ah)ν + eAh(tm+1−tk+1)
(
e(Ah+J

h
k (ω))∆t − eAh∆t

)
(−Ah)ν

+

m∑
j=k+1

eAh(tm+1−tj+1)
(
e(Ah+J

h
j (ω))∆t − eAh∆t

)
Shj−1,k(ω)(−Ah)ν . (74)
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Using the variation of parameter formula (65), the fact that the Jacobian, the
semigroup Shm(ω)(t) and Sh(t) are uniformly bounded, we obtain∥∥∥e(Ah+Jhm(ω))∆t − eAh∆t

∥∥∥
L(H)

≤ C∆t (75)

Taking the norm in both sides of (74) and using the stability property of Sh(t)
together with (75) gives∥∥Shm,k(ω)(−Ah)ν

∥∥
L(H)

≤ Ct−νm+1−k +
∥∥∥eAh(tm+1−tk+1)

∥∥∥
L(H)

∥∥∥(e(Ah+Jhk (ω))∆t − eAh∆t) (−Ah)ν
∥∥∥
L(H)

+

m∑
j=k+1

‖eAh(tm+1−tj+1)‖L(H)

∥∥∥e(Ah+Jhm(ω))∆t − eAh∆t
∥∥∥
L(H)

‖Shj−1,k(ω)(−Ah)ν‖L(H)

≤ Ct−νm+1−k + C
∥∥∥(e(Ah+Jhk (ω))∆t − eAh∆t) (−Ah)ν

∥∥∥
L(H)

+ C∆t

m∑
j=k+1

‖Shj−1,k(ω)(−Ah)ν‖L(H). (76)

Rewriting (65) with t = ∆t yields

e(Ah+J
h
m(ω))∆t − eAh∆t =

∫ ∆t

0

eAh(∆t−s)Jhm(ω)e(Ah+J
h
m(ω))sds. (77)

Multiplying both sides of (77) by (−Ah)ν gives(
e(Ah+J

h
m(ω))∆t − eAh∆t

)
(−Ah)ν

=

∫ ∆t

0

eAh(∆t−s)Jhm(ω)e(Ah+J
h
m(ω))s(−Ah)νds. (78)

Taking the norm in both sides of (78), using the stability property of eAht, the
uniform boundedness of Jhm and Lemma 9 (ii) with γ1 = ν gives∥∥∥(e(Ah+Jhm(ω))∆t − eAh∆t

)
(−Ah)ν

∥∥∥
L(H)

≤
∫ ∆t

0

‖eAh(∆t−s)‖L(H)‖Jhm(ω)‖L(H)‖e(Ah+J
h
m(ω))s(−Ah)ν‖L(H)ds

≤ C

∫ ∆t

0

s−νds ≤ C∆t1−ν = Ct−ν1 ∆t. (79)

Substituting (79) in (76) yields

‖Shm,k(ω)(−Ah)ν‖L(H) ≤ Ct−νm+1−k + Ct−ν1 ∆t‖I‖L(H)

+ C∆t

m∑
j=k+1

‖Shj−1,k(ω)(−Ah)ν‖L(H) (80)

Applying the discrete Gronwall’s inequality to (80) completes the proof of
Lemma 10.



22 J. D. Mukam, A. Tambue

Lemma 11 If Assumption 6 is fulfilled, then the following estimate holds∥∥∥(−Ah)
β−1
2 PhQ

1
2

∥∥∥2
L2(H)

< C, (81)

where β is defined in Assumption 2.

Proof The proof when 0 ≤ β ≤ 1 can be found in [36, Proposition 4.1]. To
prove (81) when 1 < β ≤ 2, we use the definition of ‖.‖L2(H), apply Lemma 1

with α = β−1
2 and Assumption 6 to get∥∥∥(−Ah)

β−1
2 PhQ

1
2

∥∥∥2
L2(H)

=

∞∑
i=1

∥∥∥(−Ah)
β−1
2 PhQ

1
2 ei

∥∥∥2
≤ C

∞∑
i=1

∥∥∥(−A)
β−1
2 Q

1
2 ei

∥∥∥2
= C

∥∥∥(−A)
β−1
2 Q

1
2

∥∥∥2
L2(H)

≤ C. (82)

Lemma 12 Under Assumption 3 and Assumption 7, for all ω ∈ Ω, the fol-
lowing estimates hold

‖(Ghk(ω))′(u)v‖ ≤ C‖v‖, u, v ∈ H, k ∈ N, (83)

‖(−Ah)
−η
2 (Ghk(ω))′′(u)(v1, v2)‖ ≤ C‖v1‖.‖v2‖, v1, v2 ∈ H, k ∈ N, (84)

for some η ∈ [1, 2).

Proof The proof follows the same lines as [36, Proposition 4.1]. Indeed since
the Jacobian Jhk (ω) is a linear operator, taking the differential in both sides
of (41) yields

(Ghk(ω))′(u) = PhF
′(u)− Jhk (ω) = PhF

′(u)− PhF ′(Xh
k (ω)), (85)

and therefore

(Ghk(ω))′(u)v = PhF
′(u)v − PhF ′(Xh

k (ω))v, v ∈ H. (86)

Taking the norm in both sides of (86) and using Assumption 3 yields

‖(Ghk(ω))′(u)v‖ ≤ ‖PhF ′(u)v‖+ ‖PhF ′(Xh
k (ω))v‖ ≤ C‖v‖, (87)

which proves (83). Taking the differential at the point u ∈ H in both sides of
(85) yields

(Ghk(ω))′′(v1, v2) = PhF
′′(u)(v1, v2), v1, v2 ∈ H. (88)

Taking the norm in both sides of (88), using [36, (70)] and Assumption 7 yields

‖(−Ah)
−η
2 (Ghk(ω))′′(u)(v1, v2)‖ = ‖(−Ah)

−η
2 PhF

′′(u)(v1, v2)‖

≤ ‖(−A)
−η
2 F ′′(u)(v1, v2)‖

≤ C‖v1‖.‖v2‖. (89)

Gathering our preparatory results, we are now ready to prove our main
result in Theorem 9.
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3.2 Proof of Theorem 9

Using the standard technique in the error analysis, we split the fully discrete
error in two terms

‖X(tm)−Xh
m‖L2(Ω,H) ≤ ‖X(tm)−Xh(tm)‖L2(Ω,H) + ‖Xh(tm)−Xh

m‖L2(Ω,H)

=: err0 + err1.

Note that the space error err0 is estimated by Lemma 8. It remains to estimate
the time error err1. We estimate the time error err1 for both 0 ≤ β < 1 and
1 ≤ β < 2 separately in the following two subsections.

3.2.1 Estimate of the time error for 0 ≤ β < 1

We recall that the exact solution at tm of the semidiscrete problem is given by

Xh(tm) = e(Ah+J
h
m−1)∆tXh(tm−1)

+

∫ tm

tm−1

e(Ah+J
h
m−1)(tm−s)Ghm−1(Xh(s))ds

+

∫ tm

tm−1

e(Ah+J
h
m−1)(tm−s)PhB(Xh(s))dW (s). (90)

We also recall that the numerical solution at tm given by (49) can be rewritten
as

Xh
m = e(Ah+J

h
m−1)∆tXh

m−1

+

∫ tm

tm−1

e(Ah+J
h
m−1)(tm−s)Ghm−1(Xh

m−1)ds

+

∫ tm

tm−1

e(Ah+J
h
m−1)∆tPhB(Xh

m−1)dW (s). (91)

If m = 1 then it follows from (90) and (91) that

‖X(t1)−Xh
1 ‖L2(Ω,H)

≤

∥∥∥∥∥
∫ ∆t

0

e(Ah+J
h
0 )(∆t−s)[Gh0 (Xh(s))−Gh0 (Xh

0 )]ds

∥∥∥∥∥
L2(Ω,H)

+

∥∥∥∥∥
∫ ∆t

0

[
e(Ah+J

h
0 )(∆t−s)PhB(Xh(s))− e(Ah+J

h
0 )∆tPhB(Xh

0 )
]
dW (s)

∥∥∥∥∥
L2(Ω,H)

=: I + II. (92)

Using Lemma 5, Lemma 6, (22) and the fact that Xh
0 = PhX0 we obtain the

following estimate

I ≤ C∆t. (93)
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Using the Itô’s isometry property, triangle inequality, Lemma 5, Assumption
4, (22) and the fact that (a+b)2 ≤ 2a2+2b2 for all a, b ∈ R,

√
u+ v ≤

√
u+
√
v

for all positive real numbers u and v, we obtain the following estimate

II ≤ C∆t1/2. (94)

Inserting (94) and (93) in (92) yields

‖Xh(t1)−Xh
1 ‖L2(Ω,H) ≤ C∆t1/2. (95)

For m ≥ 2, we iterate the mild solution (90) at tm by substituting Xh(tj), j =
1, 2, ..,m− 1 in (90) by their mild forms. We obtain

Xh(tm)

= e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
0 )∆tXh(0) +

∫ tm

tm−1

e(Ah+J
h
m−1)(tm−s)Ghm−1(Xh(s))ds

+

∫ tm

tm−1

e(Ah+J
h
m−1)(tm−s)PhB(Xh(s))dW (s) (96)

+

m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)Ghm−k−2(Xh(s))ds

+

m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)PhB(Xh(s))dW (s).

Similarly, for m ≥ 2, we iterate the numerical solution (91) at tm by substi-
tuting Xh

j , j = 1, 2, ..,m−1 only in the first term of (91) by their expressions.
We obtain

Xh
m

= e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
0 )∆tXh(0) +

∫ tm

tm−1

e(Ah+J
h
m−1)(tm−s)Ghm−1(Xh

m−1)ds

+

∫ tm

tm−1

e(Ah+J
h
m−1)∆tPhB(Xh

m−1)dW (s)

+

m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s) (97)

Ghm−k−2(Xh
m−k−2)ds

+

m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)∆tPhB(Xh

m−k−2)dW (s).

Therefore, it follows from (96) and (97) and the triangle inequality that

1

4
‖Xh(tm)−Xh

m‖2L2(Ω,H) ≤ III + IV + V + V I, (98)

where

III =

∥∥∥∥∥
∫ tm

tm−1

e(Ah+J
h
m−1)(tm−s)

[
Ghm−1(Xh(s))−Ghm−1(Xh

m−1)
]
ds

∥∥∥∥∥
2

L2(Ω,H)

,

IV =

∥∥∥∥∥
∫ tm

tm−1

(
e(Ah+J

h
m−1)(tm−s)PhB(Xh(s))− e(Ah+J

h
m−1)∆tPhB(Xh

m−1)
)
dW (s)

∥∥∥∥∥
2

L2(Ω,H)

,
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V =

∥∥∥∥∥
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(Ghm−k−2(Xh(s))−Ghm−k−2(Xh
m−k−2))ds

∥∥∥2
L2(Ω,H)

,

V I =

∥∥∥∥∥
m−2∑
k=0

∫ tn−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t

(
e(Ah+J

h
m−k−2)(tm−k−1−s)PhB(Xh(s))− e(Ah+J

h
m−k−1)∆tPhB(Xh

m−k−2)
)
dW (s)

∥∥∥2
L2(Ω,H)

.

Using Holder’s inequality, the stability property of Shm(t), Lemma 6, the tri-
angle inequality and the fact that (a+ b)2 ≤ 2a2 + 2b2 yields

III

≤
(∫ tm

tm−1

∥∥∥e(Ah+Jhm−1)(tm−s)(Ghm−1(Xh(s))−Ghm−1(Xh
m−1))

∥∥∥
L2(Ω,H)

ds

)2

≤
(∫ tm

tm−1

(
E
[∥∥∥e(Ah+Jhm−1)(tm−s)

∥∥∥2
L(H)

‖(Ghm−1(Xh(s))−Ghm−1(Xh
m−1))‖2

])1/2

ds

)2

≤ C

(∫ tm

tm−1

(
E‖Ghm−1(Xh(s))−Ghm−1(Xh

m−1)‖2
)1/2

ds

)2

≤ C

(∫ tm

tm−1

(
E‖Xh(s)−Xh

m−1)‖2
)1/2

ds

)2

= C

(∫ tm

tm−1

‖Xh(s)−Xh
m−1)‖L2(Ω,H)ds

)2

≤ C

(∫ tm

tm−1

‖Xh(s)−Xh(tm−1)‖L2(Ω,H)ds

)2

+ C∆t2‖Xh(tm−1)−Xh
m−1‖2L2(Ω,H)

. (99)

Using Lemma 4, it follows from (99) that

III ≤ C

(∫ tm

tm−1

(s− tm−1)β/2ds

)2

+ C∆t2‖Xh(tm−1)−Xh
m−1‖2L2(Ω,H)

≤ C∆t2+β + C∆t2‖Xh(tm−1)−Xh
m−1‖2L2(Ω,H). (100)

Since the estimates of IV and V I are much more complicated, let us estimate
V first. We use inequality (a+ b)2 ≤ 2a2 + 2b2 to split V into two terms. This
yields

V ≤ 2‖
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(Ghm−k−2(Xh(s))−Ghm−k−2(Xh(tm−k−2)))ds‖2L2(Ω,H)

+ 2‖
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(Ghm−k−2(Xh(tm−k−2))−Ghm−k−2(Xh
m−k−2))ds‖2L2(Ω,H)

=: 2V1 + 2V2. (101)
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Using triangle inequality gives

V1 = ‖
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(Ghm−k−2(Xh(s))−Ghm−k−2(Xh(tm−k−2)))ds‖2L2(Ω,H)

≤ m

m−2∑
k=0

‖
∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(Ghm−k−2(Xh(s))−Ghm−k−2(Xh
m−k−2))ds‖2L2(Ω,H)

≤ m

m−2∑
k=0

(∫ tm−k−1

tm−k−2

(
E
[∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t

∥∥∥2
L(H)∥∥∥e(Ah+Jhm−k−2)(tm−k−1−s)

∥∥∥2
L(H)

×
∥∥(Ghm−k−2(Xh(s))−Ghm−k−2(Xh(tm−k−2)))

∥∥2])1/2 ds)2

. (102)

Using Lemma 10 with ν = 0 and Lemma 5 yields

V1 ≤ Cm
m−2∑
k=0

(∫ tm−k−1

tm−k−2

(
E‖Ghm−k−2(Xh(s))−Ghm−k−2(Xh(tm−k−2))‖2

)1/2
ds

)2

.(103)

Using Lemma 6 and Lemma 4, it follows from (103) that

V1 ≤ Cm

m−2∑
k=0

(∫ tm−k−1

tm−k−2

(
E‖Xh(s)−Xh(tm−k−2)‖2

)1/2
ds

)2

= Cm

m−2∑
k=0

(∫ tm−k−1

tm−k−2

‖Xh(s)−Xh(tm−k−2)‖L2(Ω,H)ds

)2

≤ mC

m−2∑
k=0

(∫ tm−k−1

tm−k−2

(s− tm−k−2)β/2ds

)2

≤ C∆tβ . (104)
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Using triangle inequality, Lemma 5, Lemma 10 with ν = 0, Lemma 6 and
Holder’s inequality yields

V2 = ‖
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(Gm−k−2(Xh(tm−k−2))−Gm−k−2(Xh
m−k−2))ds‖2L2(Ω,H)

≤ m

m−2∑
k=0

‖
∫ tm−k−1

tm−k−2

e(Ah+J
h
m−2)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(Gm−k−2(Xh(tm−k−2))−Gm−k−2(Xh
m−k−2))ds‖2L2(Ω,H)

≤ Cm∆t

m−2∑
k=0

∫ tm−k−1

tm−k−2

‖Xh(tm−k−2)−Xh
m−k−2‖2L2(Ω,H)ds

≤ C

m−2∑
k=0

∆t‖Xh(tm−k−2)−Xh
m−k−2‖2L2(Ω,H)

= C∆t
m−2∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H). (105)

Substituting (105) and (104) in (101) yields

V ≤ C∆tβ + C

m−2∑
k=0

∆t‖Xh(tk)−Xh
k ‖2L2(Ω,H). (106)

To estimate V I, we use the triangle inequality to split it in two terms

V I

≤ 2‖
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

[
PhB(Xh(s))− PhB(Xh(tm−k−2))

]
dW (s)‖2L2(Ω,H)

+ 2‖
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t

[e(Ah+J
h
m−k−2)(tm−k−1−s)PhB(Xh(tm−k−2))− e(Ah+J

h
m−k−2)∆tPhB(Xh

m−k−2)]dW (s)‖2L2(Ω,H)

=: 2V I1 + 2V I2. (107)
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Since the expectation of the cross-product vanishes, Using Cauchy-Schwartz
inequality, it follows that

V I1

= E

[
‖
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

[
PhB(Xh(s))− PhB(Xh(tm−k−2))

]
dW (s)‖2

]
=

m−2∑
k=0

E
[
‖e(Ah+J

h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

∫ tm−k−1

tm−k−2

[
PhB(Xh(s))− PhB(Xh(tm−k−2))

]
dW (s)‖2

]

≤
m−2∑
k=0

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

∥∥∥4
L(H)

) 1
2

×

E

∥∥∥∥∥
∫ tm−k−1

tm−k−2

[
PhB(Xh(s))− PhB(Xh(tm−k−2))

]
dW (s)

∥∥∥∥∥
4
 1

2

.

Using the Burkhölder-Davis-Gundy inequality ( [20, Lemma 5.1]), Lemma 10
with ν = 0, Assumption 4 and the fact that Shk (ω) is uniformly bounded
(independently of h, k and the sample ω) yields

V I1 ≤ C

m−2∑
k=0

E

∥∥∥∥∥
∫ tm−k−1

tm−k−2

[
PhB(Xh(s))− PhB(Xh(tm−k−2))

]
dW (s)

∥∥∥∥∥
4
 1

2

≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

E‖PhB(Xh(s))− PhB(Xh(tm−k−2))‖2L0
2
ds

≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

‖Xh(s)−Xh(tm−k−2)‖2L2(Ω,H)ds. (108)

Applying Lemma 4, it follows from (108) that

V I1 ≤ C
m−2∑
k=0

∫ tm−k−1

tm−k−2

(s− tm−k−2)βds ≤ C∆tβ . (109)
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Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we split V I2 in two terms

V I2

= ‖
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t

[
e(Ah+J

h
m−k−2)(tm−k−1−s)

PhB(Xh(tm−k−2))− e(Ah+J
h
m−k−2)∆tPhB(Xh

m−k−2)
]
dW (s)‖2L2(Ω,H)

≤ 2‖
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t

[
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(Xh(tm−k−2))dW (s)‖2L2(Ω,H)

+ 2‖
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)∆t

[
PhB(Xh(tm−k−2))− PhB(Xh

m−k−2)
]
dW (s)‖2L2(Ω,H)

=: 2V I21 + 2V I22. (110)

Since the expectation of the cross-product vanishes, inserting an appropriate
power of Ah and using Cauchy-Schwartz inequality yields

V I21

= E

[
‖
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t

[
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(Xh(tm−k−2))dW (s)‖2

]
=

m−2∑
k=0

E
[
‖e(Ah+J

h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t

∫ tm−k−1

tm−k−2

[
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(Xh(tm−k−2))dW (s)‖2

]

=

m−2∑
k=0

E
[
‖e(Ah+J

h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

β
2

∫ tm−k−1

tm−k−2

(−Ah)−
β
2

[
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(Xh(tm−k−2))dW (s)‖2

]

≤
m−2∑
k=0

(
E‖e(Ah+J

h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

β
2 ‖4L(H)

) 1
2

×
(
E‖
∫ tm−k−1

tm−k−2

(−Ah)−
β
2

[
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(Xh(tm−k−2))dW (s)‖4

) 1
2

.

Using the Burkhölder-Davis-Gundy inequality yields

V I21 (111)

≤
m−2∑
k=0

(
E‖e(Ah+J

h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

β
2 ‖4L(H)

) 1
2

×
∫ tm−k−1

tm−k−2

E‖(−Ah)−
β
2

[
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(Xh(tm−k−2))‖2

L0
2(H)

ds.
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As Shk (t) is a semigroup, we obviously have

Shk (t+ s) = Shk (t)Shk (s), t, s ≥ 0. (112)

Using relation (112), Lemma 9 (i) with γ1 = β
2 and γ2 = 0 and Lemma 10

with ν = β
2 in (111) allows to have

V I21 ≤
m−2∑
k=0

∫ tm−k−1

tm−k−2

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

β
2

∥∥∥4
L(H)

) 1
2

×E
[
‖(−Ah)

−β
2

(
I− Shm−k−2(s− tm−k−2)

)
‖2L(H)‖S

h
m−k−2(tm−k−1 − s)‖2L(H)

× ‖PhB(Xh(tm−k−2))‖2L0
2

]
ds (113)

≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

t−βk+1(s− tm−k−2)β‖Shm−k−2(tm−k−1 − s)‖2L(H) (114)

×‖B(Xh(tm−k−2))‖2L0
2
ds.

Using Assumption 4 and the fact that the random perturbed semigroup Shk
is uniformly bounded independently of k, h and the sample ω, it follows from
(113) that

V I21 ≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

t−βk+1(s− tm−k−2)βds

≤ C∆tβ
m−2∑
k=0

t−βk+1∆t ≤ C∆t
β . (115)

Let us estimate V I22

V I22 :=

∥∥∥∥∥
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)∆t

[
PhB(Xh(tm−k−2))− PhB(Xh

m−k−2)
]
dW (s)

∥∥2
L2(Ω.H)

.

(116)

Following the same lines as in the estimate of V I1, the following estimate holds
for V I22

V I22 ≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

‖Xh(tm−k−2)−Xh
m−k−2‖2L2(Ω,H)ds

≤ C

m−2∑
k=0

∆t‖Xh(tm−k−2)−Xh
m−k−2‖2L2(Ω,H)

= C∆t

m−2∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H). (117)
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Inserting (117) and (115) in (110) gives

V I2 ≤ C∆tβ + C∆t

m−2∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H). (118)

Substituting (109) and (118) in (107) yields

V I ≤ C∆tβ + C∆t

m−2∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H). (119)

Following the same lines as for the estimate of V I, we obtain

IV =

∥∥∥∥∥
∫ tm

tm−1

[
e(Ah+J

h
m−1)(tm−s)PhB(Xh(s))

−e(Ah+J
h
m−1)∆tPhB(Xh

m−1)
]
dW (s)

∥∥∥2
L2(Ω,H)

≤ C∆tβ + C∆t‖Xh(tm−1)−Xh
m−1‖2L2(Ω,H). (120)

Gathering estimates of III, IV , V and V I in (98) yields

‖Xh(tm)−Xh
m‖2L2(Ω,H) ≤ C∆tβ + C∆t

m−1∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H).(121)

Applying the discrete Gronwall lemma to (121) yields

‖Xh(tm)−Xh
m‖L2(Ω,H) ≤ C∆tβ/2. (122)

Using Lemma 8 together with the estimate (122) completes the proof of The-
orem 9 for 0 ≤ β < 1.

3.2.2 Estimate of the time error for 1 ≤ β ≤ 2

Note that the estimates of III and V in Section 3.2.1 hold for β ∈ [1, 2] and
due to the time regularity in Lemma 4, we obtain from (106) and (100)

III + V ≤ C∆t+ C∆t

m−1∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H). (123)

We only need to re-estimate IV and V I. We will only estimate V I in details
since the the estimate of IV is similar to that of V I. Let us recall that using
triangle inequality we obtain

V I ≤ 2V I1 + 2V I2, (124)

where V I1 and V I2 are defined by (107) in Section 3.2.1. Applying Lemma 4,
it follows from (108) that

V I1 ≤ C
m−2∑
k=0

∫ tm−k−1

tm−k−2

(s− tm−k−2)ds ≤ C∆t. (125)
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Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we split V I2 in two terms

V I2 ≤ V I21 + V I22, (126)

where V I21 and V I22 are given by (110) in Subsection 3.2.1. We recall that
from (117) the following estimate holds for V I22

V I22 ≤ C∆t
m−2∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H). (127)

Since the expectation of the cross product vanishing, inserting an appropriate
power of Ah and using Cauchy-Schwartz inequality yields

V I21

= E

∥∥∥∥∥
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t

[
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(Xh(tm−k−2))dW (s)

∥∥∥2
=

m−2∑
k=0

E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t

∫ tm−k−1

tm−k−2

[
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(Xh(tm−k−2))dW (s)

∥∥∥∥∥
2

=

m−2∑
k=0

E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

1−γ
2

∫ tm−k−1

tm−k−2

(−Ah)
−1+γ

2

[
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(Xh(tm−k−2))dW (s)

∥∥∥∥∥
2

≤
m−2∑
k=0

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

1−γ
2

∥∥∥4
L(H)

) 1
2

×

E

∥∥∥∥∥
∫ tm−k−1

tm−k−2

(−Ah)
−1+γ

2

[
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(Xh(tm−k−2))dW (s)

∥∥∥∥∥
4
 1

2

.
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Using Burkhölder-Davis-Gundy inequality and the triangle inequality, we split
V I21 in two parts as

V I21

≤
m−2∑
k=0

∫ tm−k−1

tm−k−2

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

1−γ
2

∥∥∥4
L(H)

) 1
2

×
∫ tm−k−1

tm−k−2

E
∥∥∥(−Ah)

−1+γ
2

[
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(Xh(tm−k−2))

∥∥∥2
L0

2

ds

≤ 2

m−1∑
k=0

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

1−γ
2

∥∥∥4
L(H)

) 1
2

×
∫ tm−k−1

tm−k−2

E
∥∥∥[e(Ah+Jhm−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

] [
PhB(Xh(tm−k−2))− PhB(X(tm−k−2))

]∥∥∥2
L0

2

ds

+ 2

m−2∑
k=0

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

1−γ
2

∥∥∥4
L(H)

) 1
2

×
∫ tm−k−1

tm−k−2

E
∥∥∥[e(Ah+Jhm−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

]
PhB(X(tm−k−2))

∥∥∥2
L0

2

ds

:= 2V I211 + 2V I212. (128)

Using Lemma 5 and Assumption 4 yields

V I211 (129)

≤ C

m−2∑
k=0

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

1−γ
2

∥∥∥4
L(H)

) 1
2

×
∫ tm−k−1

tm−k−2

[∥∥∥(−Ah)
−1+γ

2

(
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

)∥∥∥2
L(H)

‖X(tm−k−2)−Xh(tm−k−2)‖2
]
ds.

Using Lemma 8 and Lemma 10 with ν = 0, we obtain

V I211 ≤ C

m−2∑
k=0

t−1+γk+1

∫ tm−k−1

tm−k−2

E‖X(tm−k−2)−Xh(tm−k−2)‖2ds

≤ Ch2β . (130)

Inserting an appropriated power of −Ah yields the following estimate

V I212

≤
m−2∑
k=0

(
E‖e(Ah+J

h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

1−γ
2 ‖4L(H)

) 1
2

×
∫ tm−k−1

tm−k−2

E
[
‖(−Ah)

−1+γ
2

(
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

)
(−Ah)

−γ
2 ‖2L(H)

× ‖(−Ah)
γ
2 PhB(X(tm−k−2))‖2L0

2

]
ds. (131)
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Using Lemma 10 with ν = 1−γ
2 in (131), we obatin

V I212

≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

t−1+γk+1 E
[
‖(−Ah)

1+γ
2

(
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−2)∆t

)
× (−Ah)

−γ
2 ‖2L(H)‖(−Ah)

γ
2 PhB(X(tm−k−2))‖2L0

2

]
ds

≤ C

m−2∑
k=0

t−1+γk+1

∫ tm−k−1

tm−k−2

E
[∥∥∥(−Ah)

−1+γ
2

[
e(Ah+J

h
m−k−2)(tm−k−1−s)

−e(Ah+J
h
m−k−2)∆t

]
(−Ah)−

γ
2

∥∥∥2
L(H)

‖(−Ah)
γ
2 PhB(X(tm−k−2))‖2L0

2

]
ds.

(132)

Using relation (112), Lemma 9 (i) with γ1 = 1−γ
2 and γ2 = γ

2 yields

V I212 ≤ C

m−2∑
k=0

t−1+γk+1

∫ tm−k−1

tm−k−2

E
[
‖(−Ah)

−1+γ
2 Shm−k−2(tm−k−1 − s)

(Shm−k−2(s− tm−k−2)− I)(−Ah)−
γ
2 ‖2L(H)‖(−Ah)

γ
2 PhB(X(tm−k−2))‖2L0

2

]
ds

≤ C

m−2∑
k=0

(
t−1+γk+1

∫ tm−k−1

tm−k−2

E
[∥∥∥(−Ah)

−1+γ
2 Shm−k−2(tm−k−1 − s)(−Ah)

1−γ
2

∥∥∥2
L(H)

×
∥∥∥(−Ah)

−1+γ
2 (Shm−k−2(s− tm−k−2)− I)(−Ah)−

γ
2

∥∥∥2
L(H)

‖(−Ah)
γ
2 PhB(X(tm−k−2))‖2L0

2

]
ds
)

≤ C

m−2∑
k=0

t−1+γk+1

∫ tm−k−1

tm−k−2

(s− tm−k−2)E‖(−Ah)
γ
2 PhB(X(tm−k−2))‖2L0

2
ds

≤ C∆t2
m−2∑
k=0

t−1+γk+1 E‖(−Ah)
γ
2 PhB(X(tm−k−2))‖2L0

2
. (133)

Using the definition of the L0
2 norm, Assumption 5, Lemma 1, Theorem 1 and

estimate (9), we obtain

E‖(−Ah)
γ
2 PhB(X(tm−k−2))‖2L0

2
= E

[ ∞∑
i=0

‖(−Ah)
γ
2 PhB(X(tm−k−2))Q1/2ei‖2

]

≤ CE

[ ∞∑
i=0

‖(−A)
γ
2B(X(tm−k−2))Q1/2ei‖2

]
= CE‖(−A)

γ
2B(X(tm−k−2)‖2L0

2

≤ CE(1 + ‖(−A)
γ
2X(tm−k−2)‖2)

≤ C(1 + E(‖X0‖2γ)) <∞. (134)
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Substituting (134) in (133) yields

V I212 ≤ C∆t2
m−2∑
k=0

t−1+γk+1 ≤ C∆t. (135)

Inserting (135) and (130) in (128) gives

V I21 ≤ Ch2β + C∆t. (136)

Inserting (136) and (127) in (126) gives

V I2 ≤ Ch2β + C∆t+ C∆t

m−2∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H). (137)

Substituting estimates of V I2 (137) and V I1 (125) in (124) yields

V I ≤ Ch2β + C∆t+ C∆t

m−2∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H). (138)

Following the same lines as for V I, we obtain

IV =

∥∥∥∥∥
∫ tm

tm−1

[
e(Ah+J

h
m−1)(tm−s)PhB(Xh(s))

−e(Ah+J
h
m−1)∆tPhB(Xh

m−1)
]
dW (s)

∥∥∥2
L2(Ω,H)

≤ Ch2β + C∆t+ C∆t‖Xh(tm−1)−Xh
m−1‖2L2(Ω,H). (139)

Substituting (123), (138) and (139) in (98) yields

‖Xh(tm)−Xh
m‖2L2(Ω,H)

≤ Ch2β + C∆t+ C∆t

m−1∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H). (140)

Applying the discrete Gronwall lemma to (140) yields

‖Xh(tm)−Xh
m‖L2(Ω,H) ≤ Chβ + C∆t1/2. (141)

3.3 Proof of Theorem 10

Recall that we only need to estimate the time error since the space error is
estimated in Lemma 8. Recall also that the time error can be recast as follow

1

4
‖Xh(tm)−Xh

m‖2L2(Ω,H) ≤ III + IV + V + V I, (142)



36 J. D. Mukam, A. Tambue

where III and V the same as in Section 3.2.1. The terms involving the noise
IV and V I are in this case given by

IV =

∥∥∥∥∥
∫ tm

tm−1

(
e(Ah+J

h
m−1)(tm−s) − e(Ah+J

h
m−1)∆t

)
PhdW (s)

∥∥∥∥∥
2

L2(Ω,H)

(143)

and

V I =

∥∥∥∥∥
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆t

(
e(Ah+J

h
m−k−2)(tm−k−1−s) − e(Ah+J

h
m−k−1)∆t

)
PhdW (s)

∥∥∥2
L2(Ω,H)

.(144)

Recall that from (100) we have

III ≤ C∆t2 + C∆t2‖Xh(tm−1)−Xh
m−1‖2L2(Ω,H). (145)

It remains to estimate V , IV and V I. Let us recall that from (101) we have

V ≤ 2V1 + 2V2, (146)

where from (105) we have

V2 ≤ C∆t
m−2∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H). (147)

Let us recall that from (101) we have

√
V1 =

∥∥∥∥∥
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

. (Ghm−k−2(Xh(s))−Ghm−k−2(Xh(tm−k−2)))ds
∥∥
L2(Ω,H)

. (148)
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Using the Taylor formula in Banach space yields

√
V1 ≤

∥∥∥∥∥
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

. (Ghm−k−2)′(Xh(tm−k−2))
(
e(Ah+J

h
m−k−2)(s−tm−k−2) − I

)
Xh(tm−k−2)ds

∥∥∥
L2(Ω,H)

+

∥∥∥∥∥
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(Ghm−k−2)′(Xh(tm−k−2))

∫ s

tm−k−2

e(Ah+J
h
m−k−2)(s−σ)Ghm−k−2(Xh(σ))dσds

∥∥∥∥∥
L2(Ω,H)

+

∥∥∥∥∥
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

. (Ghm−k−2)′(Xh(tm−k−2))

∫ s

tm−k−2

e(Ah+J
h
m−k−2)(s−σ)PhdW (σ)ds

∥∥∥∥∥
L2(Ω,H)

+

∥∥∥∥∥
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)RGhm−k−2

∥∥∥∥∥
L2(Ω,H)

:=
√
V11 +

√
V12 +

√
V13 +

√
V14, (149)

where

RGh
m−k−2

:=

∫ 1

0
(Ghm−k−2)′′

(
Xh(tm−k−2) + λ(Xh(s)−Xh(tm−k−2))

)(
Xh(s)−Xh(tm−k−2), Xh(s)−Xh(tm−k−2)

)
(1− λ)dλ.

Using triangle inequality yields

√
V11 ≤

m−2∑
k=0

∫ tm−k−1

tm−k−2

∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J
h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s) (150)

. (Ghm−k−2)′(Xh(tm−k−2))
(
e(Ah+J

h
m−k−2)(s−tm−k−2) − I

)
Xh(tm−k−2)

∥∥∥
L2(Ω,H)

ds

≤
m−2∑
k=0

∫ tm−k−1

tm−k−2

(
E

[∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J
h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

∥∥∥2
L(H)

×
∥∥∥(Ghm−k−2)′(Xh(tm−k−2))

(
e(Ah+J

h
m−k−2)(s−tm−k−2) − I

)
Xh(tm−k−2)

∥∥∥2])1/2

ds.

Using Lemma 10 with ν = 0 and Lemma 9 (ii) with γ1 = 0, it holds that∥∥∥e(Ah+Jhm−1(ω))∆t · · · e(Ah+J
h
m−k−1(ω))∆te(Ah+J

h
m−k−2(ω))(tm−k−1−s)

∥∥∥
L(H)

≤
∥∥∥e(Ah+Jhm−1(ω))∆t · · · e(Ah+J

h
m−k−1(ω))∆t

∥∥∥
L(H)

∥∥∥e(Ah+Jhm−k−2(ω))(tm−k−1−s)
∥∥∥
L(H)

≤ C, (151)
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for all ω ∈ Ω. Substituting (151) in (150), employing Lemma 12, inserting an

appropriate power of −Ah, using Lemma 9 (i) with γ1 = 0 and γ2 = β
2 − ε,

and Lemma 3 yields

√
V11 ≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

∥∥∥(Ghm−k−2)′(Xh(tm−k−2))
(
e(Ah+J

h
m−k−2)(s−tm−k−2) − I

)
Xh(tm−k−2)

∥∥∥
L2(Ω,H)

≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

∥∥∥(e(Ah+Jhm−k−2)(s−tm−k−2) − I
)
Xh(tm−k−2)

∥∥∥
L2(Ω,H)

≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

∥∥∥(e(Ah+Jhm−k−2)(s−tm−k−2) − I
)

(−Ah)−
β
2
+ε(−Ah)

β
2
−εXh(tm−k−2)

∥∥∥
L2(Ω,H)

≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

(s− tm−k−2)
β
2
−ε
∥∥∥(−Ah)

β
2
−εXh(tm−k−2)

∥∥∥
L2(Ω,H)

ds

≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

(s− tm−k−2)
β
2
−εds ≤ C∆t

β
2
−ε. (152)

Using the triangle inequality, Lemma 12, Lemma 6, Lemma 3, Lemma 10 and
Lemma 9, it holds that

√
V12 ≤

m−2∑
k=0

∫ tm−k−1

tm−k−2

∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J
h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(Ghm−k−2)′(Xh(tm−k−2))

∫ s

tm−k−2

e(Ah+J
h
m−k−2)(s−σ)Ghm−k−2(Xh(σ))dσ

∥∥∥∥∥
L2(Ω,H)

ds

≤
m−2∑
k=0

∫ tm−k−1

tm−k−2

(
E
[∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)(tm−k−1−s)

∥∥∥2
L(H)

×
∥∥∥e(Ah+Jhm−k−2)(tm−k−1−s)

∥∥∥2
L(H)

∥∥∥∥∥
∫ s

tm−k−2

e(Ah+J
h
m−k−2)(s−σ)Ghm−k−2(Xh(σ))dσ

∥∥∥∥∥
2

L(H)

1/2

ds

≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

E

[∫ s

tm−k−2

∥∥∥e(Ah+Jhm−k−2)(s−σ)
∥∥∥
L(H)

‖Ghm−k−2(Xh(σ))‖dσ
]21/2

ds

≤ C∆t. (153)
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Since the expectation of the cross-product terms vanishes, Cauchy-Schwartz inequality yields

V13

= E

[∥∥∥∥∥
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(Ghm−k−2)′(Xh(tm−k−2))

∫ s

tm−k−2

e(Ah+J
h
m−k−2)(s−σ)PhdW (σ)ds

∥∥∥∥∥
2


=

m−2∑
k=0

E

[∥∥∥∥∥
∫ tm−k−1

tm−k−2

∫ s

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(Ghm−k−2)′(Xh(tm−k−2))e(Ah+J
h
m−k−2)(s−σ)PhdW (σ)ds

∥∥∥2]

≤ ∆t

m−2∑
k=0

∫ tm−k−1

tm−k−2

E
[∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

∥∥∥2
L(H)

×

∥∥∥∥∥
∫ s

tm−k−2

(Ghm−k−2)′(Xh(tm−k−2))e(Ah+J
h
m−k−2)(s−σ)PhdW (σ)

∥∥∥∥∥
2
 ds.

Using again Cauchy-Schwartz inequality, it follows that

V13

≤ ∆t

m−2∑
k=0

∫ tm−k−1

tm−k−2

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

∥∥∥4
L(H)

) 1
2

×

E

∥∥∥∥∥
∫ s

tm−k−2

(Ghm−k−2)′(Xh(tm−k−2))e(Ah+J
h
m−k−2)(s−σ)PhdW (σ)

∥∥∥∥∥
4
 1

2

ds.

Using the Burkhölder-Davis-Gundy inequality ( [20, Lemma 5.1]), Lemma 10
and Lemma 9, it holds that

V13

≤ C∆t

m−2∑
k=0

∫ tm−k−1

tm−k−2

(∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J
h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

∥∥∥4
L(H)

) 1
2

×
∫ s

tm−k−2

E
∥∥∥(Ghm−k−2)′(Xh(tm−k−2))e(Ah+J

h
m−k−2)(s−σ)PhQ

1
2

∥∥∥2
L2(H)

dσds

≤ C∆t

m−2∑
k=

∫ tm−k−1

tm−k−2

∫ s

tm−k−2

E
[∥∥∥(Ghm−k−2)′(Xh(tm−k−2))e(Ah+J

h
m−k−2)(s−σ)PhQ

1
2

∥∥∥2
L2(H)

]
dσds.

Using Lemma 12, inserting an appropriate power of −Ah, using Lemma 11
Lemma 9 (ii) with γ1 = 0 (if β ≥ 1) and Lemma 9 (ii) with γ1 = 1−β

2 (if
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β ≤ 1) , it holds that

E
[∥∥∥(Ghm−k−2)′(Xh(tm−k−2))e(Ah+J

h
m−k−2)(s−σ)PhQ

1
2

∥∥∥2
L2(H)

]
≤ E

[∥∥∥e(Ah+Jhm−k−2)(s−σ)(−Ah)
1−β
2 (−Ah)

β−1
2 PhQ

1
2

∥∥∥2
L2(H)

]
≤ E

[∥∥∥e(Ah+Jhm−k−2)(s−σ)(−Ah)
1−β
2

∥∥∥2
L(H)

∥∥∥(−Ah)
β−1
2 PhQ

1
2

∥∥∥2
L2(H)

]
≤ C(s− σ)min(−1+β,0). (154)

Substituting (154) in (154) yields

V13 ≤ C∆t

m−2∑
k=0

∫ tm−k−1

tm−k−2

∫ s

tm−k−2

(s− σ)min(−1+β,0)dσds

≤ C∆tmin(1+β,2). (155)

To estimate
√
V14, we note by using Lemma 12 and Lemma 4 that

‖(−Ah)−
η
2RGhm−k−2

‖L2(Ω,H) ≤ C
∥∥‖Xh(s)−Xh(tm−k−2)‖2

∥∥
L2(Ω,H)

≤ C‖Xh(s)−Xh(tm−k−2)‖2L4(Ω,H)

≤ C∆tmin(β,1). (156)

Therefore the following estimate holds for
√
V14√

V14 ≤ C∆tmin(β,1). (157)

Substituting (157), (157), (153) and (152) in (149) yields

V1 ≤ C∆tβ−2ε. (158)

Substituting (158) and (147) in (146) yields

V ≤ C∆tβ−2ε + C∆t

m−1∑
k=0

‖Xh(tk)−Xh
k ‖2L2(Ω,H). (159)

Let us move to the estimate of IV . Applying the Itô-isometry to (143) yields

IV ≤
∫ tm

tm−1

∥∥∥(e(Ah+Jhm−1)(tm−s) − e(Ah+J
h
m−1)∆t

)
PhQ

1
2

∥∥∥2
L2(H)

ds (160)

=

∫ tm

tm−1

∥∥∥e(Ah+Jhm−1)(tm−s)
(
I− e(Ah+J

h
m−1)(s−tm−1)

)
PhQ

1
2

∥∥∥2
L2(H)

ds.
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Inserting (−Ah)
1−β
2 (−Ah)

β−1
2 in (160), using (5) and Lemma 11 yields

IV ≤
∫ tm

tm−1

∥∥∥e(Ah+Jhm−1)(tm−s)
(
I− e(Ah+J

h
m−1)(s−tm−1)

)
(−Ah)

1−β
2

∥∥∥2
L(H)

×
∥∥∥(−Ah)

β−1
2 PhQ

1
2

∥∥∥2
L2(H)

ds

≤ C

∫ tm

tm−1

∥∥∥e(Ah+Jhm−1)(tm−s)
(
I− e(Ah+J

h
m−1)(s−tm−1)

)
(−Ah)

1−β
2

∥∥∥2
L(H)

ds.(161)

Inserting (−Ah)
1−ε
2 (−Ah)

ε−1
2 in (161) and using Lemma 9 (ii) with γ1 = 1−ε

2 ,

Lemma 9 (iv) with γ1 = 1−ε
2 and γ2 = 1−β

2 (or Lemma 9 with γ1 = 1−ε
2 and

γ2 = β−1
2 if β ∈ [1, 2]) yields

IV ≤ C

∫ tm

tm−1

∥∥∥e(Ah+Jhm−1)(tm−s)(−Ah)
1−ε
2

∥∥∥2
L(H)

×
∥∥∥(−Ah)

ε−1
2

(
I− e(Ah+J

h
m−1)(s−tm−1)

)
(−Ah)

1−β
2

∥∥∥2
L(H)

ds

≤ C

∫ tm

tm−1

(tm − s)−1+ε(s− tm−1)β−εds

≤ C∆tβ−ε
∫ tm

tm−1

(tm − s)−1+εds ≤ C∆tβ . (162)

Let us now turn our attention to the estimate of V I. Since the expectation of
the cross-product vanishes, using Cauchy-Schwartz inequality, it follows from
(144) that

V I = E

∥∥∥∥∥
m−2∑
k=0

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−1)∆t · · · e(Ah+J

h
m−k−1)∆te(Ah+J

h
m−k−2)(tm−k−1−s)

(
I− e(Ah+J

h
m−k−2)(s−tm−k−2)

)
PhdW (s)

∥∥∥2
=

m−2∑
k=0

E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t

∫ tm−k−1

tm−k−2

e(Ah+J
h
m−k−2)(tm−k−1−s)

(
I− e(Ah+J

h
m−k−2)(s−tm−k−2)

)
PhdW (s)

∥∥∥∥∥
2

≤
m−2∑
k=0

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

1−ε
2

∥∥∥4
L(H)

) 1
2

×

E

∥∥∥∥∥
∫ tm−k−1

tm−k−2

(−Ah)
−1+ε

2 e(Ah+J
h
m−k−2)(tm−k−1−s)

(
I− e(Ah+J

h
m−k−2)(s−tm−k−2)

)
PhdW (s)

∥∥∥∥∥
4
 1

2

.
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Using the Burkhölder-Davis-Gundy inequality ( [20, Lemma 5.1]), it follows
that

V I (163)

≤ C

m−2∑
k=0

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

1−ε
2

∥∥∥4
L(H)

) 1
2

∫ tm−k−1

tm−k−2

E
∥∥∥(−Ah)

−1+ε
2 e(Ah+J

h
m−k−2)(tm−k−1−s)

(
I− e(Ah+J

h
m−k−2)(s−tm−k−2)

)
PhQ

1
2

∥∥∥2
L2(H)

ds.

Inserting (−Ah)
1−β
2 (−Ah)

β−1
2 in (163), using (5) and Lemma 11 yields

V I (164)

≤ C

m−2∑
k=0

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

1−ε
2

∥∥∥4
L(H)

) 1
2

∫ tm−k−1

tm−k−2

E
∥∥∥(−Ah)

−1+ε
2 e(Ah+J

h
m−k−2)(tm−k−1−s)

(
I− e(Ah+J

h
m−k−2)(s−tm−k−2)

)
(−Ah)

1−β
2

∥∥∥2
L(H)∥∥∥(−Ah)

β−1
2 PhQ

1
2

∥∥∥2
L2(H)

ds

≤ C

m−2∑
k=0

(
E
∥∥∥e(Ah+Jhm−1)∆t · · · e(Ah+J

h
m−k−1)∆t(−Ah)

1−ε
2

∥∥∥4
L(H)

) 1
2

∫ tm−k−1

tm−k−2

E
∥∥∥(−Ah)

−1+ε
2 e(Ah+J

h
m−k−2)(tm−k−1−s)

(
I− e(Ah+J

h
m−k−2)(s−tm−k−2)

)
(−Ah)

1−β
2

∥∥∥2
L(H)

ds.

Using Lemma 10 with ν = 1−ε
2 yields

V I ≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

t−1+εk+1 E
∥∥∥(−Ah)

ε−1
2 e(Ah+J

h
m−k−2)(tm−k−1−s)

(
I− e(Ah+J

h
m−k−2)(s−tm−k−2)

)
(−Ah)

1−β
2

∥∥∥2
L(H)

ds. (165)

Inserting (−Ah)
1−ε
2 (−Ah)

ε−1
2 in (165) and using Lemma 9 (iii) with γ1 = γ2 =

1−ε
2 , Lemma 9 (iv) with γ1 = 1−ε

2 and γ2 = 1−β
2 when 0 ≤ β ≤ 1 and Lemma 9
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(i) with γ1 = 1−ε
2 and γ2 = 1−β

2 when 1 ≤ β ≤ 2 yields

V I ≤ C

m−2∑
k=0

∫ tm−k−1

tm−k−2

t−1+εk+1 E
[∥∥∥(−Ah)

ε−1
2 e(Ah+J

h
m−k−2)(tm−k−1−s)(−Ah)

1−ε
2

∥∥∥2
L(H)

×
∥∥∥(−Ah)

−1+ε
2

(
I− e(Ah+J

h
m−k−2)(s−tm−k−2)

)
(−Ah)

1−β
2

∥∥∥2
L(H)

]
ds

≤ C

m−2∑
k=1

∫ tm−k−1

tm−k−2

t−1+εk (s− tm−k−1)β−εds

≤ C∆tβ−ε
m−2∑
k=1

t−1+εk

∫ tm−k−1

tm−k−2

ds = C∆tβ−ε
m−2∑
k=1

t−1+εk ∆t. (166)

Let us recall the following estimate

m−2∑
k=1

t−1+εk ∆t ≤ C. (167)

Inserting (167) in (166) yields

V I ≤ C∆tβ−ε. (168)

Substituting (168), (162), (159) and (145) in (142) and applying the discrete
Gronwall lemma yields

‖Xh(tm)−Xh
m‖L2(Ω,H) ≤ C∆tβ/2−ε/2 ≤ C∆tβ/2−ε. (169)

This completes the proof of Theorem 10.

4 Numerical simulations

Here we provide three examples to sustain our theoretical results. The first
example has exact solution. The reference solution or ”the exact solution”
used in the errors computation for our second and third example are taken to
be the numerical solution with small time step. In the legends of our graphs,
we use the following notations

1. SERS denotes the strong errors from our SERS scheme.
2. SETD1 denotes the strong errors from the stochastic exponential scheme

[23] given by (51).

The exponential matrix function ϕ1 is computed by Krylov subspace technique
with fixed dimension m = 10 and tolerance tol = 10−6 [9, 33, 35]. Note that
we compute at every time step the action on the exponential matrix function
on a vector and not the whole exponential matrix function. Our code was
implemented in Matlab 8.1. Note that the initial solution is taken to be X0 = 0
throughout our simulations, so optimal convergence order in time will depend
only on the regularity of the noise.
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4.1 Additive noise with exact solution

We first consider the following stochastic reaction diffusion equation with stiff
reaction driven by additive noise in two dimensions with Neumann boundary
conditions

dX(t) = [D∆X(t)− 100X(t)]dt+ dW (t), X(0) = X0, t ∈ [0, T ], (170)

on the domain Λ = [0, L1] × [0, L2], D = 10−1. A simple computation shows

that the eigenfunctions {ei,j}i,j≥0 = {e(1)i ⊗ e
(2)
j }i,j≥0 with the corresponding

eigenvalues {λi,j}i,j≥0 = {(λ(1)i )2 + (λ
(2)
j )2} of −∆ are given by

e
(l)
0 (x) =

√
1

Ll
, e

(l)
i (x) =

√
2

Ll
cos(λ

(l)
i x), λ

(l)
0 = 0, λ

(l)
i =

iπ

Ll
, (171)

where l = 1, 2, x ∈ Λ and i ∈ N. In the abstract form (1) our linear operator
A is taken to be A = D∆ and F (X) = −100X which obviously satisfies
Assumption 3 and Assumption 7. We take L1 = L2 = 1 and the triangulation
T has been constructed from uniform Cartesian grid of sizes ∆x = ∆y =
1/100.

We assume that the covariance operator Q and A have the same eigen-
functions. We take the following values for {qi,j}i+j>0 in the representation
(2)

qi,j =
1

(i2 + j2)β+δ
, 0 ≤ β ≤ 2, and δ > 0 small enough. (172)

We can easily prove that Assumption 6 is fulfilled, since

∑
(i,j)∈N2

λβ−1i,j qi,j < π2
∑

(i,j)∈N2

(
i2 + j2

)−(1+δ)
<∞, 0 ≤ β ≤ 2.

To have trace class noise, it is enough to take β + δ > 1. We take β = 1 and
δ = 0.001. According to Theorem 10, the order of convergence in time should
be close to 0.5. The exact solution of (170) is constructed in [36]. Figure 1
shows the strong convergence of SERS and SETD1 schemes. This figure also
shows that SETD1 is unstable for large time steps. We can observe the good
stability property of the new SERS scheme even for large time steps. We can
also observe that the two schemes have the same order of accuracy. Indeed
although SETD1 seems to be more accurate, the two graphs become very
close for small time step. The orders of convergence of the two methods are
0.4971 and 0.4980 for SERS and SETD1 schemes respectively, which are very
close to theoretical results. Note that we only use the stable part of the data
in the computation of the order of convergence of SETD1 scheme.
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Fig. 1 Strong convergence of SERS and SETD1 scheme, we can also observe that SETD1
is unstable for large time steps. The orders of convergence of the two methods are 0.4971
and 0.4980 for SERS and SETD1 schemes respectively. The noise regularity parameter used
is β = 1 and 50 samples are used in the errors computation.

4.2 Additive noise without exact solution and with locally Lipschitz
nonlinear function

We consider here the following stochastic reaction diffusion equation driven
by additive noise in two dimensions with Neumann boundary conditions

dX(t) = [D∆X(t) +X(t)−X(t)3]dt+ dW (t), X(0) = X0, (173)

on the domain Λ = [0, L1] × [0, L2], D = 10−2 and t ∈ [0, T ]. We take L1 =
L2 = 1 and the triangulation T has been constructed from uniform Cartesian
grid of sizes ∆x = ∆y = 1/100. The reference solution or ”the exact solution”
using in the errors computation is the numerical solution with the time step
∆t = 1/2048. The goal of this example is to prove that our novel scheme can
be stable and convergent for more complicated nonlinear function F (X) =
X − X3. Although the existence and the uniqueness of the solution of (173)
is well known [16, 26], the well-posedness of the numerical solution with our
novel scheme is not yet understood since the nonlinear function is only locally
Lipschitz [16, 26]. In our simulation, the noise’s representation (172) is used
with β = 1.2 and δ = 0.001. The orders of convergence of the two methods are
0.65 and 0.62 for SERS and SETD1 schemes respectively. If our convergence
theorem (Theorem 10) was also valid for locally Lipschitz nonlinear function
F , our convergence orders should be then close to the expected order 0.6. We
can also observe that the two schemes have the same order of accuracy. Indeed
although SETD1 seems to be more accurate, the two graphs become very close
for small time step. We can also observe the good stability property of the new
SERS scheme even for large time step.
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Fig. 2 Strong convergence of SERS and SETD1 scheme can be observed for nonlinear
function F (X) = X −X3. The orders of convergence of the two methods are 0.65 and 0.52
for SERS and SETD1 schemes respectively. The noise regularity parameter used is β = 1.2
and 50 samples are used in the errors computation.

4.3 Multiplicative noise without exact solution

As a more challenging example, we consider the stochastic advection-diffusion-
reaction SPDE with multiplicative noise in two dimensions on the domain
Λ = [0, 1]× [0, 1].

dX =

[
∇ · (D∇X)−∇ · (qX)− 10X

X + 1

]
dt+XdW. (174)

D =

(
10−2 0

0 10−3

)
(175)

with mixed Neumann-Dirichlet boundary conditions. The Dirichlet boundary
condition is X = 1 at x = 0 and we use the homogeneous Neumann bound-
ary conditions elsewhere. The Darcy velocity q is obtained as in [23] and to
deal with high Péclet flows we discretize in space using finite volume method
(viewed as the finite element method as in [34]) in rectangular grid of sizes
∆x = ∆y = 1/110. The reference solution or ”the exact solution” using in the
errors computation is the numerical solution with the time step ∆t = 1/2048.
Relatively small time steps are used to stabilize the scheme SETD1. The noise
used is the same as in the first example with (172) and β = 1 and δ = 0.001,
corresponding to trace class noise. Our linear operator A is given by

A = ∇ ·D∇(.)−∇ · q(.). (176)

and the functions f and b are given by

f(x, u) =
−10u

u+ 1
, b(x, u) = u, ∀x ∈ Λ, u ∈ R. (177)
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Therefore, from [15, Section 4] it follows that the operators F and B defined
by (13) fulfil obviously Assumption 3 and Assumption 4.

Fig. 3 Strong convergence of SERS and SETD1 scheme can be observed. The orders of
convergence of the two methods are 0.5367 and 0.5337 for SERS and SETD1 schemes re-
spectively. The noise regularity parameter used are β = 1 and δ = 0.001. Note that 50
samples have been used in the errors computation.

Figure 3 shows the strong convergence of SERS scheme and SETD1 scheme
presented in [23]. We can also observe that the two schemes have the same order
of accuracy. Indeed although SERS seems to be more accurate, the difference
between the two errors is small. The orders of convergence of the two methods
are 0.5367 and 0.5337 for SERS and SETD1 schemes respectively, which are
very close to 0.5 (from the theoretical results in Theorem 9).

5 Concluding remark

In this work, we have analyzed the strong convergence of the exponential
Rosenbrock-Euler method for a semilinear parabolic SPDE. The method is
based on a continuous linearization of the problem at each time step. The lin-
earisation technique consists of adding the Jacobian of the nonlinear function
to a linear operator while the nonlinear function is replaced by its reminder.
The linear operator is assumed to be a generator of an analytic semigroup.
By [5, Theorem 2.10, Page 176, Chapter 3] there exists a constant a > 0 such
that A + L generates an analytic semigroup for every A-bounded operator L
having A-bound a0 < a (see [5, Definition 2.1, Page 169, Chapter 3]). As the
nonlinear function F is assumed to be Fréchet differentiable with bounded
derivative in our analysis, we can weaken that hypothesis on F by replacing
Assumption 3 by the following weaker assumption.
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Assumption 11 The nonlinear function F : H −→ H is assumed to be
Fréchet differentiable with derivative relatively A-bounded with A-bound a0 <
a, i.e there exist constants a0 ∈ [0, a) and b ≥ 0 such that

‖F ′(u)v‖ ≤ a0‖Av‖+ b‖v‖, u ∈ H, v ∈ D(A). (178)

Under Assumption 11, for all ω ∈ Ω, Ah + Jhm(ω) generates an analytic semi-

group Shm(ω)(t) := e(Ah+J
h
m(ω))t (see [5, Theorem 2.10, page 176, Chapter 3])

and therefore the numerical scheme (49) is well posed. Under Assumption 11,
the convergence analysis of the numerical method (49) is not straightforward.
This is due to the presence of the linear operator A in the right hand side
of (178), which may produce some irregularities. This will be our interest for
future work. Further investigations will be done also for locally Lipschitz non-
linear function F .
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15. Jentzen, A., Röckner, M.: Regularity analysis for stochastic partial differential equations
with nonlinear multiplicative trace class noise. J. Diff. Equat. 252(1), 114-136 (2012)

16. Jentzen, A.: Pathwise Numerical approximations of SPDEs with additive noise under
non-global Lipschitz coefficients. Potential Analysis, 31(4), 375–404 (2009)

17. Kloeden, P. E., Lord, G. J., Neuenkirch, A., Shardlow, T.: The exponential integrator
scheme for stochastic partial differential equations : Pathwise errors bounds J. Comput.
Appl. Math. 235(5), 1245-1260 (2011)

18. Kloeden, P. E., Platen, E.: Numerical solution of stochastic Differential equations.
Springer, Berlin (1992)
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