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Abstract

Low-rank structures play important role in recent advances of many problems in image science
and data science. As a natural extension of low-rank structures for data with nonlinear structures,
the concept of the low-dimensional manifold structure has been considered in many data processing
problems. Inspired by this concept, we consider a manifold based low-rank regularization as a linear
approximation of manifold dimension. This regularization is less restricted than the global low-rank
regularization, and thus enjoy more flexibility to handle data with nonlinear structures. As appli-
cations, we demonstrate the proposed regularization to classical inverse problems in image sciences
and data sciences including image inpainting, image super-resolution, X-ray computer tomography
(CT) image reconstruction and semi-supervised learning. We conduct intensive numerical experi-
ments in several image restoration problems and a semi-supervised learning problem of classifying
handwritten digits using the MINST data. Our numerical tests demonstrate the effectiveness of the
proposed methods and illustrate that the new regularization methods produce outstanding results by
comparing with many existing methods.

1 Introduction

Regularization methods play important roles in many ill-posed inverse problems arising in science and
engineering. Examples include inverse problems considered in signal processing and image sciences such
as image denoising, image impainting, image deconvolution [13, 1], just to name a few. Mathematically,
a image restoration problem can be viewed as reconstructing a clean image f from a degraded image g
based on the degradation relationship D(f) = g. It is challenging to reconstruct f from g as the problem
is usually ill-posed due to the highly underdetermined constraints and possible noise. Observations of
natural image with prior information such as piecewise smoothness, shape edges, textures, repetitive
patterns and sparse representations under certain transformations make regularization methods quite
effective to handle image processing problems. Successful methods include the total variation (TV)
methods, nonlocal methods and wavelet tight frame methods [40, 4, 22, 19] and many others. Moreover,
regularization methods can also be considered in problems arising from data science. A typical example is
semi-supervised learning, where tasks aim at labeling data from a small amount of labeled training data
set. Regularization methods such as the harmonic extension method [47] have been considered to this
type of ill-posed problem. In this paper, we consider a different regularization, called manifold based low-
rank (MLR) regularization as a linearization of manifold dimension, which generalizes the global low-rank
prior knowledge for linear objects to manifold-region-based locally low-rank for nonlinear objects.

The idea of the MLR proposed in this paper is inspired by a recent method called the low-dimensional
manifold model (LDMM) discussed in [36]. Using the image patches discussed in nonlocal methods [4, 37],
the LDMM interprets image patches as a point cloud sampled in a low-dimensional manifold embedded
in a high dimensional ambient space, which provides a new way of regularization by minimizing the di-
mension of the corresponding image patch manifold. This can be explained as a natural extension of the
idea of low-rank regularization for linear objects to data with more complicated structures. Moreover,
the authors in [36] elegantly find that the point-wisely defined manifold dimension can be computed as a
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Figure 1: Left: A clean Barbara image and the corresponding patch manifold. Right: The point-wise
rank function Rank(RM,x) of the patch manifold with patch size 11 × 11.

Dirichlet energy of the coordinate functions on the manifold, whose corresponding boundary value prob-
lem can be further solved by a point integral method proposed in [34]. The LDMM performs very well
in image inpainting and super-resolution. This model is later considered in collaborative ranking prob-
lems [31]. Based on weighted graph laplacian (WGL), an improvement of LDMM called LDMM+WGL
is proposed more recently in [42].

In this paper, instead of representing the manifold dimension as a manifold-derivative involved quan-
tity [36], we propose a linear approximation of the manifold dimension. Note that the quantity of the
dimension at each point x ∈ M is the same as the dimension of the tangent space at x. This quantity
only depends on a local neighborhood of x on M, which can be approximated as the rank of the co-
variance matrix generated by the set of K-nearest-neighbourhood (KNN) points of x on M⊂ Rn in the
discretized sense. In other words, the low-dimensional property of M at x can be linearly approximated
as the low-rank property of the this corresponding covariance matrix, which is essentially the same as the
low-rank property of the matrix RM,x formed by those KNN points near x. As an example illustrated
in Figure 1, we construct a patch manifold of the Barbara image using patch size 11× 11. This leads to
a set of image patches represented as a point clouds in R121. The rank of RM,x for the Barbara image
is color-coded in the right image of Figure 1, which clearly illustrates that Rank(RM,x) has low value
for this natural image. As a linear approximation of the DimM(x) proposed in [36], the manifold based
quantity Rank(RM,x) does not involve with any manifold differential operators, which has potential to
apply this concept to more general data processing problem such as a preliminary example demonstrate
in section 3. On the other hand, this consideration is reasonable as the globally defined “Rank” can only
handle linear objects, while this manifold based locally defined Rank has advantages to regularize data
with nonlinear structures.

Based on the MLR prior knowledge, we use the matrix nuclear norm relaxation for matrix rank as the
method considered in low-rank matrix completion theory [9] and apply MLR to the image patch manifold
for image restoration problems including image inpainting, image super-resolution and X-ray computer
tomography (CT) image reconstruction. It is clear the definition MLR relies on the construction of KNN
which is essentially dependent on the manifold structure. Therefore, a split-Bregman method [26] is
considered to solve the proposed model by iteratively updating the manifold structure and the objective
image. Moreover, we also apply the proposed regularization for a semi-supervised learning problem,
where MLR is applied to a labeling matrix with a fixed manifold structure provided by the input data.
Our numerical results tested for a benchmark data set of handwritten digits illustrate the effectiveness
of the proposed method.

The rest part of this paper is organized as follows. In Section 2, we discuss our manifold based low-rank
regularization for the image restoration problems including image inpainting, image super-resolution and
X-ray CT image reconstruction. Detailed models and numerical algorithms for various image processing
problems are discussed. In Section 3, we consider the manifold based low-rank model to a semi-supervised
learning problem. Intensive numerical experiments and comparisons with existing methods are conducted
in Section 4. We conclude our work in Section 5.
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2 Manifold based low-rank regularization for image restoration

In this section, we consider the MLR method for image restoration problems including image in-
painting, image super-resolution and X-ray CT image reconstruction. The idea of MLR is applied to
a image patch manifold with a fixed patch size similar as the way proposed in [36]. We further relax
the problem of matrix rank minimization as a problem of matrix nuclear norm optimization and solve
the proposed optimization problem based on the split Bregman iteration [26] and the singular value
thresholding algorithm [6].

The classical image restoration models mainly focus on local properties of the objective image such
as smoothes and jumps. Image features can be further enhanced due to its possible repetitive patterns
non-locally. The nonlocal based image restoration methods [4, 15, 22] extract and match non-local
repetitive structures of images using image patches. Given a discrete image f ∈ Rm×n defined on a
domain I = {1, 2, . . . ,m} × {1, 2, . . . , n}, a size τ = 2η + 1 patch transform P can be defined by:

P : Rm×n → Rτ
2×mn

f 7→ P(f), P(f)(s, x) = f̃(x+ s), s ∈P, x ∈ I ,
(1)

where x is the center of each patch, P = {−η,−η + 1, . . . , 0, 1, . . . , η − 1, η}2 represents the patch index
set and f̃ ∈ R(m+2η)×(n+2η) is a proper extension (symmetric extension in this paper) of f such that
f̃(x) = f(x),∀x ∈ I . An essential observation of nonlocal methods is that images can be restored by
enhancing similar patterns which may not lie in nearby regions of I domain. Therefore, comparing with
the direct regularization methods on the image domain of f , the quality of image restoration can be
usually improved using nonlocal methods. For instance, nonlocal based variational methods [4, 22, 46]
and nonlocal based wavelet frame based methods [38] demonstrate outstanding image restoration results.

Given a patch matrix P(f), one can regard each patch P(f)(·, x) as a τ2 dimensional column vector.

Consequently, P(f) can be viewed as a set of points in Rτ2

. To conduct further analysis of this point

cloud, we model P(f) as a set of points sampled on a manifold M∈ Rτ2

. Thereafter, we also abuse the
notation x as the corresponding point P(f)(·, x) on M. This manifold interpretation has been proposed
in existing work [37, 36]. More recently, [36] proposes a low dimensional manifold model (LDMM) for
image restoration. This work observes that the dimension of patch manifold M should intrinsically
have a low-dimensional structure and proposes to regularize the dimension of the patch manifold M
for image restoration. Moreover, the authors elegantly show that the dimension function Dim(M)
at x ∈ M can be represented by DimM(x) =

∑
1≤s≤τ2 ‖∇M(P(f)(s, ·))(x)‖22, which transforms the

dimension regularization problem to be a variational partial differential equation model that is proposed
to solve using a point integral method discussed in [34]. Later on, [31] generalized the LDMM model into
matrix completions with better performance than traditional low-rank regularized model in completing
the Netflix matrix [2] which does not have exactly global low rank.

2.1 Manifold based low-rank regularization for the patch manifold

Inspired by the regularization of the manifold dimension represented as a manifold derivative involved
quantity [36], we propose a linear approximation of the manifold dimension in the following way. Note
that the quantity of dimension at each point x ∈ M is the same as the dimension of the tangent space
TxM at x which only relies on a local neighborhood of x on M. In the discrete sense of M sampled
as the patch matrix P(f), the quantity dim(TxM) can be approximated as the rank of the covariance
matrix generated by the set of K-nearest-neighbourhood (KNN) points of x in P(f). In other words,
the low-dimensional property of M at x can be linearly approximated as the low-rank property of the
corresponding covariance matrix, which is essentially the same as the low-rank property of the matrix
formed by those KNN points near x. More precisely, if we define the restriction operator RM,x as the
KNN points near x, then the low-dimensional prior knowledge of the patch manifold M at x can be
linearly approximated as the low-rank prior knowledge of the matrix formed by points in RM,x denoted
as RM,x(P(f)). Namely, we define the manifold based rank at x as RankM(x) = Rank(RM,x(P(f))).

For image restoration problems, if the fidelity information is D(f) = g as a constraint where D is
a degradation operator, by regularizing RankM(x) for all the point x, we consider the following the

3



manifold based low-rank regularization for image restoration:

min
M⊂Rτ2 ,f

∑
x∈I

Rank(RM,x(P(f)), s.t. P(f) ⊂M, D(f) = g, (2)

On the one hand, the minimization of the rank, or the `0 norm of the singular value, is NP hard to
be optimized generally. Therefore, `1 norm of the singular value, or the nuclear norm of the localized
matrix, is an appropriate way to relax the local rank as the pioneer work of low-rank matrix completion
theory developed in [9]. The minimization of nuclear norm can be solved by applying the singular value
thresholding (SVT) algorithm [6]. On the other hand, we observe that it is necessary to smoothen the
images, or enhance the features and textures in practice. Therefore, one can apply some positive/negative
diffusion based regularization [24] to f to guarantee the smoothness of the object image. For example,
we choose the diffusion term as the non-local gradient operator defined in (3).

(∇Mf)(x, y) := (f(y)− f(x))
√
ω(x, y), x, y ∈ I . (3)

Therefore, a MLR image restoration model can be stated as:

min
M⊂Rτ2 ,f

∑
x∈I

‖RM,x(P(f))‖∗ +
λ

2
‖∇Mf‖22, s.t. P(f) ⊂M, D(f) = g, (4)

when λ > 0 the regularization term λ
2 ‖∇Mf‖

2
2 represents a diffusion term which can smoothen the

regions. When λ < 0, the regularization represents inverse diffusion which can enhance the patterns
[24, 23, 5]. Otherwise, λ = 0 leads the model (4) identical to model (2) as a pure MLR regularized image
restoration model.

We remark that a close related work [20] imposed the low-rank regularization in a non-local transform
domain of images, which is applicable to recover images from missing Fourier coefficients. In particular,
to improve the robustness of the algorithm, the low-rank regularization is considered to the grouped
“similar patches”, which can be regarded as a type of “locally low-rank regularization” although [20] did
not explicitly view the “low-rank” in manifold sense. In addition, this method considers to group patches
without sufficient overlapping, thus it only includes a rough sampling on the patch manifold which may
not be able to accurately reflect the low-dimensional structure of the patch manifold.

2.2 MLR for image inpainting

Image inpainting [3] is a process to restore images whose pixels are missing, over-written or corrupted.
More precisely, the inpainting problem aims at reconstructing an image f only based on its partial
information on a given set Ω ⊂ I . Such ill-posed problem is generally based on some assumptions
such that the object image f is piecewise smooth, or has repetitive textures. With these assumptions,
regularization inpainting methods, such as variational PDE based models [12, 41, 43], wavelet based
models [14, 10, 7, 8, 17] and low dimensional manifold model [36] have been proposed.

We would like to demonstrate that MLR model can restore images and preserve both the piecewise
smooth regions and textures from a small random portion of information. As a special case of (4), the
low-rank regularized image inpainting model can be stated as:

min
f, M⊂Rτ2

∑
x∈I

‖RM,x(P(f))‖∗ +
λ

2
‖∇Mf‖22, s.t. P(f) ⊂M, f |Ω = h|Ω. (5)

In particular, if the index set Ω is picked as {1, s + 1, 2s + 1, . . .} × {1, s + 1, 2s + 1, . . .}, the problem
is called sub-sampled super-resolution problem. As the nuclear norm in the first term of the above
problem depends on the manifold structure, we consider to solve this problem by alternatively updating
the manifold M and solving f similar as the method considered in [36]. The outline of solving (5) can
be stated as follows:

fk+1 = arg minf
∑
x∈I ‖RMk,x(P(f)‖∗ + λ

2 ‖∇
k
Mf‖22,

s.t. P(f) ⊂Mk, f |Ω = h|Ω,
Mk+1 = P (fk+1).

(6)
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To solve fk+1 from the first step in (6) with a fixed manifold structureMk, we use the split Bregman iter-

ation [26]. After introducing an auxiliary variable α = P(f) ∈ Rτ2×mn, this problem can be reinterpreted
as:

min
f,α

∑
x∈I

‖RMk,xα‖∗ +
λ

2
‖∇Mkf‖22, s.t. P(f) = α, f |Ω = h|Ω. (7)

Since each column of α may occur multiply times in different ‖RMk,xα‖∗, it is difficult to simultaneously
optimize several nuclear norms together. Therefore, denote the image size as m× n, patch size as τ × τ ,
and the KNN size K, we introduce the duplicate operator Q : Rτ2×mn → RKτ2×mn can be defined as:

Q(α) = {Qx(α) = RMk,xα, x ∈ I } (8)

Then, we denoteQx(α) = βx,∀x ∈ I such that ‖(RMk,x)α‖∗ = ‖βx‖∗. As a result,
∑
x∈I ‖(RMk,x)α‖∗ =∑

x∈I ‖βx‖∗ becomes a separable formula. Thus, Step 1 in (6) can be reinterpreted as:

min
f,{βx}

∑
x∈I

‖βx‖∗ +
λ

2
‖∇Mkf‖22, s.t. Qx(P(f)) = βx, f |Ω = h|Ω. (9)

Therefore, the above the equality constraint Qx(P(f)) = βx can be solved by considering the following
saddle point problem using a augmented Lagrangian formula with the dual variable {Dx}:

min
f,{βx}

max
{Dx}

∑
x∈I

‖βx‖∗ +
λ

2
‖∇Mkf‖22 +

∑
x∈I

µ

2
‖Qx(P(f))− βx +Dx‖22,

s.t. f |Ω = h|Ω.
(10)

where µ is the parameter to control the augmented Lagrangian. Similar to the one-step iterative method
in the alternating direction method of multipliers (ADMM) and split Bregman iteration [25, 26], The
optimization problem (10) can be iteratively solved as:

βl+1
x = arg min

βx
‖βx‖∗ +

µ

2
‖βx −Qx(P(f l))−Dl

x‖22, ∀x ∈ I ,

f l+1 = arg min
f

λ

2
‖∇Mkf‖22 +

∑
x∈I

µ

2
‖Qx(P(f))− βl+1

x +Dl
x‖22, s.t. f |Ω = h|Ω,

Dl+1
x = Dl

x + (Qx(P(f l+1))− βl+1
x ), ∀x ∈ I .

(11)

The first sub-optimization problem has a closed-form solution provided by the singular value thresh-
olding [6]. Namely,

βl+1
x = T1/µ(Qx(P(f l)) +Dl

x). (12)

where for any matrix X with a singular value decomposition X = USV , the singular value thresholding
operator T is provided as

Tt(X) = UST V, ST = max(S − t, 0). (13)

Next, we solve f l+1 in (11), The solution of the linear constrained minimization problem satisfies the
following Dirichlet boundary value problem:

(
−λ∆Mk +

∑
x∈I

µP>Q>xQxP
)
f = µP>

( ∑
x∈I

Q>x (βl+1
x −Dl

x)

)
.

f |Ω = h|Ω.
(14)

In (14), since the duplication operators {Qx} have only one non-zero element in each row, we have
that for all x, (Q>xQx)ij =

∑
p(Q>x )ip(Qx)pj =

∑
p(Qx)pi(Qx)pj which is always 0 if i 6= j. There-

fore,
∑
x∈I

Q>xQx = WQ becomes a diagonal weight matrix. Similarly, the patch manifold transform

operator P also has only one non-zero element in each row. After left multiplied by a diagonal ma-

trix,

( ∑
x∈I

Q>xQx
)
P = WQP is still a matrix with only one non-zero element in each row. Therefore,
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∑
x∈I

P>Q>xQxP = W is a diagonal weight matrix for the input image whose entries is the occurrence of

each pixel in all local regions of patch manifold {βx}. We can consequently rewrite (14) as:(−λ∆Mk + µW ) (f) = µP>
( ∑
x∈I

Q>x (βl+1
x −Dl

x)

)
,

f |Ω = h|Ω,
(15)

Denote the left hand side of the linear system as A = −λ∆Mk + µW , plugging the boundary condition
fΩ = hΩ into the first equation, we can solve f l+1 restricted in Ωc as follows:

f l+1|Ωc = (A|Ωc)−1(µP>(
∑
x∈I

Q>x (βl+1
x −Dl

x)−A|Ωh|Ω). (16)

Therefore, combining (6), (11), (12) and (16), we can solve the MLR based image inpainting model
(5) as Algorithm 1. Note that the max number of inner iterations can be chosen as 1 to reduce the
computational time.

Algorithm 1 MLR based image inpainting (5)

Step 0. Using random value to inpaint an initialization of f0 such that f0|Ω = h|Ω and corresponding
M0 and RM0,x by calculating the KNN of P(f0), set k = 0.
while not converge do

Step 1.0. With a fixedMk, set the initial value of fk+1,0 such that fk+1,0|Ω = h|Ω and calculate the
KNN to generate the localize operator RMk,x, discretized Laplacian operator ∆Mk , and duplicate
operator Q, set {βk+1,0

x } = {Qx(P(fk+1,0))} and l = 0. Define A = −λ∆Mk + µ
∑
x∈I

P>Q>xQxP.

while not converge do
Step 1.1. βk+1,l+1

x = T1/µ(Qx(Pfk+1,l) +Dk+1,l
x ),∀x ∈ I ,

Step 1.2. fk+1,l+1|Ωc = (A|Ωc)−1(µP>(
∑
x∈I

Q>x (βk+1,l+1
x −Dk+1,l

x )−A|Ωh|Ω),

Step 1.3. fk+1,l+1 = fk+1,l+1|ΩcχΩc + hχΩ,
Step 1.4. Dk+1,l+1

x = Dk+1,l
x + (Qx(P(fk+1,l+1))− βk+1,l+1

x ),∀x ∈ I ,
end while
Step 1.5. Take fk+1 = fk+1,l+1,
Step 2. Mk+1 = P(fk+1).

end while

2.3 MLR for X-ray CT reconstruction

As a special case of image restoration, medical imaging plays important role in different clinical ap-
plications. Here, we consider an application of our method to X-ray Computed Tomography (CT), which
aims at reconstructing images from their Radon transform. Mathematically, the X-ray CT reconstruction
problem can be essentially represented as a linear inverse problem: Af = g, where A ∈ Rm×n is a mea-
surement matrix representing the collection of discrete line integrations with different projection angles
and along different beamlets, f ∈ Rn is vectorized 2 dimensional image and g ∈ Rm is the corresponding
measurement. Given the geometry matrix A and g, the task of X-ray CT reconstruction is to find an ap-
propriate value of f [39, 28]. In literature, there are some classical methods available, such as the filtered
back projection (FBP) type methods [21, 16, 35, 33], the algebraic reconstruction techniques (ART) [27].
In practice, however, to minimize the radiation dose by reducing the number of projection angles and
beamlets, the amount of measurement m becomes much less than the dimension of the object image n,
which makes the reconstruction becoming an under-determined problem with infinitely many solutions.
As a result, previously mentioned FBP and ART methods usually suffer from artifacts because of the
insufficient measurements. Regularization methods such as TV based medical imaging models [30] and
wavelet regularization based medical imaging models [29, 18] makes it possible to reconstruct piecewise
smooth or piecewise constant object images. However, it is still a big challenge to preserve tiny features
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due to possible over-smoothing, which motivate us to propose a MLR CT imaging model to preserve both
smooth pieces and tiny features. This model is a special case of (4) with linear degradation operator
D = A and λ = 0 as follows:

min
f,M⊂Rτ2

∑
x∈I

‖RM,x(P(f))‖∗, s.t. P(f) ⊂M, Af = g. (17)

Note that this model is also applicable for average filter based super resolution problem, Fourier domain
inpainting problem, and image deconvolution problems.

To solve (17), similar as (10), after defining the duplication operator {Qx} and localized patch manifold
{βx}, by splitting the linear constraints Qx(P(f)) = βx,∀x ∈ I and Af = g, we obtain the saddle point
problem of model (17) using the augmented Lagrangian:

min
f,β

max
{D1,x},D2

∑
x∈I

‖βx‖∗ +
µ1

2

∑
x∈I

‖Qx(P(f))− βx +D1,x‖22 +
µ2

2
‖Af − g +D2‖22. (18)

Similar as Algorithm 1, applying the ADMM we can design algorithm 2 for solving CT reconstruction
model (17).

Algorithm 2 MLR based CT imaging (17)

Step 0. Using random value to inpaint an initialization of f0 and corresponding M0 and RM0,x by
calculating the KNN of P(f0), set k = 0.
while not converge do

Step 1.0. With a fixedMk, set the initial value of f0 and calculate the KNN to generate the localize
operator RMk,x, discretized Laplacian operator ∆Mk , and duplicate operator Q, set β0 = Q(P(f0))
and l = 0.
while not converge do
Step 1.1. βk+1,l+1

x = T1/µ(Qx(Pfk+1,l) +Dk+1,l
1,x ),∀x ∈ I ,

Step 1.2. f l+1 = (µ1W + µ2A>A)−1(µ1P>(
∑
x∈I Q>x (βl+1

x +Dl
1,x)) + µ2A>(g −Dl

2)),

Step 1.3. Dk+1,l+1
1,x = Dk+1,l

1,x + (Qx(P(fk+1,l+1))− βk+1,l+1
x ),∀x ∈ I ,

Step 1.4. Dl+1
2 = Dl

2 + (Af l+1 − g).
end while
Step 1.5. Take fk+1 = fk+1,l+1,
Step 2. Mk+1 = P(fk+1),

end while
where W =

∑
x∈I P>Q>QP is a diagonal weight matrix.

3 Semi-supervised learning using MLR

As another advantage of the proposed MLR, this idea can be adapted to handle various data processing
problem. Here, we propose the extension of this approach to a semi-supervised learning problem. Many
other potential applications in data science will be investigated in our future work.

Semi-supervised learning is a learning paradigm aiming at labeling data from a small amount of
labeled training data set [48]. Mathematically speaking, given a data set P = {x1, x2, . . . , xn} ⊂ Rd, the
semi-supervised learning problem is to find a label function L : P → {0, 1, 2, . . . , l} representing the label
index of the each xi with given prior knowledge of L in a labeled subset set S ⊂ P . The challenge of a
semi-supervised learning problem is to estimate an accurate assignment of L based on a vey small portion
information L(S). The general idea of semi-supervised learning is to explore the manifold structure of the
data based on an assumption that similar unlabeled samples should be assigned the same classification.
Based on this, diffusion based models [47, 44, 43] has been considered to tackle this problem. In this
section, we would like to formulate a different way of estimating L from highly insufficient labeled samples
based on the MLR method.
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Similar as notations discussed in [47, 44, 43], to solve the semi-supervised learning problem, we define
the cluster functions {φi(x)} which is partially assigned from the training data S.

φi(x) =

{
1, L(x) = i.

0, otherwise.
, x ∈ S, i = 0, 1, 2, . . . , l.

By viewing φi(x) a column vector with length n, we obtain a cluster matrix Φ = (φ0, · · · , φl) ∈ Rn×(l+1).
Therefore, if we can estimate all the components of Φ, or all {φi(x)}, the value of all unknown L(x) for
x ∈ P\S can be estimated by:

L(x) = arg max
i

φi(x), ∀x ∈ P\S.

Assume the point matrix P is sampled on a manifoldM and define the local restriction operator RM,x

as the restriction of a matrix to x-th point and its K-nearest neighbourhood (KNN). Then by definition of
Φ and φi(x), the rank of RM,xΦ equals to the number of different labels occurred in the KNN. Based on
the assumption that similar data samples or nearby points should have similar classification, localization
of Φ should only include a few different labels, i.e., RM,xΦ has low-rank structure although Φ might be
a full-rank matrix. As an example, we consider the public available MINST data set [32] which includes
70, 000 handwritten digits images. We simply view each image as a point in Rd and pick the KNNs of
each point (image) in terms of Euclidean distance. Left image in Figure 2 shows that majority part of
{RM,xΦ} has low-rank structure from the ground truth of cluster matrix Φ. Interestingly, right image in
Figure 2 shows that the 20-nearest neighborhood of the first image, in which two digits 5 and 3 appear
because of their similar distribution in terms of Euclidean distance. Therefore, the rank of RM,1Φ equals
to 2.

Figure 2: Left Image: The histogram of Rank(RM,xΦ) from ground truth of images and labels. Right
Image: The 20-nearest neighborhood of the first point.

Based on the observation that RM,xΦ has low-rank structure, the corresponding MLR model for
cluster matrix estimation can be stated as follows:

min
Φ

∑
x∈I

‖(RM,x)Φ‖∗, s.t. P ⊂M, Φ(x, i)|x∈S =

{
1, L(x) = i.

0, otherwise.
(19)

Different from the previous image restoration models, the geometric of manifold M is only determined
by information from the data set P which is fixed and irrelevant to the evolution of Φ. Correspondingly,
with fixed localization of Φ, the model (19) is convex and can be solved via standard ADMM. Since it is
difficult to simultaneously minimize all the restrictions of Φ, similar as the image restoration cases, we
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define a duplication operator Q = {Qx}x such that QxΦ = RM,xΦ = ψx and ‖RM,xΦ‖∗ = ‖ψx‖∗. With
the auxiliary variables {ψx} and linear constraint QxΦ = ψx, we introduce a group of dual variables
{Dx} and obtain the following saddle point problem with the augmented Lagrangian:

min
Φ,{ψx}

max
{Dx}

∑
x

(
‖ψx‖∗ +

µ

2
‖ψx −Qx(Φ)−Dx‖22

)
s.t. Φ(x, i)|x∈S =

{
1, L(x) = i.

0, otherwise.

(20)

Similar as the image restoration case, with the definition of the duplication operator Q, because
Q>Q =

∑
xQ>xQx = WQ which is a diagonal matrix, we can define the left inverse operator as Q̃ =

W−1
Q Q> such that Q̃Q = I. Standard ADMM brings the outline of the iteration as follows:

ψk+1
x = arg minψx ‖ψx‖∗ + µ

2 ‖ψx −Qx(Φk)−Dk
x‖22,∀x ∈ P,

Φk+1 = arg minΦ

∑
x
µ
2 ‖ψ

k+1
x −Qx(Φ)−Dk

x‖22, s.t. Φ(x, i)|x∈S =

{
1, L(x) = i.

0, otherwise.

Dk+1
x = Dk

x +Qx(Φk+1)− ψk+1
x ,∀x ∈ P.

(21)

In (21), the first step can be solved by singular value thresholding operator defined in (13) as

ψk+1
x = T1/µ(Qx(Φk) − Dk

x). The equality constraint Φ(x, i)|x∈S =

{
1, L(x) = i.

0, otherwise.
in the sec-

ond step is an orthogonal projection operator. Therefore, Φk+1 = Φ̃k+1χSc + Φ0χS , where Φ̃k+1 =
(
∑
xQ>xQx)−1(

∑
xQ>x (ψk+1

x −Dk
x)) = W−1

Q
∑
xQ>x (ψk+1

x −Dl
x)) = Q̃({ψk+1

x −Dk
x}x). Then the itera-

tion can be re-sketched as: 
ψk+1
x = T1/µ(Qx(Φk)−Dl

x),∀x ∈ P,
Φk+1 = Q̃({ψk+1

x −Dk
x}x)χSc + Φ0χS ,

Dk+1
x = Dk

x +Qx(Φk+1)− ψk+1
x ,∀x ∈ P.

(22)

Given an appropriate initialization and sufficient iterations, we obtain the solution of Φ and the
corresponding columns φi(x). Therefore, the index set L(x) for x /∈ S can be estimated by L(x) =
maxi∈{0,1,2,...,l} φi(x), x /∈ S, which completes the full estimation of L(x).

It is clear that a better initial guess of Φ0 can further improve the index completion result. Therefore,
we propose to recursively update the initial guess Φ0 based on the result from (22), the ultimate algorithm
for semi-supervised learning can be summarized in Algorithm 3.

Algorithm 3 MLR based semi-supervised learning algorithm

Step 0. From given point set P , generate the manifold M. With a fixed M, calculate the KNN
to generate the localize operator RM,x. Define the duplicate operator Q such that Q(Φ) = Ψ =
{(RM,x)Φ} with Qx(Φ) = ψx = (RM,x)Φ. Obtain an initial guess of label function L0(x) by simply
search each unlabeled point’s nearest labeled neighborhood and duplicate the label, set k = 0.
while not converge do

Step 1. Set the initial value of Φk+1,0 by Φk+1,0(x, i) =

{
1, Lk(x) = i.

0, otherwise.
, Set the auxiliary

variables {ψk+1,0
x } = 0 and the dual variable {Dk+1,0

x } = 0,∀x, set l = 0.
Step 2. Iterating as in (22) to solve a solution of Φk+1 for model (19).
Step 3. Updating Lk+1(x) = arg maxi φ

k+1
i (x).

end while

4 Numerical Experiments

In this section, we conduct numerical experiments for the proposed MLR models to various image
restoration problems, X-ray CT imaging and semi-supervised learning. Our results validate that the
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proposed method can successfully reduce the reconstruction error and preserve both edges and repetitive
patterns. For all image restoration results, besides the visual quality, we also quantitatively evaluate the
results of image restoration using the peak signal-to-noise ratios (PSNR) value:

PSNR(f, f̃) = 10 log10

MN(fmax − fmin)2

‖f − f̃‖22
,

with the ground truth image f̃ , where fmax and fmin are its maximal and minimal pixel values respectively
and M , N are the size of the image. All the numerical simulations are implemented by MATLAB in a
PC with 32GB RAM and 2.7 GHz CPUs.

4.1 Image inpainting and super-resolution

In the first experiment, we test Algorithm 1 to inpaint images from random missing pixels, in which the
index set Ω is uniformly randomly chosen with fixed rate. Figure 3 shows the restoration results of Barbara
image from same 10% random available pixels using different methods. It can be seen that the traditional
wavelet based method [7], the classical harmonic extension method and TV based method [11] cannot
preserve the textures in this low rate of available information because given information in the texture
part is recognized as some noise in these two restored images. Both purely manifold based low-rank model
and the LDMM method [36] have much better estimation and preservation of the textures, while the low-
rank regularization of the patch manifold may generate some artifacts which breaks some smooth regions.
The proposed method include both manifold based low-rank and inverse diffusion (λ = −20 for image
inpainting) can enhance the recovered image to obtain a better texture and smooth region representation.
Our method provides comparable results with the most recent proposed LDMM + Weighted graph
laplacian (LDMM+WGL) method [42].

Due to non-convexity of the model, we also numerically verify the convergence of the algorithm 1. For
the numerical simulations shown as above, the convergence curves of the object function

∑
x∈I ‖βx‖∗ +

λ
2 ‖∇Mkf‖22 and the relative error of linear constraints

∑
x∈I ‖Qx(P(f)) − βx‖2 are shown in Figure 4,

which validate that for the proposed Algorithm 1, the object function converges to a stable value and the
relative error of linear constraint converges to zero.

We further test the proposed model for different level of available information and conduct comparisons
with the LDMM method. Figure 5 shows other Barbara image inpainting results from 5%, 20% and 40%
random available information. In the case of using 5% available information, the MLR model produces
a qualitatively and quantitatively better result than the one obtained from LDMM. However, the image
from LDMM+WGL method has the highest PSNR, although it qualitatively produces more artifacts
near the mouth region. In the case of using 10% available information, although the proposed MLR
model produces an image with the highest PSNR value, it is hard visually distinct results from MLR
and LDMM+WGL. Thus, MLR and LDMM+WGL are comparable and better than LDMM in this case.
MLR and LDMM+WGL methods produce similar high quality results when the sampling rate increases
to 20% available information although this rate of information may also be quite challenging to other
existing methods. All three methods produces very good results with 40% information. Moreover, we
also apply the proposed image inpainting model to other images to test the capability of the MLR for
handling texture and carton parts. For images with more textures such as the fingerprint image, the
baboon image and the boat image, Figure 6 shows that the proposed MLR method can still preserve
more features. In particular, at the bottom part of the fingerprint image highlighted by the red box,
the LDMM method generates some vertical artifacts while the MLR method produce more accurate
estimation. The LDMM+WGL method successfully improves the inpainting results from the LDMM
method, but some vertical artifacts still remain. For the boat image in Figure 6, we observe that the
proposed MLR method can restore more isolated line structures on the top of the boat as highlighted by
red boxes while the LDMM method tends to remove the thin lines. The LDMM+WGL method produces
a comparable result with the one from MLR method. For the baboon image, since the texture is too tiny
and not repeated frequently, all methods do not provide a result with clear skin and beard structure.
The LDMM+WGL method seems to enlarge the artifacts in this case. On the other hand, for images
with less textures such as the peppers image, Figure 6 shows that the proposed method can reduce the
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Ground Truth Incomp. image (5.90 dB) Harmonic Ext. (22.46 dB)

Wavelet (22.83 dB) TV (21.97 dB) MLR (λ = 0, 22.47 dB)

LDMM (23.73 dB) LDMM+WGL (25.84 dB) MLR (λ = −20, 26.09 dB)

Figure 3: Image inpainting results of 256 × 256 Barbara image from 10% random available pixels using
different methods.
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Figure 4: Convergence curve of Algorithm 1 for Barbara image inpainting from 10% random sampled
pixels. Left: logarithm of object function

∑
x∈I ‖βx‖∗ + λ

2 ‖∇Mkf‖22. Right: logarithm of the relative
error between {Qx(P(f))} and {βx}.

Incomplete image LDMM LDMM+WGL MLR method

5.66dB 21.73dB 23.22 dB 22.17dB

6.41dB 28.11dB 28.82dB 29.17dB

7.16dB 32.02dB 32.06 dB 32.05dB

Figure 5: Image inpainting for 256×256 Barbara image. From top to bottom shows the image inpainting
results from 5%, 20% and 40% random available pixels.
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possibility of generating artifacts which should not exist. For example, at the center of the green pepper
(highlighted by the red box), and at the center of the camera support (highlighted by the red box), the
artifacts from the LDMM method and the LDMM+WGL method break the smooth regions while the
proposed MLR method preserves the smooth parts because the smooth regions also include repetitive
patterns and formulate the low-rank structure.

Additionally, we also implement the MLR method for image inpainting from manual scratches. Figure
7 shows that compared to the wavelet based image inpainting model [7], the proposed model has much
better quality of recovering the fingerprint structure in terms of both the visualization and the PSNR
value. Moreover, for the second row with wider scratches, the proposed MLR model has better estimation
of the fingerprint pattern other than simply smoothen the scratched regions.

In the second experiment, we show the results of super-resolution. In [36], the authors conduct
the super resolution as a special type of image inpainting problem with highly coherent fixed index set
Ω = {1, s + 1, 2s + 1, . . .} × {1, s + 1, 2s + 1, . . .}. Using the same model and algorithm as the image
inpainting problem, the results of this super-resolution problem from sub-sampled pixel are shown as
follows in 8. It can be seen that the super-resolution result is better than results from traditional bi-cubic
interpolation and comparable to results from the LDMM method and the LDMM+WGL method.

As another case of super resolution, the problem is assumed as image restoration from filtered low
resolution version of images. Define an average operator A, the input low resolution image fL = A(f),
which provide a linear constraint fidelity condition and similar as the medical imaging model (17). Using
the formula (18) and applying Algorithm 2, the super resolution results from 4 × 4 and 8 × 8 average
filtered low resolution images are shown in Figure 9. The proposed MLR method produces more detailed
information and sharper images than bi-cubic interpolation and LDMM in [36].

4.2 X-ray CT Reconstruction

It is quite challenging to reconstruct satisfactory image for the X-ray CT problem with a small amount
of radiation dose. In this section, we apply the model (18) and Algorithm 2 to the fan-beam projection
measurement of images with reduced number of projection views. We consider the CT imaging for a
human chest slice (See Figure 10) from the data of ”Low Dose CT Grand Challenge” provided by Dr.
Cynthia McCollough, the Mayo Clinic, the American Association of Physicists in Medicine, and supported
by grants EB017095 and EB017185 from the National Institute of Biomedical Imaging and Bioengineering.
Regarding to the linear fidelity Af = g, the ground truth image and the object image f has resolution
256× 256 and the Radon transform measurement g in this section always includes 512 projection lines in

each projection view. Therefore, #PROJ projection views represents the measurements has Card(g)
Card(f) =

#PROJ×512
2562 = #PROJ

128 portion of the object function. The huge sparse geometric matrix A is generated
by Siddon’s method [45] as pre-process.

For CT imaging from 15, 30 and 60 views, the CT reconstruction results from the proposed MLR
method are shown in Figure 10. It can be seen that the proposed model performs better than the wavelet
based method [18] in term of both the visual quality and the PSNR value. For wavelet based method,
stronger regularization as in Figure 10 would remove the small features since they would be recognized as
artifacts or noise, while weaker regularization cannot remove the artifacts caused by insufficient projection
angles. In particular, in the case with 15 projections, the wavelet based method cannot recover the main
vessels at the right side while our method still produce very good results. Moreover, for 60 projections,
the zoom-in part shows that the proposed model can successfully reconstruct these tiny features, which
is important for futher clinical diagnosis and therapy.

Additionally, to further illustrate the effectiveness of the MLR method for CT image reconstruction,
we test our method by applying the geometric matrix to a natural image. Figure 11 show that for inverse
Radon transform of natural image with apparent textures from all 15, 20 and 30 projection views, the
proposed method has even greater advantage comparing to the wavelet based CT reconstruction method
since the traditional wavelet based method cannot distinguish the texture from the artifacts caused by
the low-dose projection.
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Figure 6: Image inpainting for different images from 10% available pixels. From top to bottom: Ground
truth, incomplete images, results from LDMM [36], results from LDMM+WGL [42], results from MRL,
respectively.
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Incomplete image Wavelet model [7] MLR method

12.73dB 24.91dB 29.97dB

9.97dB 21.24dB 25.74dB

Figure 7: Image inpainting for Fingerprint image corrupted by two different type of scratches and texts.
The bottom images of each row include two zoom-in regions highlighted by red boxes.
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Bi-Cubic interp. LDMM LDMM+WGL MLR method

21.06dB 21.64dB 21.32dB 21.87dB

19.08dB 20.21dB 20.31dB 20.47dB

Figure 8: Super resolution from image subsampling. From top to bottom shows the image super resolution
results for down sample rate 4×4 and 8×8. From left to right shows the result from Bi-cubic interpolation,
low-dimension manifold based method and the proposed MLR method.

4.3 Semi-supervised Learning

Our final experiment is conducted to test the proposed MLR method for handwritten digits recognition
based on the MINST data which is initially provided and processed in [32], as shown in Figure 12, including
totally 70, 000 different 28×28 “handwritten digits” images. As a special case of semi-supervised learning
problem, we regard each image as a 784 dimensional vector, and view all the images as a set of 70, 000
points in R784. Therefore, the vectorized images can formulate a point matrix P ∈ R784×70000. The labels
{L(x)} can possibly take the value from 0, 1, 2, . . . , 9.

For initial purpose of MINST data, the given indices set S has size 60, 000 and one need to estimate
the rest 10, 000 index with lowest error. Recently, the full 70, 000 indices set can be roughly reconstructed
from 50 − 100 given indices and some diffusion based methods. For example, [47] proposed an initial
graph Laplacian based method. Later on, [43] proposed a weighted graph Laplacian method, from which
the inpainting accuracy can exceed 80% from merely 70 of given indices.

In this experiment, we apply the MLR based Algorithm 3 to this semi-supervised learning problem. In
particular, we attempt to reconstruct all the 70, 000 labels of the MINST data [32] from uniformly random
sampled 35, 50, 70, 100, and 700 labels. For each sampling rate, we take 10 different random samples
for comparisons. Figure 13 shows the success rate of label estimation by graph Laplacian (GL) [47],
weighted graph Laplacian (WGL) [43], and the proposed manifold based locally low-rank approximation
based model (MLR). The first five images in Figure 13 shows the success rate for each individual random
sample with a fixed number of sample indices. The last image in Figure 13 shows the average success rate
which is naturally monotone increasing with respect to the number of sample indices. It can be clearly
observed that the proposed method has the highest accuracy of estimation for almost all the random
samples. In terms of average success rate, the proposed model outperforms the previously proposed
graph Laplacian and weighted graph Laplacian based methods. We remark that further improvement
can be expected if special treatments for shape recognition and similarity can be conducted which will
be our future work.
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Bi-Cubic interpolation LDMM method MLR method

22.93dB 23.52dB 23.71dB

21.61dB 22.33dB 22.42dB

Figure 9: Super resolution from average. From top to bottom shows the image super resolution results
for down sample rate 4 × 4 and 8 × 8. From left to right shows the result from Bi-cubic interpolation,
LDMM method and the proposed MLR method.
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15 Projections 30 Projections 60 Projections

20.83dB 23.79dB 25.81dB

24.04dB 28.08dB 31.29dB

Figure 10: Fan-beam imaging for a clinical X-ray scanned chest slice from 15, 30 and 60 projection views.
The first row shows the ground truth image from a resized (256× 256) human chest slice, where the left
bottom and right bottom images are the zoom-in views of the regions enclosed by the red rectangles.
The second row shows the results obtained from the wavelet tight frame based model [18]. The third row
shows the results obtained from the proposed MLR based method.
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15 Projections 20 Projections 30 Projections

21.69dB 22.39dB 23.37dB

23.25dB 24.50dB 25.84dB

Figure 11: Fan-beam imaging for Barbara image from 15, 20 and 30 projection views, respectively. The
first row shows the result by wavelet tight frame based model. The second row shows the result from the
proposed MLR based method.
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Figure 12: First 100 ”hand writing number” images of MINST data.

35 Samples 50 Samples 70 Samples

100 Samples 700 Samples Average

Figure 13: Success rate of label estimation by graph Laplacian, weighted graph Laplacian, and proposed
MLR methods.

5 Conclusions

In this paper, we propose a manifold based low-rank regularization method for image restoration and
semi-supervised learning. The proposed regularization can be viewed as a point-wise linearization of the
manifold dimension, which generalize the concept of low-rank regularization for linear objects as a concept
of manifold based low-rank for nonlinear objects. Using the proposed regularization, we investigate new
methods of image inpaining, image super-resolution and X-ray CT image reconstruction. We further
extend this method to a general data analysis problem, semi-supervised learning. Intensive numerical
experiments demonstrate that the proposed MLR method is comparable to or even outperforms the
existing wavelet based models [7, 18] and PDE based models [47, 43, 36].

Several directions will be investigated in our future work. For instance, the current method can be
adapted to handle images with noisy input. It is also an important problem to explore a better method to
pick the “local regions” or manifold representation. For example, for semi-supervised learnings, the left
image in Figure 2 shows that the KNN obtained by Euclidean distance may still include some ambiguity.
In particular, some KNNs may have local rank as high as 7 or 8, which reduces the reliability of local low
rank regularization. Therefore, developing a data-driven approach to non-Euclidean geometry for MLR
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will be a very interesting direction to investigate in our future work.
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faltigkeiten, Berichte Sächsische Akademie der Wissenschaften, 69 (1917), pp. 262–267.

[40] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms,
Phys. D, 60 (1992), pp. 259–268.

[41] J. Shen and T. F. Chan, Mathematical models for local nontexture inpaintings, SIAM Journal on
Applied Mathematics, 62 (2002), pp. 1019–1043.

[42] Z. SHI, S. OSHER, and W. ZHU, Low dimensional manifold model with semi-local patches, UCLA
CAM Report (16-63).

[43] Z. Shi, S. Osher, and W. Zhu, Weighted graph laplacian and image inpainting, tech. report,
Technical Report, CAM report 16-61, UCLA, 2016.

[44] Z. Shi, J. Sun, and M. Tian, Harmonic extension on point cloud.

[45] R. L. Siddon, Fast calculation of the exact radiological path for a 3-dimensional CT array, Medical
Physics, 12 (1985), pp. 252–5.

[46] X. Zhang and T. F. Chan, Wavelet inpainting by nonlocal total variation, Inverse problems and
Imaging, 4 (2010), pp. 191–210.

[47] X. Zhu, Z. Ghahramani, and J. Lafferty, Semi-supervised learning using gaussian fields and
harmonic functions, in ICML, vol. 3, 2003, pp. 912–919.

[48] X. Zhu and A. B. Goldberg, Introduction to semi-supervised learning, Synthesis lectures on
artificial intelligence and machine learning, 3 (2009), pp. 1–130.

23


	1 Introduction
	2 Manifold based low-rank regularization for image restoration
	2.1 Manifold based low-rank regularization for the patch manifold
	2.2 MLR for image inpainting
	2.3 MLR for X-ray CT reconstruction

	3 Semi-supervised learning using MLR
	4 Numerical Experiments
	4.1 Image inpainting and super-resolution
	4.2 X-ray CT Reconstruction
	4.3 Semi-supervised Learning

	5 Conclusions

