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Abstract

The p-spectral radius of a uniform hypergraph covers many important concepts, such as Lagrangian
and spectral radius of the hypergraph, and is crucial for solving spectral extremal problems of hyper-
graphs. In this paper, we establish a spherically constrained maximization model and propose a first-order
conjugate gradient algorithm to compute the p-spectral radius of a uniform hypergraph (CSRH). By the
semialgebraic nature of the adjacency tensor of a uniform hypergraph, CSRH is globally convergent and
obtains the global maximizer with a high probability. When computing the spectral radius of the adja-
cency tensor of a uniform hypergraph, CSRH stands out among existing approaches. Furthermore, CSRH
is competent to calculate the p-spectral radius of a hypergraph with millions of vertices and to approx-
imate the Lagrangian of a hypergraph. Finally, we show that the CSRH method is capable of ranking
real-world data set based on solutions generated by the p-spectral radius model.
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1 Introduction
With the emergence of big data in various field of our social life, it becomes significant and challenging
to analyze the massive data and extract valuable information from them. Hypergraph, as an extension
of graph, provides an efficient way to represent complex relationships among objects in applied science,
such as chemistry [37, 33], computer science [24, 56, 30], and image processing [5, 19, 11]. The spectral
hypergraph theory has been widely studied in [14, 29, 32, 42, 53, 65, 67], which reveal combinatorial
and geometric structures of hypergraphs. Moreover, spectral hypergraph approaches are useful tools to
address issues in real world. Spectral hypergraph partitioning and spectral hypergraph clustering have
broad applications in network analysis [43, 59], image segmentation [18], multi-label classification [61],
machine learning [68], and data analysis [2, 40]. Hypergraph spectral hashing techniques highly contribute
to problems of similarity search and retrieval of social image [69, 41].

In this paper, we focus on the computation of p-spectral radii of uniform hypergraphs. The p-spectral
radius of a hypergraph was introduced in [32] and linked with extremal hypergraph problems. Extremal
graph theory, as a branch of graph theory, is one of the most attractive and best studied area in combinatorics.
Turán [63] introduced the famous Turán graph and Turán theorem in 1941, when is regarded as the start of
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the extremal graph theory. Naturally, the question was extended from graph to hypergraph in [64] that is
to find the largest number of edges in a hypergraph which is F -free1. Although the Turán-type problem is
adequately complete for ordinary graphs, cases are much more challenging when it comes to hypergraph. In
[48], Nikiforov proved the spectral Turán-type inequality which generalized the Turán theorem. In [32], the
p-spectral version of Nikiforov’s inequality and the p-spectral version of a hypergraph Turán result were
given, and it was showed that this result can be employed in solving ‘degenerate’ Turán-type problems.
Furthermore, it was proved that the edge extremal problems are asymptotically equivalent to the extremal
p-spectral radius problems in [49].

The p-spectral radius of a hypergraph covers not only the number of edges in extremal problems, but
also the notions, such as Lagrangian, and the spectral radius of a hypergraph [42]. When p = 1, the p-
spectral radius of a hypergraph turns out to be its Lagrangian. The Lagrangians of graph and hypergraph
were proposed in [44] to prove the Turán’s theorem for graphs. The Largrangians of hypergraphs were
used to disprove the conjecture of Erdös [20, 22] and to find non-jumping numbers for hypergraphs [23, 54,
55]. Also, the Lagrangian of a hypergraph is associated with problems of determining Turán densities of
hypergraphs [6, 31, 45, 60], which is an asymptotic solution to a (non-degenerate) Turán problem. When
p = 2, the p-spectral radius of a uniform hypergraph is the largest Z-eigenvalue [57] of its adjacency
tensor. When p is even and equals the order of this hypergraph, the p-spectral radius becomes the largest H-
eigenvalue of the adjacency tensor of G. Therefore, the p-spectral radius is connected with the (adjacency)
spectral radius of a hypergraph [27, 39, 42]. Additionally, Kang et al. provided solutions to several p-
spectral radius related extremal problems in [29]. Nikiforov in [50] did a comprehensive study and obtained
many theoretical conclusions about p-spectral radius.

Apart from the application in extremal hypergraph theory, the p-spectral radius model constructs a
framework to quantify the importance of objects or centrality in networks. Evaluating the significance or
popularity of objects is a significant problem in data mining. It can be used to determine the importance of
web pages [52, 36, 16], forecast customer behaviour [38], retrieve images [28] and so on. In the p-spectral
radius model, entries of the vector associated with the p-spectral radius of a hypergraph are called p-optimal
weighting and represent the significance of its corresponding vertices. The ranking result varies when p
changes. We will explain the meaning of different ranking results and show the numerical performance of
our algorithm in sorting real-life data in Section 6.

Calculation of p-spectral radii of hypergraphs is related to several methods for evaluating tensor eigen-
values. Algorithms for tensor eigenvalues, such as the shifted symmetric higher-order power method (SS-
HOPM) in [34], the generalized eigenproblem adaptive power (GEAP) method in [35], an extension of
Collatz’s method (NQZ) in [46], and the CEST method, can be employed when p equals 2 or when p equals
the order of an even-uniform hypergraph. When p is even, the p-spectral radius problem is equivalent to
the generalized tensor eigenvalue problem [9, 17]. Therefore, methods for this generalized tensor eigen-
value problem, such as the polynomial optimization related algorithm for finding all real eigenvalues of a
symmetric tensor given by Cui et al. in [15], and the homotopy approach for all eigenpairs of general real
or complex tensors proposed by Chen et al. in [10] can be employed to compute even p-spectral radius of
small scale hypergraphs. However, the problem of computing p-spectral radii of arbitrary hypergraph is still
open. This is the main motivation of our paper.

To solve the p-spectral radius problem, we introduce a spherically constrained maximization model,
which is equivalent to the original problem. Then we use an effective conjugate gradient method to acquire
an ascent direction for the constrained optimization model. Next, we employ the Cayley transform to
project the ascent direction on the unit sphere. It is proved that there exists a positive parameter in the
curvilinear line search such that the Wolfe conditions hold. Based on the above foundation, we propose
a numerical method for computing p-spectral radii of hypergraphs (CSRH) with p > 1. When p = 1, the
CSRH method is able to approximate the 1-spectral radii (Largrangians) of hypergraphs. In the convergence
analysis, we prove that the CSRH algorithm is convergent and it converges to the global optimization
point with high probability. Numerical experiments show that CSRH is preponderant when compared to
existing methods for computing Z-eigenvalues and H-eigenvalues of adjacency tensors. Moreover, CSRH
is capable of calculating p-spectral radii of hypergraphs with millions of vertices effectively. In addition,
we find that the significance of vertices of hypergraphs is related to the order of elements of the p-optimal
weighting. Therefore, we apply the CSRH method to rank the vertices of the corresponding hypergraph
from different viewpoints when p is different, which is useful in network analysis. As an example, we show

1 A uniform hypergraph that does not have a subgraph isomorphic to the uniform hypergraph F is said to be F -free.
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that our numerical results agree with the observed data of a small weighted hypergraph. Furthermore, we
successfully rank 10305 authors based on their publication information by establishing a hypergraph model
and using CSRH to solve the corresponding p-spectral radius problem. We sort the authors from the view
of individual and group respectively. The result of our ranking can be reasonably explained and are in line
with the existing consequences in [47].

The paper is organized as follows. In Section 2, we introduce mathematical notions. The computational
issues about p-spectral radius are addressed in Section 3, where our new method CSRH for computing
p-spectral radii of hypergraphs is given. In Section 4, we analyze the convergent property of the CSRH
method. The numerical experiments are represented in Section 5. In Section 6, we show the application
of CSRH method in network analysis. The ranking results of a toy example and a large scale real-world
problem are presented. Finally, we draw conclusions in Section 7.

2 Preliminary
In this section we introduce useful notions and important results on hypergraphs and tensors. Let R[r,n] be
the rth order n-dimensional real-valued tensor space, i.e.,

R[r,n] ≡ R

r-times︷ ︸︸ ︷
n× n× · · · × n.

A tensor T = (ti1···ir ) ∈ R[r,n] with ij = 1, . . . , n for j = 1, . . . , r, is said to be symmetric, if ti1···ir is
unchanged under any permutation of indices [13]. Two operations between T and any vector x ∈ Rn are
defined as

Txr ≡
n∑

i1=1

· · ·
n∑

ir=1

ti1···irxi1 · · ·xir

and

(Txr−1)i ≡
n∑

i2=1

· · ·
n∑

ir=1

tii2···irxi2 · · ·xir , for i = 1, . . . , n.

Note that, Txr ∈ R and Txr−1 ∈ Rn are a scalar and a vector respectively, and Txr = x>(Txr−1).
If there exists a real number λ and a nonzero real vector x satisfying

Txm−1 = λx[m−1], (2.1)

then λ is called an H-eigenvalue of T with x being the associated H-eigenvector [57, 58]. Additionally,
x[m−1] ∈ Rn is a vector, of which the ith element is xm−1i . When a real vector x and a real number λ
satisfy the following system {

Txm−1 = λx

x>x = 1,

λ is called a Z-eigenvalue of T and x is the corresponding Z-eigenvector [57].

Definition 2.1 (Hypergraph). A hypergraph is defined as G = (V,E), where V = {1, 2, . . . , n} is the
vertex set and E = {e1, e2, . . . , em} ⊆ 2V (the powerset of V ) is the edge set. We call G an r-uniform
hypergraph when |ep| = r ≥ 2 for p = 1, . . . ,m and ei 6= ej in case of i 6= j.

If each edge of a hypergraph is linked with a positive number s(e), then this hyperpragh is called a
weighted hypergraph and s(e) is the weight associated with the edge e. An ordinary hypergraph can be
regarded as a weighted hypergraph with the weight of each edge being 1.

In the rest of this paper, an r-uniform hypergraph is abbreviated to an r-graph for convenience and
hence the hypergraph G refers to an r-graph. The degree of a vertex i ∈ V is given by d(i) = sum{s(e) :
i ∈ e, e ∈ E}. The weight polynomial of G [62] is defined as

w(G,x) =
∑

e={i1,...,ir}∈E

s(e)xi1 · · ·xir , (2.2)

in which x is a vector in Rn, e = {i1, . . . , ir} is an edge of G and s(e) is the weight of e.
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Definition 2.2 (p-spectral radius [32, 29]). When p ≥ 1, the p-spectral radius of G, denoted by λ(p)(G), is
defined as

λ(p)(G) = r! max
‖x‖p=1

w(G,x), (2.3)

and we call any vector x solving (2.3) a p-optimal weighting of G [7].

When p = 1, the p-spectral radius of G coincides with its Lagrangian λL(G) [21, 62], which is defined
as

λL(G) =

 max w(G,x)
s.t.

∑r
i=1 xi = 1,

xi ≥ 0, for i = 1, . . . , r.
(2.4)

The vector x related to the Lagrangian of G is named the optimal legal weighting [7, 62].

Definition 2.3 (Adjacency tensor ). The adjacency tensor A of a weighted r-graph G is defined as an rth
order n-dimensional symmetric tensor with its elements being

ai1···ir =


s(e)

(r − 1)!
if {i1, . . . , ir} ∈ E,

0 otherwise.

It is obvious from (2.3) that the 2-spectral radius is exactly the product of (r − 1)! times the largest
Z-eigenvalue of the adjacency tensor A, and when r is even the r-spectral radius is (r−1)! times the largest
H-eigenvalue of A [57].

Although there is no general formula or algorithm for us to compute the p-spectral radius of a hyper-
graph directly, research on p-spectral radius of hypergraphs with certain structures has made some progress.

Theorem 2.1 ([50]). Let r-graph G be a β-star with m edges .

a. If p > r − 1, then λ(p)(G) = r!r−
r
pm(1− r−1

p ).

b. If p < r − 1, then λ(p)(G) = r!r−
r
p .

c. If p = r − 1, then λ(p)(G) = (r − 1)!r−
1

r−1 .

Proposition 2.1 ([7]). If G is a complete r-graph with n vertices, then the Lagrangian of G is

λL(G) =

(
n
r

)
1

nr
. (2.5)

A multiset is an extension of the ordinary set, such that the objects or elements in the multiset are
repeatable. If the edge set E of a hypergraph G is a set of multisets, then G is called a multi-hypergraph
[53]. Naturally, the p-spectral radius problem can be extended from hypergraph to muli-hypergraph. The
algorithm and theoretical analysis in the following part of this paper are also applicable to p-spectral radius
problems of multi-hypergraphs. In the rest of this paper, the symbol ‖·‖ refers to `2 norm and the parameter
p is a positive integer unless stated otherwise.

3 Computation of the p-spectral radius of a hypergraph
We transform the p-spectral radius in (2.3) into a spherically constraint optimization problem and propose
an iterative algorithm to solve it.

3.1 Spherically constraint form for λ(p)(G)
The p-spectral radius of G in (2.3) can be reformulated as

λ(p)(G) = max
‖x‖p=1

(r − 1)!Axr (3.1)

where A is the adjacency tensor of G. The maximization problem (3.1) is equivalent to an unconstrained
format, that is

λ(p)(G) = max
x 6=0

(r − 1)!
Axr

‖x‖rp
. (3.2)
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In order to restrict the search region and keep the vector x away from zero, we add a spherically constraint
on λ(p)(G) in (3.2). Due to the zero-order homogeneous property of Axr/‖x‖rp, we can obtain λ(p)(G) by
solving the following problem max f(x) = (r − 1)!

Axr

‖x‖rp
s.t. ‖x‖2 = 1.

(3.3)

When p > 1, the objective function f(x) is differentiable for any nonzero x and the gradient of f(x) is

∇f(x) =
r!

‖x‖rp

(
Axr−1 −Axr‖x‖−pp x〈p−1〉

)
, (3.4)

where x〈p−1〉 represents a vector whose ith element is (x〈p−1〉)i = |xi|p−1sgn(xi). Since f(x) is zero-
order homogeneous, we have

x>∇f(x) = 0 (3.5)

for any 0 6= x ∈ Rn.
Based on the spherically constrained form in (3.3), we have the following proposition, which provides

a way to approximate the p-spectral radius of a hypergraph when it cannot be computed directly.

Proposition 3.1. Let pϑ be a sequence such that

lim
ϑ→∞

pϑ = p∗, (3.6)

where each pϑ > 0. Then
lim
ϑ→∞

λ(pϑ)(G) = λ(p∗)(G). (3.7)

Proof. We restrict the domain of x on a unit sphere, which is denoted as Sn−1 ≡ {x ∈ Rn : x>x = 1}.
Rename the function in (3.3) as

f̂(x, p) = (r − 1)!
Axr

‖x‖rp
(x, p) ∈ Sn−1 × (0,+∞),

and we have
λ(p)(G) = max

x∈Sn−1
f̂(x, p).

Here f̂(x, p) is continuous. Let {x∗ϑ} be an infinite sequence on the compact space Sn−1, such that

f̂(x∗ϑ, pϑ) = λ(pϑ)(G). (3.8)

If there are more than one point satisfying the equation (3.8), we randomly choose one of them to be x∗ϑ.
Suppose {x∗ϑ} is a convergent sequence without loss of generality. Since the sequence is bounded, there
exists a point x∗0 ∈ Sn−1 satisfying

lim
ϑ→∞

x∗ϑ = x∗0. (3.9)

For any x̃ ∈ Sn−1, we have
f̂(x̃, pϑ) ≤ f̂(x∗ϑ, pϑ) (3.10)

from (3.8), which indicates that

lim
ϑ→∞

f̂(x̃, pϑ) ≤ lim
ϑ→∞

f̂(x∗ϑ, pϑ).

Then we obtain
f̂(x̃, p∗) ≤ f̂(x∗0, p∗) (3.11)

based on (3.6) and (3.9). Therefore we have f̂(x∗0, p∗) = maxx∈Sn−1 f̂(x, p∗) = λ(p∗)(G). Since

f̂(x∗0, p∗) = lim
ϑ→∞

f̂(x∗ϑ, pϑ) = lim
ϑ→∞

λ(pϑ)(G),

conclusion (3.7) is then obtained.
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Figure 1: Illustration of the new iterate on the unit sphere

3.2 The CSRH algorithm
We employ an iterative algorithm to solve (3.3). Suppose that the current iterate is a unit vector xk. Our
task is to find a new iterate xk+1, which satisfies the following two conditions.

1. xk+1 is on the unit sphere;

2. dk = xk+1 − xk is an ascent direction, i.e.,

d>k∇f(xk) > 0. (3.12)

In Figure 1, the current iterate xk is on the unit sphere and we can see that xk+1 is a unit vector if and
only if the vector xk+1 + xk and the vector dk = xk+1 − xk are perpendicular to each other, i.e.

(xk+1 + xk)>dk = 0. (3.13)

Let Wk be a skew-symmetric matrix, i.e., Wk = −W>k . Then we have

(xk + xk+1)>Wk(xk+1 + xk) = −(xk+1 + xk)>Wk(xk+1 + xk) = 0.

Therefore, the equation (3.13) is feasible and the first condition of xk+1 holds when

dk = Wk(xk + xk+1). (3.14)

Furthermore, based on the optimization techniques it is available to find an ascent direction pk such that

p>k∇f(xk) > 0. (3.15)

Then the existing information in Figure 1 for us to obtain dk is pk and xk, both of which have relation with
∇f(xk) in (3.15) and (3.5) respectively. Hence, in order to satisfy (3.12) we construct dk as a combination
of xk and pk, i.e.,

dk = axk + bpk, (3.16)

and obtain
d>k∇f(xk) = ax>k∇f(xk) + bp>k∇f(xk) = bp>k∇f(xk). (3.17)

Therefore, if b > 0 in (3.16), dk is an ascent direction with d>k∇f(xk) > 0.
The previous analysis shows that the two conditions of xk+1 are valid when dk satisfies (3.14) and

(3.16) for b > 0. This motivates us to construct the skew-symmetric matrix Wk by xk and pk. Let

Wk =
1

2
α(pkx

>
k − xkp

>
k ) ∈ Rn×n (3.18)
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with α being a positive parameter. The constant b = 1
2αx

>
k (xk + xk+1) in (3.16). Since the angle between

vectors xk and xk +xk+1 is less than or equal to π
2 in Figure 1, then we have b ≥ 0. However if b = 0, i.e.,

xk+1 = −xk, there is a contradiction when we substitute xk+1 by −xk in (3.14). Hence, we have b > 0
and equations (3.14) and (3.16) hold, which means the two conditions of xk+1 are satisfied when Wk is the
matrix in (3.18) with pk being an ascent direction.

Lemma 3.1. The new iterate xk+1 can be expressed as

xk+1(α) =
[(2− αx>k pk)2 − ‖αpk‖2]xk + 4αpk

4 + ‖αpk‖2 − (αx>k pk)2
, (3.19)

from (3.14) and (3.18). Further we have

‖xk+1(α)− xk‖ = 2

(
‖αpk‖2 − (αx>k pk)2

4 + ‖αpk‖2 − (αx>k pk)2

) 1
2

. (3.20)

Proof. From (3.14), we obtain xk+1 = Qxk, where

Q = (I −Wk)−1(I +Wk).

That is to say the orthogonal transform is in fact the Cayley transform. The proof is then similar to Lemma
3.2 in [8, 12].

For the new point xk+1 in (3.19), a crucial step is to find an ascent direction pk to guarantee the
ascent property in (3.15). Since problems related with hypergraphs and tensors are often large and time-
consuming for computation, we employ the nonlinear conjugate gradient method, which is proposed for
large-scale nonlinear optimization problems, to acquire a suitable pk. The nonlinear conjugate gradient
method does not need the Hessian matrices of the objective function and is usually faster than the steepest
descent method. In [25, 26], a nonlinear conjugate gradient method called CG DESCENT was given and
it was proved that the CG DESCENT possesses a good descent property. Attracted by this merit, we adopt
the construction of parameter βk in CG DESCENT and obtain the ascent direction pk by

pk = ∇f(xk) + βk−1dk−1. (3.21)

The scalar βk−1 above is defined as βk−1 = max(0, β̃k−1), where

β̃k−1 =


(
τdk−1

‖yk−1‖2

d>k−1yk−1
− yk−1

)>
∇f(xk)

d>k−1yk−1
if |d>k−1yk−1| ≥ ε‖dk−1‖‖yk−1‖

0 otherwise,

(3.22)

yk−1 = ∇f(xk) − ∇f(xk−1), parameters 1
4 < τ < 1 and ε > 0. The initial direction is chosen as

p0 = ∇f(x0). The direction pk in (3.21) is proved to satisfy the ascent property in the following Lemma.

Lemma 3.2. The search direction pk generated by (3.21) satisfies the sufficient ascent condition, i.e.

p>k∇f(xk) ≥
(

1− 1

4τ

)
‖∇f(xk)‖2, (3.23)

and there exists a constant M0 > 1 such that

‖pk‖ ≤M0‖∇f(xk)‖. (3.24)

Proof. When βk = 0, it is easy to show that the two inequalities hold. For βk 6= 0, we have

p>k∇f(xk) = ‖∇f(xk)‖2 + τ
d>k−1∇f(xk)

d>k−1yk−1

‖yk−1‖2

d>k−1yk−1
d>k−1∇f(xk)−

y>k−1∇f(xk)

d>k−1yk−1
d>k−1∇f(xk)

=
1

4τ
‖∇f(xk)‖2 −

d>k−1∇f(xk)

d>k−1yk−1
y>k−1∇f(xk) + τ

(d>k−1∇f(xk))2

(d>k−1yk−1)2
‖yk−1‖2

+

(
1− 1

4τ

)
‖∇f(xk)‖2

≥
(

1− 1

4τ

)
‖∇f(xk)‖2.
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Since
‖dk−1 · y>k−1‖ = ‖dk−1‖ · ‖yk−1‖ and ‖dk−1 · d>k−1‖ = ‖dk−1‖2,

we obtain

‖βk−1dk−1‖ ≤

∥∥∥∥∥τ‖yk−1‖2 · dk−1 · d>k−1 − d>k−1yk−1 · dk−1 · y>k−1
(d>k−1yk−1)2

∥∥∥∥∥ · ‖∇f(xk)‖

≤

[
‖dk−1‖‖yk−1‖
|d>k−1yk−1|

+
τ‖yk−1‖2‖dk−1‖2

(d>k−1yk−1)2

]
· ‖∇f(xk)‖

≤
[

1

ε
+
τ

ε2

]
‖∇f(xk)‖.

Then we deduce that

‖pk‖ ≤ ‖∇f(xk)‖+ ‖βk−1dk−1‖ ≤
[
1 +

1

ε
+
τ

ε2

]
‖∇f(xk)‖.

Inequality (3.24) is valid when M0 = 1 + 1
ε + τ

ε2 .

In the curvilinear line search, the parameter α in (3.19) is determined to ensure that the Wolfe conditions
hold. We provide the details in the next subsection.

3.3 Feasibility of Wolfe conditions
In this section we prove that there exists a step length αk satisfying the Wolfe conditions for the curvilinear
search in (3.19) in each iteration. First, we compute the derivative of α which plays an important role in
line search.

Lemma 3.3. Let f ′(α) be the derivative of f(xk+1(α)) at point α. Then we have

αf ′(α) = −∇f(xk+1(α))>xk. (3.25)

Proof. Equation (3.19) means that

[4 + α2‖pk‖2 − α2(x>k pk)2]xk+1(α) = [(2− αx>k pk)2 − α2‖pk‖2]xk + 4αpk.

Then we take derivative with respect to α as follows

2α(‖pk‖2 − (x>k pk)2)xk+1(α) + [4 + α2‖pk‖2 − α2(x>k pk)2]x′k+1(α)

=[−4x>k pk + 2α(x>k pk)2 − 2α‖pk‖2]xk + 4pk.
(3.26)

By multiplying both sides of (3.26) by α we get

αx′k+1(α) =
−2α2(‖pk‖2 − (x>k pk)2)

4 + α2‖pk‖2 − α2(x>k pk)2
xk+1(α) + xk+1(α)− xk (3.27)

from (3.19). Since∇f(xk+1(α))>xk+1(α) = 0, from (3.27) we obtain

αf ′(α) = α∇f(xk+1(α))>x′k+1(α) = −∇f(xk+1(α))>xk.

Since f(x) is twice continuously differentiable in the compact set Sn−1 , we can find a constantM such
that

|f(x)| ≤M, ‖∇f(x)‖ ≤M, and ‖∇2f(x)‖ ≤M. (3.28)

For a given optimization algorithm which enjoys a good ascent or descent property, it is proved that
step lengths that satisfy the Wolfe conditions exist for a monotonous line search in [51, Lemma 3.1]. In
the following theorem we prove that Wolfe conditions are practicable for the curvilinear line search in our
algorithm.
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Theorem 3.1. If 0 < c1 < c2 < 1, there exists αk > 0 satisfying

f
(
xk+1(αk)

)
≥ f(xk) + c1αk∇f(xk)>pk, (3.29)

∇f(x(αk))>pk ≤ c2∇f(xk)>pk. (3.30)

Proof. Let x(α) = xk+1(α) and f(α) = f(xk+1(α)). From (3.19), we have x′k+1(0) = −x>k pkxk + pk,
and

f ′(0) =
df(xk+1(α))

dα

∣∣∣∣
α=0

= ∇f(xk+1(0))>x′k+1(0)

= ∇f(xk)>(−x>k pkxk + pk) = ∇f(xk)>pk.

Denote a linear function l(α) = f(xk)+c1α∇f(xk)>pk. Then f(0) = l(0) = f(xk) and f ′(0) > l′(0) >
0 due to 0 < c1 < 1 and ∇f(xk)>pk > 0 in (3.23). Since f(α) is bounded above, the graph of f(α)
must intersect with the line l(α) at least once when α > 0. Suppose ᾱ is the smallest intersection point, we
obtain

f(xk+1(ᾱ)) = f(xk) + c1ᾱ∇f(xk)>pk. (3.31)

By the mean value theorem, we can find ρ ∈ (0, ᾱ) satisfying

f(xk+1(ᾱ))− f(xk) = ᾱf ′(ρ)

[By (3.25)] = − ᾱ
ρ
∇f(xk+1(ρ))>xk.

(3.32)

On the other hand, from (3.5) and (3.19) we have

∇f(xk+1(ρ))>xk+1(ρ) =
[(2− ρx>k pk)2 − ‖ρpk‖2]∇f(xk+1)(ρ)>xk

4 + ‖ρpk‖2 − (ρx>k pk)2

+
4ρ∇f(xk+1(ρ))>pk

4 + ‖ρpk‖2 − (ρx>k pk)2

= 0.

Then we have

− [(2− ρx>k pk)2 − ‖ρpk‖2]∇f(xk+1(ρ))>xk = 4ρ∇f(xk+1(ρ))>pk (3.33)

Combining (3.32) and (3.33), we have

[(2− ρx>k pk)2 − ‖ρpk‖2][f(xk+1(ᾱ))− f(xk)] = 4ᾱ∇f(xk+1(ρ))>pk. (3.34)

Further, from (3.31) we obtain

[(2− ρx>k pk)2 − ‖ρpk‖2][f(xk+1(ᾱ))− f(xk)]

=[(2− ρx>k pk)2 − ‖ρpk‖2]c1ᾱ∇f(xk)>pk.
(3.35)

Combing (3.34) and (3.35) we have

4∇f(xk+1(ρ))>pk = [(2− ρx>k pk)2 − ‖ρpk‖2]c1∇f(xk)>pk

Since
x>k pk = x>k (∇f(xk) + βk−1dk−1)

= βk−1x
>
k (xk − xk−1)

= βk−1(1− x>k xk−1)

≥ 0

and |x>k pk| ≤ ‖pk‖, we have

(2− ρx>k pk)2 − ‖ρpk‖2 = 4− 4ρx>k pk + (ρx>k pk)2 − ‖ρpk‖2

≤ 4− 4ρx>k pk

≤ 4.
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Algorithm CSRH Computing p-spectral radius of a hypergraph
1: For a uniform hypergraph G, p > 0, choose parameters 0 < c1 < c2 < 1, 1

4 < τ < 1 , ε > 0, an initial
unit point x0, and k ← 0. Calculate p0 = ∇f(x0).

2: while the sequence of iterates does not converge do
3: Use interpolation method to find αk such that (3.29) and(3.30) hold.
4: Update the new iterate xk+1 = xk+1(αk) by (3.19).
5: Compute dk,∇f(xk+1) , βk, and pk+1 by (3.21) .
6: k ← k + 1.
7: end while

Since ∇f(xk)>pk ≥ 0,
∇f(xk+1(ρ))>pk ≤ c1∇f(xk)>pk. (3.36)

Since c2 > c1, inequality (3.30) holds when αk = ρ. Also from the condition ρ ∈ (0, ᾱ), we have
f(αk) > l(αk) and (3.29) is obtained.

Up to now, the algorithm CSRH for computing the p-spectral radius of a hypergraph is available. First
we transform the original model of λ(p)(G) into an equivalent constrained optimization problem on the
unit sphere (3.3). To solve the constrained model, we compute the ascent direction pk from (3.4), (3.22)
and (3.21), and choose a proper αk so that the next iterate gained via (3.19) satisfies the Wolfe conditions
(3.29) and (3.30). A fast computation method for calculating Axr and Axr−1 was proposed in [8], which
improves the efficiency of products of adjacency tensor and vector. We also adopt this technique in our
algorithm.

4 Convergence analysis
In this section we prove that the CSRH algorithm converges to a stationary point of f(x) and touches the
exact p-spectral radius with a high probability. Our CSRH algorithm terminates finitely when there exits
a constant c such that ∇f(xc) = 0. The following convergence analysis is for the case that the sequence
{xk} is infinite and ∇f(xk) is always a nonzero vector.

4.1 Convergence results
Next theorem shows that CSRH algorithm is convergent.

Theorem 4.1. Suppose the sequence {xk} is generated by the algorithm CSRH from any x0 ∈ Sn. Then
we have

lim
k→∞

‖∇f(xk)‖ = 0.

Proof. The demonstration is divided into two steps. First, we show that the Zoutendijk condition holds, i.e.,

∞∑
k=0

cos2 ϕk‖∇f(xk)‖2 <∞. (4.1)

Here ϕk is the angle between∇f(xk) and pk, which is denoted as

ϕk ≡ arccos
∇f(xk)>pk
‖∇f(xk)‖‖pk‖

.

Since ∇2f(x) is bounded, we have ∇f(x) is Lipschitz continuous on Sn−1, i.e.,

‖∇f(x1)−∇f(x2)‖ ≤ L‖x1 − x2‖ ∀x1,x2 ∈ Sn (4.2)

for a constant L > 0. From (3.18), we have

‖W‖ = ‖αk
2

(xkp
>
k − pkx

>
k )‖ ≤ αk

2
(‖xkp>k ‖+ ‖pkx>k ‖) ≤ αk‖pk‖.
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Hence from (3.14)
‖xk+1 − xk‖ ≤ ‖Wk‖(‖xk+1‖+ ‖xk‖) ≤ 2αk‖pk‖. (4.3)

From (4.2) and (4.3), we have

(∇f(xk)−∇f(xk+1))>pk ≤ L‖xk+1 − xk‖‖pk‖ ≤ 2Lαk‖pk‖2.

From (3.30), we obtain

(∇f(xk+1)−∇f(xk))>pk ≤ (c2 − 1)∇f(xk)>pk. (4.4)

By using the above two relations, we can derive the inequality

(1− c2)∇f(xk)>pk ≤ 2Lαk‖pk‖2,

which implies

αk ≥
1− c2

2L

∇f(xk)>pk
‖pk‖2

. (4.5)

Then from (3.29), we obtain

f(xk+1)− f(xk) ≥ c1(1− c2)

2L

(∇f(xk)>pk)2

‖pk‖2
=
c1(1− c2)

2L
cos2 ϕk‖∇f(xk)‖2,

which derives the following inequality

f(xk+1)− f(x0) =

k∑
i=0

f(xi+1)− f(xi) ≥
c1(1− c2)

2L

k∑
i=0

cos2 ϕi‖∇f(xi)‖2.

Since f(x) is bounded in (3.28), the inequality (4.1) is then deduced.
Next, we show that the angle ϕk is bounded away from π

2 . By combining (3.23) and (3.24), we obtain

∇f(xk)>pk
‖∇f(xk)‖‖pk‖

≥ (1− 1

4τ
)
‖∇f(xk)‖
‖pk‖

≥ 1

M0
(1− 1

4τ
) ≡ C0. (4.6)

The above inequalities indicate that
cosϕk ≥ C0 > 0.

Therefore, from (4.1) we have
lim
k→∞

‖∇f(xk)‖ = 0.

Recall that the graph of a function h(x) is defined as

Grh := {(x, λ) ∈ Rn × R : f(x) = λ}.

For the function f(x) involved in our problem (3.3), we have

Gr f = {(x, λ) : [(r − 1)!Axr]p = λp(
∑
i

|xi|p)r},

where p and r are positive integers. Since Gr f is a semialgebraic set, f(x) is a semialgebraic function and
satisfies the Łojasiewicz inequality [1, 4, 66], which means that for a critical point x∗ of f(x), there exist
constants θ ∈ [0, 1) and C1 > 0, as well as U being a neighbourhood of x∗ such that

|f(x)− f(x∗)|θ ≤ C1‖∇f(x)‖ (4.7)

for x ∈ U . The next theorem shows that if the sequence {xk} is infinite, it has a unique accumulation
point.
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Theorem 4.2. Assume the infinite sequence {xk} is generated by the CSRH algorithm. Then it converges
to a unique point x∗, that is,

lim
k→∞

xk = x∗,

and x∗ is a first-order stationary point.

Proof. From (4.5), (3.23) and (3.24) we have

αk ≥ 1− c2
2L

(1− 1

4τ
)
‖∇f(xk)‖2

‖pk‖2

≥ 1− c2
2LM2

0

(1− 1

4τ
)

≡ αmin > 0.

Moreover, from (3.29) and (3.23) we obtain

f(xk+1)− f(xk) ≥ c1αk∇f(xk)>pk

≥ c1αmin(1− 1

4τ
)‖∇f(xk)‖2

> 0. (4.8)

We take no account of condition ‖∇f(xk)‖ = 0 under which the algorithm terminates finitely. The above
inequality indicates that

[f(xk+1) = f(xk)]⇒ [xk+1 = xk]. (4.9)

Based on (3.24), (3.29) and (4.3), we have

f(xk+1)− f(xk) ≥ c1αk(1− 1

4τ
)
‖∇f(xk)‖‖pk‖

M0

≥ (1− 1

4τ
)
c1

2M0
‖∇f(xk)‖‖xk+1 − xk‖ (4.10)

From (4.9) and (4.10), as well as the Łojasiewicz inequality (4.7), we have the conclusions hold based on
[1, Theorem 3.2].

4.2 Probability of obtaining the exact p-spectral radius
Due to the feasibility of Łojasiewicz inequality in (4.7), we get the probability of the CSRH method touching
the true p-spectral radius.

Proposition 4.1. Suppose CSRH algorithm is implemented from N uniformly distributed initial points on
Sn−1 for N times. We take the largest one among the results of these trails as the p-spectral radius of the
relevant problem. The probability of getting the exact p-spectral radius is

1− (1− ζ)N ,

in which ζ is a constant satisfying ζ ∈ (0, 1]. If N is large enough, the probability is high.

Proof. This Proposition can be proved in the way similar to [8, Theorem 4.9]. We omit the details.

5 Numerical experiments
In this section, we show the performance of CSRH for computing p-spectral radii of both small and large
scale hypergraphs. We compare our method with several existing methods for computing eigenvalues of
adjacency tensors. Examples of approximating the Lagrangian of a hypergraph are given in Subsection 2.
All experiments are carried out by using MATLAB version R2015b and Tensor Toolbox version 2.6 [3].
The experiments in Subsections 5.1 and 5.2 are terminated when

‖∇f(x)‖ ≤ 10−8 or ‖λ(p) − λ(p)∗ (G)‖ ≤ 10−12,
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where λ(p) is our computed p-spectral radius and λ(p)∗ (G) is the exact result obtained from theorems or
conclusions in existing literature. The maximum iteration of CSRH is taken as 1000 for all algorithms
except those performed by the MATLAB function in Tensor Toolbox. For each experiment in this section,
we compute 100 times to obtain 100 estimated values λ(p)1 , . . . , λ

(p)
100 and choose the largest one as our

computational result of the p-spectral radius related with G. When λ(p)∗ (G) is attainable, the accuracy rate
of the CSRH algorithm is defined as

Accu. ≡
∣∣∣∣{i :

|λ(p)i − λ
(p)
∗ (G)|

|λ(p)∗ (G)|
≤ 10−8

}∣∣∣∣× 1%. (5.1)

Each number of iterations (Iter.) and computational time (Time) we reported in this section is the sum of
corresponding quantities for all 100 executions of the experiment. The relative errors (Err.) between the
numerical results and the exact solutions are provided.

5.1 Computation of p-spectral radii of hypergraphs
We compare the following three algorithms for computing eigenvalues of adjacency tensors associated with
different hypergraphs:

• An adaptive shifted power method [34] SS-HOPM. This method can be invoked by eig sshopm in
Tensor Toolbox 2.6 for Z-eigenvalues of symmetric tensors.

• A first-order optimization algorithm CEST [8] which is proposed for eigenvalues of large scale sparse
tensors involving even order hypergraphs.

• CSRH: the method proposed in Section 3.

Example 1 (p = 2). First, we compute the largest Z-eigenvalues of adjacency tensors of the following
hypergraphs: 

G1 : V={1,2,3,4} and E={123,234};
G2 : V={1,2,3,4,5,6,7} and E={123,345,567};
G3 : V={1,2,3,4,5} and E={123,345};
G4 : V={1,2,3,4} and E={123,124,134,234}.

The first hypergraph G1 is given in [65] as Example 1, while the last three hypergraphs are Example 4, 7
and 9 in [53]. The hypergraph G4 is actually a tetrahedron.

In Table 1, we demonstrate results of CSRH and SS-HOPM for computing the largest Z-eigenvalues
of adjacency tensors of some small hypergraphs. Since all the four hypergraphs given above are of odd
orders, the comparison does not include CEST method, which is designed for even order hypergraphs. The
Err. column shows the relative error between the computational result and the exact largest Z-eigenvalue
provided in the corresponding references. Under the condition that the relative error reaches 10−16, our
CSRH method is much more stable and efficient than the SS-HOPM method.

Hypergraph CSRH SS-HOPM
Iter. Time(s) Accu. Err. Iter. Time(s) Accu. Err.

G1 13593 3.35 1.00 5.44× 10−16 2668 4.89 1.00 5.44× 10−16

G2 1257 0.78 1.00 3.85× 10−16 18610 32.58 0.94 3.85× 10−16

G3 674 0.42 1.00 3.85× 10−16 731 1.61 1.00 7.69× 10−16

G4 8901 2.23 0.18 1.48× 10−16 2317 4.38 0.22 2.96× 10−16

Table 1: Z-Eigenvalues of adjacency tensors of several small hypergraphs.

In the next experiment, we study the probability of CSRH method getting the true largest Z-eigenvalue
of G4 and show that the probability increases along with the trail times. We employ the CSRH method to
compute the largest Z-eigenvalue of the adjacency tensor of G4 from uniformly distributed and randomly
chosen initial points. Once the relative error between the computational largest Z-eigenvalue and its exact
value 3/2 reaches 10−8, the experiment is terminated and we record the number of trails. This experiment
is repeated for one thousand times. Let σ(i) be the total occurrence of experiments whose trail time is the
integer i. The frequency of touching the exact Z-eigenvalue when running i times is

νi =

∑
j≤i σ(j)

1000
. (5.2)
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In Figure 2, we display the relation between trail times and success probability. It illustrates that the

Figure 2: Probability of touching the exact largest Z-eigenvalue of adjacency of G4.

probability tends to one along with the increase of trail times i, which coincides with the conclusion in
Theorem 4.1.

Example 2 (p = r). Next, we compare CEST and CSRH methods for computing the largest H-
eigenvalues of adjacency tensors of loose paths. An r-graph with m edges is called a loose path if its
vertex set is

V =
{
i(1,1), . . . , i(1,r), i(2,2), . . . , i(2,r), . . . , i(m,2), . . . , i(m,r)

}
and its edge set is

E =
{
{i(1,1), . . . , i(1,r)}, {i(1,r), i(2,2), . . . , i(2,r)}, . . . , {i(m−1,r), i(m,2), . . . , i(m,r)}

}
.

An r-uniform loose path with m edges has m(r − 1) + 1 vertices. For example, the 6-unform loose path
with 4 edges in Figure 3 has 21 vertices. The following theorem proved in [67] offers a convenient way to

Figure 3: A 6-uniform loose path with 4 edges.

acquire the largest H-eigenvalues of adjacency tensors of loose paths with m = 3 or m = 4.

Theorem 5.1 ([67]). Let G be an r-uniform loose path with m edges and λH(G) be the largest H-
eigenvalue of its adjacency tensor A. Then we have

1. λH(G) =
(
1+
√
5

2

) 2
r for m = 3,

2. λH(G) = 3
1
r for m = 4.

In Table 2, we compare CSRH and CEST for computing the largest H-eigenvalues of adjacency tensors
of different loose paths. The column Err. presents the relative error between our computed result and the
exact one given by Theorem 5.1. When relative error achieves precision of 10−16, the CSRH method saves
at least 75% of the time CEST takes in every problem. The comparison between CEST and CSRH verifies
that the high efficiency of CSRH method does not only relies on the fast computation technique in [8],
because CEST method use this technique as well.

Example 3. If all edges of a hypergraph share a same vertex, then it is called a β-star. An r-uniform
β-star with m edges have m(r − 1) + 1 vertices. We present a class of 6-uniform β-star in Figure 4 as an
example.
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m r
CSRH CEST

Iter. Time(s) Accu. Err. Iter. Time(s) Accu. Err.

3

4 38123 9.14 1.00 3.49× 10−16 42760 70.28 1.00 3.49× 10−16

6 62780 17.55 0.97 5.67× 10−16 65706 105.53 0.99 7.56× 10−16

8 71311 23.38 0.66 3.94× 10−16 76778 106.95 0.65 7.88× 10−16

4

4 69517 16.92 1.00 5.06× 10−16 49331 79.81 1.00 5.06× 10−16

6 86171 24.83 0.96 5.55× 10−16 76105 113.11 0.98 5.55× 10−16

8 75907 24.71 0.33 7.74× 10−16 91690 106.57 0.42 9.68× 10−16

Table 2: H-eigenvalues of adjacency tensors of loose paths.

Figure 4: A 6-uniform β-star.

We calculate p-spectral radii of β-stars with various orders and edges and display the results in Table 3.
The Err. column presents the relative error between our computational result and the corresponding exact
result generated from Theorem 2.1. It can be seen that all tests succeed with high accuracy rates. Even the
3-spectral radii and 4-spectral radii of β-stars with millions of vertices are gained with high probability and
efficiency.

5.2 Approximation of Lagrangians of hypergraphs
When p = 1, the 1-spectral radius is also known as the Lagrangian of a hypergraph (2.4). However, f(x)
is not smooth at x who has some zero elements. We use λ(pϑ)(G) to approximate λ(1)(G), with pϑ being
denoted as

pϑ = 1 +
1

2ϑ+ 1
, for ϑ = 1, 2, . . . . (5.3)

Since limϑ→∞ pϑ = 1, we have limϑ→∞ λ(pϑ)(G) = λ(1)(G) from Proposition 3.1. Therefore, we can
use pϑ-spectral radius to approximate the Lagrangian of a hypergraph. The function fpϑ(x) is continuous
and differentiable and CSRH method is feasible for computing pϑ-spectral radius of a uniform hypergraph.
Let w be a vector such that its ith element being

wi = x
1

2ϑ+1

i , for i = 1, . . . , n.

Then function fpϑ(x) = fpϑ(w[2ϑ+1]) is also a semialgebraic function and satisfies the Łojasiewicz in-
equality (4.7). Therefore, the conclusions in Section 4 hold for pϑ in (5.3).

In this subsection, we show the results of CSRH method approximating Lagrangian of a hypergraph.
First we give an example to demonstrate that the CSRH method is competent to compute the p-spectral

n p = 3, r = 3 (p > r − 1)
Iter. Time(s) Accu. Err.

21 1835 0.34 1.00 5.38× 10−16

201 2609 0.60 1.00 3.55× 10−15

2,001 3539 1.87 1.00 4.33× 10−14

20,001 4475 12.93 1.00 6.39× 10−14

200,001 6038 263.39 0.98 1.93× 10−11

2,000,001 20018 15437.99 1.00 1.22× 10−10

The 3-spectral radius of 3-uniform β-stars ( p > r − 1 )

n p = 4, r = 6 (p < r − 1)
Iter. Time(s) Accu. Err.

51 14747 4.79 0.99 1.59× 10−11

501 26019 14.52 0.98 9.56× 10−12

5,001 30108 57.82 0.99 2.01× 10−11

50,001 32387 426.60 0.95 1.08× 10−11

500,001 30070 6309.58 0.99 4.49× 10−11

5,000,001 51609 125869.02 0.97 2.40× 10−10

The 4-spectral radius of 6-uniform β-stars ( p < r − 1 )

Table 3: The p-spectral radius of r-uniform β-stars.
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radius of a uniform hypergraph when p is a fraction in (5.3). Next, the numerical results of approximating
the Lagrangians of complete hypergraphs by pϑ-spectral radius are represented. The termination criteria of
algorithms in the remaining part of this paper is set as ‖∇f(x)‖ ≤ 10−6.

pn Iter. Time(s) Accu. Err.
pϑ = 12

7
3037 0.99 1.00 0.00

pϑ = 14
9

13271 17.88 1.00 3.08× 10−16

pϑ = 10
7

51018 110.53 1.00 1.85× 10−16

pϑ = 4
3

84848 88.85 1.00 3.07× 10−14

Table 4: pϑ-spectral radius of 3-uniform β-star with 10 edges.

In Table 4, we present the consequences of the pϑ-spectral radius of a 3-uniform β-star with 10 edges,
with pϑ being the fraction in the first column. The true pϑ-spectral radius can be acquired from Theorem
2.1. All experiments produce the exact pϑ-spectral radius with probability 1 and the relative error between
our numerical result and the theoretical value obtained from Theorem 2.1 is at most 3.07× 10−14.

An r-uniform hypergraph is said to be complete if it contains all possible edges when the number of its
vertices is fixed. We use Crn to denote a complete r-graph with n vertices. Then the 3-graph C3

4 is actually a
tetrahedron with 6 edges. The Lagrangian of a complete uniform hypergraph can be obtained directly from
Proposition 2.1.

Figure 5: Approximation of Lagrangian of complete hypergraphs.

We compute different pϑ-spectral radii of 3 complete hypergraphs C3
4 , C3

10 and C3
20. In Figure 5, the

ordinate reflects the error between the pϑ-spectral radius and the true Lagrangian of the corresponding
complete hypergraph which is obtained from the Proposition 2.1, while the abscissa means the value of
pϑ − 1. When pϑ approaches to 1, the pϑ-spectral radius is close to the exact Lagrangian of the related
hypergraph.

6 Network analysis
Not only the p-spectral radii, i.e., the optimal value of f(x) in (3.3), but also the optimal point x in (3.3)
characterize the structure of hypergraphs. Recall (2.3) that an optimal point is called a p-optimal weighting.
The elements of the p-optimal weighting reflect the importance of the corresponding vertices in the hyper-
graph. Therefore, we may call the ith element of the p-optimal weighting the impact factor of the ith vertex.
Different selections of the parameter p provide different criteria of the importance of the vertices. When p
is relatively large, the criterion tends to evaluate the importance of vertices more individually. When p is
relatively small, the ranking result demonstrates the significance of groups of vertices. In this section, we
compute each p-spectral radius 10 times and choose the vector corresponding to the largest f(x) value as
the p-optimal weighting.
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Figure 6: A 6-uniform hypergraph.

Ranking p = 4
3

p = 5 p = 16
Num. Val. Num. Val. Num. Val.

1 39 0.4082483175 41 0.4081204985 1 0.1709715830
2 38 0.4082482858 39 0.4081204985 31 0.1678396311
3 31 0.4082482855 31 0.4081204983 26 0.1618288319
4 41 0.4082482854 38 0.4081204982 39 0.1600192388
5 40 0.4082482849 40 0.4081204973 38 0.1600192387
6 37 0.4082482834 37 0.4081204958 41 0.1600192387
7 24 0.0000000000 28 0.0073198868 40 0.1600192386
8 34 0.0000000000 30 0.0073192175 37 0.1600192385
9 23 0.0000000000 26 0.0073061265 23 0.1550865094

10 3 0.0000000000 29 0.0071906282 22 0.1550865094

Table 5: Top ten vertices in Figure 6.

6.1 A toy problem
We first employ a toy problem to illustrate the impact of the selections of p. We construct a 6-uniform
weighted hypergraph with 8 edges as in Figure 6. The weights of all edges of this hypergraph are set as 1,
except the last one whose weight is 3

2 . Obviously from the hypergraph, the vertices numbered 1, 31, and
26 are distinct from other vertices, and the edge {31, 37, 38, 39, 40, 41} is also distinct from other edges.
In Table 5, we show the different ranking of vertices via different p-optimal weighting. The abbreviation
Num. means the number of a vertex and Val. represents the impact factors of the corresponding vertices.

When p = 4
3 , the top 6 vertices are in the edge who has the only largest weight among all edges. From

Table 5, we can see that the impact factor of the top 6 vertices in the 4
3 -optimal weighting are much greater

than others. In fact, the value of all impact factors, except those corresponding to the top 6 vertices, are
less than 5 × 10−10, which means that the dominant vertices are the ones from the largest weighted edge
and the others can be ignored. That is to say, the ranking in this case offers the most important group of the
vertices. When p = 5, the vertex numbered 26 appears in the top 10 list and the difference among the top
10 impact factors is not as great as that when p = 4

3 . When p = 16, the top 3 vertices are 1, 31, 26, and the
impact factors of vertices that have same status in the hypergraph are rather close to each other. Then, we
believe that the ranking results of 16-spectral radius reflects the significance of vertices individually.

6.2 Author ranking
Ng et al. in [47] collected publication information from DBLP2 and gave different rankings of the authors
according to different factors, such as citations of authors, category concepts, collaborations, and papers. In
this subsection, we use the same data set in [47] and rank the authors based on their collaborations.3

2http://www.informatik.uni-trier.de/ ley/db/
3We would like to thank Dr. Xutao Li for providing the database.
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Ranking Author Name
p = 2 p = 12 MultiRank

1 Zheng Chen Wei-Ying Ma C. Lee Giles
2 Wei-Ying Ma Zheng Chen Philip S. Yu
3 Qiang Yang Jiawei Han Wei-Ying Ma
4 Jun Yan Philip S. Yu Zheng Chen
5 Benyu Zhang C. Lee Giles Jiawei Han
6 Hua-Jun Zeng Jian Pei Christos Faloutsos
7 Weiguo Fan Christos Faloutsos Bing Liu
8 Wensi Xi Yong Yu Johannes Gehrke
9 Dou Shen Qiang Yang Gerhard Weikum

10 Shuicheng Yan Ravi Kumar Elke A. Rundensteiner

Table 6: Top 10 authors.

We construct a weighted 3-uniform multi-hypergraph GA with 1, 243, 443 edges to store the coop-
eration information. The vertex set is composed of numbers of the 10305 authors and each edge has 3
vertices indicating that these three authors have cooperations under a same topic. The weight of an edge
is decided by the collaboration times among the three authors in this edge. The adjacency tensor of this
multi-hypergraph GA is a sparse tensor with 1.17% nonzero entries.

The example in Subsection 6.1 shows that we can obtain the ranking score from different viewpoints
by computing different p-optimal weighting. Therefore, we compute 2-optimal weighting and 12-optimal
weighting of GA to get the author group ranking and the author ranking respectively. In Figure 7(a), the
stars stand for the 2-optimal impact factors of vertices ofGA.Obviously, the majority elements of 2-optimal
weighting are extraordinarily close to zero and only dozens of corresponding stars are above the horizontal
line of y = 0.1. In fact, 97.2% of the entries in the 2-optimal weighting are less than 10−3 and the elements
that are greater than 0.1 occupy only 1.8%. On the other hand, the largest impact factor reaches to 0.4481
and the upper stars are considerably larger than others. It means that the 2-optimal weighting is dominated
by a small proportion of its components and we regard these leading elements as a group. The top ten
authors ranked according to the 2-optimal impact factor are presented in the second column of Table 6. The
average collaboration times of each two authors among these top ten authors are 8.533, which is far larger
than 9.76 × 10−4, the average collaboration times of each two authors among the whole 10305 authors.
Since these top ten authors have intimate cooperation, it is rational to consider them as a group and interpret
the ranking in the second column as the most powerful group.

Stars in Figure 7(b) are the 12-optimal impact factors of vertices of GA. The distribution of these stars
is totally different from the ones in Figure 7(a). It can be seen in Figure 7(b) that the 12-optimal impact
factors of the 10305 authors are uniform and most of them are concentrated in the internal between 0.006
and 0.014. Because in the original data set, the collaboration times of different authors are mostly one or
two and we rank the authors based on their collaborations, the balance and concentration of the impact
factors match up with the cooperation information. The top ten authors generated via the 12-optimal impact
factors are listed in the third column of Table 6. Ng et al. also ranked the authors in the light of collaboration
times and the influence of category concepts of their publications. We demonstrate the top 10 authors of
their experimental result [47] in the MultiRank column in Table 6. It can be seen that 6 of the top 10 authors
in the MultiRank are coincident with results of our 12-optimal rank.

7 Conclusions
We convert the p-norm constraint in p-spectral radius problem into an orthogonal constraint, and propose a
first order iterative algorithm CSRH for solving it. In this method, it is feasible to obtain a proper step length
to satisfy the Wolfe conditions under the curvilinear line search. Convergence analysis shows that the CSRH
method is globally convergent. The iterates converges to a p-optimal weighting. Numerical experiments
show that CSRH method is efficient and powerful. In the author ranking application problem, we construct
a weighted hypergraph with millions of edges. By computing p-spectral radius of this hypergraph, the most
influential cooperation group and the top ten ranked authors are presented.
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(a) p = 2 (b) p = 12

Figure 7: Optimal points.
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[21] P. Frankl and Z. Füredi. Extremal problems whose solutions are the blowups of the small Witt-designs.
J. Combin. Theory Ser. A, 52(1):129–147, 1989.
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