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Abstract

Parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) are
key ingredients in a number of models in physics and financial engineering. In particular, parabolic PDEs and
BSDEs are fundamental tools in the state-of-the-art pricing and hedging of financial derivatives. The PDEs and
BSDEs appearing in such applications are often high-dimensional and nonlinear. Since explicit solutions of such
PDEs and BSDEs are typically not available, it is a very active topic of research to solve such PDEs and BSDEs
approximately. In the recent article [E, W., Hutzenthaler, M., Jentzen, A., & Kruse, T. Linear scaling algorithms
for solving high-dimensional nonlinear parabolic differential equations. arXiv:1607.03295 (2017)] we proposed a
family of approximation methods based on Picard approximations and multilevel Monte Carlo methods and showed
under suitable regularity assumptions on the exact solution for semilinear heat equations that the computational
complexity is bounded by O(d ε−(4+δ)) for any δ ∈ (0,∞), where d is the dimensionality of the problem and
ε ∈ (0,∞) is the prescribed accuracy. In this paper, we test the applicability of this algorithm on a variety of
100-dimensional nonlinear PDEs that arise in physics and finance by means of numerical simulations presenting
approximation accuracy against runtime. The simulation results for these 100-dimensional example PDEs are very
satisfactory in terms of accuracy and speed. In addition, we also provide a review of other approximation methods
for nonlinear PDEs and BSDEs from the literature.
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1 Introduction and main results

Parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) have a wide
range of applications. To give specific examples we focus now on a number of applications in finance. There are
several fundamental assumptions incorporated in the Black-Scholes model that are not met in the real-life trading of
financial derivatives. A number of derivative pricing models have been developed in about the last four decades to
relax these assumptions; see, e.g., [9, 29, 8, 62, 42, 59, 18] for models taking into account the fact that the “risk-free”
bank account has higher interest rates for borrowing than for lending, particularly, due to the default risk of the
trader, see, e.g., [53, 18] for models incorporating the default risk of the issuer of the financial derivative, see, e.g.,
[82, 6, 5] for models for the pricing of financial derivatives on underlyings which are not tradeable such as financial
derivatives on the temperature or mortality-dependent financial derivatives, see, e.g., [1] for models incorporating that
the hedging strategy influences the price processes through demand and supply (so-called large investor effects), see,
e.g., [33, 61, 48] for models taking the transaction costs in the hedging portfolio into account, and see, e.g., [2, 48] for
models incorporating uncertainties in the model parameters for the underlying. In each of the above references the
value function u, describing the price of the financial derivative, solves a nonlinear parabolic PDE. Moreover, the PDEs
for the value functions emerging from the above models are often high-dimensional as the financial derivative depends
in several cases on a whole basket of underlyings and as a portfolio containing several financial derivatives must often
be treated as a whole in the case where the above nonlinear effects are taken into account (cf., e.g., [18, 33, 8]). These
high-dimensional nonlinear PDEs can typically not be solved explicitly and, in particular, there is a strong demand
from the financial engineering industry to approximately compute the solutions of such high-dimensional nonlinear
parabolic PDEs.

The numerical analysis literature contains a number of deterministic approximation methods for nonlinear parabolic
PDEs such as finite element methods, finite difference methods, spectral Galerkin approximation methods, or sparse
grid methods (cf., e.g., [80, Chapter 14], [79, Section 3], [78], and [73]). Some of these methods achieve high convergence
rates with respect to the computational effort and, in particular, provide efficient approximations in low or moderate
dimensions. However, these approximation methods can not be used in high dimensions as the computational effort
grows exponentially in the dimension d ∈ N = {1, 2, . . .} of the considered nonlinear parabolic PDE and then the
method fails to terminate within years even for low accuracies.

In the case of linear parabolic PDEs the Feynman-Kac formula establishes an explicit representation of the solution
of the PDE as the expectation of the solution of an appropriate stochastic differential equation (SDE). (Multilevel)
Monte Carlo methods together with suitable discretizations of the SDE (see, e.g., [68, 58, 57, 56]) then result in
a numerical approximation method with a computational effort that grows at most polynomially in the dimension
d ∈ N of the PDE and that grows up to an arbitrarily small order quadratically in the reciprocal of the approximation
precision (cf., e.g., [46, 39, 49, 50]). These multilevel Monte Carlo approximations are, however, limited to linear

PDEs as the classical Feynman-Kac formula provides only in the case of a linear PDE an explicit representation of the
solution of the PDE. For lower error bounds in the literature on random and deterministic numerical approximation
methods for high-dimensional linear PDEs the reader is, e.g., referred to Heinrich [51, Theorem 1].

In the seminal papers [71, 72, 70], Pardoux & Peng developed the theory of nonlinear backward stochastic differ-
ential equations and, in particular, established a considerably generalized nonlinear Feynman-Kac formula to obtain
an explicit representation of the solution of a nonlinear parabolic PDE by means of the solution of an appropriate
BSDE; see also Cheridito et al. [17] for second-order BSDEs. Discretizations of BSDEs, however, require suitable dis-
cretizations of nested conditional expectations (see, e.g., [10, 83, 32, 47, 17]). Discretization methods for these nested
conditional expectations proposed in the literature include the ’straight forward’ Monte Carlo method, the quantiza-
tion tree method (see [4]), the regression method based on Malliavin calculus or based on kernel estimation (see [10]),
the projection on function spaces method (see [42]), the cubature on Wiener space method (see [22]), and the Wiener
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chaos decomposition method (see [12]). None of these discretization methods has the property that the computational
effort of the method grows at most polynomially both in the dimension and in the reciprocal of the prescribed accuracy
(see Subsections 4.1–4.6 below for a detailed discussion). We note that solving high-dimensional semilinear parabolic
PDEs at single space-time points and solving high-dimensional nonlinear BSDEs at single time points is essentially
equivalent due to the generalized nonlinear Feynman-Kac formula established by Pardoux & Peng. In recent years
the concept of fractional smoothness in the sense of function spaces has been used for studying variational properties
of BSDEs. This concept of fractional smoothness quantifies the propagation of singularities in time and shows that
certain non-uniform time grids are more suitable in the presence of singularities; see, e.g., Geiss & Geiss [36], Gobet
& Makhlouf [43] or Geiss, Geiss, & Gobet [35] for details. Also these temporal discretization methods require suitable
discretizations of nested conditional expectations resulting in the same problems as in the case of uniform time grids.

Another probabilistic representation for solutions of some nonlinear parabolic PDEs with polynomial nonlinearities
has been established in Skorohod [77] by means of branching diffusion processes. Recently, this classical representation
has been extended under suitable assumptions in Henry-Labordère [53] to more general analytic nonlinearities and in
Henry-Labordère et al. [54] to polynomial nonlinearities in the pair (u(t, x), (∇xu)(t, x)) ∈ R1+d, (t, x) ∈ [0, T ]×Rd,
where u is the solution of the PDE, d ∈ N is the dimension, and T ∈ (0,∞) is the time horizon. This probabilistic
representation has been successfully used in Henry-Labordère [53] (see also Henry-Labordère, Tan, & Touzi [55]) and
in Henry-Labordère et al. [54] to obtain a Monte Carlo approximation method for semilinear parabolic PDEs with a
computational complexity which is bounded by O(d ε−2) where d is the dimensionality of the problem and ε ∈ (0,∞)
is the prescribed accuracy. The major drawback of the branching diffusion method is its insufficient applicability,
namely it requires the terminal/initial condition of the parabolic PDE to be quite small (see Subsection 4.7 below for
a detailed discussion).

In the recent article [28] we proposed a family of approximation methods which we denote as multilevel Picard
approximations (see (8) for its definition and Section 2 for its derivation). Corollary 3.18 in [28] shows under suitable
regularity assumptions (including smoothness and Lipschitz continuity) on the exact solution that the computational
complexity of this algorithm is bounded by O(d ε−(4+δ)) for any δ ∈ (0,∞), where d is the dimensionality of the
problem and ε ∈ (0,∞) is the prescribed accuracy. In this paper we complement the theoretical complexity analysis of
[28] with a simulation study. Our simulations in Section 3 indicate that the computational complexity grows at most
linearly in the dimension and quartically in the reciprocal of the prescribed accuracy also for several 100-dimensional
nonlinear PDEs from physics and finance with non-smooth and/or non-Lipschitz nonlinearities and terminal condition
functions. The simulation results for these 100-dimensional example PDEs are very satisfactory in terms of accuracy
and speed.

1.1 Notation

Throughout this article we frequently use the following notation. We denote by 〈·, ·〉 : (∪n∈N(Rn ×Rn)) → [0,∞)
the function that satisfies for all n ∈ N, v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ R

n that 〈v, w〉 =
∑n

i=1 viwi. For
every topological space (E, E) we denote by B(E) the Borel-sigma-algebra on (E, E). For all measurable spaces (A,A)
and (B,B) we denote by M(A,B) the set of A/B-measurable functions from A to B. For every probability space
(Ω,A,P) we denote by ‖·‖L2(P;R) : M(A,B(R)) → [0,∞] the function that satisfies for all X ∈ M(A,B(R)) that

‖X‖L2(P;R) =
√

E[|X |2]. For all metric spaces (E, dE) and (F, dF ) we denote by Lip(E,F ) the set of all globally

Lipschitz continuous functions from E to F . For every d ∈ N we denote by I
R

d×d the identity matrix in Rd×d and
we denote by Rd×d

Inv the set of invertible matrices in Rd×d. For every d ∈ N and every A ∈ R

d×d we denote by
A∗ ∈ R

d×d the transpose of A. For every d ∈ N and every x = (x1, . . . , xd) ∈ R

d we denote by diag(x) ∈ R

d×d

the diagonal matrix with diagonal entries x1, . . . , xd. For every T ∈ (0,∞) we denote by QT the set given by
QT = {w : [0, T ] → R : w−1(R\{0}) is a finite set}. We denote by ⌊·⌋ : R → Z and [·]+ : R → [0,∞) the functions
that satisfy for all x ∈ R that ⌊x⌋ = max(Z ∩ (−∞, x]) and [x]+ = max{x, 0}.

2 Multilevel Picard approximations for high-dimensional semilinear PDEs

In Subsection 2.3 below we define multilevel Picard approximations (see (8) below) in the case of semilinear PDEs
(cf. (5) in Subsection 2.2 below). These approximations have been introduced in [28]. In Subsection 2.1 we explain
the abstract idea behind multilevel Picard approximations. In Subsection 2.2 we derive a fixed-point equation for
semilinear PDEs which is based on the Feynman-Kac and Bismut-Elworthy-Li formulas.

2.1 Abstract picture for multilevel Picard approximations

Roughly speaking, a key idea in our approach to solve high-dimensional nonlinear PDEs/BSDEs is to formulate the
solution of the considered PDE/BSDE as the solution of a suitable fixed-point equation and then to approximate the
fixed-point by suitable multilevel Picard approximations (see (4) below). We now first outline this idea in an abstract
form (see (2)–(4) below) and, thereafter, we demonstrate (see Subsections 2.2–2.3) how this general idea is applied to
high-dimensional semilinear PDEs and high-dimensional BSDEs.
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Let (V , ‖·‖V) be an R-Banach space and let Φ : V → V be a contraction on (V , ‖·‖V). The Banach fixed-point

theorem then ensures that there exists a unique fixed-point of Φ, that is, the Banach fixed-point theorem establishes
the existence of a unique element u∞ ∈ V with the property that

u∞ = Φ(u∞). (1)

We think of V as a suitable space of functions, we think of (1) as a suitable reformulation of the considered deterministic
PDE, and we think of u∞ ∈ V as the pair consisting of the solution of the considered PDE and of its spatial derivative.
Next let (uk)k∈N0 ⊆ V be a sequence of fixed-point iterations associated to (1), i.e., let (uk)k∈N0 ⊆ V satisfy for all
k ∈ N that uk = Φ(uk−1). In examples we choose (uk)k∈N0 ⊆ V such that u0 is known explicitly or easily computable.
The Banach fixed-point theorem also ensures that limk→∞ uk = u∞ and that this convergence happens exponentially
fast. To introduce our multilevel Picard approximations, we need suitable computable approximations of the typically
nonlinear function Φ : V → V , that is, we consider a family Ψk,n

l,ρ : V → V , l, k ∈ N, n ∈ {0, 1}, ρ ∈ (0,∞), of functions

on V and we think of Ψk,n
l,ρ for l, k ∈ N, n ∈ {0, 1}, ρ ∈ (0,∞) as appropriate computable approximations of Φ in the

sense that Ψk,0
l,ρ and Ψk,1

l,ρ get closer to Φ in a suitable sense as l ∈ N (and k ∈ N and ρ ∈ (0,∞) respectively) gets
larger. This, the fact that limk→∞ uk = u∞, and the fact that for all k ∈ N it holds that uk = Φ(uk−1) then ensure
for all sufficiently large k ∈ N that

u∞ ≈ uk = u1 +
k−1
∑

l=1

[ul+1 − ul] = Φ(u0) +
k−1
∑

l=1

[

Φ(ul)−Φ(ul−1)
]

≈ Ψk,0
k,ρ(u0) +

k−1
∑

l=1

[

Ψk,0
k−l,ρ(ul)−Ψk,1

k−l,ρ(ul−1)
]

.

(2)

The first ≈ in (2) exploits the fact that limk→∞ uk = u∞ and the second ≈ in (2) uses our approximation assumption

on Ψk,n
l,ρ , l, k ∈ N, n ∈ {0, 1}, ρ ∈ (0,∞). Display (2) suggests to introduce suitable numerical approximations of uk,

k ∈ N, and u∞, respectively. More formally, let ψk,ρ : Vk → V , k ∈ N, ρ ∈ (0,∞), be the functions which satisfy for
all k ∈ N, ρ ∈ (0,∞), v0, v1, . . . , vk−1 ∈ V that

ψk,ρ(v0, v1, . . . , vk−1) =

k−1
∑

l=0

[

Ψk,0
k−l,ρ

(

vl
)

− 1
N

(l)Ψk,1
k−l,ρ

(

v[l−1]+
)

]

(3)

and let Uk,ρ ∈ V , k ∈ N0, ρ ∈ (0,∞), satisfy for all k ∈ N, ρ ∈ (0,∞) that U0,ρ = u0 and

Uk,ρ = ψk,ρ

(

U0,ρ,U1,ρ, . . . ,Uk−1,ρ

)

=

k−1
∑

l=0

[

Ψk,0
k−l,ρ

(

Ul,ρ

)

− 1
N

(l)Ψk,1
k−l,ρ

(

U[l−1]+,ρ

)

]

. (4)

We would like to point out that the approximations in (4) are full history recursive in the sense that for every k ∈ N
and every ρ ∈ (0,∞) the “full history” U0,ρ, U1,ρ, . . . , Uk−1,ρ needs to be computed recursively in order to compute
Uk,ρ. Moreover, we note that the approximations in (4) exploit multilevel/multigrid ideas (cf., e.g., [49, 52, 50, 39]).
Typically multilevel ideas appear where the different levels correspond to approximations with different time or space
step sizes while here different levels correspond to different stages of the fixed-point iteration. This, in turn, results in
numerical approximations which require the full history of the approximations. A key feature of the approximations in
(4) is that – depending on the choice of the space (V , ‖·‖V), the functionΦ, and the functions (Ψk,n

l,ρ )l,k∈N,n∈{0,1},ρ∈(0,∞)

– the approximations (4) often preserve the frequently exceedingly high convergence speed of the (uk)k∈N to u∞ while
keeping the computational cost moderate compared to the desired approximation precision.

2.2 A fixed-point equation for semilinear PDEs

To get a better understanding of the approximation scheme introduced in Subsection 2.3, we present in this subsection
a rough derivation of a fixed-point equation on which the scheme (8) is based on. For this fixed-point equation we
impose for simplicity of presentation appropriate additional hypotheses that are not needed for the definition of the
scheme (8) (cf. (5)–(7) in this subsection with Subsection 2.3).

Let T ∈ (0,∞), d ∈ N, let g : Rd → R, f : [0, T ] × R

d × R × R

d → R, u : [0, T ] × R

d → R, η : Rd → R

d,
µ : [0, T ] × R

d → R

d, and σ = (σ1, . . . , σd) : [0, T ] × R

d → R

d×d
Inv be sufficiently regular functions, assume for all

t ∈ [0, T ), x ∈ Rd that u(T, x) = g(x) and

( ∂
∂tu)(t, x) + f

(

t, x, u(t, η(x)), [σ(t, η(x))]∗(∇xu)(t, η(x))
)

+ 〈µ(t, x), (∇xu)(t, x)〉
+ 1

2 Trace
(

σ(t, x)[σ(t, x)]∗(Hessx u)(t, x)
)

= 0, (5)

let (Ω,F ,P, (Ft)t∈[0,T ]) be a stochastic basis (cf., e.g., [74, Appendix E]), let W = (W 1, . . . , W d) : [0, T ]×Ω → R

d be a

standard (Ft)t∈[0,T ]-Brownian motion, and for every s ∈ [0, T ], x ∈ Rd let Xs,x : [s, T ]×Ω → R

d and Ds,x : [s, T ]×Ω →

4



R

d×d be (Ft)t∈[s,T ]-adapted stochastic processes with continuous sample paths which satisfy that for all t ∈ [s, T ] it
holds P-a.s. that

Xs,x
t = x+

∫ t

s

µ(r,Xs,x
r ) dr +

d
∑

j=1

∫ t

s

σj(r,X
s,x
r ) dW j

r ,

Ds,x
t = I

R

d×d +

∫ t

s

( ∂
∂xµ)(r,X

s,x
r )Ds,x

r dr +

d
∑

j=1

∫ t

s

( ∂
∂xσj)(r,X

s,x
r )Ds,x

r dW j
r .

(6)

For every s ∈ [0, T ] the processes Ds,x, x ∈ R

d, are in a suitable sense the derivative processes of Xs,x, x ∈ R

d

with respect to x ∈ Rd. The function η in (5) allows to include a possible space shift in the PDE. Typically we are
interested in the case where η is the identity, that is, for all x ∈ R

d it holds that η(x) = x. Our approximation
scheme in (8) below is based on a suitable fixed-point formulation of the solution of the PDE (5). To obtain such a
fixed-point formulation, we apply the Feynman-Kac formula and the Bismut-Elworthy-Li formula (see, e.g., Elworthy
& Li [30, Theorem 2.1] or Da Prato & Zabczyk [25, Theorem 2.1]). More precisely, let u∞ ∈ Lip([0, T ]×Rd,R1+d)
satisfy for all (t, x) ∈ [0, T )×Rd that u∞(t, x) =

(

u(t, x), [σ(t, x)]∗(∇xu)(t, x)
)

and let Φ: Lip([0, T ]×Rd,R1+d) →
Lip([0, T ]×Rd,R1+d) satisfy for all v ∈ Lip([0, T ]×Rd,R1+d), (s, x) ∈ [0, T )×Rd that

(

Φ(v)
)

(s, x) = E

[

(g(Xs,x
T )− g(x))

(

1, [σ(s,x)]
∗

T−s ∫Ts
[

σ(r,Xs,x
r )−1Ds,x

r

]∗
dWr

)]

+ (g(x), 0)

+
∫ T

s E

[

f
(

t,Xs,x
t ,v

(

t, η(Xs,x
t )

)

)

(

1, [σ(s,x)]
∗

t−s ∫ ts
[

σ(r,Xs,x
r )−1Ds,x

r

]∗
dWr

)

]

dt
(7)

Combining (7) with the Feynman-Kac formula and the Bismut-Elworthy-Li formula ensures that u∞ = Φ(u∞). Note
that we have incorporated a zero expectation term in (7). The purpose of this term is to slightly reduce the variance
when approximating the right-hand side of (7) by Monte Carlo approximations. Now we approximate the non-discrete
quantities in (7) (expectation and time integral) by discrete quantities (Monte Carlo averages and quadrature formulas)
with different degrees of discretization on different levels (cf. the remarks in Subsection 2.4 below). This yields a family
of approximations of Φ. With these approximations of Φ we finally define multilevel Picard approximations of u∞

through (4) which results in the approximations (8).

2.3 The approximation scheme

In this subsection we introduce multilevel Picard approximations in the case of semilinear PDEs (see (8) below). To
this end we consider the following setting.

Let T ∈ (0,∞), d ∈ N, Θ = ∪n∈NRn, let g : Rd → R, f : [0, T ]×Rd ×Rd+1 → R, η : Rd → R

d, µ : [0, T ]×Rd →
R

d, σ : [0, T ] × R

d → R

d×d
Inv be measurable functions, let (qk,l,ρs )k,l∈N0,ρ∈(0,∞),s∈[0,T ) ⊆ QT , (mg

k,l,ρ)k,l∈N0,ρ∈(0,∞),

(mf
k,l,ρ)k,l∈N0,ρ∈(0,∞) ⊆ N, let (Ω,F ,P, (Ft)t∈[0,T ]) be a stochastic basis, let W θ : [0, T ]×Ω → R

d, θ ∈ Θ, be indepen-

dent standard (Ft)t∈[0,T ]-Brownian motions with continuous sample paths, for every l ∈ Z, ρ ∈ (0,∞), θ ∈ Θ, x ∈ Rd,

s ∈ [0, T ), t ∈ [s, T ] let X l,ρ,θ
x,s,t : Ω → R

d, Dl,ρ,θ
x,s,t : Ω → R

d×d, and Il,ρ,θ
x,s,t : Ω → R

1+d be functions, and for every θ ∈ Θ,

ρ ∈ (0,∞) let Uθ
k,ρ : [0, T ]×Rd × Ω → R

d+1, k ∈ N0, be functions which satisfy for all k ∈ N, (s, x) ∈ [0, T )×Rd

that

Uθ
k,ρ(s, x) =

k−1
∑

l=0

mg
k,l,ρ
∑

i=1

1

mg
k,l,ρ

[

g(X l,ρ,(θ,l,−i)
x,s,T )− 1

N

(l) g(X l−1,ρ,(θ,l,−i)
x,s,T )− 1{0}(l) g(x)

]

Il,ρ,(θ,l,−i)
x,s,T

+
(

g(x), 0
)

+

k−1
∑

l=0

mf
k,l,ρ
∑

i=1

∑

t∈[s,T ]

qk,l,ρs (t)

mf
k,l,ρ

[

f
(

t,X k−l,ρ,(θ,l,i)
x,s,t ,U

(θ,l,i,t)
l,ρ

(

t, η(X k−l,ρ,(θ,l,i)
x,s,t )

)

)

− 1
N

(l) f
(

t,X k−l,ρ,(θ,l,i)
x,s,t ,U

(θ,−l,i,t)
[l−1]+,ρ

(

t, η(X k−l,ρ,(θ,l,i)
x,s,t )

)

)]

Ik−l,ρ,(θ,l,i)
x,s,t .

(8)

2.4 Remarks on the approximation scheme

In this subsection we add a few comments on the numerical approximations (8). For this we assume the setting in
Section 2.3. The set Θ allows to index families of independent random variables which we need for Monte Carlo
approximations. The natural numbers (mg

k,l,ρ)k,l∈N,ρ∈(0,∞), (m
f
k,l,ρ)k,l∈N0,ρ∈(0,∞) ⊆ N specify the number of Monte

Carlo samples in the corresponding levels for approximating the expectations involving g and f appearing on the
right-hand side of (7). The family (qk,l,ρs )k,l∈N0,ρ∈(0,∞),s∈[0,T ) ⊆ QT provides the quadrature formulas that we employ

to approximate the time integrals
∫ T

s
. . . dt, s ∈ [0, T ], appearing on the right-hand side of (7). In Subsections 3.1–3.3

these parameters satisfy that for every k, l ∈ N0, ρ ∈ N it holds that mg
k,l,ρ = ρk−l, mf

k,l,ρ = round(
√
ρk−l) and that

for every k, l ∈ N0, ρ ∈ N it holds that qk,l,ρ is a Gauß-Legendre quadrature rule with round(Γ−1(ρ(k−l)/2)) nodes. In

Subsections 3.4–3.5 these parameters satisfy that for every k, l ∈ N0, ρ ∈ N it holds thatmg
k,l,ρ = mf

k,l,ρ = ρk−l and that
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for every k, l ∈ N0, ρ ∈ N it holds that qk,l,ρ is a Gauß-Legendre quadrature rule with round(Γ−1(ρ(k−l)/2)) nodes. For

every l ∈ N, ρ ∈ (0,∞), θ ∈ Θ, (s, x) ∈ [0, T ]×Rd, v ∈ (s, T ] we think of the processes (X l,ρ,θ
x,s,t )t∈[s,T ] and (Dl,ρ,θ

x,s,t)t∈[s,T ]

as (Ft)t∈[s,T ]-optional measurable computable approximations with P
( ∫ T

s

∥

∥σ(r,X l,ρ,θ
x,s,r)

−1 Dl,ρ,θ)
x,s,r

∥

∥

2

L(Rd,Rd)
dr <∞

)

= 1

(e.g., piecewise constant càdlàg Euler-Maruyama approximations) of the processes (Xs,x
t )t∈[s,T ] and (Ds,x

t )t∈[s,T ] in

(6) and we think of Il,ρ,θ
x,s,v as a random variable that satisfies P-a.s. that

Il,ρ,θ
x,s,v =

(

1, [σ(s,x)]
∗

v−s ∫vs
[

σ(r,X l,ρ,θ
x,s,r)

−1 Dl,ρ,θ
x,s,r

]∗
dW θ

r

)

. (9)

Note that if X k,ρ,θ
x,s,· and Dk,ρ,θ

x,s,· are piecewise constant then the stochastic integral on the right-hand side of (9) reduces
to a stochastic Riemann-type sum which is not difficult to compute. Observe that our approximation scheme (8)
employs Picard fixed-point approximations (cf., e.g., [7]), multilevel/multigrid techniques (see, e.g., [39, 49, 50, 19]),
discretizations of the SDE system (6), as well as quadrature approximations for the time integrals. Roughly speaking,
the numerical approximations (8) are full history recursive in the sense that for every (k, ρ) ∈ N × (0,∞) the full

history U
(·)
0,ρ, U

(·)
1,ρ, . . . , U

(·)
k−1,ρ needs to be computed recursively in order to compute U

(·)
k,ρ. In this sense the numerical

approximations (8) are full history recursive multilevel Picard approximations.

2.5 Special case: semilinear heat equations

In this subsection we specialize the numerical scheme (8) to the case of semilinear heat equations.

Proposition 2.1. Assume the setting in Section 2.3, assume for all k ∈ N0, ρ ∈ (0,∞), θ ∈ Θ, x ∈ Rd, s ∈ [0, T ),

t ∈ [s, T ], u ∈ (s, T ] that η(x) = x, X k,ρ,θ
x,s,t = x+W θ

t −W θ
s , Dk,ρ,θ

x,s,t = σ(s, x) = I
R

d×d , Ik,ρ,θ
x,s,s = 0, Ik,ρ,θ

x,s,u = (1,
W θ

u−W θ
s

u−s ),

and for every θ ∈ Θ, a ∈ [0, T ], b ∈ [a, T ] let ∆W θ
a,b : Ω → R

d be the function given by ∆W θ
a,b = W θ

b −W θ
a . Then it

holds for all θ ∈ Θ, k ∈ N, ρ ∈ (0,∞), (s, x) ∈ [0, T )×Rd that

Uθ
k,ρ(s, x) =

(

g(x), 0
)

+

mg
k,0,ρ
∑

i=1

1

mg
k,0,ρ

[

g
(

x+∆W
(θ,0,−i)
s,T

)

− g(x)
](

1, 1
T−s∆W

(θ,0,−i)
s,T

)

+

k−1
∑

l=0

mf
k,l,ρ
∑

i=1

∑

t∈(s,T ]

qk,l,ρs (t)

mf
k,l,ρ

[

f
(

t, x+∆W
(θ,l,i)
s,t ,U

(θ,l,i,t)
l,ρ (t, x+∆W

(θ,l,i)
s,t )

)

− 1
N

(l)f
(

t, x+∆W
(θ,l,i)
s,t ,U

(θ,−l,i,t)
[l−1]+,ρ (t, x+∆W

(θ,l,i)
s,t )

)

]

(

1, 1
t−s∆W

(θ,l,i)
s,t

)

.

(10)

The proof of Proposition 2.1 is clear and therefore omitted.

2.6 Special case: geometric Brownian motion

In this subsection we specialize the numerical scheme (8) to the case of the forward diffusion being a geometric
Brownian motion. This case often appears in the financial engineering literature.

Proposition 2.2. Assume the setting in Section 2.3, let µ̄ ∈ R, σ̄ ∈ (0,∞), for every θ ∈ Θ, a ∈ [0, T ], b ∈ [a, T ]
let ∆W θ

a,b : Ω → R

d be the function given by ∆W θ
a,b = W θ

b −W θ
a , and assume for all k ∈ N0, ρ ∈ (0,∞), θ ∈ Θ,

x ∈ (0,∞)d, s ∈ [0, T ), t ∈ [s, T ], u ∈ (s, T ] that η(x) = x, Dk,ρ,θ
x,s,t = exp((µ̄ − σ̄2

2 )(t − s)) exp(σ̄ diag(∆W θ
s,t)),

X k,ρ,θ
x,s,t = Dk,ρ,θ

x,s,t x, σ(s, x) = σ̄ diag(x), Ik,ρ,θ
x,s,s = 0, Ik,ρ,θ

x,s,u = (1, 1
u−s∆W

θ
s,u). Then it holds for all θ ∈ Θ, k ∈ N ,

ρ ∈ (0,∞), (s, x) ∈ [0, T )× (0,∞)d that

Uθ
k,ρ(s, x) =

(

g(x), 0
)

+

mg
k,0,ρ
∑

i=1

1

mg
k,0,ρ

[

g
(

X 0,ρ,(θ,0,−i)
x,s,T

)

− g(x)
](

1, 1
T−s∆W

(θ,0,−i)
s,T

)

+

k−1
∑

l=0

mf
k,l,ρ
∑

i=1

∑

t∈(s,T ]

qk,l,ρs (t)

mf
k,l,ρ

[

f
(

t,X k−l,ρ,(θ,l,i)
x,s,t ,U

(θ,l,i,t)
l,ρ (t,X k−l,ρ,(θ,l,i)

x,s,t )
)

− 1
N

(l)f
(

t,X k−l,ρ,(θ,l,i)
x,s,t ,U

(θ,−l,i,t)
[l−1]+,ρ (t,X k−l,ρ,(θ,l,i)

x,s,t )
)

]

(

1, 1
t−s∆W

(θ,l,i)
s,t

)

.

(11)

The proof of Proposition 2.2 is clear and therefore omitted. In the setting of Proposition 2.2 we note that for all
k ∈ N, ρ ∈ (0,∞), θ ∈ Θ, (s, x) ∈ [0, T )×Rd, t ∈ (s, T ] it holds P-a.s. that

X k,ρ,θ
x,s,t = x+

∫ t

s

µ̄X k,ρ,θ
x,s,r dr +

∫ t

s

σ̄ diag(X k,ρ,θ
x,s,r ) dW

θ
r

Dk,ρ,θ
x,s,t = I

R

d×d +

∫ t

s

µ̄Dk,ρ,θ
x,s,r dr +

∫ t

s

σ̄ diag(Dk,ρ,θ
x,s,r ) dW

θ
r

Ik,ρ,θ
x,s,t =

(

1, [σ(s,x)]
∗

t−s

∫ t

s

[

σ(r,X k,ρ,θ
x,s,r )

−1 Dk,ρ,θ
x,s,r

]∗
dW θ

r

)

.

(12)
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3 Numerical simulations of high-dimensional nonlinear PDEs

In this section we apply the algorithm (8) to approximate the solutions of several nonlinear PDEs; see Subsections 3.1–
3.5 below. The solutions of the PDEs in Subsections 3.1–3.4 are not known explicitly. The solution of the PDE in
Subsection 3.5 is known explicitly. In Subsections 3.1–3.4 the algorithm is tested for a one-dimensional and a one
hundred-dimensional version of a PDE. In the one-dimensional cases in Subsections 3.1–3.4 we present the error of our
algorithm relative to a high-precision approximation of the exact solution of the PDE provided by a finite difference
approximation scheme (see the left-hand sides of Figures 1, 2, 4, and 5 and Tables 1, 3, 5, and 7 below). In the one
hundred-dimensional cases in Subsections 3.1–3.4 we present the approximation increments of our scheme to analyze
the performance of our scheme in the case of high-dimensional PDEs (see the right-hand sides of Figures 1, 2, 4, and 5
and Tables 2, 4, 6, and 8 below). In Subsection 3.5 we employ the explicit formula for the solution of the considered
one hundred-dimensional PDE (see (26) below) to present the error of our scheme relative to the explicitly known
exact solution (see the left-hand side of Figure 7 and Table 9). Moreover, for each of the PDEs in Subsections 3.1–3.5
we illustrate the growth of the computational effort with respect to the dimension by running the algorithm for each
PDE for every dimension d ∈ {5, 6, . . . , 100} and recording the associated runtimes (see Figures 3 and 6 and the
right-hand side of Figure 7). All simulations are performed with Matlab on a 2.8 GHz Intel i7 processor with 16 GB
RAM.

Throughout this section assume the setting in Subsection 2.3, let x0 ∈ Rd, let u ∈ C1,2([0, T ]×Rd,R) be a function
which satisfies for all (t, x) ∈ [0, T )×Rd that u(T, x) = g(x) and

( ∂
∂tu)(t, x) + f

(

t, x, u(t, η(x)), [σ(t, η(x))]∗(∇xu)(t, η(x))
)

+ 〈µ(t, x), (∇xu)(t, x)〉
+ 1

2 Trace
(

σ(t, x)[σ(t, x)]∗(Hessx u)(t, x)
)

= 0, (13)

and assume for all θ ∈ Θ, ρ ∈ (0,∞), (s, x) ∈ [0, T )×Rd that

Uθ
0,ρ(s, x) =

(

g(x), 0
)

+

mg
0,0,ρ
∑

i=1

1

mg
0,0,ρ

[

g(X 0,ρ,(θ,0,−i)
x,s,T )− g(x)

]

I0,ρ,(θ,0,−i)
x,s,T . (14)

To obtain smoother results we average over 10 independent simulation runs. More precisely, for the numerical results
in Subsections 3.1–3.3, for every d ∈ {1, 100} we run Matlab code 1 twice to produce one realization of

{1, 2, . . . , 7} × {1, 2, . . . , 10} ∋ (ρ, i) 7→ Ui
ρ,ρ(0, x0) = (Ui,[1]

ρ,ρ (0, x0),U
i,[2]
ρ,ρ (0, x0), . . . ,U

i,[d+1]
ρ,ρ (0, x0)) ∈ Rd+1, (15)

where in the second run, line 2 of Matlab code 1 is replaced by rng(2017) to initiate the pseudoran-
dom number generator with a different seed. Moreover, for the numerical results in Subsections 3.4 and
3.5, we run Matlab code 1 once, where lines 4, 5, and 14 are replaced by average=10;, rhomax=5;, and
[a,b]=approximateUZabm(n(rho),rho,zeros(dim,1),0);, respectively.

1 global Mf Mg Q c w T dim f g mu sigma eta ;
2 rng (2016)
3 format long
4 average =5;
5 rhomax=7;
6 rhomin=1;
7 [T, dim , f , g , eta ,mu, sigma ]=modelparameters ( ) ;
8 [Mf ,Mg,Q, c ,w, n ] = approxparameters( rhomax ) ;
9 va lue=zeros ( average , rhomax ) ;

10 time=value ;
11 for rho=rhomin : rhomax
12 for k=1: average
13 t i c

14 [ a , b]=approximateUZgbm(n( rho ) , rho ,100∗ ones (dim , 1 ) , 0 ) ;
15 va lue (k , rho)=a ;
16 time (k , rho)=toc ;
17 end

18 end

19 name = [ da t e s t r (now , ’yymmddTHHMMSS’ ) ’ .mat ’ ] ;
20 save (name , ’ n ’ , ’Q ’ , ’Mf ’ , ’Mg ’ , ’ va lue ’ , ’ time ’ ) ;

Matlab code 1: Matlab code to perform a testrun.

Matlab code 1 calls the Matlab functions approximateUZgbm (respectively approximateUZabm), modelparameters,
and approxparameters. TheMatlab functions approximateUZgbm and approximateUZabm are presented inMatlab

codes 2 and 3 and implement the schemes (11) and (10), respectively. More precisely, up to rounding errors and the
fact that random numbers are replaced by pseudo random numbers, it holds for all θ ∈ Θ, n ∈ N0, ρ ∈ N, x ∈ Rd,
s ∈ [0, T ) that approximateUZgbm(n, ρ, x, s) returns one realization of Uθ

n,ρ(s, x) satisfying (11). Moreover, up to
rounding errors and the fact that random numbers are replaced by pseudo random numbers, it holds for all θ ∈ Θ,
n ∈ N0, ρ ∈ N, x ∈ Rd, s ∈ [0, T ) that approximateUZabm(n, ρ, x, s) returns one realization of Uθ

n,ρ(s, x) satisfying
(10).
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1 function [ u , z ] = approximateUZgbm(n , rho , x , s )
2 global Mf Mg Q c w T dim f g mu sigma ;
3 c l o c=(T−s )∗ c/T+s ;
4 wloc=(T−s )∗w/T;
5 MC=Mg( rho , n+1);
6 W=sqrt (T−s )∗randn(dim ,MC) ;
7 X=repmat (x , 1 ,MC) . ∗ exp ( (mu−sigma ˆ2/2)∗(T−s)+sigma∗W) ;
8 x i=g (X) ;
9 u=sum( xi , 2 ) /MC;

10 z=sum( repmat( xi−g (x )∗ ones (1 ,MC) , dim , 1 ) . ∗W, 2 ) . / (MC∗(T−s ) ) ;
11 for l =0:(n−1)
12 q=Q( rho , n−l ) ;
13 d=c l o c ( 1 : q , q)−[ s ; c l o c ( 1 : ( q−1) ,q ) ] ;
14 MC=Mf( rho , n−l ) ;
15 X=repmat(x , 1 ,MC) ;
16 W=zeros (dim ,MC) ;
17 for k=1:q
18 dW=sqrt (d(k ))∗randn(dim ,MC) ;
19 W=W+dW;
20 X=X.∗exp ( (mu−sigma ˆ2/2)∗d(k)+sigma∗dW) ;
21 [U, Z]= c e l l f u n (@approximateUZgbm, num2cel l ( l ∗ones (1 ,MC)) , num2cel l ( rho∗ ones (1 ,MC) ) , . . .
22 num2cel l (X, 1 ) , num2cel l ( c l o c (k , q )∗ ones (1 ,MC)) , ’ UniformOutput ’ , f a l s e ) ;
23 y=f ( c l o c (k , q ) ,X, ce l l 2mat (U) , ce l l 2mat (Z ) ) ;
24 u=u+wloc (k , q )∗sum( y )/MC;
25 z=z+wloc (k , q ) . ∗sum( repmat(y , dim , 1 ) . ∗W,2 ) . / (MC∗( c l o c (k , q)−s ) ) ;
26 i f l>0
27 [U, Z]= c e l l f u n (@approximateUZgbm, num2cel l ( ( l −1)∗ones (1 ,MC) ) , num2cel l ( rho∗ ones (1 ,MC) ) , . . .
28 num2cel l (X, 1 ) , num2cel l ( c l o c (k , q )∗ ones (1 ,MC) ) , ’ UniformOutput ’ , f a l s e ) ;
29 y=f ( c l o c (k , q ) ,X, ce l l 2mat (U) , ce l l 2mat (Z ) ) ;
30 u=u−wloc (k , q )∗sum(y )/MC;
31 z=z−wloc (k , q ) .∗sum( repmat (y , dim , 1 ) . ∗W, 2 ) . / (MC∗( c l o c (k , q)−s ) ) ;
32 end

33 end

34 end

35 end

Matlab code 2: A Matlab function with input θ ∈ Θ, n ∈ N0, ρ ∈ N, x ∈ R
d, t ∈ [0, T ) and output one realization

of Uθ
n,ρ(t, x) satisfying (11).

1 function [ u , z ] = approximateUZabm(n , rho , x , s )
2 global Mf Mg Q c w T dim f g mu sigma ;
3 c l o c=(T−s )∗ c/T+s ;
4 wloc=(T−s )∗w/T;
5 MC=Mg( rho , n+1);
6 W=sqrt (T−s )∗randn(dim ,MC) ;
7 X=repmat (x , 1 ,MC)+mu∗(T−s)+sigma∗W;
8 x i=g (X) ;
9 u=sum( xi , 2 ) /MC;

10 z=sum( repmat( xi−g (x )∗ ones (1 ,MC) , dim , 1 ) . ∗W,2 ) / (MC∗(T−s ) ) ;
11 for l =0:(n−1)
12 q=Q( rho , n−l ) ;
13 d=c l o c ( 1 : q , q)−[ s ; c l o c ( 1 : ( q−1) ,q ) ] ;
14 MC=Mf( rho , n−l ) ;
15 X=repmat(x , 1 ,MC) ;
16 W=zeros (dim ,MC) ;
17 for k=1:q
18 dW=sqrt (d(k ))∗randn(dim ,MC) ;
19 W=W+dW;
20 X=X+mu∗d(k)+sigma∗dW;
21 [U, Z]= c e l l f u n (@approximateUZabm, num2cel l ( l ∗ones (1 ,MC)) , num2cel l ( rho∗ ones (1 ,MC) ) , . . .
22 num2cel l (X, 1 ) , num2cel l ( c l o c (k , q )∗ ones (1 ,MC)) , ’ UniformOutput ’ , f a l s e ) ;
23 y=f ( c l o c (k , q ) ,X, ce l l 2mat (U) , ce l l 2mat (Z ) ) ;
24 u=u+wloc (k , q )∗sum( y )/MC;
25 z=z+wloc (k , q ) . ∗sum( repmat(y , dim , 1 ) . ∗W,2 ) . / (MC∗( c l o c (k , q)−s ) ) ;
26 i f l>0
27 [U, Z]= c e l l f u n (@approximateUZabm, num2cel l ( ( l −1)∗ones (1 ,MC) ) , num2cel l ( rho∗ ones (1 ,MC) ) , . . .
28 num2cel l (X, 1 ) , num2cel l ( c l o c (k , q )∗ ones (1 ,MC) ) , ’ UniformOutput ’ , f a l s e ) ;
29 y=f ( c l o c (k , q ) ,X, ce l l 2mat (U) , ce l l 2mat (Z ) ) ;
30 u=u−wloc (k , q )∗sum(y )/MC;
31 z=z−wloc (k , q ) .∗sum( repmat (y , dim , 1 ) . ∗W, 2 ) . / (MC∗( c l o c (k , q)−s ) ) ;
32 end

33 end

34 end

35 end

Matlab code 3: A Matlab function with input θ ∈ Θ, n ∈ N0, ρ ∈ N, x ∈ R
d, t ∈ [0, T ) and output one realization

of Uθ
n,ρ(t, x) satisfying (10).

The Matlab function modelparameters called in line 7 of Matlab code 1 returns the parameters T ∈ (0,∞),
d ∈ N, f : [0, T ] ×Rd × R × Rd → R, g : Rd → R, η : Rd → R, µ̄ ∈ R, and σ̄ ∈ R for each example considered in
Subsections 3.1–3.5. For the implementations of the Matlab function modelparameters we refer to Matlab code
12 in Subsection 3.1, to Matlab code 13 in Subsection 3.2, to Matlab code 14 in Subsection 3.3, to Matlab code
15 in Subsection 3.4, and to Matlab code 16 in Subsection 3.5.

The Matlab function approxparameters called in line 8 of Matlab code 1 provides for every example considered
in Subsections 3.1–3.3 (respectively Subsections 3.4–3.5) and every ρ ∈ {1, 2, . . . , 7} (respectively ρ ∈ {1, 2, . . . , 5}) the
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numbers of Monte-Carlo samples (mg
k,l,ρ)k,l∈N0 and (mf

k,l,ρ)k,l∈N0 and the quadrature formulas (qk,l,ρs )k,l∈N0,s∈[0,T ).

More precisely, throughout this section assume for every s ∈ [0, T ], k, l ∈ N0, ρ ∈ N with k ≥ l that qk,l,ρs is the Gauss-
Legendre quadrature formula on (s, T ) with round(ϕ(ρ(k−l)/2)) nodes, where ϕ : [1,∞) → [2,∞) is an approximation
of the inverse gamma function which is given by Matlab code 5. To compute the Gauss-Legendre nodes and
weights we use the Matlab function lgwt that was written by Greg von Winckel and that can be downloaded
from www.mathworks.com. In addition, for every k, l ∈ N0, ρ ∈ N we choose in Subsections 3.1–3.3 that mf

k,l,ρ =

round(ρ(k−l)/2) and mg
k,l,ρ = ρk−l and in Subsections 3.4–3.5 that mf

k,l,ρ = ρk−l and mg
k,l,ρ = ρk−l. For the numerical

results in Subsections 3.1–3.3 Matlab code 4 presents the implementation of approxparameters. For the numerical
results in Subsections 3.4–3.5 line 10 in Matlab code 4 is replaced by Mf(rho,k)=rho^k;. The reason for choosing
in Subsections 3.1–3.3 fewer Monte-Carlo samples (mf

k,l,ρ)k,l∈N0,ρ∈N than in Subsections 3.4–3.5 is that in the former

cases for every s ∈ [0, T ) the variance Var(f(s,X0,x0
s ,E[g(Xs,x

T )(1, WT −Ws

T−s )]
∣

∣

x=X
0,x0
s

)) of the nonlinearity is of smaller

magnitude than the variance Var(g(X0,x0

T )) of the terminal condition. Therefore, the nonlinearity requires fewer
Monte-Carlo samples to obtain a Monte-Carlo error of the same magnitude as the terminal condition. Averaging the
nonlinearity less saves computational effort and allows to employ a higher maximal number of Picard iterations (7 in
Subsections 3.1–3.3 compared to 5 in Subsections 3.4–3.5).

1 function [Mf ,Mg,Q, c ,w, n ] = approxparameters( rhomax)
2 global T;
3 n=1:1: rhomax ;
4 Q=zeros ( rhomax ) ;
5 Mf=Q;
6 Mg=zeros ( rhomax , rhomax+1);
7 for rho=1:rhomax
8 for k=1:n( rho )
9 Q( rho , k)=round( inverse gamma ( rho ˆ( k / 2 ) ) ) ;

10 Mf( rho , k)=round ( ( rho ) ˆ ( ( k ) / 2 ) ) ;
11 Mg( rho , k)=rho ˆ(k−1);
12 end

13 Mg( rho , rho+1)=rhoˆ rho ;
14 end

15 qmax=max(max(Q) ) ;
16 c=zeros (qmax ) ;
17 w=c ;
18 for k=1:qmax
19 [ ctemp ,wtemp ] = lgwt (k , 0 ,T) ;
20 c ( : , k )=[ f l i p ( ctemp ) ; zeros (qmax−k , 1 ) ] ;
21 w( : , k)=[ f l i p (wtemp ) ; zeros (qmax−k , 1 ) ] ;
22 end

23 end

Matlab code 4: A Matlab function that returns the approximation parameters.

1 function y=inverse gamma (x )
2 c =0.036534;
3 L= log ( ( x+c )/ sqrt (2∗pi ) ) ;
4 y=L/lambertw (L/exp ( 1 ) )+0 . 5 ;
5 end

Matlab code 5: Matlab function to approximate the inverse Gamma function.

Solutions of one-dimensional PDEs can be efficiently approximated by finite difference approximation schemes.
Matlab code 6 implements such an approximation scheme in the setting of Proposition 2.2 and Matlab code 7
implements such an approximation scheme in the setting of Proposition 2.1.

1 function y=approx imateUf in i ted i f f gbm ( t0 , x0 ,N)
2 [T, dim , f , g , eta ,mu, sigma ]=modelparameters ( ) ;
3 h=(T−t0 )/N;
4 t=t0 : h :T;
5 u=1+mu∗h+sigma∗ sqrt (h ) ;
6 d=1+mu∗h−sigma∗ sqrt (h ) ;
7 x=x0∗dˆN∗(u/d ) . ˆ ( 0 :N) ;
8 M=(1/2∗ [ f u l l ( gallery ( ’ t r i d i a g ’ , ones (N−1 ,1) , ones (N, 1 ) , zeros (N− 1 , 1 ) ) ) ; [ zeros (1 ,N− 1 ) , 1 ] ] ) ;
9 L=1/(2∗ sqrt (h ) ) ∗ ( [ f u l l ( gallery ( ’ t r i d i a g ’ , ones (N−1 ,1) ,− ones (N, 1 ) , zeros (N− 1 , 1 ) ) ) ; [ zeros (1 ,N− 1 ) , 1 ] ] ) ;

10 y=g (x ) ;
11 for i=N:−1:1
12 x=x ( 1 : i )/d ;
13 z=y∗L( 1 : i +1 ,1: i ) ;
14 y=y∗M(1 : i +1 ,1: i ) ;
15 y=y+h∗ f ( t ( i ) , x , y , z ) ;
16 end

17 end

Matlab code 6: A Matlab code to approximate the solution u of (13) at (t0, x0) ∈ [0, T )×R with a finite difference
approximation scheme in the setting of Proposition 2.2 with d = 1.

1 function y=approx imateUf in i ted i f f abm ( t0 , x0 ,N)
2 [T, dim , f , g , eta ,mu, sigma ]=modelparameters ( ) ;
3 h=(T−t0 )/N;

9
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4 t=t0 : h :T;
5 u=mu∗h+sigma∗sqrt (h ) ;
6 d=mu∗h−sigma∗sqrt (h ) ;
7 x=x0+d∗N+(0:N)∗ ( u−d ) ;
8 M=(1/2∗ [ f u l l ( gallery ( ’ t r i d i a g ’ , ones (N−1 ,1) , ones (N, 1 ) , zeros (N− 1 , 1 ) ) ) ; [ zeros (1 ,N− 1 ) , 1 ] ] ) ;
9 L=1/(2∗ sqrt (h ) ) ∗ ( [ f u l l ( gallery ( ’ t r i d i a g ’ , ones (N−1 ,1) ,− ones (N, 1 ) , zeros (N− 1 , 1 ) ) ) ; [ zeros (1 ,N− 1 ) , 1 ] ] ) ;

10 y=g (x ) ;
11 for i=N:−1:1
12 x=x ( 1 : i )−d ;
13 z=y∗L( 1 : i +1 ,1: i ) ;
14 y=y∗M(1 : i +1 ,1: i ) ;
15 y=y+h∗ f ( t ( i ) , x , y , z ) ;
16 end

17 end

Matlab code 7: A Matlab code to approximate the solution u of (13) at (t0, x0) ∈ [0, T )×R with a finite difference
approximation scheme in the setting of Proposition 2.1 with d = 1.

Figures 1, 2, 4, 5, and the left-hand side of Figure 7 illustrate the empirical convergence of our scheme. In Figures
1, 2, and 4 (respectively 5) the left-hand side depicts for the settings of Subsections 3.1–3.3 (respectively 3.4) in the
one-dimensional case the relative approximation errors

1
10

∑10
i=1 |U

i,[1]
ρ,ρ (0, x0)− v|
|v| (16)

against the average runtime needed to compute the realizations (U
i,[1]
ρ,ρ (0, x0))i∈{1,2,...,10} for ρ ∈ {1, 2, . . . , 7} (respec-

tively ρ ∈ {1, 2, . . . , 5}), where v ∈ R is the approximation obtained through the finite difference approximation scheme,
i.e., v=approximateUfinitediffgbm(0,x0,2^11) (respectively v=approximateUfinitediffabm(0,x0,2^11)). The
left-hand side of Figure 7 shows the relative approximation errors (16) for ρ ∈ {1, 2, . . . , 5} in the setting of Subsection
3.5, where v = u(0, x0) denotes the value of the exact solution of the PDE. These figures are obtained by executing
the command ploterrorvsruntime(v,value,time) (the matrices value and time are produced in Matlab code 1).
The Matlab function ploterrorvsruntime is presented in Matlab code 8.

The right-hand side of the Figures 1, 2, and 4 (respectively 5) depicts for the settings of Subsections 3.1–3.3
(respectively 3.4) in the one hundred-dimensional case with ρmax = 7 (respectively ρmax = 5) the relative approximation
increments

1
10

∑10
i=1 |U

i,[1]
ρ+1,ρ+1(0, x0)−U

i,[1]
ρ,ρ (0, x0)|

1
10 |
∑10

i=1 U
i,[1]
ρmax,ρmax(0, x0)|

(17)

against the average runtime needed to compute the realizations (U
i,[1]
ρ,ρ (0, x0))i∈{1,2,...,10} for ρ ∈ {1, 2, . . . , ρmax − 1}.

They are obtained by executing the command plotincrementvsruntime(value,time), where the Matlab function
plotincrementvsruntime is presented in Matlab code 9.

1 function p l o t e r r o rv s run t ime (v , value , time )
2 merror=mean(abs ( value−v ) )/abs (v ) ;
3 mtime=mean( time ) ;
4 loglog (mtime , merror , ’ b lack−o ’ ) ;
5 hold on
6 loglog (mtime , 1 . / ( mtime) . ˆ ( 1/3 )∗ mtime(1 )ˆ (1/3 )∗merror ( 1 ) , ’ b lack ’ ) ;
7 ylabel ( ’ r e l a t i v e approximation e r r o r ’ ) ;
8 xlabel ( ’ runtime ( seconds ) ’ ) ;
9 legend ( ’ r e l a t i v e approximation e r r o r ’ , ’ s l op e −1/3 ’ ) ;

10 end

Matlab code 8: Matlab function to plot relative approximation errors against runtime.

1 function p lot inc rementvsrunt ime( value , time )
2 [ ˜ , rhomax]= s ize ( va lue ) ;
3 merror=mean(abs ( va lue ( : , 2 : rhomax)−va lue ( : , 1 : rhomax−1)))/abs (mean( va lue ( : , rhomax ) ) ) ;
4 mtime=mean( time ( : , 1 : rhomax−1)) ;
5 loglog (mtime , merror , ’ b lack−o ’ ) ;
6 hold on
7 loglog (mtime , 1 . / ( mtime) . ˆ ( 1/3 )∗ mtime(1 )ˆ (1/3 )∗merror ( 1 ) , ’ b lack ’ ) ;
8 ylabel ( ’ r e l a t i v e approximation inc rements ’ ) ;
9 xlabel ( ’ runtime ( seconds ) ’ ) ;

10 legend ( ’ r e l a t i v e approximation inc rements ’ , ’ s l op e −1/3 ’ ) ;
11 end

Matlab code 9: Matlab function to plot relative approximation increments against runtime.

Tables 1–9 present several statistics for the simulations. More precisely, Tables 1–6 (respectively 7–9) show for
the settings of Subsections 3.1–3.3 (respectively 3.4) for all d ∈ {1, 100}, ρ ∈ {1, 2, . . . , 7} (respectively d ∈ {1, 100},
ρ ∈ {1, 2, . . . , 5}) the average runtime needed to compute (U

i,[1]
ρ,ρ (0, x0))i∈{1,2,...,10}, the empirical mean U

[1]

ρ,ρ(0, x0) =

1
10

∑10
i=1 U

i,[1]
ρ,ρ (0, x0), and the empirical standard deviation

√

1
9

∑10
i=1 |U

i,[1]
ρ,ρ (0, x0)−U

[1]

ρ,ρ(0, x0)|2. Tables 1, 3, 5, 7,
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and 9 show additionally the relative approximation error (16). Furthermore, Tables 2, 4, 6, and 8 present the relative
approximation increments (17).

Figures 3, 6, and the right-hand side of Figure 7 show the growth of the runtime of our algorithm with respect
to the dimension for each of the example PDEs. More precisely, Figure 3 and the left-hand side of Figure 6 show
for the settings in Subsections 3.1–3.3 the runtime needed to compute one realization of U1

6,6(0, x0) against the
dimension d ∈ {5, 6, . . . , 100}. The left-hand side of Figure 3 is obtained by running Matlab code 10 in combination
with Matlab codes 4, 11, and 12. The right-hand side of Figure 3 is obtained by running Matlab code 10 in
combination with Matlab codes 4, 11, and 13. The left-hand side of Figure 6 is obtained by running Matlab

code 10 in combination with Matlab codes 4, 11, and 14. The right-hand sides of Figures 6 and 7 show for the
the settings in Subsections 3.4–3.5 the average runtime needed to compute 20 realizations of U1

4,4(0, x0) against the
dimension d ∈ {5, 6, . . . , 100}. We average over 20 runs here to obtain smoother results. The right-hand side of Figure
6 is obtained by running Matlab code 10 (with line 4 in Matlab code 10 replaced by average=20; and line 5 in
Matlab code 10 replaced by rhomax=4;) in combination with Matlab codes 4, 11, and 15 (with line 10 in Matlab

code 4 replaced by Mf(rho,k)=rho^k;). The right-hand side of Figure 7 is obtained by running Matlab code 10
(with line 4 in Matlab code 10 replaced by average=20; and line 5 in Matlab code 10 replaced by rhomax=4;) in
combination with Matlab codes 4, 11, and 16 (with line 10 in Matlab code 4 replaced by Mf(rho,k)=rho^k;).

1 global Mf Mg Q c w T dim f g mu sigma eta ;
2 rng (2016)
3 format long
4 average =1;
5 rhomax=6;
6 dmax=100;
7 dmin=5;
8 [T, dim , f , g , eta ,mu, sigma ]=modelparameters ( ) ;
9 [Mf ,Mg,Q, c ,w, n ] = approxparameters( rhomax ) ;

10 va lue=zeros ( average , dmax−dmin+1);
11 time=value ;
12 for d=dmin : dmax
13 for k=1: average
14 dim=d
15 t i c

16 [ a , b]=approximateUZgbm(n( rhomax ) , rhomax ,100∗ ones (d , 1 ) , 0 ) ;
17 va lue (k , d−dmin+1)=a ;
18 time (k , d−dmin+1)=toc ;
19 end

20 end

21 name = [ da t e s t r (now , ’yymmddTHHMMSS’ ) ’ .mat ’ ] ;
22 save (name , ’ n ’ , ’Q ’ , ’Mf ’ , ’Mg ’ , ’ va lue ’ , ’ time ’ )
23 plotruntimevsdim (dmin , dmax , time )

Matlab code 10: A Matlab code to compute one realization of U1
6,6(0, x0) for all d ∈ {5, 6, . . . , 100}.

1 function plotruntimevsdim (dmin , dmax , time )
2 mtime=mean( time , 1 ) ;
3 plot ( ( dmin : dmax) ,mtime , ’ b lack ’ )
4 hold on
5 ylabel ( ’ runtime ( seconds ) ’ )
6 xlabel ( ’ d imension ’ )
7 end

Matlab code 11: A Matlab code to plot the runtime against the dimension.

3.1 Recursive pricing with default risk

In this subsection we discuss an example which is a special case of the recursive pricing model with default risk due
to Duffie, Schroder, & Skiadas [27]. The five-dimensional version of this example has also been used as a test example
in the literature on numerical approximations of BSDEs (see, e.g., Bender, Schweizer, & Zhuo [8]).

Throughout this subsection assume the setting in the beginning of Section 3, let δ = 2/3, R = 0.02, γh = 0.2, γl =
0.02, µ̄ = 0.02, σ̄ = 0.2, vh, vl ∈ (0,∞) satisfy vh < vl, and assume for all s ∈ [0, T ], t ∈ [s, T ], x = (x1, . . . , xd) ∈ Rd,
y ∈ R, z ∈ Rd, k ∈ N0, ρ ∈ N, θ ∈ Θ that T = 1, η(x) = x, µ(s, x) = µ̄x, σ(s, x) = σ̄ diag(x), x0 = 100 · (1, 1, . . . , 1) ∈
R

d, Dk,ρ,θ
x,s,t = exp((µ̄− σ̄2

2 )(t− s)) exp
(

σ̄ diag(∆W θ
s,t)
)

, X k,ρ,θ
x,s,t = Dk,ρ,θ

x,s,t x, g(x) = minj∈{1,2,...,d} xj , and

f(s, x, y, z) = − (1− δ) y

[

1(−∞,vh)(y) γ
h + 1[vl,∞)(y) γ

l + 1[vh,vl)(y)
[

(γh−γl)
(vh−vl)

(

y − vh
)

+ γh
]

]

−Ry. (18)

Note that the solution u of the PDE (13) satisfies for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈ R

d that u(T, x) =
minj∈{1,2,...,d} xj and

( ∂
∂tu)(t, x) + µ̄

d
∑

i=1

xi
(

∂
∂xi

u
)

(t, x) + σ̄2

2

d
∑

i=1

|xi|2
(

∂2

∂x2
i
u
)

(t, x)

− (1− δ)min
{

γh,max
{

γl, (γ
h−γl)

(vh−vl)

(

u(t, x)− vh
)

+ γh
}}

u(t, x)−Ru(t, x) = 0. (19)

11



In (19) the function u models the price of an European financial derivative with payoff g at maturity T whose issuer
may default. The number u(t, x) ∈ R describes the price of the financial derivative at time t ∈ [0, T ] in dependence
on the prices x = (x1, . . . , xd) ∈ R

d of the d underlyings of the model given that no default has occurred before
time t. In the model the arrival intensity of the default and the default-payoff depend on the price of the derivative
itself. In the case d = 1 we choose vh = 50 and vl = 120 and in the case d = 100 we choose vh = 47 and vl = 65.
The thresholds vh, vl ∈ (0,∞) are adjusted to the dimension d since the expectation E[g(X 0,1,0

x0,0,T
)] and the variance

Var(g(X 0,1,0
x0,0,T

)) depend on the dimension (Bender, Schweizer, & Zhuo [8, Subsection 5.3] choose d = 5, vh = 54, and

vl = 90; all parameters in this subsection except of the parameters d, vh, and vl agree with Bender, Schweizer, &
Zhuo [8, Subsection 5.3]). Matlab code 12 presents the parameter values in the case d = 100. In the case d = 1
line 3 of Matlab code 12 is replaced by dim=1; and lines 8 and 9 are changed to vh=50; and vl=120;, respectively.
The simulation results are shown in Figure 1, the left-hand side of Figure 3, and Tables 1 and 2. Figure 1 suggests an
empirical convergence rate close to 1/3.

1 function [T, dim , f , g , eta ,mu, sigma ] = modelparameters ( )
2 T = 1 ;
3 dim=100;
4 sigma =0.2;
5 mu=0.02;
6 d e l t a =2/3;
7 R=0.02;
8 vh=47;
9 v l =65;

10 gammah=0.2;
11 gammal=0.02;
12 f = @( t , x , y , z ) −(1−de l t a )∗y . ∗ ( ( y<vh ) . ∗gammah . . .
13 +((vh<=y ) . ∗ ( y<v l ) ) . ∗ ( ( gammah−gammal)/ (vh−v l )∗ ( y−vh)+gammah)+( vl<=y)∗gammal)−R∗y ;
14 g = @(x) min(x , [ ] , 1 ) ;
15 e ta=@(x) x ;
16 end

Matlab code 12: A Matlab function that returns the parameter values for the recursive pricing with default risk
example.

ρ 1 2 3 4 5 6 7
average runtime in seconds 0.002 0.008 0.108 1.386 11.339 119.388 5777.365

U
[1]

ρ,ρ(0, x0) =
1
10

∑10
i=1 U

i,[1]
ρ,ρ (0, x0) 90.807 94.345 98.138 98.697 97.712 97.749 97.703

√

1
9

∑10
i=1 |U

i,[1]
ρ,ρ (0, x0)−U

[1]

ρ,ρ(0, x0)|2 23.618 8.818 2.966 1.474 0.386 0.158 0.035

1
10

∑10
i=1

|Ui,[1]
ρ,ρ (0,x0)−v|

|v| 0.1912 0.0723 0.0254 0.0148 0.0030 0.0011 0.0003

Table 1: Average runtime, empirical mean, empirical standard deviation, and relative approximation error in the case
d = 1 for the recursive pricing with default risk example in Subsection 3.1. The approximation by the finite difference
approximation scheme in Matlab code 6 yields v=approximateUfinitediffgbm(0,x0,2^11)≈ 97.705.

ρ 1 2 3 4 5 6 7
average runtime in seconds 0.002 0.010 0.115 1.085 13.209 151.868 8453.915

U
[1]

ρ,ρ(0, x0) =
1
10

∑10
i=1 U

i,[1]
ρ,ρ (0, x0) 61.302 57.494 57.816 57.876 58.145 58.085 58.113

√

1
9

∑10
i=1 |U

i,[1]
ρ,ρ (0, x0)−U

[1]

ρ,ρ(0, x0)|2 5.180 2.821 0.875 0.388 0.112 0.041 0.035

1
10

∑10
i=1

|Ui,[1]
ρ+1,ρ+1(0,x0)−Ui,[1]

ρ,ρ (0,x0)|
|U[1]

7,7(0,x0)|
0.0782 0.0420 0.0110 0.0061 0.0022 0.0010

Table 2: Average runtime, empirical mean, empirical standard deviation, and relative approximation increments in
the case d = 100 for the recursive pricing with default risk example in Subsection 3.1.

3.2 Pricing with counterparty credit risk

In this subsection we present a numerical simulation of a semilinear PDE that arises in the valuation of derivative
contracts with counterparty credit risk. The PDE is a special case of the PDEs that are, e.g., derived in Henry-
Labordère [53] and Burgard & Kjaer [13].

Throughout this subsection assume the setting in the beginning of Section 3, let σ̄ = 0.2, β = 0.03, K1, L ∈ R,
K2 ∈ (K1,∞) and assume for all s ∈ [0, T ], t ∈ [s, T ], x = (x1, . . . , xd) ∈ R

d, y ∈ R, z ∈ R

d, k ∈ N0, ρ ∈ N,

θ ∈ Θ that T = 2, η(x) = x, µ(s, x) = 0, σ(s, x) = σ̄ diag(x), x0 = 100 · (1, 1, . . . , 1) ∈ Rd, Dk,ρ,θ
x,s,t = exp(− σ̄2

2 (t −

12
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Figure 1: Empirical convergence of the scheme (11) for the recursive pricing with default risk example in Subsection
3.1. Left: Relative approximation errors 1

10|v|

∑10
i=1 |Ui,[1]

ρ,ρ (0,x0)−v| for ρ ∈ {1, 2, . . . , 7} against the average runtime in

the case d = 1. Right: Relative approximation increments
(

1
10

∑10
i=1 |Ui,[1]

ρ+1,ρ+1(0,x0)−Ui,[1]
ρ,ρ (0,x0)|

)
/
(

1
10 |

∑10
i=1 U

i,[1]
7,7 (0,x0)|

)

for

ρ ∈ {1, 2, . . . , 6} against the average runtime in the case d = 100.

s)) exp
(

σ̄ diag(∆W θ
s,t)
)

, X k,ρ,θ
x,s,t = Dk,ρ,θ

x,s,t x, f(s, x, y, z) = β([y]+ − y), and

g(x) =

[

min
j∈{1,2,...,d}

xj −K1

]+

−
[

min
j∈{1,2,...,d}

xj −K2

]+

− L. (20)

Note that the solution u of the PDE (13) satisfies for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈ R

d that u(T, x) =
min{max{minj∈{1,2,...,d} xj ,K1},K2} −K1 − L and

( ∂
∂tu)(t, x)− βmin{u(t, x), 0}+ σ̄2

2

d
∑

i=1

|xi|2
(

∂2

∂x2
i
u
)

(t, x) = 0. (21)

In (21) the function u models the price of an European financial derivative with possibly negative payoff g at maturity
T whose buyer may default. The number u(t, x) ∈ R describes the price of the financial derivative at time t ∈ [0, T ]
in dependence on the prices x = (x1, . . . , xd) ∈ R

d of the d underlyings of the model given that no default has
occurred before time t. In the model the default-payoff depends on the price of the derivative itself. The choice of the
parameters is based on the choice of parameters in Henry-Labordère [53, Subsection 5.3]. In the case d = 1 we choose
that K1 = 90, K2 = 110, and L = 10. In the case d = 100 we choose that K1 = 30, K2 = 60, and L = 15. Matlab

code 13 presents the parameter values in the case d = 100. In the case d = 1 line 3 of Matlab code 13 is replaced
by dim=1; and lines 7, 8, and 9 are changed to K1=90;, K2=110;, and L=10;, respectively. The simulation results are
shown in Figure 2, the right-hand side of Figure 3, and Tables 3 and 4. Figure 2 suggests an empirical convergence
rate close to 1/3.

1 function [T, dim , f , g , eta ,mu, sigma ] = modelparameters ( )
2 T=2;
3 dim=100;
4 sigma =0.2;
5 mu=0;
6 beta=0.03;
7 K1=30;
8 K2=60;
9 L=15;

10 f = @( t , x , y , z ) beta ∗( subplus (y)−y ) ;
11 g = @(x) subplus (min(x , [ ] , 1 ) −K1)−subplus (min(x , [ ] , 1 ) −K2)−L ;
12 e ta=@(x) x ;
13 end

Matlab code 13: A Matlab function that returns the parameter values for the pricing with counterparty credit risk
example.

3.3 Pricing with different interest rates for borrowing and lending

We consider a pricing problem of an European option in a financial market with different interest rates for borrowing
and lending. The model goes back to Bergman [9] and serves as a standard example in the literature on numerical
methods for BSDEs (see, e.g., [42, 7, 8, 12, 22]).
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ρ 1 2 3 4 5 6 7
average runtime in seconds 0.002 0.008 0.093 0.968 11.430 155.607 6226.101

U
[1]

ρ,ρ(0, x0) =
1
10

∑10
i=1 U

i,[1]
ρ,ρ (0, x0) -0.582 -3.614 -0.767 -0.433 -0.916 -0.866 -0.884

√

1
9

∑10
i=1 |U

i,[1]
ρ,ρ (0, x0)−U

[1]

ρ,ρ(0, x0)|2 9.346 3.964 1.279 0.782 0.105 0.067 0.015

1
10

∑10
i=1

|Ui,[1]
ρ,ρ (0,x0)−v|

|v| 9.8923 4.1417 1.1794 0.7941 0.0943 0.0617 0.0135

Table 3: Average runtime, empirical mean, empirical standard deviation, and relative approximation error in the
case d = 1 for the pricing with counterparty credit risk example in Subsection 3.2. The approximation by the finite
difference approximation scheme in Matlab code 6 yields v=approximateUfinitediffgbm(0,x0,2^11)≈ −0.883.

ρ 1 2 3 4 5 6 7
average runtime in seconds 0.002 0.018 0.156 1.348 14.332 177.989 8935.848

U
[1]

ρ,ρ(0, x0) =
1
10

∑10
i=1 U

i,[1]
ρ,ρ (0, x0) 5.823 1.878 2.376 2.450 2.607 2.617 2.626

√

1
9

∑10
i=1 |U

i,[1]
ρ,ρ (0, x0)−U

[1]

ρ,ρ(0, x0)|2 5.741 3.051 1.041 0.335 0.053 0.027 0.008

1
10

∑10
i=1

|Ui,[1]
ρ+1,ρ+1(0,x0)−Ui,[1]

ρ,ρ (0,x0)|
|U[1]

7,7(0,x0)|
1.7971 1.0354 0.2758 0.1004 0.0148 0.0094

Table 4: Average runtime, empirical mean, empirical standard deviation, and relative approximation increments in
the case d = 100 for the pricing with counterparty credit risk example in Subsection 3.2.

Throughout this subsection assume the setting in the beginning of Section 3, let µ̄ = 0.06, σ̄ = 0.2, Rl = 0.04,
Rb = 0.06, and assume for all s ∈ [0, T ], t ∈ [s, T ], x = (x1, . . . , xd) ∈ Rd, y ∈ R, z = (z1, . . . , zd) ∈ Rd, k ∈ N0,

ρ ∈ N, θ ∈ Θ that T = 0.5, η(x) = x, µ(s, x) = µ̄x, σ(s, x) = σ̄ diag(x), x0 = 100 · (1, 1, . . . , 1) ∈ R

d, Dk,ρ,θ
x,s,t =

exp((µ̄− σ̄2

2 )(t− s)) exp
(

σ̄ diag(∆W θ
s,t)
)

, X k,ρ,θ
x,s,t = Dk,ρ,θ

x,s,t x, and

f(s, x, y, z) = −Rly − (µ̄−Rl)

σ̄

(

d
∑

i=1

zi

)

+ (Rb −Rl)

[

1

σ̄

(

d
∑

i=1

zi

)

− y

]+

. (22)

Note that the solution u of the PDE (13) satisfies for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈ Rd that u(T, x) = g(x) and

( ∂
∂tu)(t, x) +

σ̄2

2

d
∑

i=1

|xi|2
(

∂2

∂x2
i
u
)

(t, x)

−min

{

Rb

(

u(t, x)−
d
∑

i=1

xi
(

∂
∂xi

u
)

(t, x)

)

, Rl

(

u(t, x)−
d
∑

i=1

xi
(

∂
∂xi

u
)

(t, x)

)}

= 0. (23)

In (23) the function u models the price of an European financial derivative with payoff g at maturity T in a financial
market with a higher interest rate for borrowing than for lending. The number u(t, x) ∈ R describes the price of the
financial derivative at time t ∈ [0, T ] in dependence on the prices x = (x1, . . . , xd) ∈ Rd of the d underlyings of the
model. In the case d = 1, assume that for all x ∈ R it holds that g(x) = [x − 100]+. This setting agrees with the
setting in Gobet, Lemor, & Warin [42, Subsection 6.3.1], where it is also noted that the PDE (23) is actually linear.
More precisely, u also satisfies (13) for all t ∈ [0, T ), x ∈ R with f being replaced by f̄ : [0, T ] × R × R × R → R

satisfying for all t ∈ [0, T ], x, y, z ∈ R that f̄(t, x, y, z) = −Rby − (µ̄−Rb)
σ̄ z. In the case d = 100, assume that for all

x = (x1, . . . , xd) ∈ Rd it holds that g(x) = [maxi∈{1,...,100} xi − 120]+ − 2[maxi∈{1,...,100} xi − 150]+. This choice of g
is based on the choice of g in Bender, Schweizer, & Zhuo [8, Subsection 4.2]. We note that with this choice of g the
PDE (23) can not be reduced to a linear PDE. Matlab code 14 presents the parameter values in the case d = 100. In
the case d = 1 line 3 of Matlab code 14 is replaced by dim=1; and line 9 of Matlab code 14 is replaced by g=@(x)

subplus(x-100);. The simulation results are shown in Figure 4, the left-hand side of Figure 6, and Tables 5 and 6.
The left-hand side of Figure 4 suggests an empirical convergence rate close to 1/3 in the case d = 1. Moreover, the
right-hand side of Figure 4 suggests an empirical convergence rate close to 1/4 in the case d = 100.

1 function [T, dim , f , g , eta ,mu, sigma ] = modelparameters ( )
2 T = 0 . 5 ;
3 dim=100;
4 Rl =0.04;
5 Rb=0.06;
6 mu=0.06;
7 sigma =0.2;
8 f = @( t , x , y , z ) −Rl .∗y−(mu−Rl )/ sigma∗sum( z ,1)+(Rb−Rl )∗ subplus (1/ sigma∗sum( z ,1)−y ) ;
9 g= @(x) subplus (max(x , [ ] ,1)−120)−2∗ subplus (max(x , [ ] , 1 ) − 1 5 0 ) ;

10 e ta=@(x) x ;
11 end
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Figure 2: Empirical convergence of the scheme (11) for the pricing with counterparty credit risk example in Subsection
3.2. Left: Relative approximation errors 1

10|v|

∑10
i=1 |Ui,[1]

ρ,ρ (0,x0)−v| for ρ ∈ {1, 2, . . . , 7} against the average runtime in

the case d = 1. Right: Relative approximation increments
(

1
10

∑10
i=1 |Ui,[1]

ρ+1,ρ+1(0,x0)−Ui,[1]
ρ,ρ (0,x0)|

)
/
(

1
10 |

∑10
i=1 U

i,[1]
7,7 (0,x0)|

)

for

ρ ∈ {1, 2, . . . , 6} against the average runtime in the case d = 100.

Matlab code 14: A Matlab function that returns the parameter values for the pricing with different interest rates
example.

ρ 1 2 3 4 5 6 7
average runtime in seconds 0.001 0.011 0.114 0.990 11.347 132.484 6264.475

U
[1]

ρ,ρ(0, x0) =
1
10

∑10
i=1 U

i,[1]
ρ,ρ (0, x0) 5.695 5.947 7.085 7.631 7.156 7.162 7.166

√

1
9

∑10
i=1 |U

i,[1]
ρ,ρ (0, x0)−U

[1]

ρ,ρ(0, x0)|2 7.780 4.080 1.612 0.811 0.151 0.071 0.016

1
10

∑10
i=1

|Ui,[1]
ρ,ρ (0,x0)−v|

|v| 0.8285 0.4417 0.1777 0.1047 0.0170 0.0086 0.0019

Table 5: Average runtime, empirical mean, empirical standard deviation, and relative approximation error in the case
d = 1 for the pricing with different interest rates example in Subsection 3.3. The approximation by the finite difference
approximation scheme in Matlab code 6 yields v=approximateUfinitediffgbm(0,x0,2^11)≈ 7.156.

ρ 1 2 3 4 5 6 7
average runtime in seconds 0.011 0.015 0.151 1.317 14.813 181.647 8825.390

U
[1]

ρ,ρ(0, x0) =
1
10

∑10
i=1 U

i,[1]
ρ,ρ (0, x0) 28.902 22.854 23.356 21.771 21.374 21.274 21.299

√

1
9

∑10
i=1 |U

i,[1]
ρ,ρ (0, x0)−U

[1]

ρ,ρ(0, x0)|2 8.798 11.317 4.492 2.953 1.449 1.376 0.467

1
10

∑10
i=1

|Ui,[1]
ρ+1,ρ+1(0,x0)−Ui,[1]

ρ,ρ (0,x0)|
|U[1]

7,7(0,x0)|
0.6446 0.4770 0.1840 0.1190 0.0844 0.0467

Table 6: Average runtime, empirical mean, empirical standard deviation, and relative approximation increments in
the case d = 100 for the pricing with different interest rates example in Subsection 3.3.

3.4 Allen-Cahn equation

In this subsection we consider the Allen-Cahn equation with a double well potential.
Throughout this subsection assume the setting in the beginning of Section 3 and assume for all s ∈ [0, T ], t ∈ [s, T ],

x = (x1, . . . , xd) ∈ Rd, y ∈ R, z ∈ Rd, k ∈ N0, ρ ∈ N, θ ∈ Θ that T = 1, η(x) = x, µ(s, x) = 0, σ(s, x) = I
R

d×d ,

x0 = (0, 0, . . . , 0) ∈ Rd, X k,ρ,θ
x,s,t = x+W θ

t −W θ
s , Dk,ρ,θ

x,s,t = I
R

d×d , f(s, x, y, z) = y − y3, and g(x) = 1
1+max{|x1|2,...,|xd|2} .

Note that the solution u of the PDE (13) satisfies for all t ∈ [0, T ), x ∈ Rd that u(T, x) = 1
1+max{|x1|2,...,|xd|2} and

( ∂
∂tu)(t, x) + u(t, x)−

[

u(t, x)
]3

+ 1
2

(

∆xu
)

(t, x) = 0. (24)
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Figure 3: Left: Runtime needed to compute one realization of U1
6,6(0, x0) against dimension d ∈ {5, 6, . . . , 100} for the

recursive pricing with default risk example in Subsection 3.1. Right: Runtime needed to compute one realization of
U1

6,6(0, x0) against dimension d ∈ {5, 6, . . . , 100} for the pricing with counterparty credit risk example in Subsection
3.2.

Matlab code 15 presents the parameter values in the case d = 100. In the case d = 1 line 3 of Matlab code 15 is
replaced by dim=1;. The simulation results are shown in Figure 5, the right-hand side of Figure 6, and Tables 7 and
8. The left-hand side of Figure 5 suggests an empirical convergence rate close to 1/4 in the case d = 1. Moreover, the
right-hand side of Figure 5 suggests an empirical convergence rate close 1/3 in the case d = 100.

1 function [T, dim , f , g , eta ,mu, sigma ] = modelparameters ( )
2 T = 1 ;
3 dim=100;
4 mu=0;
5 sigma=1;
6 f = @( t , x , y , z ) y−y . ˆ 3 ;
7 g = @(x) 1./(1+max(x . ˆ 2 , [ ] , 1 ) ) ;
8 e ta=@(x) x ;
9 end

Matlab code 15: A Matlab function that returns the parameter values for the Allen-Cahn example.

ρ 1 2 3 4 5
average runtime in seconds 0.005 0.035 0.237 7.402 345.124

U
[1]

ρ,ρ(0, x0) =
1
10

∑10
i=1 U

i,[1]
ρ,ρ (0, x0) 1.027 0.866 0.918 0.894 0.897

√

1
9

∑10
i=1 |U

i,[1]
ρ,ρ (0, x0)−U

[1]

ρ,ρ(0, x0)|2 0.219 0.131 0.078 0.037 0.013

1
10

∑10
i=1

|Ui,[1]
ρ,ρ (0,x0)−v|

|v| 0.2462 0.1197 0.0691 0.0302 0.0124

Table 7: Average runtime, empirical mean, empirical standard deviation, and relative approximation error in the case
d = 1 for the Allen-Cahn equation in Subsection 3.4. The approximation by the finite difference approximation scheme
in Matlab code 7 yields v=approximateUfinitediffgbm(0,x0,2^11)≈ 0.905.

ρ 1 2 3 4 5
average runtime in seconds 0.002 0.043 0.280 9.687 453.418

U
[1]

ρ,ρ(0, x0) =
1
10

∑10
i=1 U

i,[1]
ρ,ρ (0, x0) 0.246 0.284 0.313 0.319 0.317

√

1
9

∑10
i=1 |U

i,[1]
ρ,ρ (0, x0)−U

[1]

ρ,ρ(0, x0)|2 0.043 0.013 0.007 0.004 0.002

1
10

∑10
i=1

|Ui,[1]
ρ+1,ρ+1(0,x0)−Ui,[1]

ρ,ρ (0,x0)|
|U[1]

5,5(0,x0)|
0.1484 0.0909 0.0254 0.0102

Table 8: Average runtime, empirical mean, empirical standard deviation, and relative approximation increments in
the case d = 100 for the Allen-Cahn equation in Subsection 3.4.
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Figure 4: Empirical convergence of the scheme (11) for the pricing with different interest rates example in Subsection
3.3. Left: Relative approximation errors 1

10|v|

∑10
i=1 |Ui,[1]

ρ,ρ (0,x0)−v| for ρ ∈ {1, 2, . . . , 7} against the average runtime in

the case d = 1. Right: Relative approximation increments
(

1
10

∑10
i=1 |Ui,[1]

ρ+1,ρ+1(0,x0)−Ui,[1]
ρ,ρ (0,x0)|

)
/
(

1
10 |

∑10
i=1 U

i,[1]
7,7 (0,x0)|

)

for

ρ ∈ {1, 2, . . . , 6} against the average runtime in the case d = 100.

3.5 An example with an explicit solution

In this subsection we discuss an example with an explicit solution whose three-dimensional version has been considered
in Chassagneux [15].

Throughout this subsection assume the setting in the beginning of Section 3, let σ̄ = 0.25, and assume for all
s ∈ [0, T ], t ∈ [s, T ], x = (x1, . . . , xd) ∈ R

d, y ∈ R, z = (z1, . . . , zd) ∈ R

d, k ∈ N0, ρ ∈ N, θ ∈ Θ that T = 0.5,

d = 100, η(x) = x, µ(s, x) = 0, σ(s, x) = σ̄ I
R

d×d , x0 = (0, 0, . . . , 0) ∈ Rd, X k,ρ,θ
x,s,t = x +W θ

t −W θ
s , Dk,ρ,θ

x,s,t = I
R

d×d ,

f(s, x, y, z) = σ̄
(

y− 2+σ̄2d
2σ̄2d

)(
∑d

i=1 zi
)

, and g(x) =
exp(T+

∑d
i=1 xi)

1+exp(T+
∑d

i=1 xi)
. Note that the solution u of the PDE (13) satisfies

for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈ Rd that u(T, x) =
exp(T+

∑d
i=1 xi)

1+exp(T+
∑d

i=1 xi)
and

( ∂
∂tu)(t, x) +

[

σ̄2u(t, x)− 1
d − σ̄2

2

]

[ d
∑

i=1

( ∂
∂xi

u)(t, x)

]

+ σ̄2

2

(

∆xu
)

(t, x) = 0. (25)

Next we observe that u satisfies for all s ∈ [0, T ], x = (x1, . . . , xd) ∈ Rd that

u(s, x) =
exp(s+

∑d
i=1 xi)

1 + exp(s+
∑d

i=1 xi)
. (26)

Matlab code 16 presents the parameter values. The simulation results are shown in Figure 7 and Table 9. The
left-hand side of Figure 7 suggests an empirical convergence rate close to 1/4.

1 function [T, dim , f , g , eta ,mu, sigma ] = modelparameters ( )
2 T = 0 . 5 ;
3 dim=100;
4 mu=0;
5 sigma =0.25;
6 f = @( t , x , y , z ) sigma ∗(y−(2+sigma ˆ2∗dim )/(2∗ sigma ˆ2∗dim ) ) . ∗sum( z , 1 ) ;
7 g = @(x) 1−1./(1+exp(T+sum(x , 1 ) ) ) ;
8 e ta=@(x) x ;
9 end

Matlab code 16: A Matlab function that returns the parameter values for the Allen-Cahn example.

4 Discussion of approximation methods from the literature

Deterministic methods for second-order parabolic PDEs are known to have exponentially growing computational
effort. Since a program with 1080, say, floating point operations will never terminate (on a non-quantum computer),
deterministic methods such as finite elements methods, finite difference methods, spectral Galerkin approximation
methods, or sparse grid methods are not suitable for solving high-dimensional nonlinear second-order parabolic PDEs
no matter what the convergence rate of the method is. For this reason we discuss only stochastic approximation
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Figure 5: Empirical convergence of the scheme (10) for the Allen-Cahn equation in Subsection 3.4. Left: Relative
approximation errors 1

10|v|

∑10
i=1 |Ui,[1]

ρ,ρ (0,x0)−v| for ρ ∈ {1, 2, . . . , 5} against the average runtime in the case d = 1. Right:

Relative approximation increments
(

1
10

∑10
i=1 |Ui,[1]

ρ+1,ρ+1(0,x0)−Ui,[1]
ρ,ρ (0,x0)|

)
/
(

1
10 |

∑10
i=1 U

i,[1]
5,5 (0,x0)|

)

for ρ ∈ {1, 2, 3, 4} against
the average runtime in the case d = 100.

ρ 1 2 3 4 5
average runtime in seconds 0.002 0.021 0.352 11.677 545.871

U
[1]

ρ,ρ(0, x0) =
1
10

∑10
i=1 U

i,[1]
ρ,ρ (0, x0) 0.751 0.522 0.523 0.520 0.495

√

1
9

∑10
i=1 |U

i,[1]
ρ,ρ (0, x0)−U

[1]

ρ,ρ(0, x0)|2 0.477 0.248 0.070 0.040 0.018

1
10

∑10
i=1

|Ui,[1]
ρ,ρ (0,x0)−v|

|v| 0.9449 0.3931 0.1135 0.0767 0.0309

Table 9: Average runtime, empirical mean, empirical standard deviation, and relative approximation error in the case
d = 100 for the example PDE of Subsection 3.5. The exact value of the solution is v = u(0, 0) = 0.5.

methods for nonlinear second-order parabolic PDEs. In the literature we have found the following articles [11, 67, 4,
3, 10, 83, 42, 62, 26, 7, 41, 21, 24, 40, 22, 12, 16, 15, 23, 63, 81, 75, 76, 45, 44, 53, 55, 54, 37, 14, 60] which propose
(possibly non-implementable) stochastic approximation methods for nonlinear second-order parabolic PDEs. All of
these methods except for [53, 55, 54, 14, 60] exploit a stochastic representation with BSDEs due to Pardoux & Peng [70].
Moreover, all of these methods except for [40, 12, 37, 53, 55, 54, 14, 60] can be described in two steps. In the first step,
time in the corresponding BSDE is discretized backwards in time via an explicit or an implicit Euler-type method which
was investigated in detail, e.g., in Bouchard & Touzi [10] and Zhang [83]. The resulting approximations involve nested
conditional expectations and, therefore, are not implementable. In the second step, these conditional expectations are
approximated by ’straight-forward’ Monte Carlo simulations, by the quantization tree method (proposed in [4]), by a
regression method based on kernel-estimation or on Malliavin calculus (proposed in [10]), by projections on function
spaces (proposed in [42]), or by the cubature method on Wiener space (developed in [66] and proposed in [22]). The
first step does not cause problems in high dimensions in the sense that the backward (explicit or implicit) Euler-type
approximations converge under suitable assumptions with rate at least 0.5 (see Theorem 5.3 in Zhang [83] and Theorem
3.1 in Bouchard & Touzi [10] for the backward implicit Euler-type method) and the computational effort (assuming
the conditional expectations are known exactly) grows at most linearly in the dimension for fixed accuracy. For this
reason, we discuss below in detail only the different methods for discretizing conditional expectations. In addition, we
discuss the Wiener chaos decomposition method proposed in [12], the branching diffusion method proposed in [53],
and methods based on density estimation proposed in [14, 60].

A difficulty in our discussion below is that the discussed algorithms (except for the branching diffusion method)
depend on different parameters and the optimal choice of these parameters is unknown since no lower estimates for the
approximation errors are known. For this reason we will choose parameters which are optimal with respect to the best
known upper error bound. For these parameter choices we will show below for the discussed algorithms (except for the
branching diffusion method) that the computational effort fails to grow at most polynomially both in the dimension
and in the reciprocal of the best known upper error bound.

Throughout this section assume the setting in Subsection 2.3, let u∞ ∈ C1,2([0, T ]×Rd,R) be a function which
satisfies (13) and we denote by Y : [0, T ] × Ω → R the stochastic process which satisfies for all t ∈ [0, T ] that
Yt = u∞(t,W 0

t ).
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Figure 6: Left: Runtime needed to compute one realization of U1
6,6(0, x0) against dimension d ∈ {5, 6, . . . , 100} for

the pricing with different interest rates example in Subsection 3.3. Right: Average runtime needed to compute 20
realizations of U1

4,4(0, x0) against dimension d ∈ {5, 6, . . . , 100} for the Allen-Cahn equation in Subsection 3.4.

runtime (seconds)
10 -3 10 -2 10 -1 100 101 102 103

re
la

tiv
e 

ap
pr

ox
im

at
io

n 
er

ro
r

10 -2

10 -1

100

relative approximation error
slope -1/4

dimension
0 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e 

(s
ec

on
ds

)

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

Figure 7: Performance of the scheme (10) for the example PDE of Subsection 3.5. Left: Relative approximation
errors 1

10|v|

∑10
i=1 |Ui,[1]

ρ,ρ (0,x0)−v| for ρ ∈ {1, 2, . . . , 5} against the average runtime for the case d = 100. Right: Average
runtime needed to compute 20 realizations of U1

4,4(0, x0) against dimension d ∈ {5, 6, . . . , 100}.

4.1 The ’straight-forward’ Monte Carlo method

The ’straight-forward’ Monte Carlo method approximates the conditional expectations involved in backward Euler-
type approximations by Monte Carlo simulations. The resulting nesting of Monte Carlo averages is computational
expensive in the following sense. If for a set π ⊆ [0, T ] with |π| ∈ N many points and for M ∈ N the random variable
Y π,M : Ω → R is the ’straight-forward’ Monte Carlo approximation of Y with time grid π andM Monte Carlo averages
for each involved conditional expectation, then the number of realizations of scalar standard normal random variables
required to compute Y π,M is (Md)|π| and the L2-error satisfies for a suitable constant c ∈ R independent of π and N
that

max
t∈π

‖Yt − Y π,M
t ‖L2(P;R) ≤ c

(

|π|− 1
2 + |π|M−1/2

)

, (27)

see, e.g., Theorem 4.3 and Display (4.14) in Crisan & Manolarakis [21]. Thus the computational effort (Md)
( 1

|π|−1/2 )2 ≥
(Md)

( c

c|π|−1/2+c|π|M−1/2
)2

grows at least exponentially in the reciprocal of the right-hand side of (27). This suggests an
at most logarithmic convergence rate of the ’straight-forward’ Monte Carlo method. We are not aware of a statement
in the literature claiming that the ’straight-forward’ Monte Carlo method has a polynomial convergence rate.
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4.2 The quantization tree method

The quantization tree method has been introduced in Bally & Pagès [4, 3]. In the proposed algorithm, time is
discretized by the explicit backward Euler-type method. Moreover, one chooses a space-time grid and computes the
transition probabilities for the underlying forward diffusion projected to this grid by Monte Carlo simulation. With
these discrete-space transition probabilities one can then approximate all involved conditional expectations. If for a
set π ⊆ [0, T ] with |π| ∈ N many points and for N ∈ N the random variable Y π,N : Ω → R is the quantization tree
approximation of Y with time grid π, a specific space grid with a total number of N nodes and explicitly known
transition probabilities of the forward diffusion and if the coefficients are sufficiently regular, then the number of
realizations of scalar standard normal random variables required to compute Y π,N is at least Nd|π| and Display (6)
in Bally & Pagès [3] shows for optimal grids and a constant c ∈ R independent of π and N that

max
t∈π

‖Yt − Y π,N
t ‖L2(P;R) ≤ c

(

1

|π| +
|π|1+1/d

N1/d

)

. (28)

To ensure that this upper bound does not explode as |π| → ∞ it is thus necessary to choose a space-time grid with
at least N = |π|d+1 many nodes when there are |π| ∈ N many time steps. With this choice the computational effort
of this algorithm grows exponentially fast in the dimension. We have not found a statement in the literature on the
quantization tree method claiming that there exists a choice of parameters such that the computational effort grows
at most polynomially both in the dimension and in the reciprocal of the prescribed accuracy.

4.3 The Malliavin calculus based regression method

The Malliavin calculus based regression method has been introduced in Section 6 in Bouchard & Touzi [10] and is based
on the implicit backward Euler-type method. The algorithm involves iterated Skorohod integrals which by Display
(3.2) in Crisan, Manolarakis, & Touzi [24] can be numerically computed with 2d many independent standard normally
distributed random variables. In that case the computational effort grows exponentially fast in the dimension. We
are not aware of an approximation method of the involved iterated Skorohod integrals whose computational effort
does not grow exponentially fast in the dimension. Example 4.1 in Bouchard & Touzi [10] also mentions a method
for approximating all involved conditional expectations using kernel estimation. For this method we have not found
an upper error estimate in the literature so that we do not known how to choose the bandwidth matrix of the kernel
estimation given the number of time grid points.

4.4 The projection on function spaces method

The projection on function spaces method has been proposed in Gobet, Lemor, & Warin [42]. The algorithm is
based on estimating the involved conditional expectations by considering the projections of the random variables on
a finite-dimensional function space and then estimating these projections by Monte Carlo simulation. In general the
projection error and the computational effort depend on the choice of the basis functions. In the literature we have
found the following two choices of basis functions. In Gobet, Lemor, & Warin [42] (see also Gobet & Lemor [41]
and Lemor, Gobet, & Warin [62]) indicator functions of hypercubes are employed as basis functions. In this case
there exists c ∈ R such that a projection error ε ∈ (0,∞) can be achieved by simulating ⌊cε−(3+2d)| log(ε)|⌋ paths
of the forward diffusion. With this choice, the computational effort of the algorithm grows exponentially fast in the
dimension for fixed accuracy ε ∈ (0, 1). Ruijter & Oosterlee [75] use certain cosine functions as basis functions and
motivate this with a Fourier cosine series expansion. The resulting approximation method has only been specified in a
one-dimensional setting so that the computational effort in a high-dimensional setting remained unclear. We have not
found a statement in the literature on the projection on function spaces method claiming that there exists a choice
of function spaces and other algorithm parameters such that the computational effort of the method grows at most
polynomially both in the dimension of the PDE and in the reciprocal of the prescribed accuracy.

4.5 The cubature on Wiener space method

The cubature on Wiener space method for approximating solutions of PDEs has been introduced in Crisan &
Manolarakis [22]. This method combines the implicit backward Euler-type scheme with the cubature method de-
veloped in Lyons & Victoir [66] for constructing finitely supported measures that approximate the distribution of the
solution of a stochastic differential equation. This method has a parameter m ∈ N and constructs for every finite time
grid π ⊆ [0, T ] (with |π| ∈ N points) a sequence w1, . . . , w(Nm,d)|π| ∈ C0([0, 1],Rd) of paths with bounded variation
where Nm,d ∈ N is the number of nodes needed for a cubature formula of degree m with respect to the d-dimensional
Gaussian measure. We note that this construction is independent of f and g and can be computed once and then
tabularized. Using these paths, Corollary 4.2 in Crisan & Manolarakis [22] shows in the case m ≥ 3 that there exists a
constant c ∈ [0,∞), a sequence πn ⊆ [0, T ], n ∈ N, of finite time grids and there exist implementable approximations
Y n : πn × Ω → R, n ∈ N, of the exact solution Y such that for all n ∈ N it holds that 0 ∈ πn, πn has n+ 1 elements
and

‖Y0 − Y πn
0 ‖L2(P;R) ≤ c

n . (29)
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In this form of the algorithm, the computational effort for calculating Y πn , which is at least the number (Nm,d)
n of

paths to be used, grows exponentially in the reciprocal of the right-hand side of (29). To avoid this exponential growth
of the computational effort in the number of cubature paths, Crisan & Manolarakis [22] specify two methods (a tree
based branching algorithm of Crisan & Lyons [20] and the recombination method of Litterer & Lyons [64]) which
reduce the number of nodes and which result in approximations which converge with polynomial rate; cf. Theorem
5.4 in[22]. The constant in the upper error estimate in Theorem 5.4 in [22] may depend on the dimension (cf. also
(5.16) and the proof of Lemma 3.1 in [22]). Simulations in the literature on the cubature method were performed in
dimension 1 (see Figures 1–4 in [22] and Figure 1 in [23]) or dimension 5 (see Figures 5–6 in [22]). To the best of our
knowledge, there exist no statement in the literature on the cubature method which asserts that the computational
effort of the cubature method together with a suitable complexity reduction method grows at most polynomially both
in the dimension of the PDE and in the reciprocal of the prescribed accuracy.

4.6 The Wiener chaos decomposition method

The Wiener chaos decomposition method has been introduced in Briand & Labart [12] and has been extended to
the case of BSDEs with jumps in Geiss & Labart [37]. The algorithm is based on Picard iterations of the associated
BSDE and evaluates the involved nested conditional expectations using Wiener chaos decomposition formulas. This
algorithm does not need to discretize time since Wiener integrals over integrands with explicitly known antiderivative
can be simulated exactly. The computational complexity of approximating the solution of a BSDE of dimension d
using a Wiener chaos decomposition of order p ∈ N, K ∈ N Picard iterations, M ∈ N Monte Carlo samples for each
conditional expectation, and N ∈ N many time steps is of order O(K×M×p×(N×d)p+1); see Section 3.2.2 in Briand
& Labart [12]. To ensure that the approximation error converges to 0 requires the order p of the chaos decomposition
to increase to ∞. This implies that the computational effort fails to grow at most polynomially both in the dimension
of the PDE and in the reciprocal of the prescribed accuracy. We also mention that we are not aware of a result in
the literature that establishes a polynomial rate of convergence for the Wiener chaos decomposition method (see, e.g.,
Remark 4.8 in Briand & Labart [12]).

4.7 The branching diffusion method

The branching diffusion method has been proposed in Henry-Labordère [53]; see also the extensions to the non-
Markovian case in [55] and to nonlinearities depending on derivatives in [54]. This method approximates the non-
linearity f by polynomials and then exploits that the solution of a semilinear PDE with polynomial nonlinearity
(KPP-type equations) can be represented as an expectation of a functional of a branching diffusion process due to
Skorohod [77]. This expectation can then be numerically approximated with the standard Monte Carlo method and
pathwise approximations of the branching diffusion process. The branching diffusion method does not suffer from
the ’curse of dimensionality by construction’ and works in all dimensions. It’s convergence rate is 0.5 if the forward
diffusion can be simulated exactly and, in general, its rate is 0.5− using a pathwise approximation of the forward
diffusion and the multilevel Monte Carlo method proposed in Giles [38].

The major drawback of the branching diffusion method is its insufficient applicability. This method replaces
potentially ’nice’ nonlinearities by potentially ’non-nice’ polynomials. Semilinear PDEs with certain polynomial non-
linearities, however, can ’blow up’ in finite time; see, e.g., Fujita [34], Escobedo & Herrero [31] for analytical proofs
and, e.g., Nagasawa & Sirao [69] and Lopez-Mimbela & Wakolbinger [65] for probabilistic proofs. If the approximating
polynomial nonlinearity, the time horizon, and the terminal condition satisfy a certain condition, then the PDE does
not ’blow up’ until time T and the branching diffusion method is known to work well. More specifically, if there exist
β ∈ (0,∞) and functions (ak)k∈N0 : [0, T ]×Rd → R such that for all (t, x, y, z) ∈ [0, T ]×Rd ×R×Rd it holds that
f(t, x, y, z) = β

∑∞
k=0 ak(t, x)y

k − βy, if the functions µ and σ are bounded, continuous and Lipschitz in the second
argument, and if ∀x ∈ R

d : η(x) = x, then Theorem 2.13 in [55] (see also Proposition 4.2 in [53] or Theorem 3.12
in [54]) shows that a sufficient condition for a stochastic representation with a branching diffusion to hold is that

∫ ∞

sup
x∈Rd |g(x)|

1

βmax{0,∑∞
k=0 sup

(t,x)∈[0,T ]×Rd |ak(t,x)|yk−y} dy > T. (30)

For the branching diffusion method to converge with rate 0.5 the random variables in the stochastic representation
need to have finite second moments which leads to a more restrictive condition than (30); see Remark 2.14 in [55].
However, condition (30) is also necessary for the stochastic representation in [55] to hold if the functions g and
(ak)k∈N0 are constant and positive and if µ and σ are constant (then the PDE (13) reduces to an ODE for which the
’blow-up’-behavior is well-known); see, e.g., Lemma 2.5 in [55].

The branching diffusion method also seems to have problems with polynomial nonlinearities where the exact
solution does not ’blow up’ in finite time. Since no theoretical results are available in this direction, we illustrate this
with simulations for an Allen-Cahn equation (a simplified version of the Ginzburg-Landau equation). More precisely,
for the rest of this subsection assume that T , µ, σ, f , and g satisfy for all (t, x, y, z) ∈ [0, T ]×Rd×R×Rd that T = 1,
µ(x) = µ(0), σ(x) = σ(0), f(t, x, y, z) = y − y3, g(x) = g(0), and g(0) ≥ 0. Then (13) is an ODE and the solution

u∞ satisfies for all (t, x) ∈ [0, T ] × Rd that u∞(t, x) =
(

1− (1 − (g(0))−2)e2t−2
)− 1

2 . In this situation the sufficient
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condition (30) (choose for all (t, x) ∈ [0, T ] × Rd and k ∈ N0 \ {1, 3} that β = 1, a1(t, x) = 2, a3(t, x) = −1, and
ak(t, x) = 0) from Theorem 2.13 in [55] is equivalent to

1 <

∫ ∞

|g(0)|
1

y+y3 dy =
[

log(y)− 1
2 log(1 + y2)

]∞
|g(0)| =

1
2 log

(

1 + 1
|g(0)|2

)

(31)

which is equivalent to |g(0)| < (e2 − 1)−
1
2 = 0.395623 . . . We simulated the branching diffusion approxima-

tions of u∞(0, 0) for different values of g(0). Each approximation is an average over M = 105 independent
copies (Ψi

0,0)i∈{1,2,...,105} of the random variable Ψ0,0 defined in (2.12) in Henry-Labordère, Tan, & Touzi [55]
where we choose for all k ∈ N0 that pk = 0.51{1,3}(k). We also report the estimated standard deviation
(

10−5
∑105

i=1(Ψ
i
0,0)

2 −
[

10−5
∑105

i=1 Ψ
i
0,0

]2)
/
√
105 of the branching diffusion approximation 10−5

∑105

i=1 Ψ
i
0,0. Table 10

g(0) exact value u∞(0, 0) approximation estimated standard deviation

0.1 0.263540 0.271007 0.0169791
0.2 0.485183 0.499103 0.0361975
0.3 0.649791 0.848879 0.2211004
0.4 0.764605 3.495457 2.8179089
0.5 0.843347 21.68436 20.978325
0.6 0.897811 136.6667 110.02696
0.7 0.936233 7321.326 5404.5849

Table 10: Approximation of the PDE ∂
∂t

u + 1
2
∆xu + u − u

3 = 0 defined on [0, 1] × R with terminal condition u(1, ·) = g(0) with the
branching diffusion method from Theorem 2.13 in Henry-Labordère, Tan, & Touzi [55].

shows that the branching diffusion approximations of u∞(0, 0) become poor as g(0) increases from 0.1 to 0.7. Thus the
branching diffusion method fails to produce good approximations for u∞(0, 0) in our example as soon as condition (30)
is not satisfied.

A further minor drawback of the branching diffusion method is that it requires a suitable approximation of the
nonlinearity with polynomials and this might not be available. In addition, certain functions (e.g. for R ∋ x 7→
max{0, x} ∈ R) can only be approximated by polynomials on finite intervals so that choosing suitable approximating
polynomials might require appropriate a priori bounds on the exact solution of the PDE.

4.8 Approximations based on density representations

Recently two approximation methods were proposed in Chang, Liu, & Xiong [14] and in Le Cavil, Oudjane, &
Russo [60]. Both methods are based on a stochastic representation with a McKean-Vlasov-type SDE where u∞ is
the density of a certain measure. As a consequence both methods proposed in [14, 60] encounter the difficulty of
density estimation in high dimensions. More precisely if ūε,N,n is the approximation of u∞ defined in (5.33) in [60]
with a uniform time grid with n ∈ N time points, N ∈ N Monte Carlo averages, and bandwidth matrix ε I

R

d×d where
ε ∈ (0, 1], then the proof of Theorem 5.6, the proof of Corollary 5.4 in [60] imply under suitable assumptions existence
of constants C, C̄ ∈ (0,∞) and a function c : (0, 1] → (0,∞) (which are independent of n,N and ε) such that

sup
t∈[0,T ]

E

[
∫

R

d

∣

∣ūε,N,n(t, x) − u∞(t, x)
∣

∣ dx+

∫

R

d

∣

∣(∇x(ū
ε,N,n − u∞))(t, x)

∣

∣ dx

]

≤
(

C̄
εd+3

√
n
+ C√

εd+4N
+
)

e
C

εd+1 + cε.

(32)

This upper bound becomes only small if we choose the bandwidth ε small and if n and N grow exponentially in the
dimension. The upper bounds established in [14] are less explicit in the dimension. However, following the estimates in
the proofs in [14], it becomes apparent that the number of initial particles in branching particle system approximations
defined on pages 30 and 18 in [14] need to grow exponentially in the dimension.
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[71] Pardoux, É., and Peng, S. G. Adapted solution of a backward stochastic differential equation. Systems Control Lett.
14, 1 (1990), 55–61.

[72] Peng, S. G. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics
Stochastics Rep. 37, 1-2 (1991), 61–74.

[73] Petersdorff, T. V., and Schwab, C. Numerical solution of parabolic equations in high dimensions. ESAIM: Mathe-
matical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 38, 1 (2004), 93–127.
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