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Abstract

In this paper, we prove a discrete embedding inequality for the Raviart–Thomas mixed
finite element methods for second order elliptic equations, which is analogous to the Sobolev
embedding inequality in the continuous setting. Then, by using the proved discrete em-
bedding inequality, we provide an optimal error estimate for linearized mixed finite element
methods for nonlinear parabolic equations. Several numerical examples are provided to con-
firm the theoretical analysis.
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1 Introduction

Since the pioneering work of Raviart and Thomas [27], mixed finite element methods (FEMs)
have proved to be a fundamental tool to numerically solve various problems arising in physics
and engineering sciences. Mixed FEMs have many attractive features over the conventional
Lagrange FEMs. For instance, mixed FEMs conserve mass locally, which is of crucial importance
in numerical methods for flow coupled to transport, see [10]. By introducing ∇u as an extra
variable, mixed methods can produce accurate flux approximations. Mixed FEMs are also more
robust in the case of low regularity of nonsmooth coefficients. We refer to the monographs [3, 12]
for the general theory of Mixed FEMs. There are numerous applications of Raviart–Thomas
mixed FEMs, etc., see [6, 16, 17, 22, 23, 28] for general linear and nonlinear parabolic equations,
[4, 14, 19] for semiconductor modeling, [1, 2] for porous media flow problems.

In this paper, we consider the mixed finite element methods(FEMs) for nonlinear parabolic
equations 




∂u

∂t
−∆u+ f(u,∇u) = 0 , in Ω× (0, T ],

u(x, t) = u0(x) , in Ω,

u = 0 , on ∂Ω,

(1.1)

(1.2)

(1.3)
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where f is a given function. We assume Ω is a bounded Lipschitz polygonal/polyhedral domain in
R
d(d = 2, 3). There have been extensive works on mixed methods for the above equations (1.1)-

(1.3). We give a brief summary along with some representative (but certainly not exhaustive)
requirement for the function f(u,∇u) (or f(u)) in the literature.

• The function f(u) is a smooth function of u ∈ R, i.e., there exists a bound B1 such that

|f (i)| ≤ B1, i = 0, 1, 2, . . .

see page 270 of [23].
• There exists a bound k1 such that, for every u ∈ R

|f | ≤ k1,

∣∣∣∣
∂f

∂u

∣∣∣∣ ≤ k1

See page 131 of [16] and page 150 of [17].
• The function f(x, , u) : Ω × R → R is a triple continuously differential function with

bounded derivatives up to the third order. See page 205 of [6], page 410 of [7] and page 195 of
[8].

• The reaction term f is twice continuously differential on Ω with bounded derivatives up
to the second order. See page 322 of [28].

Let us examine why all the above works need these strong assumptions on f . It is not
difficult to deduce that, under the above requirements on f , the error between f(u) and f(uh)
can be bounded by

‖f(u)− f(uh)‖L2 ≤ ‖f ′(ξuh,u)(u− uh)‖L2 ≤ max
x∈R

|f ′(x)|‖(u − uh)‖L2 ≤ C‖u− uh‖L2 .

where C is a constant independent of u, uh and the mesh size h. Due to these severe restrictions
on f in [16, 17, 6, 7, 8, 23, 28], the “nonlinear” problem (1.1)-(1.3) can be almost reduced to
a linear one. Clearly, these assumptions on f cannot be satisfied in most applications. For
instance, f(u) = u3 − u is frequently used in phase field problems and nonlinear Schrodinger
equations; f(u) = (b · ∇u)u where b = [1, 1, 1]T appears in the viscous Burgers’ equation.
In these two cases, f does not satisfies the conditions in [6, 7, 8, 16, 17, 23, 28]. Thus, all
previous results are not applicable. To eliminate the strong assumptions of f and also control
the nonlinear term f(u,∇u), one must derive a uniform boundedness of uh in certain strong
norms. If conventional Lagrange elements are used, one popular linearized FEM for the equation
(1.1) is to seek unh ∈ P r

h ⊂ H1(Ω) such that

(unh − un−1
h

τ
, vh

)
+ (∇unh,∇vh) + (f(un−1

h ,∇unh), vh) = 0 , ∀vh ∈ P r
h ⊂ H1(Ω) . (1.4)

And it is easy to see that uh ∈ H1(Ω) satisfies
{
‖uh‖Lp ≤ C‖∇uh‖L2 , for 1 ≤ p < +∞, in two-dimensional space

‖uh‖Lp ≤ C‖∇uh‖L2 , for 1 ≤ p ≤ 6, in three-dimensional space,

where ‖∇uh‖L2 naturally arise in the discretization of the diffusion terms. By using this tech-
nique, unconditionally optimal error estimates of conventional Lagrange FEMs were established
in [15, 20] for several nonlinear parabolic problems. On the contrary, if mixed FEMs are used
for spatial discretizations, a linearized mixed FEM is to seek (σn

h , u
n
h) ∈ Hr

h×V r
h ⊂ H(div)×L2,

such that




(σn
h ,χh) + (unh,divχh) = 0 , ∀χh ∈ Hr

h ,(
unh − un−1

h

τ
, vh

)
− (divσn

h , vh) + (f(un−1
h ,σn−1

h ), vh) = 0 , ∀vh ∈ V r
h ,

(1.5)

(1.6)
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where Hr
h×V r

h are the Raviart–Thomas mixed finite element spaces, see the definition in section
2. It is easy to see that for the mixed scheme (1.5)-(1.6) one can only derive

‖unh‖
2 − ‖unh‖

2

2τ
+

1

2τ
‖unh − un−1

h ‖+ ‖σh‖
2
L2 + (f(un−1

h ,σn−1
h ), uh) = 0.

Therefore, we must use ‖σh‖
2
L2 to control the nonlinear term f(un−1

h ,σn−1
h ). More precisely, we

shall establish embedding inequalities between unh and σn
h

{
‖unh‖Lp ≤ C‖σn

h‖L2 , for 1 ≤ p < ∞, in two-dimensional space,

‖unh‖Lp ≤ C‖σn
h‖L2 , for 1 ≤ p ≤ 6, in three-dimensional space,

Although the above results seems rather reasonable, to the best our knowledge, such a relation-
ship for (σh, uh) is unavailable in the literature. In this paper, we provide a rigorous proof for
the discrete Sobolev embedding inequalities for the Raviart–Thomas mixed FEMs. A key step
in our proof is to introduce a new norm ‖uh‖DG, which can be viewed as the broken H1 norm
of uh. Then, we analyze ‖uh‖DG and ‖σh‖ carefully to derive the desired results.

The rest of this paper is organized as follows. In section 2, we provide some notations
and lemmas for later use. In section 3, we prove the discrete Sobolev embedding inequalities
associated to the Raviart–Thomas mixed FEMs. In section 4, we provide an optimal error
estimate for the linearized mixed FEMs by using the discrete Sobolev embedding inequalities.
Numerical examples in both two- and three-dimensional spaces are given in section 5 to confirm
the error estimates and show the efficiency of linearized mixed FEMs.

2 Preliminaries

Let W k,p(Ω) be the Sobolev space defined on Ω, and by conventional notations, Hk(Ω) :=
W k,2(Ω). To introduce the mixed formulation, we denote

H(div; Ω) =
{
u
∣∣u ∈ L2(Ω),divu ∈ L2(Ω)

}
with ‖u‖H(div) =

(
‖u‖2L2 + ‖divu‖2L2

) 1

2

and its dual space
◦

H(div)′ with norm

‖v‖ ◦
H(div)′

:= sup
w∈

◦
H(div)

(v , w)

‖w‖
H(div)

.

Let Th = {K} be a regular mesh partition of Ω and denote the mesh size h = maxK{diamK}.
By Fh we denote all the (d − 1)-dimensional faces of the partition Th. We define the Raviart–
Thomas finite element spaces by

{
Hr

h(Ω) := {q ∈ H(div; Ω) : q|K ∈ [Pr(K)]d + xPr(K), ∀K ∈ Th} ,

V r
h (Ω) := {u ∈ L2(Ω) : u|K ∈ Pr(K), ∀K ∈ Th} ,

where Pr(K) is the space of polynomials of degree r or less defined on K. It is well-known that
Hr

h(Ω) × V r
h (Ω) is a stable finite element pair for solving the second order elliptic problems,

see [3, 22, 25, 27]. Let {tn}
N
n=0 be a uniform partition in the time direction with the step

size τ = T
N . For a sequence of functions {un} defined on Ω, we denote the backward Euler

discretization operator

Dτu
n =

un − un−1

τ
.
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In the rest part of this paper, for simplicity of notation we denote by C a generic positive
constant and ǫ a generic small positive constant, which are independent of n, h and τ . We
present the Gagliardo–Nirenberg and discrete Gronwall’s inequalities in the following lemmas
which will be frequently used in our proofs.

Lemma 2.1. ( Gagliardo–Nirenberg inequality [26]): Let u be a function defined on Ω in R
d

and ∂su be any partial derivative of u of order s, then

‖∂ju‖Lp ≤ C‖∂mu‖aLr ‖u‖1−a
Lq + C‖u‖Lq ,

for 0 ≤ j < m and j
m ≤ a ≤ 1 with

1

p
=

j

d
+ a

(
1

r
−

m

d

)
+ (1− a)

1

q
,

except 1 < r < ∞ and m − j − n
r is a non-negative integer, in which case the above estimate

holds only for j
m ≤ a < 1.

Lemma 2.2. Discrete Gronwall’s inequality [18] : Let τ , B and ak, bk, ck, γk, for integers
k ≥ 0, be non-negative numbers such that

an + τ

n∑

k=0

bk ≤ τ

n∑

k=0

γkak + τ

n∑

k=0

ck +B , for n ≥ 0 ,

suppose that τγk < 1, for all k, and set σk = (1− τγk)
−1. Then

an + τ

n∑

k=0

bk ≤ exp(τ
n∑

k=0

γkσk)(τ
n∑

k=0

ck +B) , for n ≥ 0 .

3 Discrete Sobolev embedding inequalities of mixed FEMs for

the Poisson problem

We consider in this section the model problem
{
−∆u = f , for x ∈ Ω ,

u = 0 , for x ∈ ∂Ω .

The standard Raviart–Thomas mixed FEM for the above model problem is to seek (σh, uh) ∈
Hr

h(Ω)× V r
h (Ω) such that

{
(σh,χh) + (uh,divχh) = 0 , ∀χh ∈ Hr

h(Ω) ,

(divσh, vh) = −(f, vh) , ∀vh ∈ V r
h (Ω) .

(3.1)

(3.2)

Error analyses for the above mixed methods (3.1)-(3.2) can be found in [3, 25, 27] and references
therein. The mixed methods computes the original unknown uh and the flux σh simultaneously.
On the contrary, to obtain the flux∇u, conventional Lagrange FEMs need to use certain numeri-
cal differentiation, which may lead to a loss in accuracy. If we still denote by uh the conventional
Lagrange FEM solution to the above Poisson problem, then uh satisfies the following Sobolev
inequalities

{
‖uh‖Lp ≤ C‖∇uh‖L2 , for 1 ≤ p < ∞, in two-dimensional space,

‖uh‖Lp ≤ C‖∇uh‖L2 , for 1 ≤ p ≤ 6, in three-dimensional space,

(3.3)

(3.4)
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which inherits the H1 conforming nature. As σh numerically converges to ∇u, one may ask
whether similar Sobolev embedding inequalities hold for the mixed FEM solutions (σh, uh). In
this section, we give an affirmative answer to this question and provide a proof.

The main idea used in the proof is to investigate the relationship between mixed FEMs and
the discontinuous Galerkin FEMs. The reasons are twofold: Firstly, there have been powerful
tools developed for the discontinuous Garkerkin methods, see [5, 9]; Secondly, the numerical
solution uh is in the discontinuous finite element space but not in H1(Ω). Following [9], we
define the ‖ · ‖DG norm of uh by

‖uh‖
2
DG :=

∑

K∈Th

∫

K
|∇uh|

2dx+
∑

F∈Fh

1

hF

∫

F
|[[uh]]|

2dx, (3.5)

where hF denotes the size of the face F . For two adjacent elements K and K ′ sharing the same
face F , the jump of a function uh ∈ V r

h (Ω) across F is defined by

[[uh]] = uh|∂K∩F − uh|∂K ′∩F .

In case of F ∈ ∂K lying on ∂Ω, we define [[uh]] := uh|∂K∩F . The main results obtained in [9] are
the following discrete Sobolev embedding inequalities

{
‖uh‖Lp ≤ C‖uh‖DG , for 1 ≤ p < ∞, in two-dimensional space,

‖uh‖Lp ≤ C‖uh‖DG , for 1 ≤ p ≤ 6, in three-dimensional space,

(3.6)

(3.7)

where C is a constant depending upon the domain Ω, r and p only. We will show in Theorem 3.2
that ‖uh‖DG is bounded by ‖σh‖L2 . Before going further, we consider the following projection
problem for the Raviart–Thomas element, which will be used in the later proof. This lemma
first appears in [11]. Here we provide a complete proof with details.

Lemma 3.1. For each element K ∈ Th, given p ∈ [L2(K)]d, qi ∈ L2(Fi) where {Fi} ∈ ∂K,
there exists a unique ζh ∈ RTr(K) such that





∫

K
(ζh − p) · ωhdx = 0 , ∀ωh ∈ [Pr−1(K)]d ,

∫

Fi

(ζh · nFi
− qi)µhdx = 0 , ∀µh ∈ Pr(Fi) ,

(3.8)

(3.9)

where RTr(K) is the restriction of the Raviart–Thomas element space Hr
h(Ω) on K. More

importantly, the following stability holds

‖ζh‖
2
L2(K) ≤ C


‖p‖2L2(K) +

∑

Fi∈∂K
h‖qi‖

2
L2(Fi)


 , (3.10)

where C is independent of h and K.

Proof: The equation numbers in (3.8)-(3.9) satisfy

d

(
d+ r − 1

r − 1

)

︸ ︷︷ ︸
eqn. (3.8)

+ (d+ 1)

(
d+ r − 1

r

)

︸ ︷︷ ︸
eqn. (3.9)

=
(d+ r + 1) (d + r − 1)!

(d− 1)!r!︸ ︷︷ ︸
dim{RTr(K)}

,

which immediately yields the the existence and uniqueness of the projection. We prove (3.10)
by a scaling argument. To do so, let K̂ be the reference element, which can be a simplex in R

d.
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Given p̂ ∈ [L2(K̂)]d, q̂i ∈ L2(F̂i) where {F̂i} ∈ ∂K̂, the corresponding projection on K̂ is to seek
ζ̂h ∈ RTr(K̂) such that





∫

K̂
(ζ̂h − p̂) · ω̂hdx̂ = 0 , ∀ω̂h ∈ [Pr−1(K̂)]d ,

∫

F̂i

(ζ̂h · nF̂i
− q̂i) µ̂hdx̂ = 0 , ∀µ̂h ∈ Pr(F̂i) .

(3.11)

(3.12)

The existence and uniqueness of ζ̂h are obvious. Furthermore, it is easy to derive that

∥∥∥ζ̂h
∥∥∥
2

L2(K̂)
≤ C

(
‖p̂‖2

L2(K̂)
+
∑

F̂i∈∂K̂

‖q̂i‖
2
L2(F̂i)

)
(3.13)

where C depends upon K̂ and r only. To build a connection between K̂ and K, we define the
affine mapping TK : Rd → R

d by

TK := BK x̂+ bk, ∀x̂ ∈ R
d. (3.14)

We also note that for {F̂i} ∈ ∂K̂, TK(F̂i) = Fi. Then, for a scalar function φ ∈ H1(K), we
define

φ̂ = φ ◦ TK (3.15)

For ζ ∈ [H1(K)]d, we shall introduce the Piola transformation

ζ̂ = |detBK |B−1
K ζ ◦ TK . (3.16)

With the above transformations (3.14)-(3.16), the projection (3.8)-(3.9) can be rewritten by





∫

K̂

(
ζ̂h − p̂

)
· ω̂hdx̂ = 0 , ∀ω̂h ∈ [Pr−1(K̂)]d ,

∫

F̂i

(
ζ̂h · nF̂i

−
|Fi|

|F̂i|
q̂i

)
µ̂hdx̂ = 0 , ∀µ̂h ∈ Pr(F̂i) .

(3.17)

(3.18)

where the Piola transformation (3.16) is used for the vector functions ζh, p and ωh, and affine
transformation (3.15) is used for {qi} and µh, respectively. Finally, we use the scaling argument
to derive that

‖ζh‖L2(K) ≤ ‖BK‖ |detBK |−
1

2‖ζ̂h‖L2(K̂)

≤ C‖BK‖ |detBK |−
1

2


‖p̂‖L2(K̂) +

∑

F̂i∈∂K̂

|Fi|

|F̂i|
‖q̂i‖L2(F̂i)




≤ C‖BK‖ |detBK |−
1

2


|detBK |

1

2 ‖B−1
K ‖ ‖p‖L2(K) +

∑

Fi∈∂K

(
|Fi|

|F̂i|

)1/2

‖qi‖L2(Fi)




≤ C‖BK‖ ‖B−1
K ‖ ‖p‖L2(K) + C

∑

Fi∈∂K
‖BK‖ |detBK |−

1

2

(
|Fi|

|F̂i|

)1/2

‖qi‖L2(Fi)

≤ C


‖p‖L2(K) + h

1

2

∑

Fi∈∂K
‖qi‖L2(Fi)


 ,
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where we have used estimate (3.13) and noted the fact that Th is shape regular( h and hF are
equivalent). By squaring the above inequality, we get the desired estimate (3.10) directly.

Now, we are ready to prove the discrete Sobolev embedding inequalities for the mixed FEM
solutions (σh, uh), which play a key role in the unconditionally optimal error analysis in the
next section 4.

Theorem 3.2. For any given uh ∈ V r
h (Ω), if there exists a σh ∈ Hr

h(Ω) such that

(σh,χh) + (uh,divχh) = 0 , ∀χh ∈ Hr
h(Ω) , (3.19)

then the following discrete Sobolev embedding inequality holds

{
‖uh‖Lp ≤ C‖σh‖L2 , for 1 ≤ p < ∞, in two dimensional space,

‖uh‖Lp ≤ C‖σh‖L2 , for 1 ≤ p ≤ 6, in three dimensional space,

(3.20)

(3.21)

where C is a constant only depending upon the domain, r and p.

Proof: By using integration by parts for the equation (3.19), we have

0 = (σn,χh) + (uh,divχh)

= (σn,χh) +
∑

K∈Th

∫

K
uhdivχhdx

= (σn,χh) +
∑

K∈Th

(
−

∫

K
∇uh · χhdx+

∫

∂K
uhχh · nK ds

)

= (σn,χh)−
∑

K∈Th

∫

K
∇uh · χhdx+

∑

F∈Fh

∫

F
[[uh]]χh · nFdx . (3.22)

Then, on each element K, we require χh to be the projection, such that





∫

K
(χh −∇uh) · ωhdx = 0 , ∀ωh ∈ [Pr−1(K)]d ,

∫

Fi

(χh · nFi
+

1

hFi

[[uh]])µhdx = 0 , ∀µh ∈ Pr(Fi) .

Lemma 3.1 tells that such a χh ∈ Hr
h(Ω) exists and is unique, which also satisfies

‖χh‖
2
L2(K) ≤ C


‖∇uh‖

2
L2(K) +

∑

Fi∈∂K

1

h
‖[[uh]]‖

2
L2(Fi)




Substituting this χh into (3.22) yields

‖uh‖
2
DG ≤ (σh,χh) ≤ ‖σh‖L2(Ω) ‖χh‖L2(Ω) ≤ C‖σh‖L2(Ω) ‖uh‖DG .

The discrete Sobolev embedding inequalities (3.20)-(3.21) follows directly from (3.6)-(3.7) and
the last inequality. The theorem is proved.

Remark 3.3. In the above proof, we can see that σh can be replaced by any f ∈ L2(Ω).
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4 Applications in unconditionally optimal error estimates of

nonlinear parabolic equations

4.1 Linearized mixed FEMs for nonlinear parabolic equations

In this section, we employ the discrete Sobolev embedding inequalities to establish an uncon-
ditionally optimal error estimates of linearized mixed FEMs for nonlinear parabolic equations.
We point out that examples shown in this section do not satisfy the assumptions assumed in
previous works [6, 7, 8, 16, 17, 23, 28]. We present two typical nonlinear equations with different
f(u,∇u).

Example 4.1. The first one is the Allen–Cahn type equation




∂u

∂t
−∆u+ u3 − u = 0 , in Ω× (0, T ],

u(x, t) = u0(x) , in Ω,

u = 0 , on ∂Ω,

(4.1)

(4.2)

(4.3)

Conventional Lagrange FEMs have been widely used to solve the above equation. However,
one might consider using a mixed method for the above Allen–Cahn equations in the hope of
getting a better approximation of the flux ∇u, which is needed in the case of coupling ∇u with
Navier–Stokes equations, see [13, 21].

Example 4.2. The second one is the viscous Burgers’ equation




∂u

∂t
−∆u+ (b · ∇u)u = 0 , in Ω× (0, T ],

u(x, t) = u0(x) , in Ω,

u = 0 , on ∂Ω.

(4.4)

(4.5)

(4.6)

where b = [1, 1, 1]T .

Here we combines the nonlinear terms in the last two examples and study the following
artificial problem





∂u

∂t
−∆u+ (b · ∇u)u+ u3 − u = 0 , in Ω× (0, T ],

u(x, t) = u0(x) , in Ω,

u = 0 , on ∂Ω.

(4.7)

(4.8)

(4.9)

A linearized mixed FEMs is to look for (σn
h , u

n
h) ∈ Hr

h(Ω)× V r
h (Ω) such that for n = 1, 2, . . .,





(σn
h ,χh) + (unh,divχh) = 0 , ∀χh ∈ Hr

h(Ω) ,

(Dτu
n
h, vh)− (divσn

h , vh) + (b · σn−1
h un−1

h , vh)

+ ((un−1
h )3 − un−1

h , vh) = 0 , ∀vh ∈ V r
h (Ω).

(4.10)

(4.11)

At the initial step, we take σ0
h = Πh∇u0(x) and u0h = Πhu

0(x), where Πh can be the projection
defined in (4.14)-(4.15).

For error analysis, we assume that the initial-boundary value problem (4.7)-(4.9) has a unique
solution satisfying the regularity condition

u ∈ L∞(0, T ;Hr+2) , ut ∈ L∞(0, T ;Hr+2) , utt ∈ L∞(0, T ;L2). (4.12)
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We shall remark that the above regularity assumption might be weakened. In this paper, we
emphasize on the unconditional optimal error estimates of the linearized mixed FEMs (4.10)-
(4.11). We state our main results on error analysis in the following theorem. The proof will be
given in the next subsection 4.2.

Theorem 4.1. Under the regularity assumption , there exist two positive constants h0 and τ0
such that when h < h0 and τ < τ0, the mixed FEM systems (4.10)-(4.11) are uniquely solvable
and the following error estimates hold

max
0≤n≤N

(
‖unh − un‖2L2 + τ

n∑

m=1

‖σm
h − σm‖2L2

)
≤ C∗(τ

2 + h2r+2) , (4.13)

where C∗ is a positive constant independent of n, h and τ .

To prove the above theorem, we need to define a projector Πh : (H(div; Ω), L2(Ω)) →
(Hr

h(Ω), V
r
h (Ω)). Given the exact solution (σ, u) to (4.7)-(4.9) at any time t ∈ (0, T ], we seek

(Πhσ,Πhu) ∈ (Hr
h(Ω), V

r
h (Ω)) such that

{
(Πhσh,χh) + (Πhuh,divχh) = 0 , ∀χh ∈ Hr

h(Ω) ,

(div Πhσh, vh) = (divσ, vh) , ∀vh ∈ V r
h (Ω) .

(4.14)

(4.15)

We denote the projection error functions by

θσ = Πhσ − σ, θu = Πhu− u, (4.16)

From the classical error estimates for mixed methods [3, 12, 27], we have

‖θu‖L2 + ‖θσ‖L2 ≤ Chr+1‖u‖Hr+1 ,

∥∥∥∥
∂θu

∂t

∥∥∥∥
L2

≤ Chr+1

∥∥∥∥
∂u

∂t

∥∥∥∥
Hr+1

. (4.17)

Moreover, the following uniform boundedness estimates can be proved by using an inverse in-
equality

‖Πhσ‖Lp + ‖Πhu‖Lp ≤ C, for 1 ≤ p ≤ 6. (4.18)

With the above projection error estimates, we only need to analyze the error functions

en
σ
= σn

h −Πhσ
n, enu = unh −Πhu

n, for n = 1, 2, . . . , N. (4.19)

We provide an unconditionally optimal estimates for {(en
σ
, enu)}

N
n=0 in the next subsection.

4.2 Proof of Theorem 4.1

Proof: The existence and uniqueness of numerical solutions to the linearized mixed FEMs
(4.10)-(4.11) follow directly from that at each time step, the coefficient matrix is invertable.
Here we prove the following inequality for n = 0, . . ., N

‖enu‖
2
L2 +

n∑

m=1

τ‖em
σ
‖2L2 ≤

C∗
2

(
τ2 + h2r+2

)
, (4.20)

by mathematical induction. Since

‖e0u‖
2
L2 + ‖e0

σ
‖2L2 = 0,

(4.20) holds for n = 0. We can assume that (4.20) holds for n ≤ k− 1 for some k ≥ 1. We shall
find a constant C∗, which is independent of n, h, τ , such that (4.20) holds for n ≤ k.
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At time step tn, by noting the projection (4.14)-(4.15), the exact solution (σ, u) satisfies

(Πhσ
n,χh) + (Πhu

n,divχh) = 0 , ∀χh ∈ Hr
h(Ω), (4.21)

(Dτu
n, vh)− (divΠhσ

n, vh) = −(b · σn−1 un−1, vh)

− ((un−1)3 − un−1, vh)− (Rn
u, vh) , ∀vh ∈ V r

h (Ω) , (4.22)

where

Rn
u = Dτu

n −
∂u

∂t

∣∣∣
tn

+ (b · ∇unun − b · ∇un−1un−1) + ((un−1)3 − un−1)− ((un)3 − un)

stands for the truncation error. Subtracting (4.21)-(4.22) from (4.10)-(4.11), respectively, we
obtain the error equations

(en
σ
,χh) + (enu,divχh) = 0 , ∀χh ∈ Hr

h(Ω), (4.23)

(Dτe
n
u, vh)− (diven

σ
, vh) = (b · ∇un−1un−1 − b · σn−1

h un−1
h , vh)

− (((un−1)3 − un−1)− ((un−1
h )3 − un−1

h ), vh)− (Dτθ
n
u −Rn

u, vh) , ∀vh ∈ V r
h (Ω) . (4.24)

Taking (χh, vh) = (en
σ
, enu) into the above error equations (4.23)-(4.24) and summing up the

results lead to

(Dτ e
n
u, e

n
u) + ‖en

σ
‖2L2

= (b · ∇un−1un−1 − b · σn−1
h un−1

h , enu)

+ (((un−1)3 − un−1)− ((un−1
h )3 − un−1

h ), enu)− (Dτθ
n
u −Rn

u, e
n
u) (4.25)

We estimate the right hand side of (4.25) term by term. By the regularity assumption on
the exact solution u in (4.12) and the projection error (4.17), the last term in the right hand
side of (4.25) can be bounded by

(Dτθ
n
u −Rn

u, e
n
u) ≤ C‖enu‖

2
L2 + Cτ2 + Ch2r+2 (4.26)

By noting that the assumption (4.20) holds for n ≤ k − 1, we can derive that if τ ≤ hr+1

‖enu‖L3 ≤ h−
1

2 ‖enu‖L2 ≤ h−
1

2

√
C∗
2
(τ2 + h2r+2) ≤

√
C∗h

r+ 1

2 , (4.27)

where an inverse inequality is used. If hr+1 ≤ τ , by using the discrete Sobolev embedding
inequality in Theorem 3.2, we have

‖enu‖L3 ≤ C‖en
σ
‖L2 ≤ Cτ−

1

2

√
τ‖en

σ
‖2
L2 ≤ Cτ−

1

2

√
C∗
2
(τ2 + h2r+2) ≤ C

√
C∗τ

1

2 . (4.28)

Therefore, for any given ǫ, we have in both cases

‖enu‖L3 ≤ max
{√

C∗h
r+ 1

2 , C
√

C∗τ
1

2

}
≤ ǫ, for n = 1, . . . , k − 1 (4.29)

if we require that τ ≤ τ0 and h ≤ h0, where τ0 and h are two small constant numbers. Now we
estimate the two nonlinear terms in the right hand side of (4.25). The first nonlinear term can
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be bounded by

(b · ∇un−1un−1 − b · σn−1
h un−1

h , enu)

= −(b · ∇un−1(θn−1
u + en−1

u ), enu)− (b · (θn−1
σ

+ en−1
σ

)Πhu
n−1, enu)

− (b · (θn−1
σ

+ en−1
σ

)en−1
u , enu)

≤ ‖b · ∇un−1‖L∞‖θn−1
u + en−1

u ‖L2‖enu‖L2 + ‖b · (θn−1
σ

+ en−1
σ

)‖L2‖Πhu
n−1‖L6‖enu‖L3

+ ‖b · (θn−1
σ

+ en−1
σ

)‖L2‖en−1
u ‖L3‖enu‖L6

≤ C‖en−1
u ‖2L2 +C‖enu‖

2
L2 + Ch2r+2 + C(‖en−1

σ
‖L2 + hr+1)‖enu‖

1

2

L2‖e
n
u‖

1

2

L6

+ C(‖en−1
σ

‖L2 + hr+1)‖en−1
u ‖L3‖enu‖L6

≤ C(‖en−1
σ

‖L2 + hr+1)‖enu‖
1

2

L2‖e
n
σ
‖

1

2

L2 + C(‖en−1
σ

‖L2 + hr+1)‖en−1
u ‖L3‖en

σ
‖L2

+ C‖en−1
u ‖2L2 + C‖enu‖

2
L2 + Ch2r+2 (4.30)

By using Young’s inequality, we have

C(‖en−1
σ

‖L2 + hr+1)‖enu‖
1

2

L2‖e
n
σ
‖

1

2

L2 ≤ ǫ(‖en−1
σ

‖2L2 + ‖en
σ
‖2L2) + ǫ−1C‖enu‖

2
L2 + ǫ−1Ch2r+2 . (4.31)

And by using the (4.29), we can derive

C(‖en−1
σ

‖L2 + hr+1)‖en−1
u ‖L3‖en

σ
‖L2 ≤ ǫ(‖en−1

σ
‖2L2 + ‖en

σ
‖2L2) + ǫ−1Ch2r+2 (4.32)

where we shall require τ and h are smaller than certain constants. Substituting the last two
inequality into (4.30) gives

(b · ∇un−1un−1 − b · σn−1
h un−1

h , enu)

≤ ǫ(‖en−1
σ

‖2L2 + ‖en
σ
‖2L2) + ǫ−1C‖enu‖

2
L2 + ǫ−1Ch2r+2 (4.33)

Next, the second nonlinear term in the right hand side of (4.25) can be bounded by

(((un−1)3 − un−1)− ((un−1
h )3 − un−1

h ), enu)

≤ ((un−1)3 − (un−1
h )3, enu) + C‖en−1

u ‖2L2 + C‖enu‖
2
L2 +Ch2r+2

≤ (−3(un−1)2(θn−1
u + en−1

u ) + 3un−1(θn−1
u + en−1

u )2 − (θn−1
u + en−1

u )3, enu)

+ C‖en−1
u ‖2L2 +C‖enu‖

2
L2 + Ch2r+2

≤ C|((en−1
u )3, enu)|+ C|(θn−1

u (en−1
u )2, enu)|+C‖en−1

u ‖2L2 + C‖enu‖
2
L2 + Ch2r+2

≤ C‖en−1
u ‖L3‖en−1

u ‖L3‖en−1
u ‖L6‖enu‖L6 + C‖θn−1

u ‖L3‖en−1
u ‖L3‖en−1

u ‖L6‖enu‖L6

+ C‖en−1
u ‖2L2 +C‖enu‖

2
L2 + Ch2r+2

≤ Cǫ2‖en−1
σ

‖L2‖en
σ
‖L2 + Cǫ‖en−1

σ
‖L2‖en

σ
‖L2 + C‖en−1

u ‖2L2 + C‖enu‖
2
L2 + Ch2r+2

≤ ǫ(‖en−1
σ

‖2L2 + ‖en
σ
‖2L2) + C‖en−1

u ‖2L2 +C‖enu‖
2
L2 + Ch2r+2 (4.34)

where we have used (4.29) with requirement τ and h are smaller than certain constants and the
embedding equality in Theorem 3.2.

Finally, substituting estimates (4.26), (4.33) and (4.34) into (4.25), we obtain

(Dτe
n
u, e

n
u) + ‖en

σ
‖2L2

≤ ǫ‖en−1
σ

‖2L2 + ǫ−1C‖en−1
u ‖2L2 + ǫ−1C‖enu‖

2
L2 + ǫ−1C(τ2 + h2r+2), (4.35)

Then, we chose a small ǫ and summing up the last inequality for the index n = 1, 2, . . ., k to
deduce that

‖enu‖
2
L2 + τ

n∑

m=1

‖em
σ
‖2L2 ≤ τC

n∑

m=1

‖emu ‖2L2 + τC

n∑

m=1

(τ2 + h2r+2), (4.36)
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Thanks to the discrete Gronwall’s inequality in Lemma 2.2, when Cτ ≤ 1
2 , we have

‖enu‖
2
L2 + ‖en

σ
‖2L2 + τ

n∑

m=1

(
‖em

σ
‖2L2 + ‖divem

σ
‖2L2

)

≤ C exp

(
TC

1− Cτ

)
(τ2 + h2r+2)

≤ C exp(2TC)(τ2 + h2r+2) (4.37)

Thus, (4.20) holds for n = k if we take C∗

2 ≥ C exp(2TC). We complete the induction.
Theorem 4.1 follows immediately from the the projection error estimates and the above

inequality.

5 Numerical examples

In this section, we provide numerical experiments in both two and three dimensional spaces to
confirm our theoretical results in Theorem 4.1 and show the efficiency of the linearized mixed
FEMs. The computations are carried out with the free software FEniCS [24].

Example 5.1. First we consider an artificial problem in two dimensional space





∂u

∂t
−∆u+ u3 = g , inΩ

u = 0, on ∂Ω

u = u0(x), in Ω,

(5.1)

(5.2)

(5.3)

where we take Ω = (0, 1)× (0, 1). The function g is chosen correspondingly to the exact solution

u(t, x, y) = exp(t)xy(1 − x)(1− y).

We set the terminal time T = 1.0 in this example. This example had been tested in [23], where
a nonlinear backward Euler mixed FEM with a two-grid algorithm was used.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.5 1
0

0.2

0.4

0.6

0.8

1

X

Y

Figure 1: A uniform triangular mesh on the unit square with M = 8.

We use a uniform triangular mesh with M + 1 vertices in each direction, where h =
√
2

M (see
Figure 1 for illustration with M = 8). We solve (5.1)-(5.3) by the proposed linearized mixed
FEMs (4.10)-(4.11) with r = 0, 1, 2, respectively. To demonstrate the O(τ + hr) convergence of

L2-norm errors of uh and σh, we set τ =
(

1
M

)r+1
in our computation. The L2-norm errors of

the scheme are shown in Table 1. From Table 1, we can see that the L2-norm errors for uh and
σh are proportional to hr+1, which confirms the optimal convergence rates clearly.
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Table 1: L2-norm errors of uh and σh on the unit square (Example 5.1).

H0
h × V 0

h τ = 1
M ‖uN − uNh ‖L2 ‖σN − σN

h ‖L2

M = 32 2.9850e-03 1.2659e-02

M = 64 1.4928e-03 6.3329e-03

M = 128 7.4643e-04 3.1668e-03

Order 9.9983e-01 9.9951e-01

H1
h × V 1

h τ = 1
M2 ‖uN − uNh ‖L2 ‖σN − σN

h ‖L2

M = 16 2.3732e-04 1.0243e-03

M = 32 5.9385e-05 2.5731e-04

M = 64 1.4850e-05 6.4475e-05

Order 1.9992e+00 1.9949e+00

H2
h × V 2

h τ = 1
M3 ‖uN − uNh ‖L2 ‖σN − σN

h ‖L2

M = 8 4.2973e-05 1.4866e-04

M = 16 5.3949e-06 1.8728e-05

M = 32 6.7509e-07 2.3501e-06

Order 2.9961e+00 2.9916e+00

To test the stability of the proposed method, we solve (5.1)-(5.3) by the linearized mixed
FEMs (4.10)-(4.10) with three fixed time steps τ = 0.1, 0.05, 0.01 on gradually refined meshes
with M = 8, 16, 32, 64 and 128, where we take r = 1, i.e., H1

h(Ω)× V 1
h (Ω) is used. We plot in

Figure 2 the L2 errors of uh and σh. From Figure 2, we can see that for each fixed τ , when the
mesh is refined gradually, each L2 error converges to a small constant of O(τ). This shows that
the proposed linearized mixed FEM is unconditionally stable, i.e., the method does not require
mesh ratio restriction τ ≤ Chα for a certain α > 0.

M

10 1 10 2

‖
u
N h
−

u
N
‖
L
2

10 -4

10 -3 τ=0.1         

τ=0.05
τ=0.01

M

10 1 10 2

‖
σ
N h
−

σ
N
‖
L
2

10 -4

10 -3

τ=0.1         

τ=0.05
τ=0.01

Figure 2: L2 errors of uh and σh withH1
h×V 1

h on gradually refined meshes with fixed τ (Example
5.1).

Example 5.2. In this example we test the performance of the linearized mixed FEMs for the
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following three-dimensional problem





∂u

∂t
−∆u+ (b · ∇u)u+ u3 − u = g , in Ω

u = 0, on ∂Ω

u = u0(x), in Ω,

(5.4)

(5.5)

(5.6)

where we take the unit cube Ω = (0, 1)× (0, 1)× (0, 1). The function g is chosen correspondingly
to the exact solution

u(t, x, y) = exp(−t) sin(πx) sin(2πy)z(1 − z).

A uniform tetrahedral mesh with M + 1 vertices in each direction are used, where h =
√
3

M . We
solve the above equation (5.4)-(5.6) by the proposed linearized mixed FEMs (4.10)-(4.11) with

(Hr
h(Ω)× V r

h (Ω)) for r = 0, 1, respectively. We also set τ =
(

1
M

)r+1
and terminal time T = 1.0

in our computations. We present the L2-norm errors of the scheme in Table 2. Again, we can see
clearly that the L2-norm errors of uh and σh are proportional to hr+1, for r = 0, 1, respectively.
This indicates that the convergence rate of the linearized mixed FEM (4.10)-(4.11) is optimal
in three-dimensional space.

Table 2: L2-norm errors of uh and σh on the unit cube (Example 5.2).

H0
h × V 0

h τ = 1
M ‖uN − uNh ‖L2 ‖σN − σN

h ‖L2

M = 10 5.1823e-03 4.2003e-02

M = 20 2.6285e-03 2.1121e-02

M = 40 1.3189e-03 1.0575e-02

Order 9.8711e-01 9.9490e-01

H1
h × V 1

h τ = 1
M2 ‖uN − uNh ‖L2 ‖σN − σN

h ‖L2

M = 8 8.0631e-04 5.4993e-03

M = 16 2.0467e-04 1.3935e-03

M = 32 5.1364e-05 3.4997e-04

Order 1.9862e+00 1.9870e+00

To test the stability of the proposed method, we solve (5.4)-(5.6) by the linearized mixed
FEMs (4.10)-(4.10) with three fixed time steps τ = 0.1, 0.05, 0.01 on gradually refined meshes
with M = 10, 20, 30, 40 and 50, where H1

h(Ω) × V 1
h (Ω) is used for spatial discretization. We

plot in Figure 3 the L2 errors of uh and σh. From Figure 3, we can see that the size of the time
step τ affects the accuracy but not the stability of the scheme. This shows that the proposed
linearized mixed FEMs are unconditionally stable in three-dimensional space.

6 Conclusion

We have proved a discrete Sobolev embedding inequality for the Raviart–Thomas mixed FEMs
for second order elliptic equations. The essential idea is to control the Lp norm of uh by the
discrete Sobolev norm ‖uh‖DG and then prove that ‖uh‖DG is bounded by ‖σh‖L2 . In this
paper we focus on the Raviart–Thomas mixed FEMs. However, it is easy to see that the results
can be extended to other stable elements, such as Brezzi–Douglas–Marini(BDM) mixed FEMs.
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Figure 3: L2 errors of uh and σh withH1
h×V 1

h on gradually refined meshes with fixed τ (Example
5.2).

We shall remark that in our proof there is no requirement on the domain Ω. In this paper, we
only consider homogeneous Dirichlet boundary conditions. It should be noted that extension
to other boundary conditions can also be obtained with slightly change of notations. By using
the proved discrete Sobolev inequality, we have established an unconditionally optimal error
estimates for mixed FEMs of nonlinear parabolic equations. We point out that the discrete
Sobolev embedding inequalities proved in this work can be used to analyze mixed FEMs of more
general nonlinear parabolic systems.

Acknowledgments

The authors would like to thank Prof. Weiwei Sun for useful discussions.

References

[1] T. Arbogast, D. Estep, B. Sheehan and S. Tavener, A posteriori error estimates for mixed fi-
nite element and finite volume methods for parabolic problems coupled through a boundary,
SIAM/ASA J. Uncertain. Quantif., 3(2015), pp. 169–198.

[2] T. Arbogast and M. Wheeler, A characteristics-mixed finite element method for advection-
dominated transport problems, SIAM J. Numer. Anal., 32(1995), pp. 404–424.

[3] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer,
Heidelberg, 2013.

[4] F. Brezzi, L. Marini, S. Micheletti, P. Pietra, R. Sacco, and S. Wang, Discretization of
Semiconductor Device Problems (I), Handbook of Numerical Analysis XIII, special Volume
on Numerical Methods in Electromagnetics, North-Holland, Amsterdam, 2005, pp. 317–442.

[5] A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications,
IMA J. Numer. Anal., 29(2009), pp. 827–855.

[6] L. Chen and Y. Chen, Two-grid method for nonlinear reaction-diffusion equations by mixed
finite element methods, J. Sci. Comput., 49(2011), pp. 383–401.

[7] Y. Chen, H. Liu and S. Liu, Analysis of two-grid methods for reaction-diffusion equations
by expanded mixed finite element methods, Int. J. Numer. Meth. Engng., 69(2007), pp.
408–422.

15



[8] Y. Chen, Y. Huang and D. Yu, A two-grid method for expanded mixed finite-element
solution of semilinear reaction-diffusion equations, Int. J. Numer. Meth. Eng., 57(2003),
pp. 193–209.

[9] D. Di Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin
methods with application to the incompressible Navier–Stokes equations, Math. Comp.,
79(2010), pp. 1303–1330.

[10] C. Dawson, S. Sun and M. Wheeler, Compatible algorithm for coupled flow and transport,
Comput. Methods Appl. Mech. Engrg., 193(2004), pp. 2562–2580

[11] H. Egger and J. Schoberl, A hybrid mixed discontinuous Galerkin finite-element method
for convection-diffusion problems, IMA J. Numer. Anal., 30 (2010), pp. 1206–1234.

[12] A. Ern and J. Guermond, Theory and Practice of Finite Elements, Applied Mathematical
Sciences, 159, Springer–Verlag, New York, 2004.

[13] X. Feng, Y. He and C. Liu, Analysis of finite element approximations of a phase field model
for two phase fluids, Math. Comp., 76(2007), pp. 539–571.

[14] S. Gadau and A. Jungel, A three-dimensional mixed finite-element approximation of the
semiconductor energy-transport equations, SIAM J. Sci. Comput., 31(2008/09), pp. 1120–
1140.

[15] H. Gao, B. Li and W. Sun, Optimal error estimates of linearized Crank–Nicolson Galerkin
FEMs for the time-dependent Ginzburg–Landau equations in superconductivity, SIAM J.
Numer. Anal., 52(2014), pp. 1183–1202.

[16] M. Garcia, Improved error estimates for mixed finite element approximations for nonlin-
ear parabolic equations: the continuously-time case, Numer. Methods Partial Different.
Equations, 10(1994), pp. 129–149.

[17] M. Garcia, Improved error estimates for mixed finite element approximations for nonlinear
parabolic equations: the discrete-time case, Numer. Methods Partial Different. Equations,
10(1994), pp. 149–169.

[18] J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–
Stokes problem IV: Error analysis for second-order time discretization, SIAM J. Numer.
Anal., 27(1990), pp. 353–384.

[19] S. Holst, A. Jungel and P. Pietra, An adaptive mixed scheme for energy-transport simula-
tions of field-effect transistors. SIAM J. Sci. Comput. 25(2004), pp. 1698–1716.

[20] Y. Hou, B. Li and W. Sun, Error estimates of splitting Galerkin methods for heat and sweat
transport in textile materials, SIAM J. Numer. Anal., 51(2013), pp. 88–111.

[21] J. Hua, P. Lin, C. Liu and Q. Wang, Energy law preserving C0 finite element schemes
for phase field models in two-phase flow computations, J. Comput. Phys., 230(2011), pp.
7115–7131.

[22] C. Johnson and V. Thomee, Error estimates for some mixed finite element methods for
parabolic type problems, RAIRO Anal. Numer., 15(1981), pp. 41–78.

[23] D. Kim, E. Park and B. Seo, Two-scale product approximation for semilinear parabolic
problems in mixed methods, J. Korean Math. Soc., 51(2014), pp. 267–288.

16



[24] A. Logg, K. Mardal and G. Wells (Eds.), Automated Solution of Differential Equations by
the Finite Element Method, Springer, Berlin, 2012.

[25] J. Nedelec, Mixed finite elements in R3, Numer. Math., 35(1980), pp. 315–341.

[26] L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa (3),
20(1966), pp. 733–737.

[27] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic
problems,in Mathematical Aspects of the Finite Element Method, Lecture Notes in Math
606, Springer–Verlag, New York, 1977, pp. 292–315.

[28] L. Wu and M. Allen, A two-grid method for mixed finite-element solution of reaction-
diffusion equations. Numer. Methods Partial Different. Equations, 15(1999), pp. 317–332.

17


	1 Introduction
	2 Preliminaries
	3 Discrete Sobolev embedding inequalities of mixed FEMs for the Poisson problem
	4 Applications in unconditionally optimal error estimates of nonlinear parabolic equations
	4.1 Linearized mixed FEMs for nonlinear parabolic equations
	4.2  Proof of Theorem ??

	5 Numerical examples
	6 Conclusion

