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Abstract In this paper, we propose a monotone mixed finite difference scheme for
solving the two-dimensional Monge-Ampère equation. In order to accomplish this,
we convert the Monge-Ampère equation to an equivalent Hamilton-Jacobi-Bellman
(HJB) equation. Based on the HJB formulation, we apply the standard 7-point
stencil discretization, which is second order accurate, to the grid points wherever
monotonicity holds, and apply semi-Lagrangian wide stencil discretization else-
where to ensure monotonicity on the entire computational domain. By dividing
the admissible control set into six regions and optimizing the sub-problem in each
region, the computational cost of the optimization problem at each grid point is
reduced from O(M2) to O(1) when the standard 7-point stencil discretization is
applied and to O(M) otherwise, where the discretized control set is M ×M . We
prove that our numerical scheme satisfies consistency, stability, monotonicity and
strong comparison principle, and hence is convergent to the viscosity solution of
the Monge-Ampère equation. In the numerical results, second order convergence
rate is achieved when the standard 7-point stencil discretization is applied mono-
tonically on the entire computation domain, and up to order one convergence is
achieved otherwise. The proposed mixed scheme yields a smaller discretization
error and a faster convergence rate compared to the pure semi-Lagrangian wide
stencil scheme.
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1 Introduction

The goal of this paper is to compute the numerical solution of the two-dimensional
Monge-Ampère equation with Dirichlet boundary condition:

uxxuyy − u2xy = f, in Ω,

u = g, on ∂Ω,

u is convex,

(1)

where Ω is a bounded convex open set in R2, ∂Ω is its boundary, Ω = Ω ∪ ∂Ω,
u : Ω → R is the unknown function, and f : Ω → R and g : ∂Ω → R are given
functions.

The Monge-Ampère equation is of great interest due to a wide range of ap-
plications, including differential geometry, optimal mass transport (or Monge-
Kantorovich) problem, image registration, mesh generation, etc. We direct the
interested readers to [1] for an extensive review of applications.

The Monge-Ampère equation is a fully nonlinear partial differential equation
(PDE), since the left hand side consists of products of the second derivatives. As a
result, it may have multiple weak solutions. Among all these weak solutions, we are
interested in computing the viscosity solution [11,10], since it is often considered
the correct one in many practical applications [17]. The viscosity solution of the
Monge-Ampère equation is globally convex, while the other solutions may not
be convex [17]. We note that a convexity constraint is imposed in the Dirichlet
problem (1) in order to select the viscosity solution and circumvent the issue of
multiple weak solutions.

Due to the nonlinearity of the Monge-Ampère equation (1) with the addi-
tional convexity constraint, it is challenging to design a numerical scheme that
converges to the viscosity solution. Some numerical schemes have been proposed
in recent years. One approach is using finite difference methods. Some finite dif-
ference schemes, such as [5], use the standard central differencing to discretize
uxy, and are thus not monotone. The significance of monotonicity is that together
with consistency, stability and strong comparison principle, they provide sufficient
conditions for a numerical scheme to converge to the viscosity solution [3].

Very few finite difference schemes that are monotone and thus convergent in
the viscosity sense have been proposed. One of the schemes, proposed in [28], is
to exploit the geometrical interpretation of the Monge-Ampère equation. The grid
structure, constrained by the geometry of the equation, is usually not rectangular
or triangular. Another scheme, proposed in [27,17], uses wide stencils to achieve
monotonicity. However, in order for the scheme to converge, the number of the
stencil points must increase towards infinity when the mesh size h decreases to-
wards 0, thus resulting in high computational costs for solving problems on fine
grids. Some improvements on this wide stencil scheme have been proposed. For
instance, in [18,19], the same authors use hybrid and filtered schemes, both in-
tegrating the wide stencil scheme with the more accurate non-monotone central
difference scheme in order to improve the accuracy. That being said, the issue of
infinite stencil points still exists. Recently, Reference [4] improves on the previous
wide stencil approach so that it is the least nonlocal among all wide stencils of
the same family. The number of stencil points does not need to grow to infinity as
h→ 0, but it still grows and can reach as high as 48.
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Galerkin-type methods have also been developed for solving the Monge-Ampère
equation. An immediate challenge is that it is not obvious how to write down the
variational formulation of (1) using the common integration-by-parts approach.
The L2 projection methods, proposed in [6,8], build up the Galerkin-type schemes
based on the linearized Monge-Ampère equation. Similar idea can be found in the
nonvariational finite element method in [23]. In [12], the authors reformulate the
Monge-Ampère equation into an augmented Lagrangian problem or a least-squares
problem, which allows the use of mixed finite element methods. The authors in
[15] add an artificial fourth order elliptic differential operator ε∆2u. They show
that with this additional term, a variational formulation, and thus a finite ele-
ment scheme, becomes possible. However, a common issue for these Galerkin-type
methods is that convergence to the viscosity solutions for non-regular solutions
remains unclear.

Our approach, which is distinct from many of the existing methods, is to first
convert (1) into an equivalent Hamilton-Jacobi-Bellman (HJB) equation [22,25],
and then numerically solve the equivalent HJB equation. The application of the
HJB formulation in the numerical computation of the Monge-Ampère equation
is first investigated by the coauthors of this paper; see the essay [24]. Another
recent investigation on this approach, [14], is made public at the completion of
our paper. There are some important benefits using the HJB formulation. One
is that the differential operator of the HJB equation under fixed control param-
eters is linear. Another benefit is that the convexity constraint in (1) is already
implicitly incorporated into the HJB differential operator. In other words, there is
no need to impose the convexity constraint in the HJB formulation. In addition,
many convergent numerical schemes for HJB equations or HJB differential oper-
ators have been developed, such as [16,21,13,26,7,2,33]. As a result, it is more
tractable to design a numerical scheme that converges in the viscosity sense for
the equivalent HJB equation than for the Monge-Ampère equation (1) with the
convexity constraint.

Our primary goal is to design a monotone finite difference scheme for the equiv-
alent HJB equation. We note that the cross derivative uxy is still present in the
HJB equation, and the standard central differencing or the standard 7-point sten-
cil discretization for uxy may be non-monotone. In order to achieve monotonicity,
Reference [14] follows the idea in [13,26] and applies “semi-Lagrangian scheme” on
the entire computational domain, where a local coordinate rotation is performed
to remove the cross derivative from the HJB equation, and then central differenc-
ing is applied with a stencil length greater than the mesh size h, resulting in at
most 17 stencil points for any h. In some literature, such semi-Lagrangian scheme
is also called wide stencil scheme, which should not to be confused with the wide
stencil scheme in [27,17,18,19] that requires infinity stencil size as h → 0. How-
ever, monotonicity is achieved at the expense of large truncation error and slow
convergence. In particular, the convergence rate is no better than O(h).

In order to improve the accuracy and meanwhile strictly maintain monotonic-
ity, our approach is to apply a mixed standard 7-point stencil and semi-Lagrangian
wide stencil discretization on the equivalent HJB equation. More specifically, the
standard 7-point stencil discretization, which is second order accurate, is applied
to discretize uxy at a grid point if monotonicity is fulfilled. Otherwise, the semi-
Lagrangian wide stencil scheme, which is less accurate but guaranteed to be mono-
tone, is implemented. We emphasize that our discretization scheme is designed
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such that consistency, stability, monotonicity and strong comparison principle are
fulfilled on the entire computational domain. As a result, our numerical scheme is
guaranteed to converge to the viscosity solution of the Monge-Ampère equation
[3]. Meanwhile, by maximal use of the standard 7-point stencil discretization, the
discretization error of the numerical solution is significantly reduced, compared
to the pure semi-Lagrangian wide stencil scheme in [14]. Moreover, our numerical
scheme yields a convergence rate of O(h2) whenever the standard 7-point stencil
discretization can be applied monotonically on the entire computation domain,
and up to O(h) otherwise. The second order convergence rate in the optimal cases
is another significant improvement over the numerical scheme in [14].

To solve the resulting nonlinear discretized system, one of the most expensive
steps is to optimize two control parameters at every grid point. Reference [14]
does not discuss the computational cost of the optimization problem. Typically
a bilinear search is implemented on an M ×M discretized control set, resulting
in O(M2) computational complexity. We propose an approach that reduces the
computational cost for the optimization problem to O(1) whenever the standard
7-point stencil discretization is applied, and at most O(M) otherwise.

Finally, we want to emphasize that our method is the only method that fulfills
all the following properties: monotone and thus convergent to the viscosity solu-
tion, second order accurate in the optimal cases, and having at most 17 stencil
points independent of the mesh size h. None of the references in our paper have
the same properties.

To illustrate our numerical scheme, we will briefly review the notion of vis-
cosity solution in Section 2. In Section 3, we will establish the equivalent HJB
formulation for the Monge-Ampère equation (1). In Section 4, we will describe our
mixed standard 7-point stencil and semi-Lagrangian wide stencil finite difference
discretization for the HJB formulation. Section 5 solves the nonlinear discretized
system using policy iteration, with a detailed discussion on speeding up computa-
tion for the optimization of control parameters. Section 6 proves that our numerical
scheme satisfies consistency, stability, monotonicity and strong comparison princi-
ple, and thus converges to the viscosity solution of (1). Section 7 shows numerical
results. We also demonstrate the discretization error and the rate of convergence
for each case. Section 8 is the conclusion.

2 Viscosity Solution of the Monge-Ampère Equation

The objective of this paper is to compute the viscosity solution of the Monge-
Ampère equation (1). An overview on the topic of viscosity solution can be found
in [11,10].

Before defining the viscosity solution of (1), we rewrite (1) as

F
(
x, u(x), D2u(x)

)
≡

{
−det

[
D2u(x)

]
+ f(x), x ∈ Ω,

u(x)− g(x), x ∈ ∂Ω,
= 0,

u is convex ⇒ D2u(x) is positive semi-definite,

(2)

where x = (x, y) ∈ Ω, and D2u is the Hessian matrix of u.
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To introduce the notion of viscosity solution, we define the upper (respectively
lower) semi-continuous envelope of a function z : C → R on a closed set C as

z∗(x) ≡ lim sup
y→x, y∈C

z(y)

(
respectively z∗(x) ≡ lim inf

y→x, y∈C
z(y)

)
. (3)

Definition 1 (Viscosity solution) A convex upper (respectively lower) semi-
continuous function u : Ω → R is a viscosity subsolution (respectively supersolu-
tion) of the Monge-Ampère equation F

(
x, u(x), D2u(x)

)
= 0, if for all the test

functions ϕ(x) ∈ C2(Ω) and all x ∈ Ω, such that u∗−ϕ (respectively u∗−ϕ) has
a local maximum (respectively minimum) at x, we have

F∗(x, u∗(x), D2ϕ(x)) ≤ 0
(

respectively F∗(x, u∗(x), D2ϕ(x)) ≥ 0
)
. (4)

Furthermore, the function u is a viscosity solution if it is both a viscosity sub-
solution and super-solution.

We note that the convexity of u (or equivalently, D2u being positive semi-
definite, det(D2u) = f ≥ 0) already implies that the differential operator of (2) is
degenerate elliptic. Furthermore, degenerate ellipticity, plus Ω being bounded and
convex, ensures the existence and uniqueness of the viscosity solution of (2). See
[10,20] for details.

3 HJB Formulation of the Monge-Ampère Equation

Since the Monge-Ampère equation (2) is nonlinear, it is challenging to design a
finite difference scheme that converges to the viscosity solution. Our approach
is to convert the Monge-Ampère equation into an equivalent HJB equation. The
equivalence of the two PDEs is first established in [22] and [25] for classical solu-
tions. Recently, Reference [14] extends the equivalence to the setting of viscosity
solutions. Here we state the equivalence of the two PDEs as the following theorem:

Theorem 1 Let Ω be a convex open set in R2. Let f ∈ C(Ω) be a non-negative
function. Let a convex function u be the viscosity solution of the following HJB
equation,

max
A(x)∈S+

1

{
− tr

[
A(x)D2u(x)

]
+ 2
√

det(A(x)) f(x)
}

= 0, (5)

where S+
1 ≡ {A ∈ R2×2 : A is positive semi-definite, AT = A, tr(A) = 1} and

A(x) ∈ S+
1 is the control at point x. Then u is the viscosity solution of the Monge-

Ampère equation (2).

Proof We refer interested readers to the proof in [32] when u is a classical solution,
and the proof in [14] for the extension to the viscosity solution.

We notice that due to the positive semi-definite property of the matrix A(x), it
can be diagonalized by an order-two orthogonal matrix. More specifically, A(x) ∈
S+
1 can be parametrized as follows:

A(x) =

(
cos θ(x) sin θ(x)
− sin θ(x) cos θ(x)

)(
a(x) 0

0 1− a(x)

)(
cos θ(x) − sin θ(x)
sin θ(x) cos θ(x)

)
,

a(x) ∈ [0, 1], θ(x) ∈ [−π, π).
(6)
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This parametrization gives rise to the following HJB equation, which we aim at
solving.

Corollary 1 Under the parametrization (6), the HJB equation (5) becomes

max
(a(x),θ(x))∈Γ

{−α11(a(x), θ(x))uxx(x)− 2α12(a(x), θ(x))uxy(x)

−α22(a(x), θ(x))uyy(x) + 2
√
a(x)(1− a(x))f(x)

}
= 0,

(7)

where (a(x), θ(x)) is the pair of controls at point x, Γ = [0, 1]×
[
−π4 ,

π
4

)
is the set

of admissible controls1 , and the coefficients are

α11(a(x), θ(x)) = 1
2 [1− (1− 2a(x)) cos 2θ(x)],

α22(a(x), θ(x)) = 1
2 [1 + (1− 2a(x)) cos 2θ(x)],

α12(a(x), θ(x)) = 1
2 (1− 2a(x)) sin 2θ(x).

(8)

For convenience, we rewrite the HJB equation (7) as

F
(
x, u(x), D2u(x)

)
≡ max

(a(x),θ(x))∈Γ
La(x),θ(x) u(x) = 0, (9)

where the differential operator of the HJB equation is given by

La,θ u ≡ −α11(a, θ)uxx − 2α12(a, θ)uxy − α22(a, θ)uyy + 2
√
a(1− a)f. (10)

We note that since the HJB equation (9)-(10) and the Monge-Ampère equation
(2) are mathematically equivalent, we still use the notation F

(
x, u(x), D2u(x)

)
to denote the HJB equation.

The HJB formulation introduces some favorable properties over the Monge-
Ampère equation (2). We first notice that in the equivalent HJB equation (5) or
(7), the convexity constraint of the Monge-Ampère equation disappears. Indeed,
the convexity constraint is implicitly enforced in the HJB formulation. The reason
is that the proof of Theorem 1, where the Monge-Ampère equation is converted
to the HJB equation, has already taken into account that u is a convex function.
We remark that the convexity constraint poses a major difficulty in designing
a convergent numerical scheme for Monge-Ampère equation; see [17] for a dis-
cussion. However, in the HJB formulation, there is no need to explicitly impose
the convexity constraint any more, which makes the numerical computation more
manageable.

Another useful property of the HJB equation (9)-(10) is that for a fixed given
control pair (a, θ), the differential operator La,θ u is linear. We note, however, that
the HJB equation itself is still nonlinear, since the maximization depends on u.
Unlike (2), the linear differential operator La,θ u does not contain products of the
second derivatives. The linearity of La,θ u allows us to develop finite difference
schemes based on numerical methods for linear PDEs.

Considering these advantages of the HJB formulation, our approach is to solve
the HJB equation (7) instead of the Monge-Ampère equation (2).

1 Although (6) defines the admissible control set to be in the range of [0, 1] × [−π, π), the
optimal control pair (a∗, θ∗) that maximizes (7) may not be unique in [0, 1] × [−π, π). We
notice that since La,θ u = La,θ+π u, and La,θ u = L1−a,θ+π

2
u, the admissible control set Γ

can be reduced to [0, 1] × [−π
4
, π
4

). Such removal of the redundancy of Γ ensures that the

optimal control pair (a∗, θ∗) is unique in Γ , except when a∗ = 1
2

or when f = 0.
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4 Mixed Finite Difference Discretization

In this section, we will construct a monotone finite difference discretization for the
HJB equation (7). Monotonicity is a desirable property, since [3] has proved that
monotonicity is one of the sufficient conditions for a numerical scheme to converge
to the viscosity solution.

To set up notation, let us consider an N × N square grid {xi,j = (xi, yj)},
where xi,j ∈ Ω when i, j = 1, · · · , N , and xi,j ∈ ∂Ω when i, j = 0 or N + 1.
Also, let h be the mesh size and let ui,j , ai,j , θi,j and fi,j be the grid functions
of u(xi,j), a(xi,j), θ(xi,j) and f(xi,j), respectively. Our goal is to solve the set of
the unknowns {ui,j | 1 ≤ i ≤ N, 1 ≤ j ≤ N}.

4.1 Standard 7-point stencil discretization

Consider discretizing the HJB equation (7) at a grid point xi,j . We can use the
standard central differencing to approximate uxx(xi,j) and uyy(xi,j) as follows:

(δxxu)i,j ≡
ui+1,j − 2ui,j + ui−1,j

h2
, (δyyu)i,j ≡

ui,j+1 − 2ui,j + ui,j−1

h2
. (11)

It can be shown that the standard 7-point stencil discretization for uxy(xi,j) can
lead to a monotone scheme in the following two cases:

Case 1. When the coefficients α11, α22 and α12 in (8) satisfy

α11(ai,j , θi,j) ≥ |α12(ai,j , θi,j)|, α22(ai,j , θi,j) ≥ |α12(ai,j , θi,j)|,
and α12(ai,j , θi,j) ≥ 0 at the grid point xi,j ,

(12)

we approximate uxy(xi,j) using

(δ[1]xyu)i,j ≡
2ui,j + ui+1,j+1 + ui−1,j−1 − ui+1,j − ui−1,j − ui,j+1 − ui,j−1

2h2
.

(13)
Case 2. When the coefficients α11, α22 and α12 in (8) satisfy

α11(ai,j , θi,j) ≥ |α12(ai,j , θi,j)|, α22(ai,j , θi,j) ≥ |α12(ai,j , θi,j)|,
and α12(ai,j , θi,j) ≤ 0 at the grid point xi,j ,

(14)

we approximate uxy(xi,j) using

(δ[2]xyu)i,j ≡
−2ui,j − ui+1,j−1 − ui−1,j+1 + ui+1,j + ui−1,j + ui,j+1 + ui,j−1

2h2
.

(15)

4.2 Semi-Lagrangian wide stencil discretization

However, if neither (12) nor (14) is fulfilled at the grid point xi,j , then it is un-
clear how to directly discretize the cross derivative uxy(xi,j) in (7) monotonically.
Our approach, following [13] and [26], is to eliminate the cross derivative uxy(xi,j)
by a local coordinate transformation. Let {(ez)i,j , (ew)i,j} be a local orthogo-
nal basis which is obtained by a rotation of the standard axes {(ex)i,j , (ey)i,j}
at an angle φi,j ; see Figure 1 (left). If the rotation angle is chosen as φi,j =
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Fig. 1 (left) Local coordinate rotation at the grid point xi,j , and semi-Lagrangian wide stencil
discretization of uzz(xi,j) and uww(xi,j) under the rotation. The rotation angle is φi,j , counter-
clockwise. The grey dashed lines are the orthogonal axis {(ez)i,j , (ew)i,j}. The stencil length

is
√
h (
√
h > h). The grey stars are the stencil points xi,j ±

√
h(ez)i,j and xi,j ±

√
h(ew)i,j .

The unknowns at these stencil points are approximated by the bilinear interpolation from the
neighboring points (black dots). Standard central differencing associated with this wide stencil
is applied to approximate uzz(xi,j) and uww(xi,j). (right) Semi-Lagrangian wide stencil

discretization near the boundary. One of the wide stencil points xi,j +
√
h(ez)i,j falls outside

Ω (hollow star). The wide stencil is truncated and the stencil point is relocated to the point

xi,j + η1(ez)i,j ∈ ∂Ω (black star). The corresponding stencil length has shrunk from
√
h to

η1.

1
2 arctan

2α12(ai,j ,θi,j)
α11(ai,j ,θi,j)−α22(ai,j ,θi,j)

= −θi,j , then the cross derivative vanishes un-

der the basis {(ez)i,j , (ew)i,j}. By straightforward algebra, one can show that (7)
becomes

max
(ai,j ,θi,j)∈Γ

{
−ai,j uzz(xi,j)− (1− ai,j) uww(xi,j) + 2

√
ai,j (1− ai,j) fi,j

}
= 0.

(16)
Here uzz(xi,j) and uww(xi,j) are the directional derivatives along the basis (ez)i,j
and (ew)i,j , which depend on the rotation θi,j .

We may consider the finite difference discretization of (16) by applying the stan-
dard central differencing to uzz(xi,j) and uww(xi,j). For instance, we approximate
uzz(xi,j) by 1

h2 [u(xi,j + h(ez)i,j)− 2ui,j + u(xi,j − h(ez)i,j)]. However, since the
stencil is rotated, the stencil points xi,j±h(ez)i,j may no longer coincide with any
grid points. In such cases, bilinear interpolation from the neighboring grid points
can be used to approximate u(xi,j ± h(ez)i,j). However, a consequence of the
bilinear interpolation is that the truncation error of this central difference approx-
imation becomes O(1) if the stencil length is h. In order to maintain consistency,
we choose the stencil length

√
h, which yields O(h) truncation error. Note that

when h is small,
√
h > h, which means the stencil length appears to be wide. The

details of the discretization is explained in Figure 1 (left). As a result, the finite
difference discretization for uzz(xi,j) and uww(xi,j) is given by

(δzzu)i,j ≡
Ihu|xi,j+

√
h(ez)i,j

− 2ui,j + Ihu|xi,j−
√
h(ez)i,j

h
, (17)
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(δwwu)i,j ≡
Ihu|xi,j+

√
h(ew)i,j

− 2ui,j + Ihu|xi,j−
√
h(ew)i,j

h
, (18)

where we have used the stencil length
√
h, and used bilinear interpolation to ap-

proximate the unknown values at the stencil points xi,j ±
√
h(ez)i,j and xi,j ±√

h(ew)i,j , denoted as Ihu|xi,j±
√
h(ez)i,j

and Ihu|xi,j±
√
h(ew)i,j

. Such discretiza-

tion scheme is called semi-Lagrangian wide stencil discretization [13,26].
If we apply the semi-Lagrangian wide stencil discretization at a grid point

xi,j that is close to the boundary, some of its associated stencil points may fall
outside the computational domain Ω. In such case, our solution is to shrink the
corresponding stencil length(s) such that the stencil point(s) are relocated onto
the boundary ∂Ω. Without loss of generality, we analyze one scenario; see Figure
1 (right). Let us assume that xi,j +

√
h(ez)i,j falls outside Ω. We truncate the

corresponding stencil length from
√
h to η1 along the ez axis, such that the stencil

point is relocated to xi,j + η1(ez)i,j ∈ ∂Ω. Since η1 6=
√
h, the finite difference

approximation for uzz(xi,j) in (17) is replaced by

(δzzu)i,j ≡
g(xi,j+η1(ez)i,j)−ui,j

η1
−

ui,j−Ihu|xi,j−
√
h(ez)i,j√

h

η1+
√
h

2

, (19)

where we have used the Dirichlet boundary condition of (1): u(xi,j + η1(ez)i,j) =
g(xi,j+η1(ez)i,j). We note that such procedure can be used whenever xi,j is close
to the boundary and a truncation of stencil is needed.

4.3 Mixed discretization

Section 4.1 and 4.2 describe the standard 7-point stencil and semi-Lagrangian wide
stencil finite difference discretization for the HJB equation (7). The advantage
of the semi-Lagrangian wide stencil discretization is that it is unconditionally
monotone. Reference [14] applies the semi-Lagrangian wide stencil discretization
at every grid point. However, it is only first order accurate, while the standard
7-point stencil discretization is second order accurate, as will be proved in Section
6. In order to combine the advantages of both discretization schemes, we will only
apply the semi-Lagrangian wide stencil discretization at the grid points where
neither (12) nor (14) is satisfied. For the other grid points where either (12) or (14)
is fulfilled, we will apply the standard 7-point stencil discretization. The purpose
is to strictly maintain monotonicity at every grid point and meanwhile to make
the numerical scheme as accurate as possible. As a result, the discrete equation at
each grid point xi,j is given by the following mixed scheme:

Standard 7-point stencil discretization. When the control pair (ai,j , θi,j) satis-
fies Condition (12) or (14), the discrete equation is given by

max
(ai,j ,θi,j)∈Γ

{
−α11(ai,j , θi,j)(δxxu)i,j − 2α12(ai,j , θi,j)(δ

[disc]
xy u)i,j

−α22(ai,j , θi,j)(δyyu)i,j + 2
√
ai,j(1− ai,j)fi,j

}
= 0,

(20)

where disc = 1 or 2 if (12) or (14) is satisfied respectively.
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Semi-Lagrangian wide stencil discretization. Otherwise, the discrete equation
is given by

max
(ai,j ,θi,j)∈Γ

{
− ai,j (δzzu)i,j − (1− ai,j) (δwwu)i,j

+2
√
ai,j (1− ai,j) fi,j

}
= 0,

(21)

where (δzzu)i,j and (δwwu)i,j are defined by (17) and (18) when xi,j is inside the
computational domain, and by (19) or similar expressions when xi,j is near the
boundary.

4.4 The nonlinear discrete system

The mixed discretization scheme, defined by (20) and (21), gives rise to a nonlinear
discrete system that contains N2 discrete equations. If we define a vector of the

unknowns uh ≡ (u1,1, u1,2, · · · , u1,N , u2,1, · · · · · · , uN,N )T ∈ RN
2×1, and similarly,

vectors of controls ah ∈ RN
2×1, θh ∈ RN

2×1, then the entire nonlinear discrete
system can be written into the following matrix form:

max
(ah,θh)∈Γ

{A(ah, θh)uh − Fh(ah, θh)} = 0, (22)

where A(ah, θh) ∈ RN
2×N2

is a matrix that consists of the coefficients of uh, and

Fh(ah, θh) ∈ RN
2×1 is a vector that does not explicitly contain uh. We note that

this nonlinear system can be treated as a combination of an optimization problem
and a linear system as follows:

Fh(uh) ≡ max
(ah,θh)∈Γ

Lh(ah, θh;uh) = 0, (23)

where the to-be-maximized linear system is

Lh(ah, θh;uh) ≡ A(ah, θh)uh − Fh(ah, θh). (24)

Here the symbols Fh and Lh in (23)-(24) represent the discretization of F and L
in (9)-(10), respectively.

To show how the standard 7-point stencil discretization (20) and the semi-
Lagrangian wide stencil discretization (21) can be written into the general form
(22), we analyze four cases.

Standard 7-point stencil discretization, grid point xi,j inside Ω. Sup-
pose Condition (12) is satisfied at xi,j . Then we use the standard 7-point stencil
discretization (20) with disc = 1. This is illustrated in Figure 2 (left-top). Some
simple algebra shows that (20) can be transformed into (22) where

(Auh)i,j =
2

h2
(α11 + α22 − α12)ui,j −

1

h2
(α11 − α12)ui+1,j

− 1

h2
(α11 − α12)ui−1,j −

1

h2
(α22 − α12)ui,j+1

− 1

h2
(α22 − α12)ui,j−1 −

1

h2
α12 ui+1,j+1 −

1

h2
α12 ui−1,j−1,

Fi,j = −2
√
ai,j(1− ai,j)fi,j ,

(25)



Monotone Mixed Finite Difference Scheme for Monge-Ampère Equation 11

� �

�� � �

����

�� � �

�� � � ����� �

�� � ��� ����� ���

Fig. 2 (left-top) Case 1: Suppose Condition (12) is satisfied at xi,j and the standard 7-point
stencil discretization (20) is used. The discrete equation contains 7 unknown values of uh,
labelled by the black dots. (left-bottom) Case 2: Consider x1,N , which is close to the boundary.
The hollow dots sit on the boundary and the values of u on these points are determined by the
Dirichlet boundary condition. As a result, the discrete equation contains 3 unknown values of
uh, labeled by the black dots. (right) Case 3: Suppose neither (12) nor (14) is satisfied at xi,j
and thus semi-Lagrangian wide stencil discretization (21) is used. Since bilinear interpolation
of each stencil point contains 4 unknown values, the resulting discrete equation has 17 unknown
values in total (black dots).

where (Auh)i,j and Fi,j are the values of A(ah, θh)uh and Fh(ah, θh) at the grid
point xi,j . For simplicity, we have suppressed the dependency of A, Fi,j , α11, α22

and α12 on (ai,j , θi,j). This equation contains 7 unknown values of uh. Similarly,
interested readers can also write down the expressions when Condition (14) is
satisfied at xi,j and the standard 7-point stencil discretization (20) with disc = 2
is applied.

Standard 7-point stencil discretization, grid point xi,j near ∂Ω. Without loss
of generality, we assume that xi,j = x1,N , as shown in Figure 2 (left-bottom). Now
ui−1,j , ui,j+1, ui+1,j+1 and ui−1,j−1 can be determined by the Dirichlet boundary
condition u = g. These terms become part of Fi,j . As a result, (Auh)i,j contains
only 3 unknown values.

Semi-Lagrangian wide stencil discretization, grid point xi,j inside Ω. Suppose
neither (12) nor (14) is fulfilled at xi,j , so semi-Lagrangian wide stencil discretiza-
tion (21) is applied; see Figure 2 (right). Then (21) can be written into (22) where

(Auh)i,j =
2

h
ui,j −

ai,j
h
Ihu|xi,j+

√
h(ez)i,j

− ai,j
h
Ihu|xi,j−

√
h(ez)i,j

−1− ai,j
h

Ihu|xi,j+
√
h(ew)i,j

− 1− ai,j
h

Ihu|xi,j−
√
h(ew)i,j

,

Fi,j = −2
√
ai,j(1− ai,j)fi,j .

(26)

We note that each bilinear interpolation term contains 4 unknowns. For instance,
Ihu|xi,j+

√
h(ez)i,j

can be written as the linear combination of the unknowns at

the four neighboring points ur,s, ur+1,s, ur,s+1 and ur+1,s+1, which are labeled
in Figure 2 (right). As a result, (26) has 17 unknown values.

Semi-Lagrangian wide stencil discretization, grid point xi,j near ∂Ω. The anal-
ysis is similar to the previous cases. The number of the unknowns is less than 17.
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5 Solving the Nonlinear Discrete System

5.1 Policy iteration

After setting up the complete nonlinear discrete system (23)-(24), the next objec-
tive is to solve it. We apply a well-known fixed point iteration algorithm, called
policy iteration (or Howard’s algorithm) [21,16] as follows:

1. Start with an initial guess of the solution u
(0)
h .

2. For k = 0, 1, ... until convergence:

(a) Solve for the optimal control pair (a
(k)
h , θ

(k)
h ) under the current solution

u
(k)
h :

(a
(k)
i,j , θ

(k)
i,j ) = arg max

(ai,j ,θi,j)∈Γi,j
Li,j(ai,j , θi,j ;u(k)h ), for all xi,j ∈ Ω, (27)

where Li,j is the pointwise component of Lh ∈ RN
2×1 defined in (24) and

Γi,j = [0, 1]× [−π4 ,
π
4 ) is the control set at xi,j .

Meanwhile, obtain the residual R
(k)
h ∈ RN

2×1, where each pointwise com-

ponent reads R
(k)
i,j ≡ Li,j(a

(k)
i,j , θ

(k)
i,j ;u

(k)
h ).

(b) If ‖R(k)
h ‖ ≤ tolerance: break

Else, solve the following linear system for the solution u
(k+1)
h under the

current optimal control pair (a
(k)
h , θ

(k)
h ):

A(a
(k)
h , θ

(k)
h )u

(k+1)
h = Fh(a

(k)
h , θ

(k)
h ) ⇒ u

(k+1)
h . (28)

It is proved that policy iteration is guaranteed to converge for any initial guess

u
(0)
h , if by applying a monotone discretization to an HJB equation, the resulting

matrix A(ah, θh) is an M-matrix under all admissible controls [7,2]. We will show
in Section 6.2 that the resulting matrix A(ah, θh) in (22) is indeed an M-matrix.

Policy iteration consists of two sub-steps. One sub-step is to solve the linear
system under a given control pair; see (28). We use Krylov subspace methods,
such as the GMRES with the incomplete LU preconditioner. The other sub-step
of the policy iteration is to solve the optimization problem at each grid point xi,j ;
see (27). We will discuss speeding up computation of the optimization problem in
detail in the next section.

5.2 Speeding up computation of optimal controls

Since the semi-Lagrangian wide stencil discretization of (δzzu)i,j and (δwwu)i,j in
(21) depends on the control θi,j , there is no simple closed-form formula to evaluate

the optimal (a
(k)
i,j , θ

(k)
i,j ) directly. In this case, one typical approach is to use bilin-

ear search algorithm for the optimization problem. More specifically, consider the
optimization problem at a grid point xi,j . We discretize the continuous admissible
control set Γi,j = [0, 1] × [−π4 ,

π
4 ) into an M ×M discrete set, denoted as Γhi,j .

We note that the discretization of the control set introduces additional truncation
error. In order to maintain consistency, we must let M →∞ as h→ 0. A typical
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Region Definition Discretization
Optimization

algorithm
in each region

Cost

Extra
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error
introduced?

Γ 1
i,j

The region where
Condition (12)

is satisfied

Standard
7-point stencil
with disc = 1

Closed-form
formula from

first derivative test

O(1) No

Γ 2
i,j

The region where
Condition (14)

is satisfied

Standard
7-point stencil
with disc = 2

Γ 3
i,j

The region where
neither (12) nor
(14) is satisfied

Semi-Lagrangian
wide stencil

Linear search over
a single control
θi,j ∈ [−π

4
, π
4

)
O(M) Yes

∂Γ 0
i,j The line θi,j = 0

Standard
7-point stencil

with disc = 1 or 2
Closed-form
formula from

first derivative test
O(1) No

∂Γ 13
i,j

The boundary
between Γ 1

i,j

and Γ 3
i,j

Standard
7-point stencil
with disc = 1

∂Γ 23
i,j

The boundary
between Γ 2

i,j

and Γ 3
i,j

Standard
7-point stencil
with disc = 2

Fig. 3 Division of the admissible control set Γi,j = [0, 1] × [−π
4
, π
4

) into regions. For each
region, the characterization, discretization, optimization algorithm and the corresponding cost
/ truncation error of the optimization algorithm are listed.

choice of M is M = N . Then we compute the M ×M values of the objective

function Li,j(ai,j , θi,j ;u(k)h ) with (ai,j , θi,j) ∈ Γhi,j and then find the global max-

imal value, which gives the optimal (a
(k)
i,j , θ

(k)
i,j ). However, the computational cost

of the bilinear search per grid point xi,j is O(M2). Furthermore, if we denote the
total number of grid points as #Ω = N2, then the computational cost on the
entire computational domain Ω is as high as O(M2#Ω), or O(#Ω2) if we choose
M = N .

In order to speed up computation for the optimal controls, we divide the con-
tinuous admissible control set Γi,j = [0, 1] × [−π4 ,

π
4 ) into six regions, as shown
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in Figure 32. The six regions are identified by whether a control pair (ai,j , θi,j)
satisfies (12), or (14), or neither. Our approach is to find the optimal control pair
within each region, and then find the global optimal control pair among the six
regional optimal control pairs. This approach enables us to make full use of the an-
alytical property of each region, and to improve the optimization algorithm within
each region and eventually on the entire admissible control set Γi,j .

Using our approach, the computational cost of solving the optimization prob-
lem on Γi,j can be significantly reduced. More specifically, if the standard 7-point
stencil discretization can be applied monotonically on all or most of the grid points,
then the computational cost is O(1) per grid point and O(#Ω) on the entire com-
putational domain. In general, the computational cost is at most O(M) per grid
point and at most O(M#Ω) on the entire computational domain. For the typical
choice M = N , the total computational cost of solving the optimization problem
is O(#Ω3/2).

To explain the details of the regional optimization, consider again a given grid
point xi,j and its associated control set Γi,j . In Region Γ 1

i,j , Γ
2
i,j , ∂Γ

0
i,j , ∂Γ

13
i,j

and ∂Γ 23
i,j (see Figure 3), where the standard 7-point stencil discretization (20) is

applied, the discretization of (δxxu)i,j , (δyyu)i,j , (δ
[1]
xyu)i,j and (δ

[2]
xyu)i,j does not

depend on the controls (ai,j , θi,j). This enables us to derive a closed-form formula
for the optimal controls in these regions using first derivative test, which can be
evaluated by O(1) operation and introduces no additional truncation error. More
specifically:

Region Γ 1
i,j . The region is defined where Condition (12) is satisfied. Equation

(20) gives the objective function in Γ 1
i,j :

Li,j(ai,j , θi,j) = −α11(ai,j , θi,j)(δxxu)i,j − 2α12(ai,j , θi,j)(δ
[1]
xyu)i,j

−α22(ai,j , θi,j)(δyyu)i,j + 2
√
ai,j(1− ai,j)fi,j ,

(29)

where we only manifest the dependency of Li,j on the control pair (ai,j , θi,j). One
can verify that this function is smooth in (ai,j , θi,j) ∈ Γ 1

i,j , concave in ai,j ∈ [0, 1],

and its stationary point in Γ 1
i,j is unique, if it exists. This allows us to use first

derivative test to find the optimal control pair in Γ 1
i,j :

θ∗i,j =
1

2
arctan

2(δ
[1]
xyu)i,j

(δyyu)i,j − (δxxu)i,j
, a∗i,j =

1

2

1− λi,j√
4fi,j + λ2i,j

 , (30)

where λi,j ≡ [(δxxu)i,j − (δyyu)i,j ] cos 2θ∗i,j − 2(δ
[1]
xyu)i,j sin 2θ∗i,j . With a slight

abuse of notations, here and for the rest of Section 5.2, we use (a∗i,j , θ
∗
i,j) to denote

the the regional (rather than global) optimal control pair at xi,j . We note that
(a∗i,j , θ

∗
i,j) given by (30) may not necessarily be inside Γ 1

i,j . If (a∗i,j , θ
∗
i,j) ∈ Γ 1

i,j ,

then the maximum in Γ 1
i,j must occur at (a∗i,j , θ

∗
i,j). Otherwise, the maximum must

occur on the boundary of Γ 1
i,j , or more specifically, either ∂Γ 0

i,j or ∂Γ 13
i,j , which

will be investigated separately.

2 It is unnecessary to consider the line ai,j = 1
2

, since the objective function is a constant
on this line. Also it is unnecessary to consider the line θi,j = ±π

4
, since La,θ u = L1−a,θ+π

2
u

indicates that θi,j = ±π
4

is indeed an interior part of Γ 1
i,j and Γ 2

i,j .
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Region Γ 2
i,j . The region is defined where Condition (14) is satisfied. The anal-

ysis for solving the optimization problem in Γ 2
i,j is the same as Γ 1

i,j , except that

(δ
[1]
xyu)i,j in (29), (30) is replaced by (δ

[2]
xyu)i,j .

Region ∂Γ 0
i,j . This is the line θi,j = 0 which separates Region Γ 1

i,j and Γ 2
i,j .

The objective function in ∂Γ 0
i,j can be found in (29), where α12 = 0 and thus the

cross derivative term disappears. The optimal control pair in ∂Γ 0
i,j is simply

θ∗i,j = 0, a∗i,j =
1

2

[
1− (δxxu)i,j − (δyyu)i,j√

4fi,j + ((δxxu)i,j − (δyyu)i,j)2

]
. (31)

Region ∂Γ 13
i,j . This is the boundary between Region Γ 1

i,j and Γ 3
i,j . If we define

the signs of ai,j − 1
2 and θi,j as

sa−1/2 ≡

{
−1, ai,j − 1

2 < 0,

1, ai,j − 1
2 > 0,

sθ ≡
{
−1, θi,j < 0,
1, θi,j > 0,

(32)

then ∂Γ 13
i,j contains two sections: (i) (sa−1/2, sθ) = (1,−1), (ii) (sa−1/2, sθ) =

(−1, 1).
The objective function on ∂Γ 13

i,j is the same as (29). First derivative test shows

that for each of the two sections of ∂Γ 13
i,j , the maximum of the objective function

occurs at

θ∗i,j =
sθ
2

arctan
(

1 + γ2i,j − γi,j
√

2 + γ2i,j

)
, (33)

where γi,j ≡
sa−1/2

2
√
fi,j

(
(δyyu)i,j − (δxxu)i,j − 2sθ(δ

[1]
xyu)i,j

)
. The corresponding a∗i,j ∈

∂Γ 13
i,j , derived from Condition (12), is

a∗i,j =
1

2

(
1 +

sa−1/2√
2 sin(2|θ∗i,j |+

π
4 )

)
. (34)

Region ∂Γ 23
i,j . This is the boundary between Region Γ 2

i,j and Γ 3
i,j . The analysis

on ∂Γ 23
i,j is then the same as ∂Γ 13

i,j , except that the two sections of ∂Γ 23
i,j become

(i) (sa−1/2, sθ) = (1, 1), (ii) (sa−1/2, sθ) = (−1,−1), and (δ
[1]
xyu)i,j is replaced by

(δ
[2]
xyu)i,j .

Region Γ 3
i,j . The region is defined where neither (12) nor (14) is satisfied. The

semi-Lagrangian wide stencil discretization (21) is applied. Accordingly, the ob-
jective function reads

Li,j(ai,j , θi,j) = −ai,j (δzzu)i,j − (1− ai,j) (δwwu)i,j + 2
√
ai,j(1− ai,j)fi,j . (35)

The dependency of the discretization of (δzzu)i,j and (δwwu)i,j on the control
θi,j prevents us from deriving a closed-form formula for θ∗i,j ∈ Γ 3

i,j . However,
we note that the discretization of (δzzu)i,j and (δwwu)i,j is independent of the
control ai,j , which implies that a two dimensional bilinear search on the controls
(ai,j , θi,j) ∈ Γi,j can be reduced to a one-dimensional linear search on the single
control θi,j ∈ [−π4 ,

π
4 ).
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One can prove that the regional optimal control pair (a∗i,j , θ
∗
i,j) ∈ Γ 3

i,j must sit
on the following parametrized curve

ai,j(θi,j) =


Cλ(θi,j), if Cλ(θi,j) ≤ C−(θi,j) or Cλ(θi,j) ≥ C+(θi,j),

C−(θi,j), if C−(θi,j) ≤ Cλ(θi,j) ≤ 1
2 ,

C+(θi,j), if 1
2 ≤ C

λ(θi,j) ≤ C+(θi,j).

(36)

Here the curves

C±(θi,j) ≡
1

2

(
1± 1√

2 sin(2|θi,j |+ π
4 )

)
, θi,j ∈ [−π

4
,
π

4
) (37)

are given by Condition (12) and (14). The other curve

Cλ(θi,j) ≡
1

2

[
1− (δzzu)i,j − (δwwu)i,j√

4fi,j + ((δzzu)i,j − (δwwu)i,j)2

]
, θi,j ∈ [−π

4
,
π

4
), (38)

where the directions of z and w depend on θi,j , is given by the first derivative test
of (35) with respect to ai,j . Taking the parametrization (36) into account, the ob-
jective function (35) becomes Li,j(ai,j(θi,j), θi,j), which is a function of the single
control variable θi,j ∈ [−π4 ,

π
4 ). This motivates us to discretize the set [−π4 ,

π
4 ) into

an M -element control set, and perform a linear search for the maximum of the
parametrized objective function Li,j(ai,j(θi,j), θi,j) over the single control variable
θi,j ∈ [−π4 ,

π
4 ). The computational cost is thus reduced to O(M).

Once we obtain the six regional optimal control pairs and their corresponding
objective function values, we search within them for the global optimal control
pair on Γi,j . This step is cheap and straightforward.

As a side remark, in Section 8 of [14], the authors discretize θ with 64 different
angles, regardless of the mesh size N . Indeed, if θ is discretized with fixed number
of angles, then the numerical scheme in [14] is no longer consistent in theory. This
is different from our scheme, where θ is discretized with M angles, and we choose
M = N such that consistency is still maintained.

6 Convergence Analysis

As proved by Barles and Souganidis [3], there are four sufficient conditions for the
numerical scheme of a nonlinear PDE to converge in the viscosity sense. In this sec-
tion, we will prove that our numerical scheme does fulfill all the four requirements
and is therefore guaranteed to converge to the viscosity solution of (2).

6.1 Consistency

One sufficient condition for convergence is consistency. Intuitively, consistency
claims that the discretized equation of a PDE should be close to the continuous
PDE. In particular, when h→ 0, the discretized equation should converge to the
PDE. The main result of this subsection is to prove that our numerical scheme is
consistent in the viscosity sense:
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Lemma 1 (Consistency) For the Monge-Ampère equation F
(
x, u(x), D2u(x)

)
=

0, the numerical scheme Fh (xi,j , uh) = 0, given in (23)-(24), is consistent in the
viscosity sense. More specifically, for any function ϕ(x) ∈ C∞(Ω) with ϕi,j ≡
ϕ(xi,j) and ϕh ≡ (ϕ1,1, ϕ1,2, · · · , ϕN,N )T ∈ RN

2×1, for any x̂ ∈ Ω, and for h and
ξ that are arbitrary small constants independent of x, we have

lim sup
h→0, ξ→0
xi,j→x̂

Fh(xi,j , ϕh + ξ) ≤ F∗(x̂, ϕ(x̂), D2ϕ(x̂)), (39)

lim inf
h→0, ξ→0
xi,j→x̂

Fh(xi,j , ϕh + ξ) ≥ F∗(x̂, ϕ(x̂), D2ϕ(x̂)). (40)

In practise, we prove a sufficient condition for consistency, called local consis-
tency, as follows:

Lemma 2 (Local consistency) Under the assumptions in Lemma 1, we have

F(xi,j , ϕ(xi,j), D
2ϕ(xi,j))−Fh(xi,j , ϕh + ξ)

=


O(h2) +O(ξ), standard 7-point stencil,
O(h) +O(ξ), semi-Lagrangian wide stencil, with all the 4

wide stencil points ∈ Ω,
O(
√
h) +O(ξ), semi-Lagrangian wide stencil, otherwise.

(41)

Proof We note that the proof with ξ = 0 is equivalent to the proof with a general
ξ. Such equivalence can be easily verified if we substitute ϕ by ϕ+ξ in the following
proof. Hence, we will only prove the case where ξ = 0.

Truncation error of the standard 7-point stencil discretization. Suppose the stan-
dard 7-point stencil discretization is applied at xi,j . It is easy to show that the

truncation errors for (δxxϕ)i,j , (δyyϕ)i,j , (δ
[1]
xyϕ)i,j and (δ

[2]
xyϕ)i,j are all O(h2).

Hence, the local truncation error of the discrete linear equation (24) is then
La(xi,j),θ(xi,j)ϕ(xi,j)−Lh(xi,j ; ai,j , θi,j ;ϕh) = O(h2). Furthermore, the local trun-
cation error of the finite difference scheme at xi,j is∣∣ F(xi,j , ϕ(xi,j), D

2ϕ(xi,j))−Fh(xi,j , ϕh)
∣∣

=

∣∣∣∣ max
(a(xi,j),θ(xi,j))∈Γ

La(xi,j),θ(xi,j)ϕ(xi,j)− max
(ai,j ,θi,j)∈Γ

Lh(xi,j ; ai,j , θi,j ;ϕh)

∣∣∣∣
≤ max

(ai,j ,θi,j)∈Γ

∣∣Lai,j ,θi,jϕ(xi,j)− Lh(xi,j ; ai,j , θi,j ;ϕh)
∣∣ = O(h2).

(42)

The inequality comes from
∣∣∣max
x

f(x)−max
x

g(x)
∣∣∣ ≤ max

x
|f(x)− g(x)|.

Truncation error of semi-Lagrangian wide stencil discretization. Suppose
semi-Lagrangian wide stencil discretization is applied at xi,j . We focus on the
truncation error for (δzzϕ)i,j only and analyze three cases. The first case is that
both stencil points of (δzzϕ)i,j are in the computational domain. The expression
for (δzzϕ)i,j is given by (17). The truncation error for (δzzϕ)i,j is then

ϕzz(xi,j)− (δzzϕ)i,j

= ϕzz(xi,j)−
Ihϕ|xi,j+

√
h(ez)i,j

− 2ϕi,j + Ihϕ|xi,j−
√
h(ez)i,j

h

= ϕzz(xi,j)−
ϕ(xi,j +

√
h(ez)i,j)− 2ϕ(xi,j) + ϕ(xi,j −

√
h(ez)i,j) +O(h2)

h
= O(h) +O(h) = O(h).
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From the first to the second line we have used the fact that the truncation error
of the bilinear interpolation is O(h2).

Now we consider another case, where one of the stencil points of (δzzϕ)i,j
falls outside the computational domain and is thus relocated. Without loss of
generality, let us assume again that xi,j + η1(ez)i,j ∈ ∂Ω is the relocated point.
The expression for (δzzϕ)i,j is given by (19). The truncation error for (δzzϕ)i,j is
then

ϕzz(xi,j)− (δzzϕ)i,j

= ϕzz(xi,j)−
ϕ(xi,j+η1(ez)i,j)−ϕi,j

η1
−

ϕi,j−Ihϕ|xi,j−
√
h(ez)i,j√

h

η1+
√
h

2

= ϕzz(xi,j)−
ϕ(xi,j+η1(ez)i,j)−ϕ(xi,j)

η1
− ϕ(xi,j)−ϕ(xi,j−

√
h(ez)i,j)√

h
+O(h2)

η1+
√
h

2

= O(
√
h− η1) +O

(
h2

√
h
η1+
√
h

2

)
= O(

√
h).

There is one more case, where xi,j + η1(ez)i,j ∈ ∂Ω and xi,j − η2(ez)i,j ∈ ∂Ω
are both relocated points. Using the similar argument, one can show that the
truncation error for (δzzϕ)i,j is again O(

√
h).

Then, similar to (42), one can show that the local truncation error of the finite
difference scheme at xi,j , where the semi-Lagrangian wide stencil discretization is
applied, is given by∣∣ F(xi,j , ϕ(xi,j), D

2ϕ(xi,j))−Fh(xi,j , ϕh)
∣∣

=


O(h), semi-Lagrangian wide stencil, with all the 4

wide stencil points ∈ Ω,
O(
√
h), semi-Lagrangian wide stencil, otherwise.

(43)

Finally, we note that the previous proof has assumed that the optimal control
pair is solved exactly, or does not introduce additional truncation error. In Section
5, we have mentioned that using linear search for the optimal control pair under
the semi-Lagrangian wide stencil discretization introduces truncation error. In
particular, if we choose M = O(N), then O(h) truncation error is introduced [33].
As a result, (43) holds.

6.2 Stability

Another condition for convergence is stability, which means that the discrete sys-
tem has a bounded solution uh. Stability condition is very closely related to the
matrix A(ah, θh) in (22) being an M-matrix [29], which will be proved in this
section. For convenience, given vectors uh and vh, we use uh ≥ 0 and uh ≥ vh to
denote (uh)i ≥ 0 and (uh)i ≥ (vh)i for all i. Similarly, given a matrix A, we use
A ≥ 0 to denote Aij ≥ 0 for all i, j. In other words, the inequalities for vectors
and matrices hold for all the elements.

Lemma 3 (M-matrix) Suppose an n× n matrix A satisfies the following:

1. A is an L-matrix: Aii > 0 for all i, and Aij ≤ 0 for all i 6= j;
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2. A is weakly diagonally dominant: |Aii| ≥
∑
j 6=i |Aij |; and

3. A has the following connectivity property: Let G(A) =
{
i
∣∣∣|Aii| >

∑
j 6=i |Aij |

}
6= ∅ be the set of rows where strict inequality is achieved. For any i /∈ G(A),
there exists a sequence i1, i2, · · · , ik with Air,ir+1 6= 0, 0 ≤ r ≤ k−1, such that
i0 = i and ik ∈ G(A).

Then A is an M-matrix. In particular,

1. A is non-singular; and
2. A−1 ≥ 0, namely, (A−1)ij ≥ 0 for all i, j.

Proof We refer the readers to [31,2,29].

Lemma 4 The matrix A(ah, θh), defined in (22), is an M-matrix under the set
of admissible controls (ah, θh) ∈ Γ .

Proof For the matrix A(ah, θh), the L-matrix condition and the weakly diagonal
dominance condition can be easily verified by checking the four cases in Section 4.4.
We remark that the strictly diagonally dominant rows correspond to the grid points
near the boundary ∂Ω, while the weakly diagonally dominant rows correspond to
those inside the computation domain Ω.

The connectivity property of A(ah, θh) is yet to be verified. For the grid points
xi,j that are near the boundary, the lexicographical index satisfies N(i− 1) + j ∈
G(A). For those points that are inside the computational domain, or N(i−1)+j /∈
G(A), there must exist non-zero entries AN(i−1)+j,N(i′−1)+j′ 6= 0, where i′ ≥ i,
j′ ≥ j, with at lease one strict inequality satisfied. Hence, given any xi0,j0 , where
N(i0 − 1) + j0 /∈ G(A), there exist monotonically increasing sequences i0 ≤ i1 ≤
... ≤ ik ≤ N and j0 ≤ j1 ≤ ... ≤ jk ≤ N , such that N(ik − 1) + jk ∈ G(A).

Before investigating the stability for the nonlinear problem (22), we first prove
the stability for the corresponding linear problem.

Lemma 5 Define a circle BR(0) : {(x, y)|x2 + y2 ≤ R2}, where the radius R =

max
(x,y)∈Ω

√
x2 + y2, such that BR(0) covers the entire computational domain Ω. Let

ϕ(x) ≡ −1
2‖
√
f‖∞(R2−x2−y2) be a lower-bound estimate function that is smooth

and non-positive in Ω. Denote its corresponding grid function as ϕh ∈ RN
2×1.

Then the vector Aϕh ∈ RN
2×1 satisfies

Aϕh ≤ −‖
√
f‖∞, for all h. (44)

Proof Without loss of generality, let us consider a grid point xi,j where semi-
Lagrangian wide stencil discretization is applied and boundary terms occur with
xi,j +

√
h(ez)i,j relocated to xi,j + η1(ez)i,j . Then

(Aϕh)i,j = 2

(
ai,j

η1
√
h

+
1− ai,j

h

)
ϕ(xi,j)−

ai,j√
hη1+

√
h

2

Ihϕ|xi,j−
√
h(ez)i,j

− 1− ai,j
h

Ihϕ|xi,j+
√
h(ew)i,j

− 1− ai,j
h

Ihϕ|xi,j−
√
h(ew)i,j

≤ 2

(
ai,j

η1
√
h

+
1− ai,j

h

)
ϕ(xi,j)−

ai,j

η1
η1+
√
h

2

ϕ(xi,j + η1(ez)i,j)
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− ai,j√
hη1+

√
h

2

ϕ(xi,j −
√
h(ez)i,j)−

1− ai,j
h

ϕ(xi,j +
√
h(ew)i,j)

− 1− ai,j
h

ϕ(xi,j −
√
h(ew)i,j)

= −‖
√
f‖∞,

where we have used ϕ(xi,j + η1(ez)i,j) ≤ 0, and Ihϕ|xi,j−
√
h(ez)i,j

≥ ϕ(xi,j −√
h(ez)i,j) and similarly for the other stencil points. Interested readers can prove

the other cases in the same fashion.

Lemma 6 (Stability for linear problem) Assume that a control pair (a, θ) is
given, such that the HJB equation (7) becomes linear:

−α11(a, θ)uxx − 2α12(a, θ)uxy − α22(a, θ)uyy = −2
√
a(1− a)f, in Ω,

u = g, on ∂Ω.

Suppose the mixed discretization gives the linear system A(ah, θh)uh = Fh(ah, θh),
which is the linear version of (22). Then the solution uh is bounded as follows:

1. If g = 0 (homogeneous boundary condition) and f ≥ 0 is a bounded function,

− 1

2
‖
√
f‖∞R2 ≤ uh ≤ 0, independent of h. (45)

2. If f = 0 (homogeneous PDE) and g is a bounded function,

‖uh‖∞ ≤ ‖g‖∞, independent of h. (46)

3. In general, if f ≥ 0 and g are bounded functions,

‖uh‖∞ ≤
1

2
‖
√
f‖∞R2 + ‖g‖∞, independent of h. (47)

Proof 1. The proof follows the idea in [30]. In this case, the N2-vector Fh is simply
given by Fi,j = −2

√
ai,j(1− ai,j)fi,j . Since ai,j ∈ [0, 1], we have−‖

√
f‖∞ ≤ Fh ≤

0.

Lemma 4 has proved that A is an M-matrix, and thus A−1 ≥ 0. Also, we note
that Fh ≤ 0. Hence, the upper bound of uh is given by uh = A−1Fh ≤ 0.

Lemma 5 has proved that Aϕh ≤ −‖
√
f‖∞. Since −‖

√
f‖∞ ≤ Fh = Auh, we

have Aϕh ≤ Auh. Since A−1 ≥ 0, we have ϕh ≤ uh. Hence, the lower bound of
uh is given by uh ≥ ϕh ≥ −‖ϕ‖∞ = −1

2‖
√
f‖∞R2.

2. By Lemma 4, A is an M-matrix. Then following the proof in [9], the solution
uh under the M-matrix discretization satisfies the discrete comparison principle,
and furthermore, (46).

3. This can be obtained by applying the superposition principle of the linear
PDEs on 1 and 2.

Eventually, we come back to our original nonlinear problem (22).
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Lemma 7 (Stability for nonlinear problem) Assume that f and g are bounded
in L∞ norm. Given that Lemma 4 is satisfied, the solution of the discrete system
(22), uh, is bounded by

‖uh‖∞ ≤
1

2
‖
√
f‖∞R2 + ‖g‖∞, (48)

where the bound is independent of the mesh size h and the controls (ah, θh).

Proof Since the solution for the linear PDE under the mixed discretization is
bounded by (47) under all admissible controls (ah, θh) ∈ Γ , and the bound is in-
dependent of the controls (ah, θh) and the mesh size h, we conclude that the same
bound applies to the solution for the nonlinear PDE under the mixed discretiza-
tion.

6.3 Monotonicity

For nonlinear PDEs, monotonicity is another sufficient condition for convergence
in the viscosity sense. Monotonicity means that the discretization scheme at a
grid point xi,j must be a non-decreasing function of the unknown ui,j and a non-
increasing function of the unknowns at the other points {up,q|(p,q) 6=(i,j)}. Mono-
tonicity of our numerical scheme (23)-(24) is inherited from the M-matrix property
in Lemma 3.

Lemma 8 (Monotonicity) The finite difference discretization Fh(xi,j , uh) =
Fh(xi,j , ui,j , {up,q|(p,q) 6=(i,j)}) = 0, given in (23)-(24), is monotone. More specif-
ically, for all uh ≤ vh, we have

Fh(xi,j , ui,j , {up,q|(p,q) 6=(i,j)}) ≤ Fh(xi,j , vi,j , {up,q|(p,q)6=(i,j)}),
Fh(xi,j , ui,j , {up,q|(p,q) 6=(i,j)}) ≥ Fh(xi,j , ui,j , {vp,q|(p,q)6=(i,j)}).

(49)

Proof The proof follows [16]. Our goal is to verify the monotonicity condition (49).
Without loss of generality, let us analyze one example: uh ≤ vh with ui,j = vi,j .
Then

Fh(xi,j , ui,j , {up,q|(p,q) 6=(i,j)})−Fh(xi,j , ui,j , {vp,q|(p,q) 6=(i,j)})
= max

(ai,j ,θi,j)∈Γ
{(A(ai,j , θi,j)uh)i,j − Fi,j(ai,j , θi,j)}

− max
(ai,j ,θi,j)∈Γ

{(A(ai,j , θi,j) vh)i,j − Fi,j(ai,j , θi,j)}

≥ min
(ai,j ,θi,j)∈Γ

[(A(ai,j , θi,j)(uh − vh)]i,j ≥ 0,

where the first inequality uses max
x

f(x) −max
x

g(x) ≥ min
x

[f(x)− g(x)], and the

last inequality considers that uh − vh ≤ 0 and that all the off-diagonal entries of
A are non-positive under all admissible controls.
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6.4 Strong comparison principle

There is one more sufficient condition for convergence, called strong comparison
principle [3]. Strong comparison principle holds if the boundary condition is sat-
isfied in the viscosity sense. Unfortunately, there is no proof in the literature that
this necessarily holds for the Dirichlet problem (2). Hence, we provide a proof in
the setting of our proposed numerical scheme.

Lemma 9 Let ζ(x; p) ≡ 1
2‖
√
f‖∞‖x−p‖22, where p ∈ R2 is a random vector. Let

û(x) : {xi,j ∈ Ω} ∪ ∂Ω → R, where û(x) ≡
{
uh(xi,j), if x ∈ {xi,j ∈ Ω},
g(x), if x ∈ ∂Ω. Then

Ihζ ± û achieves its maximum on ∂Ω.

Proof Without loss of generality, let us consider again a grid point xi,j /∈ ∂Ω
where semi-Lagrangian wide stencil discretization is applied and boundary terms
occur with xi,j +

√
h(ez)i,j relocated to xi,j + η1(ez)i,j . Assume that the control

pair is fixed. Define a linear stencil operator on an arbitrary function u at xi,j as

S[u](xi,j) ≡ 2
(
ai,j

η1
√
h

+
1−ai,j
h

)
u|xi,j −

ai,j√
h
η1+
√
h

2

u|xi,j−
√
h(ez)i,j

− ai,j

η1
η1+
√
h

2

u|xi,j+η1(ez)i,j −
1−ai,j
h u|xi,j+

√
h(ew)i,j

− 1−ai,j
h u|xi,j−

√
h(ew)i,j

.

We note that the relocated stencil point is also included in the operator. Then we
have S[Ihζ](xi,j) ≤ S[ζ](xi,j) = −‖

√
f‖∞, and S[û](xi,j) = −2

√
ai,j(1− ai,j)fi,j .

As a result, we have S[Ihζ ± û](xi,j) = −‖
√
f‖∞ ± 2

√
ai,j(1− ai,j)fi,j ≤ 0.

Now assume that Ihζ ± û achieves its maximum at this grid point xi,j . Next
we prove that (Ihζ ± û)|y = (Ihζ ± û)|xi,j for any stencil point y connected to

xi,j , namely, for any y ∈ {xi,j+η1(ez)i,j ,xi,j−
√
h(ez)i,j ,xi,j±

√
h(ew)i,j}. This

can be proved by contradiction. Assume that there exists at least one stencil point
where the strict inequality holds, namely, (Ihζ ± û)|y < (Ihζ ± û)|xi,j . Then

S[Ihζ ± û](xi,j) >
[
2
(
ai,j

η1
√
h

+
1−ai,j
h

)
− ai,j√

h
η1+
√
h

2

− ai,j

η1
η1+
√
h

2

− 1−ai,j
h − 1−ai,j

h

]
(Ihζ ± û)|xi,j = 0,

which contradicts with S[Ihζ ± û](xi,j) ≤ 0. The key point of this result is that
(Ihζ ± û)|xi,j+η1(ez)i,j = (Ihζ ± û)|xi,j . That is, Ihζ ± û achieves its maximum at
the boundary point xi,j + η1(ez)i,j ∈ ∂Ω.

In general, consider any grid point xi,j /∈ ∂Ω. Assume that Ihζ ± û achieves
its maximum at xi,j . One can prove in the same fashion that (Ihζ ± û)|y =
(Ihζ ± û)|xi,j for any stencil point y connected to xi,j . Then by the connectivity
property (see the proof of Lemma 4), there exists a boundary point z ∈ ∂Ω, such
that (Ihζ ± û)|z = (Ihζ ± û)|xi,j . Hence, Ihζ ± û achieves its maximum at the
boundary point z ∈ ∂Ω.

Lemma 10 Let Ω be a strictly convex domain. Assume that Lemma 9 holds.
Define

u(x) ≡ lim sup
h→0,y→x

uh(y), u(x) ≡ lim inf
h→0,y→x

uh(y).

Then u(x) = u(x) = g(x) for all x ∈ ∂Ω.
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Proof Once Lemma 9 holds, the proof follows Lemma 6.4 in [14].

Lemma 10 is essentially the comparison result on the boundary ∂Ω. Now we
are ready to extend the comparison result to the entire computational domain Ω.

Lemma 11 Given that the finite difference discretization (23)-(24) satisfies con-
sistency, stability and monotonicity, u(x) and u(x) are respectively the viscosity
subsolution and supersolution of the Dirichlet problem (2).

Proof See the proof of Theorem 2.1 in [3].

Lemma 12 (Strong comparison principle) Let Ω be a strictly convex domain.
Then the finite difference discretization (23)-(24) satisfies u ≤ u in Ω.

Proof Since u and u are respectively the viscosity subsolution and supersolution
(Lemma 11), and u ≤ u on ∂Ω (Lemma 10), by Theorem 3.3 in [10], we conclude
that u ≤ u in Ω.

6.5 Convergence of the numerical solution to the viscosity solution

Once consistency, stability, monotonicity and strong comparison principle are
proved, Barles-Souganidis theorem [3] guarantees the convergence of the numerical
solution to the viscosity solution.

Theorem 2 (Barles-Souganidis theorem) Let Ω be a strictly convex domain.
Given that the finite difference discretization (23)-(24) satisfies consistency, sta-
bility, monotonicity and strong comparison principle, the numerical solution con-
verges to the viscosity solution of the Dirichlet problem (2).

Proof See Barles and Souganidis’s proof of Theorem 2.1 in [3].

7 Numerical Results

In this section, we will present numerical results for the Monge-Ampère equa-
tion using our proposed mixed standard 7-point stencil and semi-Lagrangian wide
stencil scheme. These numerical results show that the mixed scheme can achieve
second order convergence rate whenever the standard 7-point stencils can be ap-
plied monotonically on the entire computational domain, and up to order one
convergence rate otherwise. Compared to the pure semi-Lagrangian wide stencil
scheme in [14], our proposed mixed scheme yields a smaller discretization error
‖u− uh‖ and a faster convergence rate. The examples we consider in this section
come from [17,5]. We choose the tolerance of residual for the policy iteration to
be 10−6. We let the initial guess of the numerical solution be the solution of

uxx + uyy = 2
√
f, in Ω,

u = g, on ∂Ω,
(50)

which corresponds to the solution of (7) with a = 1
2 and arbitrary θ. We choose

the grid size N2 = 322, 642, · · · , 5122, and define the numerical convergence rate

as log2
‖u−uh(N2 )‖
‖u−uh(N)‖ , where uh(N) is the numerical solution on an N ×N grid.
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Example 1. Start with

f(x, y) = (1 + x2 + y2)ex
2+y2

, g(x, y) = e
1
2
(x2+y2), Ω = [−1, 1]× [−1, 1],

where the exact solution u(x, y) = e
1
2
(x2+y2) is smooth. For this example, it turns

out that the standard 7-point stencil discretization can be applied on the entire
computational domain and still results in a monotone scheme, since the optimal
control pair (a∗, θ∗) at every grid point is inside the 7-point-stencil regions Γ 1∪Γ 2∪
∂Γ 0. Consequentially, the numerical solution converges at the optimal theoretical
convergence rate O(h2); see Figure 4(2,red-solid) and Table 1(1). We observe that
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Fig. 4 Numerical results of Example 1, where the exact solution is u(x, y) = e
1
2
(x2+y2).

(1) Numerical solution. (2) Norms of the errors ‖u − uh‖. For the proposed mixed stencil
scheme (red-solid), the convergence rates, indicated by the slopes, are O(h2) in both L2 and
L∞ norms. For the pure semi-Lagrangian wide stencil scheme (blue-dashed), the convergence
rates are approximately O(h) in both L2 and L∞ norms.

(1) Proposed mixed stencil scheme

N ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32 1.201×10−3 9.598×10−4 4
64 3.009×10−4 2.00 2.404×10−4 2.00 4
128 7.526×10−5 2.00 6.013×10−5 2.00 4
256 1.882×10−5 2.00 1.504×10−5 2.00 4
512 4.705×10−6 2.00 3.759×10−6 2.00 4

(2) Pure semi-Lagrangian wide stencil scheme

N ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32 1.868×10−2 1.557×10−2 5
64 1.020×10−2 0.87 8.364×10−3 0.90 5
128 5.263×10−3 0.95 4.240×10−3 0.98 6
256 2.801×10−3 0.91 2.259×10−3 0.91 5
512 1.600×10−3 0.81 1.268×10−3 0.83 5

Table 1 Numerical results of Example 1, where the exact solution is u(x, y) = e
1
2
(x2+y2). (1)

Proposed mixed stencil scheme. The convergence rates in both L2 and L∞ norms are O(h2).
(2) Pure semi-Lagrangian wide stencil scheme. The convergence rates in both L2 and L∞
norms are approximately O(h).
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the computation is efficient, in the sense that the number of policy iterations
remains a small constant 4 as N increases.

We compare the proposed mixed scheme with the pure semi-Lagrangian wide
stencil scheme in [14], where the wide stencils are applied on the entire computation
domain. Figure 4(2,blue-dashed) and Table 1(2) show that the convergence rate of
the pure wide stencil scheme is approximately first order. We note that order one
is the optimal theoretical convergence rate for the pure wide stencil scheme; see
Lemma 2. The convergence rate using the proposed mixed scheme is significantly
faster than the rate using the pure semi-Lagrangian wide stencil scheme.
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Fig. 5 Numerical results of Example 2, where the exact solution is u(x, y) = −
√

2− x2 − y2.
(1) Numerical solution. (2) Norms of the errors ‖u−uh‖. For the proposed mixed stencil scheme
(red-solid), the convergence rates, indicated by the slopes, are O(h2) in L2 norm and O(h1.5)
in L∞ norm, respectively. For the pure semi-Lagrangian wide stencil scheme (blue-dashed),
the convergence rates are worse than O(h) in both L2 and L∞ norms.

(1) Proposed mixed stencil scheme

N ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32 6.450×10−5 2.359×10−4 4
64 1.628×10−5 1.99 8.211×10−5 1.52 5
128 4.084×10−6 2.00 2.882×10−5 1.51 5
256 1.022×10−6 2.00 1.015×10−5 1.51 5
512 2.557×10−7 2.00 3.583×10−6 1.50 5

(2) Pure semi-Lagrangian wide stencil scheme

N ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32 1.493×10−3 5.799×10−3 5
64 9.634×10−4 0.63 4.394×10−3 0.40 4
128 5.166×10−4 0.90 2.697×10−3 0.70 5
256 3.153×10−4 0.71 1.824×10−3 0.56 5
512 1.583×10−4 0.99 1.120×10−3 0.70 5

Table 2 Numerical results of Example 2, where the exact solution is u(x, y) =

−
√

2− x2 − y2. (1) Proposed mixed stencil scheme. The convergence rates in L2 and L∞
norms are O(h2) and O(h1.5), respectively. (2) Pure semi-Lagrangian wide stencil scheme.
The convergence rates in both L2 and L∞ norms are worse than O(h).
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Example 2. Consider

f(x, y) =
2

(2− x2 − y2)2
, g(x, y) = −

√
2− x2 − y2, Ω = [0, 1]× [0, 1],

where f is singular at (1, 1), and the exact solution is u(x, y) = −
√

2− x2 − y2.
Similar to Example 1, we can apply the standard 7-point stencil discretization
monotonically on the entire Ω. The convergence rates are O(h2) and O(h1.5) in
L2 and L∞ norms respectively; see Figure 5(2,red-solid) and Table 2(1). As a
comparison, if we applied the pure semi-Lagrangian wide stencil scheme, then the
convergence rate is worse than O(h); see Figure 5(2,blue-dashed) and Table 2(2).

Example 3. Consider

f(x, y) = max

(
1− 0.1√

x2 + y2
, 0

)
, g(x, y) =

1

2
(
√
x2 + y2 − 0.1)2,

Ω = [−0.5, 0.5]× [−0.5, 0.5].

The exact solution is given by u(x, y) = 1
2 max

(√
x2 + y2 − 0.1, 0

)2
. This is a

C1 function where the singularity occurs at the ring x2 + y2 = 0.12. First we
consider the proposed mixed scheme. Semi-Lagrangian wide stencils need to be
applied near the ring x2 + y2 = 0.12. Figure 6(2,red-solid) and Table 3(1) show
the numerical results. We note that the error reduction rates for the sequence
of N = 32, 64, · · · , 512 do not look as regular as the previous examples. The
reason is that wide stencil introduces interpolation error, which fluctuates as N
increases, despite converging towards 0. However, a clear error reduction, and
thus convergence, can be observed. For comparison, we also test the pure semi-
Lagrangian wide stencil scheme, as shown in Figure 6(2,blue-dashed) and Table
3(2). Our proposed mixed scheme performs better than the pure wide stencil
scheme, in the sense that the error ‖u − uh‖ is significantly smaller, and the
convergence rate is faster.
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Fig. 6 Numerical results of Example 3, where the exact solution is 1
2

max
(√

x2 + y2 − 0.1,

0)2. (1) Numerical solution. (2) Norms of the error ‖u− uh‖. For the proposed mixed stencil
scheme (red-solid), the convergence rates, indicated by the slopes, are approximately O(h) in
both L2 and L∞ norms. For the pure semi-Lagrangian wide stencil scheme (blue-dashed), the
errors are larger than the mixed scheme, and the convergence rates are worse than O(h) in
both L2 and L∞ norms.
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(1) Proposed mixed stencil scheme

N ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32 1.270×10−4 4.298×10−4 4
64 4.273×10−5 1.57 1.520×10−4 1.50 6
128 1.835×10−5 1.22 6.907×10−5 1.14 7
256 1.544×10−5 0.25 5.959×10−5 0.21 9
512 3.396×10−6 2.18 1.513×10−5 1.98 20

(2) Pure semi-Lagrangian wide stencil scheme

N ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32 1.337×10−3 6.604×10−3 5
64 9.084×10−4 0.56 3.304×10−3 1.00 6
128 6.940×10−4 0.39 1.901×10−3 0.80 7
256 3.815×10−4 0.86 9.335×10−4 1.03 7
512 1.998×10−4 0.93 4.563×10−4 1.03 9

Table 3 Numerical results for Example 3, where the exact solution is
1
2

max
(√

x2 + y2 − 0.1, 0
)2

. (1) Proposed mixed stencil scheme. (2) Pure semi-Lagrangian

wide stencil scheme. The errors ‖u − uh‖ by the proposed mixed stencil scheme are smaller
than those by the pure wide stencil scheme.

Example 4. In practice, our numerical scheme can converge to not only viscos-
ity solutions, but also a type of more general weak solutions, called Aleksandrov
solutions [20]. In this example, the corresponding f is a delta function at the origin
and is zero elsewhere:

f(x, y) = πδ(0, 0), g(x, y) =
√
x2 + y2, Ω = [−0.5, 0.5]× [−0.5, 0.5].

The exact solution u(x, y) =
√
x2 + y2 is an Aleksandrov solution. It is a C0

function and is singular at the origin. Figure 7(1) shows that our proposed mixed
scheme converges to the cone-shaped Aleksandrov solution. Conversely, Figure 7(2)
shows that the pure semi-Lagrangian wide stencil scheme in [14] does not give the
cone-shaped Aleksandrov solution. Indeed, there is no theoretical proof that the
pure wide stencil scheme can converge to Aleksandrov solutions. Figure 7(3) and
Table 4 report the convergence results by the proposed mixed scheme. The orders
of convergence are close to 0.8 and 0.5 in L2 and L∞ norms respectively.

Proposed mixed stencil scheme

N ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32 1.156×10−3 3.868×10−3 9
64 6.484×10−4 0.83 2.583×10−3 0.58 15
128 3.803×10−4 0.77 1.848×10−3 0.48 17
256 2.159×10−4 0.82 1.305×10−3 0.50 23
512 1.148×10−4 0.91 9.203×10−4 0.50 27

Table 4 Numerical results of Example 4. The exact solution is u(x, y) =
√
x2 + y2. The

proposed mixed stencil scheme is used.
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Fig. 7 Numerical results of Example 4, where the exact solution is u(x, y) =
√
x2 + y2.

(1) Numerical solution by the proposed mixed stencil scheme, which converges to the exact
solution. (2) Numerical solution by the pure semi-Lagrangian wide stencil scheme, which does
not converge to the exact solution. (3) Norms of the error ‖u − uh‖. The proposed mixed
stencil scheme is used. The convergence rates, indicated by the slopes, are O(h0.8) in L2 norm
and O(h0.5) in L∞ norm, respectively.

Example 5. In order to make a case for designing a monotone numerical scheme
that converges to the viscosity solution (which is convex), we show explicitly that
non-monotone numerical scheme may converge to a non-viscosity solution (which
may be non-convex). More analysis on this issue can be found in [17,5]. We consider

f(x, y) = 1, g(x, y) = 0, Ω = [−0.5, 0.5]× [−0.5, 0.5].

For this example, the exact solution u is not smooth near ∂Ω [5]. Since a closed-
form expression for u is not available, we follow [5] and study the convergence
behavior of uh towards u by checking the values of uh(0, 0) as h→ 0. The numer-
ical solution using our monotone mixed scheme converges to the convex viscosity
solution as h→ 0; see Figure 8 and Table 5. Alternatively, we consider a possible
non-monotone discretization for uxxuyy−u2xy = f , which is the direct application
of the standard central differencing on uxx, uyy and the standard 4-point central
differencing on uxy. In our numerical experiment, the numerical solution under
the non-monotone discretization converges to a concave function as h → 0. We
note that [5] has considered the same example using non-monotone discretization,
and obtained another non-viscosity solution that is non-convex near ∂Ω.
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Fig. 8 Example 5: (1) The solution given by the monotone mixed scheme, which is convex
and is convergent in the viscosity sense. (2) One possible solution given by a non-monotone
scheme, which is concave and is not a viscosity solution.

N
uh(0, 0) by

monotone scheme
uh(0, 0) by

non-monotone scheme
32 -0.18380 0.18063
64 -0.18444 0.18312
128 -0.18461 0.18436
256 -0.18485 0.18499
512 -0.18507 0.18530

Table 5 Example 5: (1) The minimum values of the numerical solutions umin given by the
monotone mixed scheme, which provides an evidence that the numerical solution converges
to a convex solution. (2) The maximum values of the numerical solutions umax given by a
non-monotone scheme, which provides an evidence that the numerical solution converges to a
non-convex solution.

8 Conclusion

In this paper, we convert the Monge-Ampère equation into the equivalent HJB
equation, and propose a mixed finite difference discretization for solving the equiv-
alent HJB equation. The discretization satisfies consistency, stability, monotonicity
and strong comparison principle, and thus convergent to the viscosity solution of
the Monge-Ampère equation. Our proposed mixed scheme significantly improves
the accuracy over the pure semi-Lagrangian scheme in [14]. More specifically, the
proposed mixed scheme yields a smaller discretization error ‖u − uh‖. Further-
more, if the standard 7-point stencils can be applied on the entire computational
domain monotonically, then our proposed mixed stencil scheme can improve the
convergence rate to O(h2).

Our mixed scheme can be potentially extended to higher dimensional cases.
Assuming that the dimension is d, the idea is to parametrize the control of the
HJB equation (5), namely to parametrize A(x) = Q(x)Λ(x)Q(x)T , where Q(x) ∈
SO(d) and Λ(x) is a trace-1 non-negative diagonal matrix. Then the standard
7-point stencil discretization can be applied if A(x) is weakly diagonal dominant,
and the semi-Lagrangian wide stencil discretization is applied otherwise. We leave
this topic as a future work.
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