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Abstract

We present an efficient algorithm for recent generalizations of optimal mass transport theory to matrix-valued
and vector-valued densities. These generalizations lead to several applications including diffusion tensor imaging,
color images processing, and multi-modality imaging. The algorithm is based on sequential quadratic programming
(SQP). By approximating the Hessian of the cost and solving each iteration in an inexact manner, we are able to
solve each iteration with relatively low cost while still maintaining a fast convergent rate. The core of the algorithm
is solving a weighted Poisson equation, where different efficient preconditioners may be employed. We utilize
incomplete Cholesky factorization, which yields an efficient and straightforward solver for our problem. Several
illustrative examples are presented for both the matrix and vector-valued cases.

I. INTRODUCTION

The theory of optimal mass transport (OMT) [1], [2], [3] has proven its power and usefulness in both
theory and applications. The theory part has been developed through a sequence of elegant papers, and
the research is still going strong; see [4], [S], [6], [Z], [8], [9], [10], [[11] and the references therein. On
the other hand, during the past decade, the need for applications has engendered the fast development of
efficient algorithms for OMT [12], [13], [14], [[15], [16], [17], [18], [19]. Recently, the OMT theory has
been extended to study matrix [20], [21], [22] and vector-valued densities [23]].

The mathematical approach to matrix optimal mass transport in [20], [21], [22] is based on the
seminal work of Benamou-Brenier [10], where optimal mass transport with quadratic cost is recast as
the problem of minimizing kinetic energy (i.e., an action integral) subject to a continuity equation. In
the matrix case, one needs to develop a non-commutative counterpart to scalar optimal transport where
probability distributions are replaced by density matrices p (Hermitian positive-definite with unit trace)
and where “transport” corresponds to a flow on the space of such matrices that minimizes a corresponding
action integral. The work is motivated by a plethora of applications including spectral analysis of vector-
valued time-series, which may encode different modalities (e.g., frequency, color, polarization) across a
distributed array of sensors [24]. The associated power spectra are matrix-valued and hence there is a
need for suitable metrics that quantify distances and provide tools to average and interpolate spectra.
The generalization of the Benamou-Brenier theory is founded upon concepts from quantum mechanics,
and allows us to formulate a continuity equation for matrix-flows, and then derive a Wasserstein distance
between density matrices and matrix-valued distributions. Similar remarks apply to the vector-valued
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case in which one must also invoke some ideas from graph theory in formulating our generalization of
scalar-valued densities. See [23]] for all the details.

In this paper, we focus on algorithms for the numerical solution of the optimal matrix-valued mass
transport problems introduced in [20], [21], [22], and the vector-valued case formulated in [23]. In [21],
[23]], both problems are reformulated as convex optimization problems. We adopt an inexact sequential
quadratic programming (SQP) method [235], [26l], [27] to tackle such convex optimization problems. Similar
methods have been applied to scalar optimal mass transport [[15].

The remainder of this paper is summarized as follows. Section [[I is a brief introduction to the
matrix-valued optimal transport theory. We develop the corresponding algorithm in Section and then
the algorithm for vector-valued optimal transport is described in Section We conclude with several
examples to demonstrate our algorithm in Section

II. MATRIX-VALUED OPTIMAL MASS TRANSPORT

In this section, we sketch the approach [21] for which the convex optimization algorithm given in the
present note was formulated. As noted above, similar approaches to matrix-valued OMT were formulated
independently in [20], [22].

A. Gradient on space of Hermitian matrices

Denote by H and S the set of n x n Hermitian and skew-Hermitian matrices, respectively. We will
assume that all of our matrices are of fixed size n x n. Next, we denote the space of block-column vectors
consisting of IV elements in S and H as SY and H", respectively. We also let H, and H,, denote the
cones of nonnegative and positive-definite matrices, respectively, and we use the standard notion of inner
product, namely

(X,Y) = tr(X*Y),

for both  and S. For XY € HV (SM),
N
(X, V) =) tr(Xp).
1

Given X = [X7, -+, Xy|* € HY (SV), Y € H (S), set

X [ X1Y T
XY = : Y = : ,
XN | XnY |
X T Y X, T
YX=Y : = : ,
Xy | Y Xy |
and
X7
x=|

XN



For a given L € H" we define
X — X1,
Ve H—-8Y, X : (1)
LyX — XLy

to be the gradient operator. By analogy with the ordinary multivariable calculus, we refer to its dual with
respect to the Hilbert-Schmidt inner product as the (negative) divergence operator, and this is

Y, N
Vi:SNoH, V=] 1 | =) LiY— Vil 2)
Yy K

i.e., V] is defined by means of the identity
(VI X,Y) = (X, ViY).

A standing assumption throughout, is that the null space of V, denoted by ker(V ), contains only scalar
multiples of the identity matrix. In this note, we use one such basis generated by the following N = 2
components:

1 1 1
10 --- 0

Li=1|. . . |, Lo=diag([1,2,...,n—1,0]).
1 0 - 0

B. Matrix-valued Optimal mass transport

We next sketch the formulation for matrix-valued optimal mass transport proposed in [21]. Given a
convex compact set £ € R™, denote

D={p()eH, | / tr(p(x))dr = 1},

E

and D, the interior of D. Let p', p' € D, be two matrix-valued densities defined on E with positive
values. A dynamic formulation of matrix-valued optimal mass transport between these two given marginals
is [21],

1

min / / {tr(pw*w) + vy tr(pv*v)} dxdt, (3a)
pEDL weH™ veSN 0 E
op 1 1_,
% + §Vx (wp + pw) — §VL(vp + pv) =0, (3b)
p(0,-) =p°, p(1,-) =p' (3c)

with V- being the standard divergence operator in R". By defining p = wp, v = vp, the above can be
cast as a convex optimization problem

1

min/ / {tr(pp™'p") + v tr(up~'u*) } dadt (4a)
Pt Jo JE

dp 1 S g, N
E+§Vz~(p+p)—§VL(u—u)—0, (4b)
p(0,-) =" pl1,)=p". (4c)

We remark that (p + p)/2 € H™ and (u — u)/2 € SV, which is consist with the domain of V. For the
sake of brevity, the set F is taken to be the unit cube [0, 1]™.



III. DISCRETIZATION AND ALGORITHM: MATRIX-VALUED CASE

We follow closely the algorithm developed in [15] for scalar optimal mass transport problems. We
restrict ourselves to the real-valued case, that is, H and S denote symmetric and skew-symmetric matrices,
respectively. In order to highlight the key parts of our methodology, we first consider the discretization
in 1D case, i.e., m = 1. In particular, we take F = [0, 1]. The algorithm extends almost verbatim to the
higher dimensional setting as we will see in Section

We discretize the space-time domain [0, 1] x [0, 1] into n, x n, rectangular cells. Denote €2;;,1 <
i < ng 1l <j<n asthe (7,7) box. We use a staggered grid to discretize p and p. The variable u is,
however, valued at the centers of the cells {(;;}. More specifically,

P=(pu1,), 0<i<ng, 1<j<mn
p:(pi,j+%)a 1<i<n,, 0<5<n
u=(u;j), 1<i<m,, 1<j<mn,.

Note the boundary values are
Prj=0, ppy1; =0, 1 <j<n

and
Pl = P Pingsr = P 1< i< n,.
We exclude the boundary values from the variables and denote
p:(pi-i-%,j)» 1<i1<n,—1, 1 <5<

p:<pi,j+%)> I<i<ng, 1<j<n—1

A. Continuity equation

We use the above discretizing scheme, together with the boundary conditions to rewrite the continuity

equation as
Dlp + Dgp + D3u =b. (5)

Here the linear operators D, Dy, D5 are defined as

3(Pisy AP =Py P ) he, B 20 <y — 1,

1
i—5,J
(Dip)iy =4 3(P3 + 0% )/hx, if i=1,
( Ng— 2:] n 77.7)/]7‘17 lf i:nm
(pi,j+% - pi,j—%)/hh if 2<757<n—1,
(D2p)ij = q iz /I, if j=1,
_pi,nt—%/htv if j =,
1
(Dsu)ij; = —5Viluij = ig), 1<i<mg, 1<j <m.

The parameter b carries the information of the boundary values p° and p'. More specifically,

bij =19 —pi/he if j=mny,
0 otherwise.



B. Discretizing the cost function

We use a combination of a midpoint and a trapezoidal methods to discretize the cost function. On
the volume €);; we have

/ {trp™'p") +ytr(up™ )}~ == (0] picsy + 0L Py )01 T 0,500)

ij
’Yhm ht —1
T +Pi))
Let A; be the averaging operator over the spatial domain and A be the averaging operator over the time
domain (one needs to be careful about the boundaries). Then the cost function may be approximated
by

L

—1
ij—%

tr(u; juij(p

<A1 (p* o p), Ag(pil) + CL> hmht + <U* ou, AQ(,Oil) + (I> ’)/hmht, (6)
where a > 0 depends only on the boundary values p° and p'. The inverse operator and the multiplication
operator o are applied block-wise. The expressions for A, Ay, a are

1/, % *

2Py Pty F P Pivyy) I 250 n, — 1,

(Ai(p™op))ij = %pg]pgm if =1,
1, % . .
§pnw_%7jpnx—%7ja lf 1 = na;,
1 — —1 . .
20 o), B 25 < — 1,
(A2<p71))i,j = %P;éa if j=1,
%p;,rlLtf%7 if .] = Ny,
()~ if =1,
ai; =4 5(p)~t if j=mny,
0 otherwise.

We remark that it is important to first square then average, and first invert then average, to guarantee
stability [28], [[15]].

C. Sequential quadratic programming (SQP)

Following the above discretization scheme, we obtain the discrete convex optimization problem

min f(pa Ps u) = <A1(p*p)> AQ(pil) + a> hmht + <U*u7 AZ(pil) + CL> ’thhta (73)
s.t. Dlp + Dgp + D3U =b. (7b)

The Lagrangian of this problem is
L(p, p,u) = f(p, p,w)/(hahu) + (X, Dip + Dap + Dgu —b).
The KKT condition [26], [27]

VoL = Didt2po Ai(As(p) +a) =0 (s)
V,L = Dix—p loAsAi(p*p)op™ ' —yp o As(u*u)op™' =0 (8b)
Vil = Dj\+2yuo(Ay(p™t) +a) =0 (8¢c)

Vil = Dip+Dsp+Dyu—b=0 (8d)



follow, with o denoting block-wise multiplication.

Let w = (p, p,u), D = (D1, Dy, D3), then at each SQP iteration we solve the system

A D* ow Vol
b 9)()--(%). 2

and update w, A using line search. In principle, Problem [7] can be solved using Newton’s method. However,
the mixed terms introduce off-diagonal elements in the Hessian, which makes it forbidden for large
problems. We adopt an inexact SQP method [26]. The matrix A is an approximation of the Hessian of
the objective function

A 2Bdiag(A;(Az(p~1) +a)) 0 0
A= 0 Bdiag(g(p, p, u)) 0
0 0 2vBdiag(As(p™') + a)
Here Bdiag denotes block diagonal operator. More specifically,
T, 0 - 0
0 Ty --- 0
Bdiag(Ty, T, -+ ,Tx) = | . . . )
0 0 - T
for linear operators 17,75, ,Ty. The operator g(p, p,u) is the Hessian of f over p with gl being

the map

9545 (X) = P (A WD)igy 0 1 X0 s+ 0,1 X0 (AP0
P51 (AW )1 Xy 0, 50 X (AS () iapy o

In each step we solve the linear system (9)) in an inexact manner. There are many methods to achieve
this. In our approach, we apply the Schur complement and solve the reduced system

DA D*S) =V, L — DA™V L

using preconditioned conjugated gradients method with incomplete Cholesky factorization [29] as a
preconditioner. The update for w is then given by

dw = —A"HD* 6N+ V,.L).

Remark 1: In our numerical implementation, we take advantage of the structure of p being symmetric,
and only save the upper triangular part of it. This is beneficial in terms of both memory and speed.

D. 2D and 3D cases

In this section we sketch what happens in higher dimensions, namely 2D and 3D.

We begin with the 2D case. Accordingly, we have the discrete convex optimization problem

min  f(p, p,u) = (Aa(pipa) + A1y (Dpy), A2(p™") + a) hohyhy + (u*u, As(p™") + a) yhohyhy
s.t. D1y2ps + Diypy + Dap + Dau = b.



The Lagrangian of this problem is
L(p, p,u) = f(p, p,u)/(hahyhe) + (X, Diepe + Diypy + Dap + Dsu—b) .

In the above,

(%(pg,j)il if k=1,
aijr = S 5(pi;) " if k=,
\O otherwise.
and
(00 /h  if k=1,
bi,j}k = _pzl,j/ht if k= Ny,
0 otherwise.

\

It follows that the KKT conditions are

Ve L = DiA+2p.0 A}, (As(p") +a) =0 (10a)
Vo, £ = DiX+2p,0A; (Ay(p™')+a)=0 (10b)
VoL = D3A—p ' o Ay(An(pips) + Ay (Pypy)) 0 p~r = yp~ o Aj(u*u) o p™t =0 (10c)
Vil = DiX42yuo(Ay(p™)+a)=0 (10d)
VAL = Dip+ Dsp+ D3u—b=0, (10e)

with o denoting block-wise multiplication as before.

Let w = (ps, py, p,u). Then at each SQP iteration, we solve the system

A D* ow VoLl
b)) --(%) an

where D = (D1, D1y, Do, D3). The matrix Ais an approximation of the Hessian of the objective function

2Bdiag( A7, (As(p™!) + a)) 0 0 0
A 0 2Bdiag (A7, (A2(p™") +a)) 0 0
B 0 0 Bdiag(g(p, p,u)) 0

0 0 0 2vBdiag(Az(p™!) + a)

The operator g(p, p, u) is the Hessian of f over p with it being the map

9ijke+1 (X) = P;jl’kJr% (A5(Avz(Phpa) + A1y<pzpy) + 'VU*U>)i,j,k+%p;j{k+%xﬂak+%

0,1 X1 (A3 (A (302) + Ary (Pypy) + Y00 10, 1

The 3D case is quite similar. Now, we have the discrete convex optimization problem

min  f(p, p,u) = (A(Pipa) + A1y (Djpy) + AL (Pip2), As(p™") + a) hohyhhy
+ <u*u, Ay(p™) + a> vhyhyh hy
s.t. Dlxpx+Dlypy+Dlzpz+D2p+D3u:b-

The Lagrangian of this problem is
L(p, p,u) = f(p, p,u)/(hahyhhe) + (X, Diaps + Diypy + D1zpz + Dop + Dsu — b) .



In the above,

st it £=1,
aijre = 5(pi0) " i L=ny,
0 otherwise.
and (
p?’j’k/ht if /=1,
bijwe = —prip/he if 0=ny,
0 otherwise.

It follows that the KKT conditions now are
VL = Di oA+ 2pp 0 AT (Aa(p” ) a) =
Vp, L = DiA+2p,0A; (As(p™!) +a) =
VoL = Did+2p.o Al (Ay(p™) +a) =0
VoL = Dy —p ' o Ap(An(pipe) + Ay (Pypy) + Ara(pip:)) 0 p~t = yp~ 0 Aj(uu) o p~t = 0
VoL = Dix+2yuo (Ay(p™)+a)=0
VAL = Dip+ Dsp+ D3u—b=0,

with o the block-wise multiplication as earlier.
Let w = (ps, py, P, p, u), then at each SQP iteration we solve the system
A D* ow '\ VoLl
(b T)(%)--(%2) ®

where D = (D1, Dvy, D1, Do, D3). The matrix A is an approximation of the Hessian of the objective
function

2Bdiag(A}, (A2(p~1) + a)) 0 0 0 0
0 2Bdiag(Af, (A2(p7") +a)) 0 0 0
0 0 2Bdiag(A, (A2(p~t) + a)) 0 0
0 0 0 Bdiag(g(p p, ) 0
0 0 0 0 2vBdiag(A2(p~1) + a)

The operator g(p, p,u) is the Hessian of f over p with ijkbrd being the map

gi,j,k,éJr%(X) = P'f-lk H%(A’z‘(Alx(prx) + Avy (pypy) + Arz(pipz) + yu'u)), ;. k€+lp;jlk H;XPT;,C Z+2

+p, ik, g+2Xp;jlyk7g+ (A3 (A1 (prps) + Aly(pypy) + Ar.(pip2) +yu'u)); ik €+2p” bt 1

IV. VECTOR-VALUED OPTIMAL MASS TRANSPORT

Next we move to vector-valued optimal transport, which was proposed recently in [23]. We briefly
review the setup in this section, and refer the reader to [23] for details.

A. Gradients on graphs

We consider a connected, positively weighted, undirected graph F = (V, £, W) with n nodes labeled
as i, with 1 < i < n, and N edges. We have that Ar = —DWD? where Az, D, W = diag{wy, -+, Wy}
are the graph Laplacian, incidence, and weight matrices, respectively. One can define the Laplacian in
terms of a graph gradient and divergence as

A]: = —Vjﬂ:V]-‘,



where
Vr:R*" 5 RY, z— WYDTg

denotes the gradient operator and
Vi:RY 5 R,y DIW/2y

denotes its dual.

B. Vector-valued optimal mass transport

We begin by considering a vector-valued density p on R™, i.e., a map from £/ C R™ to R} such that

iZ:;/Epi(:c)dx = 1.

Here the convex compact set £ C R™ is a domain where the densities are defined, typically the unit
n-dimensional cube. To avoid proliferation of symbols, we denote the set of all vector-valued densities
and its interior again by D and D., respectively. We refer to the entries of p as representing density or
mass of individual species/particles that can mutate between one another while maintaining total mass.
Mass transfer may only be permissible between specific types of particles. Thus, allowable transfer can
be modeled by the existence of a corresponding edge in a graph F = (V,&,WV) whose vertices in
V correspond to those individual species, see [23]]. The edge weights in JV can quantify cost, rate, or
likelihood of transfer.

Following the arguments in [23]], this leads to the following (symmetric) Wasssertein 2-metric on
vector-valued distributions: Given two given marginals p°, p* € D, the (square) of the Wasserstein distance
is given by:

1
min/ / {p" diag(p)~'p + yu"[diag(D] p) " + diag(D] p) u} dzdt (13a)
ppu Jo JE
0
a—?—i—vx'p—V}u:O, (13b)
p(0,-) =p" p(1,-) =p". (13¢)
Here u is the “flux” on graphs, p = [p1, -+ ,p,]7 is the “momentum” (mass times velocity vector field),

the matrix D, is the portion of the incidence matrix D containing 1’s (sources), and Dy = [D; — D (sinks).
In what follows, we describe an algorithm for the numerical implementation of this convex optimization
problem.

V. DISCRETIZATION AND ALGORITHM: VECTOR-VALUED CASE

As in the matrix-valued cases, for simplicity of exposition, we consider the discretization in 1D case,
and describe the 2D case in Section below. Thus, we take £ = [0, 1], and as before our technique
extends almost verbatim to the higher dimensional setting; see Section We should note that the
algorithm presented here in the vector-valued case is very similar to the matrix optimal transport just
described in the preceding sections.

We discretize the space-time domain [0, 1] x [0, 1] into n, x n, rectangular cells. Denote €2;;,1 <1 <
ng, 1 < j <n, as the (i,j) box. We use staggered grid to discretize p and p. The variable u is, however,
valued at the centers of the cells {);;}. More specifically,

p=(pis1y) 0<i<ng, 1<j<n
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pP= (pi,j—&-%)v l<i<ng, 0<j<mn
u=(u;), 1 <i<mg, 1<j<n.
Note that the boundary values are
Prj=0,ppq1;=0, 1<j<mn

and
0 1 :
Pl = Pis Ping+l = Pis 1 <1< n,.

We exclude the boundary values from the variables and denote
p:(pi—l—%,j)? 1<i<n,—1, 1 <7<y

p:<pi,j+%)> I<i<ng, 1<j<n—1

A. Continuity equation

We use the preceding discretizing scheme, together with the boundary conditions to rewrite the

continuity equation (13b) as
Dlp + Dgp + D3u =b. (14)

Here the linear operators D, Dy, D3 are defined as

’(pi—f—%,j _pi—%,j)/hxa if 2<i<mn,—1,
(D1p)ij = { P3 j/ha, if i=1,

\—pnz_;j/hx, if @ =ng,

((pz‘,j-i-% - pi,j-%)/hh if 2<j<mn—1,
(Dap)ij = pz’,%/hh if j=1,

\_pi,m—%/htu if j =y,

(DgU)iJ = —V;—Ui,j, 1 S 1 S Ny, 1 S] S Nyg.
The parameter b carries the information of the boundary values p° and p'. More specifically,
PW/he i j=1,
bij = —pi/he if j=m,
0 otherwise.



11

B. Discretization of the cost function

Let A; be the averaging operator over the spatial domain and A, be the averaging operator over the
time domain (as before one needs to be careful about the boundaries). Then the cost function (13a)) may
be approximated by

(A1 (p*), A2(1/p) + a) huohy + (u?, A5(1/ (DS p) + 1/(D] p)) + ¢) vhohe, (15)

where a > 0 depends only on the boundary values p° and p'. The inverse operator and multiplication
operators are applied block-wise. The expressions for Ay, A, a are

10,2 2 : ;

(A1(p*))iy = %péj, if i=1,
1,2 e
2P, 1 s if ©=n,,

%(1/pi,jf%+1/pi,j+%)> if 2<j<mn—1,
(A2(1/p))i; = 1//01',%/27 if j=1,

1/,01-77%,%/2, if j=ny,

1/p/2 if j=1,
aij=1/pi/2 if j=mny,

0 otherwise,
1/D3pl/2+1/Dip}/2 if j=1,

cij=191/Dip;/2+1/Dip;/2 if j=n,,

0 otherwise.

C. Sequential quadratic programming (SQP)

From the above discussion, we obtain the discrete convex optimization problem

min  f(p, p,u) = (A1 (p*), As(1/p) + a) hohy + (u®, A5(1/ (D3 p) + 1/ (D] p)) + ¢) vhyhy (16a)
s.t. Dip+ Dsop + Dsu = b. (16b)

The Lagrangian of this problem is
L(p, p,u) = f(p, p,w)/(hyh) + (N, Dip+ Dap + Dsu — b) .

It follows that the KKT conditions are given by

VoL = DiA+2po Al (As(1/p)+a) =0 (17a)
VoL = Dyd— A3 A(p%)/p* —Da(A5 (u?) /(D3 p)?) — yDi (A3 (u?) /(D p)®) =0 (17b)
Vil = DyA+2yuo (As(1/(Dyp) +1/(Dip)) +¢) =0 (17¢)
VAL = Dip+ Dop+ D3u—b=0, (17d)

with o denoting block-wise multiplication.

Let w = (p, p,u). Then at each SQP iteration, we solve the system

A DT Sw VoL
b 5)(5)=-(%i)
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where D = (D;, Do, D3). Again, the matrix A is an approximation of the Hessian of the objective function

- (2diag(A] (A2(1/p) + a)) 0 0
A= 0 diag(g(p, p, u)) 0
0 0 2vdiag(A2(1/(DF p) + 1/(D p)) + ¢)

The operator g(p, p, u) is the Hessian of f over p with g, ; +1 being the map

01 (X) = 2AATAG), s /62, X
+ D[(AT (62)); 541 /DT )2, DEX] + YDA [(AL (1)), 41 /(DT )3, DT X].

D. 2D case

We concretely work out the 2D case in this section. The higher dimensional cases are very similar,
but naturally involve additional indices. We have the discrete convex optimization problem

min  f(p, p,u) = (A1 (p2) + Ay (02), A2(1/p) + a) hohyhy + (u?, Ax(1/(DF p) + 1/(D] p)) + ¢) vhahyhy
s.t. D1zps + Diypy + Dap + Dau = b.
The Lagrangian of this problem is

ﬁ(p, P u) = f(pa P, u)/(hfﬁhyht) + <)‘7 Dlxpx + Dlypy + sz + D3u - b> .

In the above,
0 : _
1/pm-/2 if k=1,
Qi 5k = 1/p117]/2 if k= Ny,

0 otherwise,
and
pgj /hy if k=1,
bLj,k = _pzl,j/ht if k= Ty,
0 otherwise,

1/DEpY. /24 1/DTp. /2 if k=1,
Cijk = S 1/DIpt /24 1/Dpl /2 if k=n,,
0 otherwise.

The KKT conditions now are
VL = DIA+2p, 0 AT (Ay(1/p) +a) = 0
Vp, L = DT A+ 2p, 0 AT (As(1/p) +a) =0
VL = D2T A= A3 (A (p3) + Ay (9))) /0 — YDa(A; (u®) /(D3 p)?) — YD1 (A3 (u*) /(D1 p)*) = 0
VL = DIA+ 2yuo (As(1/(DEp) + 1/ (D7 p)) +¢) = 0
VAL = Dip+ Doyp+ Dsu—b=0,

with o denoting block-wise multiplication.

Let w = (ps, py, p, u), then at each SQP iteration we solve the system

A D* dw VoLl
b 0 (5)=-(%E), 1
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where D = (D1, D1y, Do, D3). The matrix Ais an approximation of the Hessian of the objective function

2diag(AT, (A2(1/p) + a)) 0 0 0
0 2diag(AT, (A2(1/p) + a)) 0 0
0 0 diag(g(p, p, u)) 0
0 0 0 2vdiag(A2(1/(D3 p) + 1/(DT p)) + ¢)

The operator g(p, p,u) is the Hessian of f over p with g; ;. 1 being the map

gi,jJr%(X) = Q(Ag(Alw(p:%)+A1y(p12/)))i,j+%/pij+%X
+ 29Ds[(A3 (u?)); 511/ (D3 p)F 511 D5 X] + 29Dn[(A; (u)); 1/ (D1 p); 1 DY X

VI. NUMERICAL EXPERIMENTS

Several examples are provided in this section to illustrate the effectiveness of our algorithms. For
matrix-valued densities, we present examples in both 2D and 3D settings. In contrast, only 2D examples
are studied for vector-valued densities.

A. Matrix case

One motivation for matrix-valued optimal mass transport comes from diffusion tensor imaging (DTI).
This is a widely used technique in magnetic resonance imaging. In diffusion images, the information at
each pixel is captured in a ellipsoid, i.e., a 3 X 3 positive definite matrix, in lieu of a nonnegative number.
The ellipsoids describe useful information such as the orientations of the brain fibers.

We tested our algorithm on a synthetic data set with n = 3. The initial density is a disk positioned
at the center of the square domain and all the ellipsoids are isotropic. The terminal density contains four
quarter discs located at the corners of the square domain, and the four components have different dominant
directions. Both of them are depicted in Figure [I] The densities have been smoothed to have low density
contrast 10. Here the density contrast is defined to be the maximum of the ratios between the eigenvalues
at different locations. In Figure 2, we show the optimal density flow with grid size 32 x 32 x 10 in
space-time and parameter v = (0.01. The masses split into four components and the ellipsoids change
gradually from isotropic to anisotropic.

N SRRREEEL
WA e

@ p° (b) p"

Fig. 1: Marginal distributions
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(a)t=0.1

dt=04 (e)t=20.5 ®Ht=06

(gt=0.7 (h) t =0.8 i) t=09

Fig. 2: Interpolation with v = 0.01

Grid Size SQP iterations
16 x 16 x 10 19
32 x 32 x 20 27
64 x 64 x 40 35

TABLE I: Number of SQP iterations required on different grid sizes for density contrast 10.

To demonstrate the performance of our algorithm, we tested it on the same problem with different
mesh grid sizes: 16 x 16 x 10, 32 x 32 x 20, 64 x 64 x 40 in space-time. We set the tolerance of the
outer SQP iterations to 1073, and that of the preconditioning conjugate gradient solver in each iteration
to 1073, The numbers of SQP iterations for convergence are shown in Table m for different mesh sizes.

We then studed the influence of density contrast and the parameter v on the number of iterations
needed to converge. The results for density contrast 50 are shown in Table [II| with tolerance 10~2. We can



Grid Size

SQP iterations

16 x 16 x 10
32 x32x20
64 x 64 x 40

25
31
62

TABLE II: Number of SQP iterations required on different grid sizes for density contrast 50.
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Parameter v | SQP iterations
1 7
0.1 52
0.01 31

TABLE III: Number of SQP iterations required for different ~.

see that the number of iterations increases as we increase the density contrast. Table [III} showcases the
results for different v values with fixed grid size 32 x 32 x 20. We observe that the number of iterations
is positively correlated with the value of .

Finally, we test our algorithm on a 3D data set. Table [[V|displays the number of iterations for different
grid sizes with density contrast 30 and parameter v = 0.1.

B. Vector case

An important application of vector-valued optimal mass transport is color image processing. In this
cases, the vector-valued densities have three components corresponding to the intensities of the three basic
colors red (R), green (G) and blue (B). The masses can transfer from one color channel to another and
the cost of transferring is captured using a weighted graph . Here, we treat the three colors equally and
take the graph to be a complete graph with unit weights, namely, W = I and

1 1 0
D=1]|-1 0 1
0o -1 -1
The matrices Dy, D in are then
1 10 0 00
Dy=1{0 0 1|, Dy=1|1 0 0
0 00 011

The two marginal densities are depicted in Figure [3| The initial image p" is a disk located in the center
of the square in white color, i.e., all three colors have equal intensity. The terminal distribution p' is an
image of four circle quarters; one at each corner in different colors. Both the images have been smoothed
to have density contrast maxy, sup, , pi.()/pj,(y) = 10. Figure |4| illustrates the optimal interpolation using
vector-valued optimal transport with grid size 128 x 128 x 10 in space-time and parameter v = 0.01. We
observe that the white disk split into four circle quarters and meanwhile the colors change gradually from
white to four different colors.

Grid Size SQP iterations
16 x 16 x 16 x 10 19
32 x32x%x32x10 25
64 x 64 x 64 x 10 23

TABLE IV: Number of SQP iterations required on different grid sizes for 3D densities.
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(a) p° (b) p!

Fig. 3: Marginal distributions

(a)t=0.1 (b)yt=0.2 (©)t=03 dt=04

(e)t=20.5 ®Ht=0.6 (gt=0.7 (h)yt=0.8 i) t=0.9

Fig. 4: Interpolation with v = 0.01

We next tested the performance of the algorithm with respect to the grid size. For this, we consider
a grid hierarchy from a coarse grid of 32 x 32 x 10 in space and time through a grid of 64 x 64 x 20 to
a grid of 128 x 128 x 40. The parameter v is set to be 0.01. The tolerance for the outer SQP iteration
is set to be 1073 and in each iteration the linear equation is solved with a relative residual of 1072, The
numbers of SQP iterations are recorded in Table [V] from which we observe that the number of iterations
needed doesn’t increase much as we increase the size of the mesh grids.

We also applied the same algorithm to images with a higher density contrast 100. The results are
shown in Table [VI| for different grid sizes. As can be seen from the table, increasing the density contrast
leads to an increasing of the number of SQP iterations. Again, the number of iterations needed to achieve

Grid Size SQP iterations
32 x32x10 11
64 x 64 x 20 12
128 x 128 x 40 14

TABLE V: Number of SQP iterations required on different grid sizes for density contrast 10.
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Grid Size SQP iterations
32 x32x10 24
64 x 64 x 20 27
128 x 128 x 40 32

TABLE VI: Number of SQP iterations required on different grid sizes for density contrast 100.

Parameter v | SQP iterations
1 48
0.1 42
0.01 27

TABLE VII: Number of SQP iterations required for different .

certain precision is affected by the parameter. In Table [VII] we display this change as a function of  for
fixed grid size 64 x 64 x 20 and density contrast 100.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we described a fast algorithm for the numerical implementation of both matrix-valued
and vector-valued versions of optimal mass transport. It is straightforward to extend this algorithm to
cover matrix-valued transport problems with unequal masses (“unbalanced mass transport”) [30]. In the
future, we intend to apply this methodology to various problems including diffusion tensor magnetic
resonance data, biological networks, and various types of vector-valued image data such as color and
texture imagery. Finally, applying a multigrid methodology may speed up the linear solver even further,
and will be a future direction in our research.
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