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Abstract. We derive a posteriori error estimates for the hybridizable dis-
continuous Galerkin (HDG) methods, including both the primal and mixed

formulations, for the approximation of a linear second-order elliptic problem

on conforming simplicial meshes in two and three dimensions.
We obtain fully computable, constant free, a posteriori error bounds on the

broken energy seminorm and the HDG energy (semi)norm of the error. The

estimators are also shown to provide local lower bounds for the HDG energy
(semi)norm of the error up to a constant and a higher-order data oscillation

term. For the primal HDG methods and mixed HDG methods with an ap-

propriate choice of stabilization parameter, the estimators are also shown to
provide a lower bound for the broken energy seminorm of the error up to a

constant and a higher-order data oscillation term. Numerical examples are
given illustrating the theoretical results.

1. Introduction

Recent years have seen the developments of fully computable, guaranteed error
bounds for the conforming [6, 7, 14, 15, 18, 30, 37, 40, 42, 43, 51], nonconforming [1, 8,
19,29,33,38,39], discontinuous Galerkin [2,9,10,21,38,39], and mixed finite element
methods [3, 5, 27,38]; see also unified frameworks in [4, 16,34].

In comparison, there are relatively few works on a posteriori error estimates
for the hybridizable discontinuous Galerkin (HDG) methods [22]. The a poste-
riori estimates for HDG methods that are currently available in the literature
[17, 20, 25, 26, 31, 35] are all of residual type, in which reliability is shown up to
a generic (unknown) constant. This means that, while the associated estimation
may be suitable as local refinement indicators, they cannot provide a quantitative
stopping criterion. Moreover, if only a single fixed mesh is used (as is often the case
in practice) then the value of an a posteriori bound containing unknown constants
is somewhat questionable. Here we present, for the first time, fully computable
a posteriori error bounds for HDG methods, for both the primal and mixed for-
mulations, in the setting of a linear second-order elliptic problem on conforming
simplicial meshes in two and three space dimensions. The key ingredient of our
analysis is the local conservation property of the HDG methods, with which cheap
element-wise equilibrated fluxes can be constructed.
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2 MARK AINSWORTH AND GUOSHENG FU

The remainder of this article is organized as follows. Section 2 presents the
model problem and prepares the notation used throughout the article. In Section
3, we introduce the primal HDG schemes and the corresponding computation er-
ror bounds. While in Section 4, we introduce the mixed HDG schemes and the
corresponding computation error bounds. Numerical results are then presented in
Section 5. The proofs of the main results in Section 3 and Section 4 are presented
in Section 6.

2. Preliminaries

2.1. Model Problem. Consider the following model problem:

σ − a∇u = 0
−∇·σ = f ∈ L2(Ω)

}
in Ω(1)

subject to u = 0 on ∂Ω, where Ω ∈ Rd, d ∈ {2, 3}, is a simply connected polygo-
nal/polyhedral domain. The datum a ∈ L∞(Ω) is assumed to be strictly positive
and, for simplicity, is assumed piecewise constant on subdomains of Ω.

2.2. Notation and finite elements. We consider a family of partitions Th = {K}
of the domain Ω into the union of nonoverlapping, shape-regular, simplicial elements
such that the nonempty intersection of a distinct pair of elements is a single common
node, single common edge or single common face (in three dimensions). The family
of partitions is assumed to be locally quasi-uniform in the sense that the ratio of
the diameters of any pair of neighboring elements is uniformly bounded above and
below over the whole family. Furthermore, it is assumed that the partitioning is
compatible with the data so that a is constant on each element.

The set of all facets (edges in two dimensions and faces in three dimensions) of
the elements is denoted by Eh, which we partition into subsets E∂h and Eoh consisting
of facets lying on the boundary ∂Ω, and the remaining interior facets, respectively.
Likewise, the corresponding quantities relative to an individual element K are de-

noted by E(K), E∂(K), and Eo(K), respectively. For each facet F ∈ Eh, the set F̃
consists of those elements for which F is a facet,

F̃ = {K ′ ∈ Th : F ∈ E(K ′)},(2)

while, for each element K ∈ Th, the set K̃ consists of those elements having a facet
in common with K,

K̃ = {K ′ ∈ Th : E(K) ∩ E(K ′) is nonempty}.(3)

Let hD denote the diameter of a domain D, |K| denote the measure of an element
K, |F | denote the measure of a facet F , and |∂K| =

∑
F∈E(K) |F | denote the

measure of the boundary of an element K.
Let Σh,k, Vh,k, and Mh,k denote the finite dimensional spaces

Σh,k := {τ ∈ L2(Th)d : τ |K ∈ Pk(K)d ∀K ∈ Th},(4a)

Vh,k := {v ∈ L2(Th) : v|K ∈ Pk(K) ∀K ∈ Th},(4b)

Mh,k := {v̂ ∈ L2(Eh) : v̂|F ∈ Pk(F ) ∀F ∈ Eh},(4c)

where Pk(D) denotes the set of polynomials of degree at most k ≥ 0 on the domain
D. The space of homogeneous polynomials of degree k on a domain D is denoted
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as P̃k(D). We shall also need the subspace M0
h,k ⊂Mh,k given by

M0
h,k := {v̂ ∈Mh,k : v̂|F = 0 ∀F ∈ E∂h}.(4d)

To simplify notation, we introduce the compound finite-dimensional space

Vh,k,δ := Vh,k ×M0
h,k−δ, k ≥ 1, δ ∈ {0, 1},(5)

which is used for the primal HDG scheme, while the compound finite-dimensional
space

Xh,k := Σh,k × Vh,k ×M0
h,k, k ≥ 0,(6)

is used for the mixed HDG scheme.
The stabilization parameters for the HDG schemes will be taken from the space

Mdc
h,0, where, for any nonnegative integer m,

Mdc
h,m := ΠK∈ThPm(∂K),(7)

with Pm(∂K) := {µ ∈ L2(∂K) : µ|F ∈ Pm(F ) ∀F ∈ E(K)}.
We use the standard notation for jumps and averages [12] of functions in Mdc

h,m

and [Mdc
h,m]d on the mesh skeleton Eh: Let F be a facet shared by elements K+ and

K− with unit normal vectors n+ and n− on F pointing exterior to K+ and K−

respectively, then for q ∈Mdc
h,m

{q} =
1

2
(q|K+ + q|K−), [[q]] = q|K+n

+ + q|K−n
− on F ∈ Eoh.(8a)

Similarly, for φ ∈ [Mdc
h,m]d we set

{φ} =
1

2
(φ|K+ + φ|K−), [[φ]] = φ|K+ · n+ + φ|K− · n

− on F ∈ Eoh.(8b)

On a boundary facet F ∈ E∂h , for each q ∈Mdc
h,m we set

{q} = q, [[q]] = qn on F ∈ E∂h .(8c)

We use the notation (·, ·)ω to denote the integral inner product over a region
ω ⊂ Rd, and ‖ · ‖ω to denote the corresponding L2-norm. We omit the subscript
in the case when ω is the physical domain Ω. Finally, for each element K ∈ Th,
we use the notation 〈· , ·〉∂K to denote the integral inner product over the element
boundary ∂K.

3. The primal HDG methods and computable error bounds

3.1. Primal HDG formulation. Let αh ∈ Mdc
h,0 be a positive stabilization pa-

rameter to be specified later, and define the bilinear form Bprh : Vh,k,δ×Vh,k,δ → R
by

Bprh
(
(u, û), (v, v̂)

)
=

∑
K∈Th

{
(a∇u,∇v)K − 〈a∇u · n , v − v̂ 〉∂K(9)

− 〈a∇v · n , u− û〉∂K + 〈αh(PMu− û) , PMv − v̂ 〉∂K
}
,

where PM denotes the L2 projection onto the space Mdc
h,k−δ. We also define the

linear form Lprh : Vh,k,δ → R by

Lprh
(
(v, v̂)

)
=

∑
K∈Th

(f, v)K .(10)
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Let u be the solution of (1). An approximation of (u, u|Eh) is obtained by seeking

(uh, ûh) ∈ Vh,k,δ such that

Bprh
(
(uh, ûh), (vh, v̂h)

)
= Lprh

(
(vh, v̂h)

)
∀(vh, v̂h) ∈ Vh,k,δ.(11)

This scheme is known as the hybridized, symmetric, interior penalty discontinuous
Galerkin method [41].

3.2. The choice of the stabilization parameter αh. It is well-known [41] that
(11) is well-posed provided the stabilization parameter is “sufficiently large”. The
following result quantifies exactly how large αh must be; similar results for interior
penalty discontinuous Galerkin methods can be found in [2, 9–11,32,48].

Lemma 1. Suppose the stabilization parameter αh is given by

αh|F =
a|K γ
|F |

∑
F ′∈E(K)

|F ′|2

|K|
for all F ∈ E(K), for all K ∈ Th,(12)

where γ is a constant satisfying

γ >
k(k + d− 1)

d
.(13)

Then (11) has a unique solution (uh, ûh) ∈ Vh,k,δ for k ≥ 1 and δ ∈ {0, 1}.

The proof of this and other results in this section is postponed to Section 6.

Remark 1. Observe that the stabilization parameter (12) on a facet F is propor-
tional to h−1

F , which gives an optimal order a priori convergence rate O(hk) in the
energy norm [41, 44].

3.3. The broken energy seminorm and the HDG energy norm. For a given
function (v, v̂) ∈ Vh,k,δ + (H1(Ω) × L2(Eh)), let the broken energy seminorm |||·|||
be denoted by

|||(v, v̂)|||pr =

( ∑
K∈Th

(a∇v,∇v)K

)1/2

.(14)

Our objective is to derive a fully computable estimator for the error in the HDG
finite-element approximation (eu, êu) = (u− uh, u|Eh − ûh), where u is the solution

to (1) and (uh, ûh) is the solution to (11). Let the HDG energy norm |||·|||HDG,pr
be denoted by

|||(v, v̂)|||HDG,pr =

(
|||(v, v̂)|||2pr +

∑
K∈Th

〈αhPM (v − v̂) , PM (v − v̂)〉∂K

)1/2

.(15)

Observe that, since PM (eu − êu) = −PM (uh − ûh), the quantity∑
K∈Th

〈αhPM (eu − êu) , PM (eu − êu)〉∂K(16)

is directly computable in terms of the HDG approximation (uh, ûh). Hence, given
a constant free estimator for |||(eu, êu)|||pr, we automatically have a constant free
estimator for the HDG energy norm of the error as well. The next result shows
that, by analogy with the standard interior penalty methods [2, 10], these norms
are equivalent in the following sense.
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Lemma 2. Let the stabilization parameter be given by (12) with the global constant
γ satisfying (13), then the HDG energy norm and the broken energy seminorm of
the error (eu, êu) = (u− uh, u|Eh − ûh) are equivalent. That is to say,

|||(eu, êu)|||pr ≤ |||(eu, êu)|||HDG,pr,(17)

and there exists a positive constant c, depending only on the shape-regularity of the
mesh, the polynomial degree k, and the local permeability ratio between neighboring
elements, such that

c|||(eu, êu)|||2HDG,pr ≤ |||(eu, êu)|||2pr +
∑
K∈Th

osc2k−1(f,K).(18)

where the data oscillation on an element K ∈ Th is defined to be

oscm(f,K) = a−1/2hK inf
p∈Pm

‖f − p‖K .(19)

The proof of this result is postponed to Section 6.

3.4. Local conservation. The numerical flux is defined by

σ̂h,pr := a∇uh − αh(PMuh − ûh)n ∈ [Mdc
h,k−δ]

d

and satisfies the local conservation property

(f, 1)K + 〈σ̂h,pr · n , 1〉∂K = 0 for each element K ∈ Th,(20)

along with

[[σ̂h,pr]]|F = 0 on each interior facet F ∈ Eoh.(21)

These results are a straightforward consequence of the definition and (11).

3.5. The computable error bounds. We obtain computable error bounds for the
discrete energy norm of the error by bounding the conforming and non-conforming
errors separately [2,4,10]. To this end, two types of post-processing scheme will be
needed.

3.5.1. Local (equilibrated) flux post-processing. We define a local flux post-processing
[2, 9] as follows: Let σ∗h ∈ Σh,k be such that, on each element K, there holds

(∇·σ∗h, v)K = − (f, v)K ∀ v ∈ Pk−1(K) and (v, 1)K = 0,(22a)

〈σ∗h · n , v̂〉∂K = 〈σ̂h,pr · n , v̂〉F ∀ v̂ ∈ Pk(F ), ∀F ∈ E(K),(22b)

(σ∗h, τ )K = (a∇uh, τ )K ∀ τ ∈ Σk,sbb(K),(22c)

where

Σk,sbb(K) := {τ ∈ Pk(K)d : ∇·τ = 0, τ · n|F = 0 for all F ∈ E(K)}(23)

denotes the divergence-free “bubble” space. The unique solvability of (22) can
be established using arguments similar to those used to study the closely related
Brezzi-Douglas-Marini (BDM) projection [13]. By the local conservation properties
(20) and (21), we conclude that σ∗h ∈ Σh,k ∩H(div; Ω) satisfies

∇·σ∗h = −Πk−1f on Th, and σ∗h · n = σ̂h,pr · n on ∂Th.(24)

The quantity σ∗h is usually referred to as an equilibrated flux [7].
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3.5.2. Local potential post-processing. We obtain a globally continuous potential by
a simple averaging [2, 10] of the discontinuous potential uh as follows: Let NK,k
index a set of points {xm}m∈NK,k

on K associated with a Lagrange basis for the
conforming finite-element space of order k on Th and let N o

K,k denote the restriction
of the set NK,k to the points that do not lie on the boundary of element K, with
Nγ,k being its complementary set. Let N∂

γ,k denote the restriction of the set Nγ,k
to the points that lie on the closure of the boundary ∂Ω. For m ∈ Nγ,k, let Ωm
denote the set of elements in Th whose closure contains the point xm.

The post-processed potential u∗h ∈ Vh,k ∩ H1(Ω) is obtained through a simple
averaging of the degrees of freedom for uh: for all elements K ∈ Th, u∗h|K =
Sk(uh)|K ∈ Pk(K), where the nodal values are given by

Sk(uh)(xm) =


0 if m ∈ N ∂

γ,k,

uh(xm) if m ∈ N o
K,k,

1
#Ωm

∑
K′∈Ωm

uh|K′(xm) if m ∈ Nγ,k\N ∂
γ,k,

(25)

and #Ωm denotes the number of elements of Th contained in the patch Ωm.

3.5.3. Computable error bounds. The foregoing developments show that each of the
quantities

ηCF,K = ‖a−1/2(σ∗h − a∇uh)‖K +
hK
π
a|−1/2
K ‖f −Πk−1f‖K ,(26a)

ηNC,K = ‖a1/2∇(uh − u∗h)‖K(26b)

can be computed directly from the primal HDG approximation using purely lo-
cal computations. The next result shows that together these quantities provide
a computable, constant-free, upper bound on the broken energy seminorm of the
error:

Theorem 1. Let ηCF,K and ηNC,K be defined as in (26), and let the stabilization
parameter αh be of the form (12) where γ satisfies (13). Then

|||(eu, êu)|||2pr ≤ η
2 =

∑
K∈Th

(η2
CF,K + η2

NC,K).(27)

Moreover, there exists a positive constant c, depending only on the shape-regularity
of the mesh, the polynomial degree k, and the local permeability ratio between neigh-
boring elements, such that

c
∑
K∈Th

(η2
CF,K + η2

NC,K) ≤ |||(eu, êu)|||2pr +
∑
K∈Th

osc2k−1(f,K).(28)

Furthermore,

|||(eu, êu)|||2HDG,pr ≤ η
2
HDG = η2 +

∑
K∈Th

〈αh(PMuh − ûh) , PMuh − ûh〉∂K ,

and

c η2
HDG ≤ |||(eu, êu)|||2HDG,pr +

∑
K∈Th

osc2k−1(f,K).

where c is as above.
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The proof of this result is similar to [2, Theorem 2] and an outline of the main
steps is given in Section 6 below. Numerical examples illustrating the bounds in
practice are given in Section 5.

4. The mixed HDG methods and computable error bounds

4.1. The mixed HDG formulation. Whereas the primal HDG method gives an
approximation for (u, u|Eh), the mixed HDG method seeks, in addition, to approx-

imate the flux (a∇u, u, u|Eh).

Let αh ∈ Md.c.
h,0 be a positive stabilization parameter to be specified later, and

define the bilinear form Bmxh : Xh,k × Xh,k → R by

Bmxh
(
(σ, u, û), (τ , v, v̂)

)
=

∑
K∈Th

{
(a−1 σ, τ )K + (u,∇·τ )K − 〈û , τ · n〉∂K(29)

+ (σ,∇v)K − 〈σ · n− αh(u− û) , v − v̂ 〉∂K
}
,

along with the linear form Lmxh : Xh,k → R by

Lmxh
(
(τ , v, v̂)

)
=

∑
K∈Th

(f, v)K .(30)

An approximation of the true solution (a∇u, u, u|Eh) is obtained by seeking

(σh, uh, ûh) ∈ Xh,k such that

Bmxh
(
(σh, uh, ûh), (τh, vh, v̂h)

)
= Lmxh

(
(τh, vh, v̂h)

)
∀(τh, vh, v̂h) ∈ Xh,k.(31)

This scheme was originally termed the local discontinuous Galerkin-hybridizable
method (LDG-H) [22] but is referred to here as the mixed HDG approximation.

4.2. The choice of the stabilization parameter αh. The mixed HDG scheme
enjoys greater stability properties than the primal HDG scheme as the stabilization
parameter αh need only be (partially) positive in order for the scheme to be well-
posed as the following result [22, Proposition 3.2] shows.

Lemma 3. If the nonnegative stabilization parameter αh is chosen such that αh > 0
on at least one facet F ∈ E(K) for every element K, then there exists a unique
solution (σh, uh, ûh) ∈ Xh,k for k ≥ 0.

Remark 2 (Stabilization parameter). The two most common choices of stabiliza-
tion parameter used in practice are:

• uniform stabilization

αh|F = a|K for all F ∈ E(K), for all K ∈ Th,(32a)

• single-facet stabilization

αh|F =

{
a|K if F = F ∗K
0 if F 6= F ∗K

for all F ∈ E(K), for all K ∈ Th,(32b)

where F ∗K is an arbitrarily chosen but fixed facet of K.

Each of the above choices of stabilization parameters results in an optimal a
priori convergence rate O(hk+1) of the error in the energy norm [23].
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4.2.1. The broken energy seminorm and the HDG energy seminorm. For a given
function (τ , v, v̂) ∈ Xh,k,δ + (H(div; Ω) × H1(Ω) × L2(Eh)), let the broken energy
seminorm |||·|||mx be denoted by

|||(τ , v, v̂)|||mx =

( ∑
K∈Th

(a−1τ , τ )K

)1/2

,(33)

and let the mixed HDG energy seminorm |||·|||HDG,mx be denoted by

|||(τ , v, v̂)|||HDG,mx =

(
|||(τ , v, v̂)|||2mx +

∑
K∈Th

hK〈αh(v − v̂) , (v − v̂)〉∂K

)1/2

.(34)

The error in the mixed HDG finite-element approximation is denoted by (eσ, eu, êu) =
(σ−σh, u−uh, u|Eh− ûh), where (σ, u) is the solution to (1) and (σh, uh, ûh) is the

solution to (31). Similarly to the primal HDG case, we have eu − êu = −(uh − ûh)
and hence the quantity ∑

K∈Th

hK〈αh(eu − êu) , (eu − êu)〉∂K

can be evaluated directly given the mixed HDG approximation. Consequently,
given a constant free estimator for the broken energy seminorm of the error, we
automatically have a constant free estimator for the HDG energy seminorm of the
error as well. The next result shows that, by analogy with the primal HDG case,
the HDG energy seminorm of the error is equivalent to the broken energy seminorm
when the single-facet stabilization (32b) is used.

However, the equivalence fails to hold if the uniform stabilization (32a) is em-
ployed. For instance, in the case of lowest order (k = 0) approximation, the
discrete energy norm (plus the data oscillation) cannot control the jump term∑
K∈Th hK〈αh(uh−ûh) , (uh−ûh)〉∂K , as shown by the counterexample constructed

in [24, Section 2.4.1]. The situation for general k ∈ N remains an open problem at
this time.

Lemma 4. Let the stabilization parameter αh given by (32b), then the HDG energy
seminorm and the broken energy seminorm of the error (eσ, eu, êu) = (σ−σh, u−
uh, u|Eh − ûh) are equivalent in the sense that

|||(eσ, eu, êu)|||mx ≤ |||(eσ, eu, êu)|||HDG,mx,(35)

and there exists a positive constant c, depending only on the shape-regularity of the
mesh and the polynomial degree k, such that

c|||(eσ, eu, êu)|||2HDG,mx ≤ |||(eσ, eu, êu)|||2mx +
∑
K∈Th

osc2k(f,K).(36)

Proof. The result follows at once from Lemma 7 in Section 6 below. �

4.3. Local conservation. Similarly to the primal HDG scheme (11), the mixed
HDG scheme (31) is locally conservative but this time in the sense that the numer-
ical flux

σ̂h,mx := σh − αh(uh − ûh)n ∈ [Mdc
h,k]d

satisfies

(f, 1)K + 〈σ̂h,mx · n , 1〉∂K = 0 for each element K ∈ Th,(37)
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along with

[[σ̂h,mx]]|F = 0 on each interior facet F ∈ Eoh.(38)

4.4. The computable error bounds. We are now in a position to present com-
putable error bounds for the discrete energy error. While the basic approach is mo-
tivated by the technique used in [3,5,27] for the mixed methods, the post-processing
technique needed for the mixed HDG case is quite different.

4.4.1. Local (equilibrated) flux post-processing. Let σ∗h ∈ Σh,k+1 satisfy the follow-
ing conditions, on each element K:

(∇·σ∗h, v)K = − (f, v)K ∀ v ∈ Pk(K) and (v, 1)K = 0,(39a)

〈σ∗h · n , v̂〉∂K = 〈σ̂h,mx · n , v̂〉F ∀ v̂ ∈ Pk+1(F ), ∀F ∈ E(K),(39b)

(σ∗h, τ )K = (σh, τ )K ∀ τ ∈ Σk+1,sbb,(39c)

where the divergence-free “bubble” space Σk+1,sbb is defined as in (23). Thanks to
the local conservation properties (20) and (21), we conclude that σ∗h ∈ Σh,k+1 ∩
H(div; Ω) satisfies

∇·σ∗h = −Πkf on Th, and σ∗h · n = σ̂h,mx · n on ∂Th.(40)

4.4.2. Local potential post-processing. A global continuous potential is constructed
by averaging a higher order discontinuous approximation to the potential. However,
the averaging scheme is more involved than the one used in the primal case: Firstly,

we find u∗,dc
h ∈ Vh,k+1 so that, on each element K, there holds

(a∇u∗,dc
h ,∇v)K = (σh,∇v)K ∀ v ∈ Pk+1(K),(41a)

(u∗,dc
h , 1)K = (uh, 1)K ,(41b)

The continuous potential post-processing u∗h = Sk+1(u∗,dc
h ) ∈ Vh,k+1 ∩H1(Ω) is

then a simple averaging of the degrees of freedom for u∗,dc
h , where Sk+1(·) is defined

as in (25).

4.4.3. Computable error bounds. Each of the quantities

ηCF,K = ‖a−1/2(σ∗h − σh)‖K +
hK
π
a|−1/2
K ‖f −Πkf‖K ,(42a)

ηNC,K = ‖a−1/2(σh − a∇u∗h)‖K ,(42b)

can be computed directly from the mixed HDG approximation using only local
computations. These quantities provide computable, constant-free, upper bounds
on the the broken energy seminorm of the error (eσ, eu, êu):

Theorem 2. Let ηCF,K and ηNC,K be defined as in (26), with the stabilization
parameter αh chosen to be either (32a) or (32b). Then

|||(eσ, eu, êu)|||2mx ≤ η
2 =

∑
K∈Th

(η2
CF,K + η2

NC,K).(43)
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Moreover, there exists a positive constant c, depending only on the shape-regularity
of the mesh, the polynomial degree k, and the local permeability ratio between neigh-
boring elements, such that

c
∑
K∈Th

(η2
CF,K + η2

NC,K) ≤ |||(eσ, eu, êu)|||2mx

+
∑
K∈Th

(
hK〈αh(uh − ûh) , uh − ûh〉∂K\F∗K + osc2k(f,K)

)
,(44)

where F ∗K is an arbitrary but fixed facet of K. Furthermore,

|||(eσ, eu, êu)|||2HDG,mx ≤ η
2
HDG = η2 +

∑
K∈Th

hK〈αh(uh − ûh) , uh − ûh〉∂K

with

c η2
HDG ≤ |||(eu, êu)|||2HDG,mx +

∑
K∈Th

osc2k(f,K).

The proof of Theorem 2 is presented in Section 6.

Remark 3 (Single-facet stabilization). If the stabilization parameter is chosen as
in (32b), then we can take F ∗K ∈ E(K) in (43) to be the unique facet on which αh
is non-zero which implies that∑

K∈Th

hK〈αh(uh − ûh) , uh − ûh〉∂K\F∗K = 0.

Consequently, for the choice (32b), the estimator η2 also gives a lower bound for
the broken energy seminorm.

5. Numerical examples

In order to illustrate the results in Theorem 1–2, we consider Poisson prob-
lems in two and three dimensions approximated using the primal and mixed HDG
schemes (11) and (31). The implementation is performed using the Python in-
terface of the NGSolve software [46, 47]. Conveniently, NGSolve provides a set of
basis functions for the divergence-free bubble space Σk,sbb (23) [45] which makes
the implementation of the equilibrated flux reconstructions (22) and (39) relatively
straightforward.

We choose the stabilization parameter for the primal HDG schemes (11) to be

αh|F = 10k2h−1
F ∀F ∈ Eh

which, thanks to Lemma 1, ensures well-posedness on shape-regular meshes. We
adopt a shorthand notation and denote the primal HDG scheme (11) used in con-
junction with the approximation space Vh,k,0 as pr-Pk, while if with the approx-
imation space Vh,k,1 used we use the notation: pr-Pred

k . Likewise, we denote the
mixed HDG scheme (31) used in conjunction with uniform stabilization (32a) as
mx-Pk-U, while if the single-facet stabilization (32b) is used, we write mx-Pk-S. In
all cases we use static condensation whereby the local, cell-wise, degrees of freedom
are eliminated leaving only those degrees of freedom which are located on the mesh
skeleton.

We take polynomial degree k ∈ {1, 2, 3, 4} for the first example, and k ∈ {1, 2, 3}
for the second example.
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5.1. Example 1: Two-dimensional L-shaped problem. Here we consider the
Laplace problem on a planar L-shaped domain Ω2D = (−1, 1) × (0, 1) ∪ (−1, 0) ×
(−1, 0] with Dirichlet boundary conditions. The initial mesh is shown in Fig. 1(A).
The true solution is given by u(r, θ) = r2/3 sin(2θ/3) in polar coordinates.

(a) Example 1 (b) Example 2

Figure 1. Initial meshes used in numerical examples.

The sequence of meshes was constructed by selecting for refinement the small-
est number of elements whose combined contribution toward the estimator of the
broken energy seminorm of the error exceeds half of the total estimated error. A
sample of the meshes for the pr-Pk scheme with k = 1 and k = 4 is shown in Fig.
2.

Figure 2. The 4th, 9th and 13th meshes obtained performing
adaptive refinement for Example 1. Top: pr-Pk scheme with k = 1;
Bottom: pr-Pk scheme with k = 4.

In Fig. 3, we plot the error for the primal scheme in the broken energy seminorm
(14) against the total number of degrees of freedom dimVh,k,δ and the number of
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global degrees of freedom, dimM0
h,k−δ, remaining after local variables have been

eliminated. The error in the broken energy seminorm (33) for the mixed HDG
schemes is shown in Fig. 4. In all cases, the effectivity indices are found to lie in

Figure 3. Convergence history of the broken energy seminorm
error for primal HDG schemes. Left: error against total number
of DOFs; Right: error against number of global skeleton DOFs.

Figure 4. Convergence history of the broken energy seminorm
error for mixed HDG schemes. Left: error against total number of
DOFs; Right: error against number of global skeleton DOFs.

the range 1.0–3.0 as shown in Fig 5.
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Figure 5. History of effectivity indices η/error. Left: primal
HDG schemes; Right: mixed HDG schemes.

5.2. Example 2: Three-dimensional L-shaped problem. Here we consider
the Laplace problem on a three-dimensional L-shaped domain Ω3D = Ω2D×(0, 0.5),
where Ω2D is the two-dimensional L-shaped domain in the previous example. The
initial mesh is shown in Fig. 1(B). The true solution is independent of z, and
reduces to the same two-dimensional solution as Example 1. However, the fact
that the true solution is independent of z is not used in the finite element analysis
and the meshes are unstructured through the thickness.

A sample of the meshes obtained for adaptive solution using the pr-Pk scheme
with k = 1 and k = 3 is shown in Fig. 6. The errors for the primal and mixed HDG
schemes are plotted in Fig. 7 and Fig. 8, respectively. As before, the effectivity
indices are found to vary in the range 1.0–3.0 as shown in Fig. 9.

6. Proofs

We now turn to the proofs of the results.
As remarked earlier, the jump term in the HDG energy (semi)norm is directly

computable, and, as such, we need only concern ourselves with obtaining estimates
for the broken energy seminorm of the error. To this end, recall the following
Helmholtz decomposition [28,36]:

Lemma 5. Let Ω be a simply connected polygon/polyhedron. Then, any τ ∈
L2(Ω)d, d ∈ {2, 3}, can be written in the form

τ = a∇φ+∇×ψ,(45)

where φ ∈ H1
0 (Ω) satisfies

(a∇φ,∇v) = (τ ,∇v) ∀v ∈ H1
0 (Ω).(46)

and ψ ∈ H1(Ω)2d−3 satisfies

(a−1∇×ψ,∇×ψ) = (a−1τ ,∇×ψ).(47)
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Figure 6. The 4th and 7th adaptively refined meshes for Example
2. Top: pr-Pk scheme with k = 1; Bottom: pr-Pk scheme with
k = 3.

Figure 7. Convergence history of the broken energy seminorm
error for primal HDG schemes. Left: error against total number
of DOFs; Right: error against number of global DOFs.

Moreover, the decomposition is orthogonal

‖a−1/2τ‖2 = ‖a1/2∇φ‖2 + ‖a−1/2∇×ψ‖2.(48)



POSTERIORI HDG 15

Figure 8. Convergence history of the broken energy seminorm
error for mixed HDG schemes. Left: error against total number of
DOFs; Right: error against number of global DOFs.

Figure 9. History of effectivity indices η/error. Left: primal
HDG schemes; Right: mixed HDG schemes.

We shall use the decomposition (45) in conjunction with τ defined elementwise
by a∇u − a∇uh for the primal HDG scheme (11), or by a∇u − σh for the mixed
HDG scheme (31). In both cases, Lemma 5 gives an orthogonal decomposition of
the broken energy seminorm error into the sum of a conforming part ‖a1/2∇φ‖2
and a nonconforming part ‖a−1/2∇×ψ‖2. It then suffices to obtain an a posteriori
error bound for each part separately and sum to obtain an estimator for the total
error.
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6.1. Proof of Theorem 1. The proof of Theorem 1 follows from [10] for the sym-
metric interior penalty discontinuous Galerkin methods almost verbatim. Specifi-
cally, the upper bound (27) in Theorem 1 follows from (49a) and (49b) below, and
the lower bound (28) follows from Lemma 2, (49c) and (49d).

The following estimates follows from results in [10, Lemma 6.2-6.5] using the
proof in [9, Section 6]. Let φ and ψ be taken as in (45) in the case where τ =
a∇u− a∇uh, and let ηCF,K and ηNC,K be given by (26). Then,

‖a1/2∇φ‖2 ≤
∑
K∈Th

η2
CF,K ,(49a)

‖a−1/2∇×ψ‖2 ≤
∑
K∈Th

η2
NC,K .(49b)

Moreover, there exists a positive constant c, depending only on the shape-regularity
of the mesh and the polynomial degree k, such that

c η2
CF,K ≤ a h−1

K ‖PM (uh − ûh)‖2∂K
+ ‖a1/2∇φ‖2K + osc2k−1(f,K),(49c)

c η2
NC,K ≤

∑
F∈ẼK

a h−1
F ‖ [[uh]]‖2F ,(49d)

where ẼK = {F ∈ ∂Th : F ∩K is nonempty }.

6.2. Proof of Theorem 2. Theorem 2 is a consequence of the following three
lemmas:

Lemma 6. Let φ and ψ be given by in the decomposition (45), where τ is chosen
to be τ = a∇u− σh, and let ηCF,K and ηNC,K be given by (42). Then,

‖a1/2∇φ‖2 ≤
∑
K∈Th

η2
CF,K ,(50a)

‖a−1/2∇×ψ‖2 ≤
∑
K∈Th

η2
NC,K .(50b)

Moreover, there exists a positive constant c, depending only on the shape-regularity
of the mesh and the polynomial degree k, such that

c η2
CF,K ≤ hK〈αh(uh − ûh) , uh − ûh〉∂K

+ ‖a1/2∇φ‖2K + osc2k(f,K),(50c)

c η2
NC,K ≤ a|K

‖∇u∗,dc
h − a−1σh‖2K +

∑
F∈ẼK

h−1
F

∥∥∥ [[u∗,dc
h ]]

∥∥∥2

F

 ,(50d)

where ẼK = {F ∈ ∂Th : F ∩K is nonempty }.
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Proof. Direct computation gives

‖a1/2∇φ‖2 = (a∇u− σh,∇φ)

= (f, φ)− (σh,∇φ) (integration by parts)

= (f −Πkf, φ) + (Πkf, φ)

+
∑
K∈Th

〈σ̂h,mx · n , φ〉∂K − (σh,∇φ) (conservation (38))

= (f −Πkf, φ) + (σ∗h − σh,∇φ) (equilibration (40))

≤ ηCF,K‖a1/2∇φ‖,

where the last inequality follows from the Cauchy-Schwarz and the Poincaré inequal-
ities. This completes the proof of (50a). Turning to (50b), since (∇v,∇×ψ) = 0
for all v ∈ H1

0 (Ω), we have

‖a−1/2∇×ψ‖2 = (∇u− a−1σh,∇×ψ) = (∇u∗h − a−1σh,∇×ψ)

≤ ηNC,K‖a−1/2∇×ψ‖.

Let ρh = σ∗h−σh, then for all K ∈ Th, by (39), we have ρh ∈ Pk+1(K)d satisfies

(∇·ρh, v)K = − (f +∇·σh, v)K ∀ v ∈ Pk(K) and (v, 1)K = 0,

〈ρh · n , v̂〉∂K = − 〈αh(uh − ûh) , v̂〉F ∀ v̂ ∈ Pk+1(F ), ∀F ∈ E(K),

(ρh, τ )K = 0 ∀ τ ∈ Σk+1,sbb.

Hence, there exists a constant c, depending only on the polynomial degree k and
shape-regularity of the element K, such that

c‖ρh‖2K ≤ h2
K‖f +∇·σh‖2K + hK‖αh(uh − ûh)‖2∂K ,(51)

while, using a standard bubble function technique [7, 50], we have

c h2
K‖f +∇·σh‖2K ≤ ‖a∇φ‖2K + a|K osc2k(f,K).(52)

The choice of stabilization parameter (32) means that

‖αh(uh − ûh)‖2∂K = a|K ‖α
1/2
h (uh − ûh)‖2∂K ,

and the proof of (50c) follows from these estimates.
Finally, we have

‖∇u∗h − a−1σh‖2K ≤ 2(‖∇u∗h −∇u
∗,dc
h ‖2K + ‖∇u∗,dc

h − a−1σh‖2K),

‖∇u∗h −∇u
∗,dc
h ‖2K ≤ c

∑
F∈ẼK

h−1
F

∥∥∥ [[u∗,dc
h ]]

∥∥∥2

F
.

Combining the above estimates completes the proof of (50d). �

Lemma 7. There exists a positive constant c, depending only on the shape-regularity
of the mesh and the polynomial degree k, such that for any facet F ∈ E(K),

chK‖α1/2
h (uh − ûh)‖2F ≤ hK‖α

1/2
h (uh − ûh)‖2∂K\F

+ ‖a1/2∇φ‖2K + osc2k(f,K).(53)
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Proof. The mixed HDG scheme (31) satisfies, for every K ∈ Th,

〈αh(uh − ûh) , v〉∂K = (f +∇·σh, v)K for all v ∈ Pk(K).(54)

Let the function z ∈ Pk(K) satisfy

(z, w)K = 0 for all w ∈ Pk−1(K),

〈z , ŵ〉F∗ = 〈αh(uh − ûh) , ŵ〉F∗ for all w ∈ Pk(F ∗),

where F ∗ is a fixed facet of K. We have, by a standard scaling argument,

‖z‖K ≤ c h1/2
K ‖αh(uh − ûh)‖F∗ .

Taking v = z in (54) and rearranging terms, we obtain

‖αh(uh − ûh)‖2F∗ = (f +∇·σh, z)K + 〈αh(uh − ûh) , z〉∂K\F∗

≤ c
(
‖f +∇·σh‖K + h

−1/2
K ‖αh(uh − ûh)‖∂K\F∗

)
‖z‖K

≤ c
(
h

1/2
K ‖f +∇·σh‖K + ‖αh(uh − ûh)‖∂K\F∗

)
‖αh(uh − ûh)‖F∗

The proof is completed by invoking estimate (52) for the cell-wise residual term
f +∇·σh. �

Lemma 8. There exists a positive constant c, depending only on the shape-regularity
of the mesh and the polynomial degree k, such that

c‖∇u∗,dc
h − a−1σh‖2K ≤ ‖∇u− a−1σh‖2K ,(55)

ch−1
F

∥∥∥ [[u∗,dc
h ]]

∥∥∥2

F
≤
∑
K′∈F̃

‖∇u− a−1σh‖2K′ .(56)

Proof. We first prove the estimate (55). We denote ρh = ∇u∗,dc
h − a−1σh and let

the function ρ∗h ∈ Pk+1(K)d ⊕ xP̃k+1(K) be defined as follows:

〈ρ∗h · n , v̂〉F = 0 ∀ v̂ ∈ Pk+1(F ), ∀F ∈ E(K),(57a)

(ρ∗h,v)K = (ρh,v)K ∀v ∈ Pk(K)d,(57b)

then, we have

c‖ρ∗h‖K ≤ ‖ρh‖K .(58)

Moreover, by equations (41a) and (57), we have

(∇·ρ∗h, v)K = −(ρ∗h,∇v)K = −(ρh,∇v)K = 0 for all v ∈ Pk+1(K).

This implies that ∇·ρ∗h = 0 because ∇·ρ∗h ∈ Pk+1(K). Since ρ∗h has vanishing
normal trace on ∂K by equations (57a), we obtain

(ρ∗h,∇v)K = 0 for all v ∈ H1(K).

Hence,

‖ρh‖2K = (ρ∗h,ρh)K = (ρ∗h,∇u
∗,dc
h − a−1σh)K = (ρ∗h,∇u− a−1σh)K

The estimate (55) now follows from the Cauchy-Schwarz inequality.
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Let PM0
be the L2-projection onto the space P0(F ). Applying the results in [27,

Lemma 3.4-3.5], we obtain

h−1
F

∥∥∥ [[u∗,dc
h ]]

∥∥∥2

F
= h−1

F

∥∥∥PM0 [[u∗,dc
h ]]

∥∥∥2

F
+ h−1

F

∥∥∥(Id− PM0) [[u∗,dc
h ]]

∥∥∥2

F

≤ c
∑
K∈F̃

(‖a−1σh −∇u∗,dc
h ‖2K + ‖∇u−∇u∗,dc

h ‖2K).

The estimate (56) now immediately follows from the triangle inequality and (55).
�

6.3. Proof of Lemma 1. Since Vh,k,δ is a finite-dimensional space, it suffices to
show that (uh, ûh) = (0, 0) is the only solution to the homogeneous problem. Let

Ck,K :=
∑

F ′∈E(K)

|F ′|2

|K|
, and Dk,K :=

k(k + d− 1)

d
Ck,K ,

then for (vh, v̂h) ∈ Vh,k,δ, we have

Bprh
(
(vh, v̂h), (vh, v̂h)

)
=

∑
K∈Th

{
(a∇vh,∇vh)K − 2〈a∇vh · n , vh − v̂h 〉∂K

+ 〈a γ Ck,K
|F |

(PMvh − v̂h) , PMvh − v̂h 〉∂K
}
,

Since a∇vh · n|F ∈ Pk−1(F ), there holds

〈a∇vh · n , vh − v̂h 〉∂K = 〈a∇vh · n , PMvh − v̂h 〉∂K .
By the Cauchy-Schwarz and Young’s inequalities, for any ε > 0,

2〈a∇vh · n , vh − v̂h 〉F ≤
|F |
a ε
‖a∇vh · n‖2F +

a ε

|F |
‖PMvh − v̂h‖2F

≤ |F |
a ε

k(k + d− 1)

d

|F |
|K|
‖a∇vh‖2K +

a ε

|F |
‖PMvh − v̂h‖2F

where, the final inequality holds thanks to the inverse-trace inequality [52] and
a∇u|K ∈ Pk−1(K)d. Summing the above inequality over F ∈ E(K) gives

2〈a∇vh · n , vh − v̂h 〉∂K ≤
Dk,K

ε
‖a1/2∇vh‖2K +

∑
F∈E(K)

a ε

|F |
‖PMvh − v̂h‖2F .

Hence, we have

Bprh
(
(vh, v̂h), (vh, v̂h)

)
≥

∑
K∈Th

(
1− Dk,K

ε
‖a1/2∇vh‖2K

+
∑

F∈E(K)

a (γ Ck,K − ε)
|F |

‖PMvh − v̂h‖2F
)
.

Finally, if γ satisfies (13) then there exists an ε such that

γ Ck,K > ε > Dk,K .

Consequently, when the right hand side of (11) vanishes, ‖∇vh‖K = 0 for all
K ∈ Th and ‖PMvh − v̂h‖F = 0 for all F ∈ Eh. Hence, the only solution to
the homogeneous problem is (vh, v̂h) = (0, 0), and therefore there exists a unique
solution (uh, ûh) ∈ Vh,k,δ to (11).
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6.4. Proof of Lemma 2. The proof follows that of [2, Theorem 3].
By the conservation property (21), we have

ûh|F =

{
0 if F ∈ E∂h ,

{αh PMuh}
{αh} − 1

2 {αh} [[a∇uh]] if F ∈ Eoh.
(59)

Hence,

PMuh − ûh|F =

{
PMuh if F ∈ E∂h ,

[[PMuh]]·n
2αh {1/αh} + 1

2 {αh} [[a∇uh]] if F ∈ Eoh.

Inserting the above expression into the jump term in the HDG energy norm and
regrouping gives∑
K∈Th

〈αhPM (uh − ûh) , PM (uh − ûh)〉∂K

=
∑
F∈Eoh

(
〈 1

2 {1/αh}
[[PMuh]] , [[PMuh]]〉F + 〈 1

2 {αh}
[[a∇uh]] , [[a∇uh]]〉F

)
+
∑
F∈E∂h

〈αh [[PMuh]] , [[PMuh]]〉F

Here, the gradient jump term can be controlled by the standard bubble function
technique [7, 50]

c
∑
F∈Eoh

hF ‖ [[a∇uh]]‖2F ≤ |||(eu, êu)|||2pr +
∑
K∈Th

osc2k−1(f,K).

On the other hand, there holds

‖ [[PMuh]]‖2F = |F |( [[PMuh]])2 + ‖ [[PMuh]]− [[PMuh]]‖2F ,

where [[PMuh]] denote the average value of [[PMuh]] on the facet F . Thanks to the
trace and Poincaré inequalites, we have

ch−1
F ‖ [[PMuh]]− [[PMuh]]‖2F ≤

∑
K′∈F̃

‖∇u−∇uh‖2K′ .

Hence, to show norm equivalence, it remains to show that the term∑
F∈Eh

|F |
hF

( [[PMuh]])2

can be controlled by the discrete energy seminorm plus the data oscillation. Re-
placing ûh in the primal HDG scheme (11) with the expression (59), we obtain

0 = (f −∇·a∇uh, vh)K

−
∑

F∈Eo(K)

〈 [[PMuh]] · n
2αh {1/αh}

+
1

2 {αh}
[[a∇uh]] , a∇vh · n− αh PMvh〉F

−
∑

F∈E∂(K)

〈PMuh , a∇vh · n− αh PMvh〉F(60)
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for all vh ∈ Vh,k and K ∈ Th. Moreover, there holds [49]

(d+ 1)2ρ(SK) ≤
∑

F ′∈E(K)

|F ′|2

|K|
,

where SK is the element stiffness matrix, i.e. Sij = (∇λi,∇λj)K with {λ`}d+1
`=1

being the barycentric coordinates for the element K, and ρ(SK) is its spectral
radius. Hence the stabilization parameter αh in (12), with γ satisfying (13), satisfies

αh|F >
a|K
|F |

(d+ 1)2ρ(SK), ∀F ∈ E(K).

The proof is then concluded following [2, Theorem 3] by taking special linear test
functions in the equation (60) and using the above estimate for the stabilization
parameter.
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