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Abstract A smoothness-increasing accuracy conserving filtering approach to the regulariza-
tion of discontinuities is presented for single domain spectral collocation approximations of
hyperbolic conservation laws. The filter is based on convolution of a polynomial kernel that
approximates a delta-sequence. The kernel combines a kth order smoothnesswith an arbitrary
number of m zero moments. The zero moments ensure a mth order accurate approximation
of the delta-sequence to the delta function. Through exact quadrature the projection error of
the polynomial kernel on the spectral basis is ensured to be less than the moment error. A
number of test cases on the advection equation, Burger’s equation and Euler equations in 1D
and 2D show that the filter regularizes discontinuities while preserving high-order resolution
away from a discontinuity.

Keywords Shock capturing · Hyperbolic conservation laws · Regularization · Dirac-Delta ·
Chebyshev collocation · Filtering

1 Introduction

Shock capturing with high-order spectral methods is well known to be plagued by Gibbs
phenomena in the solution. Nonlinear polynomial reconstruction schemes such as the non-
linear weighted essentially non-oscillatory (WENO) finite difference schemes on a uniformly
spaced grid that have been very successful [1] do not extend well to global polynomial based
Chebyshev andLegendre collocation (spectral)methods. Since spectralmethods rely on high-
order global basis functions, slope limiters are often applied to suppress Gibb’s oscillations.
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The most common approach is to use explicit Runge Kutta Discontinuous Galerkin (RKDG)
methods with min-mod slope limiters introduced by Cockburn [2,3] An extensive biblio-
graphic reference on discontinuous Galerkin limiters can be found in [4]. A cost-effective
alternative to limiting is the physics based artificial viscosity (AV) approach, e.g. [5–8] where
artificial higher even order differential terms are added to the equations to dissipate the high
frequency waves or smoothen the small scale structures. While this approach is very stable
and more accurate than lower order alternatives, there is no formal proof of higher-order
resolution and accuracy. Yet another approach is to use filtering, which has successfully been
employed in simulating shocked flow [5,9]. The high order filter used there is the variable
order exponential filter, which does not satisfy all the criteria for the definition of filter as
laid out in [10] exactly but asymptotically.

A yet to be explored technique for shock capturing is the use of SIAC-like filters. The
typical application of SIAC filtering is to obtain superconvergence. This is accomplished
by using information that is already contained in the numerical solution to increase the
smoothness of the field and to reduce the magnitude of the errors. The solution, as a post-
processing step, is convolved against a specifically designed kernel function once at the
final time. The foundations for this postprocessor were established by Bramble and Schatz
[11]. They showed that the accuracy of Ritz-Galerkin discretizations can be doubled by
convolving the solution against a certain kernel function. Cockburn et al. [12] used the ideas
of Bramble and Schatz and those ofMock and Lax [13] to demonstrate that the postprocessor
is also suitable for DG schemes. They proved that, for a certain class of linear hyperbolic
equations with sufficiently smooth solutions, the postprocessor enhances the accuracy from
order k + 1 to order 2k + 1 in the L2-norm, where k is the polynomial degree of the original
DG approximation. This postprocessor relies on a symmetric convolution kernel consisting
of 2k + 1 B-splines of order k + 1.

In [14], a regularization technique is developed for the Dirac-Delta source terms in hyper-
bolic equations that is an excellent candidate for a kernel of a SIAC-like regularization filter
of shock discontinuities. The technique is based on a class of high-order compactly supported
piecewise polynomials introduced in [15]. The piecewise polynomials provide a high-order
approximation to the Dirac-Delta whose overall accuracy is controlled by two conditions:
the number of vanishing moments and smoothness. SIAC kernels have similar smoothness
and moment properties as the Dirac-Delta kernel, but are based on piecewise continuous
B-splines instead of polynomials. In [16] it was shown that SIAC-like filters based on the
compactly supported Dirac-Delta kernels capture particle-fluid interface discontinuities with
higher-order resolution in single domain spectral solutions. The compactness of support is
closely related to the moment condition. Smoothness properties yield higher-order resolution
away from the discontinuity.

In the present work we have developed SIAC-like filters based on the high-order Dirac-
Delta kernel for the regularization of shocks and discontinuities. The filter operation is based
on convolution of the solution with the high-order Dirac-Delta kernels. The formulation of
the operation is derived and written in matrix-vector multiplication form to allow for an
efficient and simple implementation. The filters are tested on a spectral solver for hyperbolic
conservation laws, such as the one and two dimensional scalar linear advection equation, one
dimensional scalar nonlinear Burgers’ equation, and both one- and two-dimensional nonlin-
ear Euler equations. For the solution to the linear advection equation a filtered discontinuous
initial condition is advected according to the theoretical estimate that depends on the support
width and number of vanishing moments on the kernel. The support width depends on the
grid-spacing and the number of vanishing moments. For the non-linear Burgers’ and Euler
equations, the filter has to be applied at every time step in order to regain smoothness and
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stability. A sufficiently accurate Dirac-Delta kernel and small support-width, leads to good
accuracy with minimal errors away from the discontinuity as well.

In Sect. 2 the filter-operation is derived and background information about SIAC filters,
the high-order Dirac-Delta functions and the Chebyshev collocation method is provided.
Section3 presents and discusses the numerical results. Section4 summarizes the results and
gives an outlook for future work.

2 Formulation and Methodology

2.1 Chebyshev Collocation Method

Global polynomial based spectral methods, in this particular case, the Chebyshev collocation
method, are commonly used in the discretization of spatial derivatives in PDE’s since the
order of convergence, for a sufficiently smooth function, depends only on the smoothness
of the solution, also known as spectral accuracy. For example, the truncation error of the
spectral approximation of a C p function is at least O(N−p). In the case of an analytical
function, the order of convergence of the approximation is exponential [17]. In the following
theChebyshev collocationmethod is briefly described for the purpose of introducing notation.
For an overview on spectral methods we refer to [17] and references contained therein.

The collocation method is based on polynomial interpolation of a function u(x), and can
be expressed as

uN (x) =
N∑

j=0

u(x j )l j (x), l j (x) =
N∏

k=0,k �= j

x − xk
x j − xk

, j = 0, . . . , N , (1)

where x j , j = 0, . . . , N are the collocation points and l j (x) are the Lagrange interpolation
polynomials of degree N . To determine the derivative of the function u(x) at the collocation
points xi , u′(xi ), one can simply take the derivative of the Lagrange interpolating polynomial
as

∂u(xi )

∂x
≈

N∑

j=0

u(x j )l
′
j (xi ), (2)

or, written compactly in the matrix-vector multiplication form as
−→u ′ = D−→u , (3)

where the differentiation matrix Di, j = l ′j (xi ). In the case of the Chebyshev collocation
method based on the Gauss–Lobatto quadrature nodes, the collocation points are

xi = − cos(iπ/N ), i = 0, . . . , N . (4)

To integrate the resulting system of ordinary differential equations (ODE) in time, we employ
the third order Total Variation Diminishing (TVD) Runge–Kutta scheme [18]

u(1) = un + Δt L(un)

u(2) = 3

4
un + 1

4
u(1) + 1

4
Δt L(u(1))

un+1 = 1

3
un + 2

3
u(2) + 2

3
Δt L(u(2)), (5)

in which L denotes the discretization of the spatial derivatives.
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2.2 Dirac-Delta Approximation

In [14], a regularization technique based on a class of high-order, compactly supported
piecewise polynomials is developed that regularizes the time-dependent, singular Dirac-
Delta sources in spectral approximations of hyperbolic conservation laws. This regularization
technique provides higher-order accuracy away from the singularity.

For the purpose of clarity in the following discussion, we shall define the compact support
domain as Ωε = [−ε + x, x + ε] and Ωε

i = [−ε + xi , xi + ε] centered at x = xi , and the
Dirac-Delta polynomial kernel denoted by δm,k

ε (x) as the approximation of the Dirac-Delta
function δ(x),

δm,k
ε (x) =

{
1
ε
Pm,k

( x
ε

)
x ∈ Ωε,

0 else,
(6)

where ε > 0 is the support width or the scaling parameter. The function is generated by a
multiplication of two lower degree polynomials that control the number of vanishingmoments
m, and the number of continuous derivatives at the endpoints of the compact support k,
respectively. The M = m + 2(k + 1) degree polynomial Pm,k(x) is uniquely determined by
the following conditions

(
Pm,k

)(i)
(±1) = 0, i = 1, ..., k, (7)

∫ 1

−1
Pm,k(ξ)dξ = 1, (8)

∫ 1

−1
ξ i Pm,k(ξ)dξ = 0, i = 1, ...,m, (9)

in which (7) determines the number of continuous derivatives at the endpoints (k), (8) states
that the function integrates to unity as a Dirac-Delta function, and (9) determines the number
of vanishing moments (m). In Fig. 1, we show the polynomial approximation of the Dirac-
Delta kernel δm,k

ε (x) with (m, k) = (3, 8) and (m, k) = (5, 8) with scaling parameter ε = 1.
It has been shown that the Dirac-Delta approximation δm,k

ε (x) has an accuracy of O(εm+1).
The procedure for the generation of the polynomials Pm,k(ξ) is described in [15]. A few

examples for m=1 and m=3 vanishing moments and k = 2 continuous derivatives are given
below.

– The polynomials with one vanishing moment m = 1 and with k = 2 continuous deriva-
tives are

P1,0 = 3

4
(1 − ξ2), P1,1 = 15

16
(1 − 2ξ2 + ξ4), P1,2 = 35

32
(1 − 3ξ2 + 3ξ4 − ξ6).

(10)

– The polynomials with three vanishing moments m = 3 and with k = 2 continuous
derivatives are

P3,0 = 15

32
(3 − 10ξ2 + 7ξ4), P3,1 = 105

64
(1 − 5ξ2 + 7ξ4 − 3ξ6), (11)

P3,2 = 315

512
(3 − 20ξ2 + 42ξ4 − 36ξ6 + 11ξ8). (12)
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2.3 SIAC Filtering

The Smoothness-IncreasingAccuracy-Conserving (SIAC) filter was developed in the context
of superconvergence extraction and error reduction. SIAC filtering [19–22] exploits the idea
of superconvergence in the underlying method to reduce oscillations in the errors, reduce
errors and increase convergence rates. SIAC has its basis in the work by Bramble et al. [11]
and Cockburn et al. [12]. It has been extended to include boundary filtering and nonuniform
meshes [23–25] aswell as to increase computational efficiency [26,27]. It has proven effective
for applications in visualization [28,29].

The traditional application of SIAC filtering takes the numerical approximation, uh(x),
and convolves it against a specially designed kernel,

u	
h(x) = 1

H

∫ ∞

−∞
Km+1,


(
y − x

H

)
uh(y) dy, (13)

where Km+1,
 is a linear combination of m B-splines of order 
 and H is a scaling typically
related to a mesh quantity.

The symmetric form of the post-processing kernel can be written as

Km+1,
(x) =
∑

γ

cm+1,

γ ψ(
)(x − γ ), (14)

whereψ(
)(x) is obtained by convolving the characteristic function over the interval (− 1
2 ,

1
2 )

with itself 
 + 1 times and the coefficients cm+1,

γ ∈ R.

The form of the SIAC kernel is similar to the form of the Dirac-Delta kernel [14,15].
Primary properties of the SIAC that make the SIAC kernel suitable for regularization include:

– ψ(
)(x) can be expressed as a linear combination of Delta-functions, using the property
dαψ(
)(x)

dxα = ∂α
Hψ(
−α)(x), where ∂H represents a divided difference.

– The SIAC kernel can reproduce polynomials of degree m. This is equivalent to the
conditions

–
∫
R
Km+1,
(ξ) dξ = 1.

–
∫
R

ξ i Km+1,
(ξ) dξ = 0 for i = 1, . . . ,m.

These are similar to the conditions on theDirac-Delta polynomial kernel. However, unlike
this kernel, the SIAC kernel does not require the smoothness of the kernel even though
it vanishes, at the endpoints of the compact support.

2.4 Dirac-Delta Filtering

In [16], an extension from [14], singular source terms are expressed as weighted summations
of Dirac-Delta kernels that are regularized through approximation theory with convolution
operators. The regularization is obtained by convolution with the high-order compactly
supported Dirac-Delta kernel, (6), whose overall accuracy is controlled by the number of
vanishing moments m, degree of smoothness k and length of the support ε. In this work, the
Dirac-Delta kernel is used to regularize time dependent discontinuous solutions. Suppose
the solution is given by the variable u(x), x ∈ [−1, 1]. Then the filtered data, ũ(x), follows
from the convolution of u(x) with the Dirac-Delta kernel as

ũ(x) =
∫ 1

−1
u(τ ) δm,k

ε (x − τ)dτ. (15)
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Fig. 1 Dirac-Delta kernel δm,k
ε for (m, k) = (3, 8) and (m, k) = (5, 8) with scaling parameter ε = 1

or, simply,

ũ(x) =
∫

Ωε

u(τ ) δm,k
ε (x − τ)dτ, (16)

since the Dirac-Delta kernel is zero outside its compact support Ωε .
To apply the filtering operation, we need to choose the number of vanishing moments m,

the number of continuous derivatives k and the scaling parameter ε.
We make the following notes:

– The number of vanishingmoments,m, and support width, ε determine the accuracy of the
Delta-kernel and by extension the error introduced by the filtering operation in smooth
regions of the solution. In [16] it was proven that the filtering error is O(εm+1), provided
the scaling parameter is ε = O(N (−k/m+k+2)). The requirement on the scaling parameter
follows from the fact that the error in the quadrature rule used to evaluate the convolution
integral has to be smaller than the O(εm+1) accuracy of the Dirac-Delta approximation.
More vanishing moments reduces the filtering error, however it requires a wider support,
leading to a wider regularization zone.

– The smoothness of the Dirac-Delta kernel is controlled by the number of continuous
derivatives at the endpoints, k. In [16] and [14] it is shown that k controls the smoothness
of the transition between the regularized source and the solution and thus controls the
order of convergence away from the source. When filtering the entire solution there is
no such transition and thus the influence of k is minor. This is confirmed by numerical
experiments.

Extension to two dimensions follows straightforwardly from the tensor product of the
one-dimensional Delta-function:

δm,k
ε (x, y) = δm,k

ε (x) ⊗ δm,k
ε (y). (17)

Figure 2 shows the two-dimensional equivalents of the one-dimensional kernels shown in
Fig. 1. As in the one-dimensional case, the filtering is based on the convolution of the solution
with the Delta-kernel,
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(m, k) = (3, ()8 m, k) = (5, 8)

Fig. 2 Tensor product of the one-dimensional Dirac-Delta function, for (Left) (m, k) = (3, 8) and (Right)
(m, k) = (5, 8) with scaling parameter ε = 1 (Color figure online)

ũ(x, y) =
∫

Ωε
x

∫

Ωε
y

u(τ, η)δm,k
ε (x − τ, y − η)dτdη. (18)

2.5 Implementation of the Filtering Operation

Filtering of the interpolant of the solution (1), leads to,

ũN (x) =
∫

Ωε

[
N∑

i=0

u(xi )li (τ )

]
δm,k
ε (x − τ)dτ =

N∑

i=0

u(xi )Si (x), (19)

after interchanging the summation and integration, where the filtering function Si (x) is

Si (x) =
∫

Ωε

li (τ )δm,k
ε (x − τ)dτ. (20)

Hence, one has, at the collocation points,

−→̃
u = S−→u , (21)

where the (N + 1) × (N + 1) filtering matrix S has elements

Si, j =
∫

Ωε
j

li (τ )δm,k
ε (x j − τ)dτ. (22)

In two dimensions, the filtering operation can be written compactly as

Ũ = SxUST
y, (23)

where Sx and Sy are the one-dimensional filteringmatrix in x− and y− direction respectively
and the superscript T denotes transpose.

Remark 1 Near the boundaries, the compact support of the high-order Dirac-Delta function,
δm,k
ε , extends out of the domain and hence, the data can not be filtered in that case. This
means that ũ(x) = u(x) for |x | > 1 − ε. The filtering matrix S can be precomputed and
stored for later use as long as the filter parameters remain unchanged.
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2.6 Clenshaw–Curtis Quadrature

Theone remaining important issue that needs to be addressed is how to evaluate the integrals in
Eq. 19. Since the high-orderDirac-Delta function is a polynomial of degreeM = m+2(k+1)
and the Lagrange interpolation polynomial is of degree N−1, the integrand is a polynomial of
degree M + N −1 and can be evaluated analytically. Since this can become time-consuming
for large N an appropriate quadrature rule is preferred. For this purpose Clenshaw–Curtis
quadrature will be used, that is,

∫

Ωε
i

ln(τ )δm,k
ε (xi − τ)dτ ≈

Q∑

q=0

wqln(xq)δ
m,k
ε (xi − xq). (24)

where Q is the number of Chebyshev Gauss–Lobatto quadrature nodes used in the compact
support domain Ωε

i , that is,

xq = xi − ε cos

(
πq

Q

)
, q = 0, . . . , Q, (25)

and wq are the corresponding weights. Clenshaw Curtis quadrature exactly evaluates poly-
nomials of degree Q−1. Hence, if one takes Q = M+N , the integrals are evaluated exactly.
Also, the weights wq can be precomputed using fast Fourier transform (FFT).

2.7 Shock Capturing with Dirac-Delta Filtering

The theoretical requirement for the scaling parameter, ε = O(N (−k/m+k+2)), to assure
O(εm+1) accuracy in the convolution operation is based on the requirement that the error in the
quadrature rule has to be smaller than the error in the Dirac-Delta approximation [16]. Since
the convolution integrals in this work are solved exactly using Clenshaw–Curtis quadrature,
this criterium can be relaxed. For shock capturing we choose the scaling parameter to be
proportional to the grid spacing and to guarantee that at least two neighboring collocation
points are located inside the compact support. In this case, the scaling parameter will be
expressed in terms of the number of points Nd the kernel spans at the center of the domain
x = xN/2, assuming N is even, that is,

ε = sin (πNd/(2N )) . (26)

The value of Nd is determined empirically and chosen to ensure stable converging results. It
depends on the number of vanishing moments m of the Dirac-Delta kernel and whether the
filter is applied in a linear or non-linear equation. For implementation in the linear advection
equation, only the initial condition is filtered while for nonlinear PDE’s, such as the Burgers’
equation and the Euler equations, the solution is filtered at the end of every Runge–Kutta time
step. This is because of the formation of a finite space-time singularity by the nonlinearity of
the equations. Filtering can lead to smearing of the discontinuity and the summation of filter
errors in smooth regions. On the other hand, if the Nd is chosen to be too small, the filter will
not be able to suppress the Gibbs oscillations effectively which leads to a nonlinear growth
of the high modes. Since the scheme has no other dissipation mechanism, it will become
unstable in time. We find that if we filter at every Runge–Kutta time step, Nd (as reflected
in the size of ε) can be chosen to be quite small (about 2–6) to ensure the sharpness of the
shock transition while maintaining stability and preserving high-order resolution away from
a discontinuity
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Fig. 3 Linear advection equation: analytical and spectral solution (Left), and pointwise error (Right) at time
t = 1, for the five different grids without filter

Remark 2 Near the boundary the filter cannot be convoluted due to the symmetry of the
convolution kernel. In this paper those few points are reset to be the exact solution for the
nonlinear PDEs in order to isolate and study solely the effects of the Dirac-Delta kernels.
Furthermore, to avoid the effect of variable time step Δt , we fixed the stable time step of
Δt = 1×10−5 in all the simulations performed below in order to be able to compare results.

3 Numerical Tests

In this section, we conduct a range of test cases for the linear advection equations, theBurger’s
equations and the Euler equation in one- and two-dimensions. The filter we use is based on
the Dirac-Delta kernel with m = 3 zero moment, k = 8 smoothness and Nd = 13, unless
otherwise noted.

3.1 Advection Equation

3.1.1 1D Advection Equation

We start by considering the one-dimensional linear advection equation with a discontinuous
initial condition on the domain −1 < x < 1 as follows,

∂u

∂t
+ ∂u

∂x
= 0,

u(x, 0) =
{
0.2 sin(10x) − 0.5 x ≤ −0.25
0.2 sin(10x) + 0.5 x > −0.25

,

u(−1, t) = 0.2 sin(10(−1 − t)) − 0.5. (27)

Without filtering, Gibb’s oscillations pollute the solutions as can be seen in Fig. 3. In the
vicinity of the discontinuity, the error for all N have a similar magnitude. Away from the
discontinuity a grid refinement leads to a reduction of the error.

Next, we filter the initial condition and then advect the solution without further filtering.
Since the advection equation is linear, this initial filtered solution and associated error is
simply advected as shown in Fig. 4. Since the solution is advected for a unit time, the point-
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Fig. 4 Linear advection equation: analytical and spectral solution (Left), and pointwise error (Right) at time
t = 1, for the five different grids with (m, k) = (3, 8) and Nd = 13

Fig. 5 Linear advection equation: detail view of regularization zone (Left) and error convergence at x = 0.28
compared to the theoretical value O(εm+1) (Right) for the five different grids with (m, k) = (3, 8), Nd = 13.
The case (m, k) = (5, 8), Nd = 17 is included to show the effect of m

wise error for x > 0 identifies the filter error, while for x < 0, the solution behaves according
to the spectral solution.

The filter solution captures the discontinuity, while significantly improving upon the error
behavior away from the discontinuity (compare Figs. 3 and 4). In fact, outside the regular-
ization zone the error convergence follows the theoretical estimate of O(εm+1). Figure5,
confirms this finding by plotting the error versus N at x = 0.28 for m = 3 and m = 5. The
filter error can hence be decreased by according to a increase of m. We note that this does
come at the expense of a wider regularization zone (Fig. 5).

3.1.2 2D Advection Equation

In two dimensions, we test the filter for the linear advection equation on the −1 ≤ x, y ≤ 1
square domain,

∂u

∂t
+ ∂u

∂x
+ ∂u

∂y
= 0, (28)

u(x, y, 0) =
{
cos(4π

√
x2 + (y + 0.5)

2
)), if x2 + (y + 0.5)2 < 0.252

0 otherwise,
(29)

Like for the 1D test case, the discontinuous initial condition is first filtered according to
(23) The filtered initial condition is consequently advected (Fig. 6). The local error in Fig. 7
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Fig. 6 2D Advection equation: contour plot of u at t = 0.5 for (m, k) = (3, 8) and Nd = 13

Fig. 7 2D Advection equation: numerical solution (Left) and error (Right) along y = 0 at t = 0.5, for the
five different grids for (m, k) = (3, 8) and Nd = 13

shows that in 2D the discontinuity is captured accurately and the filtered solution converges
according to theory. This is analogue to the 1D case.

In order to check the supposed radial symmetry of the solution around x, y = (0.5, 0), a
scatterplot of the solution and the error versus the radial coordinate centered at the circular
symmetric initial condition is shown in Fig. 8. Because the tensor product of the Dirac-Delta
kernel is not radially symmetric, it is likely causing some of radial error variation. The
error, however, reduces rapidly away from the regularization zone, and hence has high-order
resolution.

3.1.3 2D Rotating Problem

To further investigate the effect of tensorial Dirac-Delta on radial symmetry, we consider the
rotating problem,

∂u

∂t
− y

∂u

∂x
+ x

∂u

∂y
= 0, (30)

with the same initial condition and filter as in (29).
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Fig. 8 2D Advection equation: scatter plot of numerical solution (Left) and error (Right) at t = 0.5, for
N = 300 for (m, k) = (3, 8) and Nd = 13

Fig. 9 2D Rotating problem: contour plot of u at t = π/2 for (m, k) = (3, 8) and Nd = 13

Inspecting the solution in Figs. 9 and 10, shows that the discontinuities are captured with
the same level of smoothness and error convergence trends are the same. A scatterplot of the
solution and error in Fig. 11 shows some error variation, butwith clear trends and higher-order
resolution.

3.2 Burger’s Equation

To test a non-linear case, we consider the Burgers’ equation,

∂u

∂t
+ 1

2

∂u2

∂x
= 0, u(x, 0) = − sin(πx), u(±1, t) = 0 (31)

Because the equation is non-linear, and a discontinuity inherent to the solution forms in time,
we now have to filter the solution at the end of every Runge–Kutta time step. In the results
below we use Nd = 2.5.

Figure 12 shows that the Dirac-delta filtering effectively captures the shock and gives a
stable solution. A clearly visible overshoot is however introduced. Increasing the number of
vanishing moments reduces the overshoot (not shown here).
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Fig. 10 2D Rotating problem: numerical solution (Left) and error (Right) along y = 0 at t = π/2, for the
five different grids for (m, k) = (3, 8) and Nd = 13

Fig. 11 2D Rotating problem: scatter plot of numerical solution (Left) and error (Right) at t = π/2, for
N = 300 for (m, k) = (3, 8) and Nd = 13

Fig. 12 Burger’s equation: numerical solution (Left), and pointwise error (Right) at time t = 1, for the five
different grids with (m, k) = (3, 8) and Nd = 2.5

The error (Fig. 12) that is introduced by regularization at the shock location is smeared
over the domain by the multiple application of the filter at each time step. For the values of
Nd used here, the smearing is small. The smearing effect increases with increasing support
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Fig. 13 Sod’s shock tube problem: analytical solution, spectral solution (Left) and pointwise error (Right) of
the density at t = 0.4, for the five different grids for (m, k) = (3, 8) and Nd = 2.5

width. We note that extending the simulation time until t = 5 does not change the error much
as compared to error at t = 1. Only the shock is slightly more dissipated.

3.3 Euler Equations

To test the filter on systems of non-linear PDEs, we consider the Euler equations governing
inviscid flow. In two dimensions and in a strong conservation form they are given as:

Qt + Fx + Gy = 0, (32)

with

Q = (ρ, ρu, ρv, E)T , F = (ρu, ρu2 + P, ρuv, (E + P)u)T ,

G = (ρu, ρuv, ρv2 + P, (E + P)v)T , (33)

whereQ are the conservative variables, F andG are the fluxes in the x- and y-directions, and
the equation of state is P = (γ − 1)

(
E − 1

2ρ(u2 + v2)
)
with γ = 1.4. The ρ, u, v, P , and

E are the density, velocities in x- and y-directions, pressure, and total energy respectively.
We test the filter for both one-dimensional and two-dimensional solutions of these equations.

3.3.1 Sod’s Shock Tube Problem

In Fig. 13,we show the density of the classical Sod shock tube problem.Here, the conservative
variables are filtered by the Dirac-Delta filter with Nd = 2.5 at every Runge–Kutta time step
with several number of collocation grid points. The solutions show that both the shock and the
contact are effectively captured and the error decays rapidly from the discontinuities (shock,
contact discontinuity, and rarefactions) sufficiently far away from the discontinuity.

3.3.2 Shu–Osher Problem

Shu–Osher’s Problem has initial conditions (ρL , PL , uL) = (27/7, 31/3, 4
√
35/9) and

(ρR, PR, uR) = (1 + 0.2 sin(25x), 1, 0). Again, the conserved quantities are filtered every
time-step using the filtering matrix. For the results below we use m = 5, Nd = 6.5 in order
to limit the error introduced in the entropy-wave. A 5th order WENO-solution on 10,000
points is used to serve as a reference ‘exact’ solution (Figs. 14, 15).
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Fig. 14 Shu–Osher problem: analytical solution, spectral solution (Left) and pointwise error (Right) of the
density at t = 0.18, for the five different grids for (m, k) = (5, 8) and Nd = 6.5

Fig. 15 Shu–Osher problem: analytical solution, spectral solution (Left) and pointwise error (Right) of the
density at t = 0.36, for the five different grids for (m, k) = (5, 8) and Nd = 6.5

Fig. 16 Shu–Osher problem: detail view of the entropy wave (Left) and the regularization zone (Right) at
t = 0.36, for the five different grids for (m, k) = (5, 8) and Nd = 6.5

The solution shows that the filter effectively captures the shock while the kernel with
m = 5 vanishing moments ensures high resolution behind the shock. Figure 16 provides a
detail view of the entropy wave (Left) and the regularization zone (Right).
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Fig. 17 Explosion problem: contour plot of the density at t = 0.25 for (m, k) = (3, 8) and Nd = 2.5

Fig. 18 Explosion problem: numerical solution (Left) and error (Right) along the radial line at t = 0.25, for
the five different grids for (m, k) = (3, 8) and Nd = 2.5

3.4 Explosion Problem

As a 2D test case, the explosion problem is considered. This problem is governed by the 2D
Euler equations, (32). The equations are solved on a 2.0 × 2.0 square domain in the x − y
plane. The initial condition consists of the region inside of a circle with radius R = 0.4
centered at (0, 0) and the region outside of the circle. The flow variables are constant in each
of these regions and are separated by a circular discontinuity at time t = 0. The two constant
states are chosen as:

ρin = 1.0 ρout = 0.125, (34)

pin = 1.0 pout = 0.1, (35)

uin = 0.0 uout = 0.0, (36)

vin = 0.0 vout = 0.0, (37)

where the subscripts in and out denote values inside and outside the circle, respectively. The
approach described by Eleuterio [30] is used to serve as an exact solution. For the results we
used a kernel with (m, k) = (3, 8) and Nd = 2.5 (Figs. 17, 18).
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Fig. 19 Explosion problem: scatter plot of numerical solution (Left) and error (Right) at t = 0.25, for
N = 800 for (m, k) = (3, 8) and Nd = 2.5

The contour plot of the density shows that the symmetry of the flow is captured on the
2D Cartesian grid. Since the solution to the 2D explosion problem is radially symetric and
the 2D Dirac-Delta kernel is asymmetrical, Fig. 2, it is interesting to see how well the radial
symmetry is captured. In order to do so a scatter plot of the solution and error is made. A
sample of the solution ρi, j = ρ(xi , y j ) is plotted versus the radial coordinate. An error plot
is included as well. The error follows a clear trend with the most variation in between the
discontinuities (Fig. 19).

4 Conclusions and Future Work

In this paper, the use of high-order Dirac-Delta function based filter for the regularization
of shocks and discontinuities in combination with a global spectral method is investigated.
We have shown that these filters are able to effectively capture shocks while maintaining
high resolution in smooth areas of the solution. Through a tensorial implementation the filter
extends easily from one-dimension to two-dimensions. Radial asymmetry of the tensorial
implementation is a possible cause for some error variation but it does not affect higher-order
resolution.

We are extending the filter operation for use in discontinuous spectral element methods
and expect to report on this soon.
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