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Abstract This work presents an entropy stable discontinuous Galerkin (DG) spectral element approx-
imation for systems of non-linear conservation laws with general geometric (h) and polynomial order
(p) non-conforming rectangular meshes. The crux of the proofs presented is that the nodal DG method
is constructed with the collocated Legendre-Gauss-Lobatto nodes. This choice ensures that the deriva-
tive/mass matrix pair is a summation-by-parts (SBP) operator such that entropy stability proofs from
the continuous analysis are discretely mimicked. Special attention is given to the coupling between non-
conforming elements as we demonstrate that the standard mortar approach for DG methods does not
guarantee entropy stability for non-linear problems, which can lead to instabilities. As such, we describe
a precise procedure and modify the mortar method to guarantee entropy stability for general non-linear
hyperbolic systems on h/p non-conforming meshes. We verify the high-order accuracy and the entropy
conservation/stability of fully non-conforming approximation with numerical examples.

Keywords Summation-by-Parts · Discontinuous Galerkin · Entropy Conservation · Entropy Stability ·
h/p Non-Conforming Mesh · Non-Linear Hyperbolic Conservation Laws

1 Introduction

The non-conforming discontinuous Galerkin spectral element method (DGSEM), with respect to either
mesh refinement introducing non-conforming interfaces (h), varying the polynomial order (p) across
elements or both (h/p), is attractive for problems with strong varying feature sizes across the compu-
tational domain because the number of degrees of freedom can be significantly reduced. Past work has
demonstrated that the mortar method [20,22] is a projection based approach to construct the numerical
flux at non-conforming element interfaces. The mortar approach retains high-order accuracy as well as
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the desirable excellent parallel computing properties of the DGSEM [2,18]. However, we are in partic-
ular interested in building a high order DG scheme with the aforementioned positive properties that is
provably entropy stable for general non-linear problems. That is, the non-conforming DGSEM should
satisfy the second law of thermodynamics discretely. Our interest is twofold:

1. The numerical approximation will obey one of the most fundamental physical laws.

2. For under-resolved flow configurations, like turbulence, entropy stable approximations have been
shown to be robust, e.g. [1,17,29,34].

The subject of non-conforming approximations is natural in the context of applications that contain a
wide variety of spatial scales. This is because non-conforming methods can focus the degrees of freedom in
a discretization where they are needed. There is some work available for entropy stable p non-conforming
DG methods applied to the compressible Navier-Stokes equations, e.g. Parsani et al. [26,27] or Carpenter
et al. [6].

This work presents an extension of entropy stable non-conforming DG methods to include the non-
conforming interfaces (h) and the combination of varying polynomials and non-conforming interfaces
(h/p) for general non-linear systems of conservation laws. We demonstrate that the derivative matrix
in the DG context must satisfy the summation-by-parts (SBP) property as well as how to modify the
mortar method [20] to guarantee high-order accuracy and entropy stability on rectangular meshes. As
the algorithm of the method is still similar to the mortar approach, parallel scaling efficiency is not
influenced by the modifications.

We begin with a short overview of the different DG approaches on rectangular meshes. First, we provide
a background of the non-linear entropy stable DGSEM on conforming quadrilateral meshes. We then
introduce the popular mortar approach in the nodal DG context. However, we demonstrate that this
well-known non-conforming coupling is insufficient to guarantee entropy stability for non-linear partial
differential equations (PDEs). The main result of this work is to marry these two powerful approaches,
i.e., entropy stability of conforming DG methods and non-conforming coupling, to create a novel, entropy
stable, high-order, non-conforming DGSEM for non-linear systems of conservation laws.

1.1 Entropy Stable Conforming DGSEM

We consider systems of non-linear hyperbolic conservation laws in a two dimensional spatial domain
⌦ ⇢ R2 with t 2 R+

ut + fx(u) + gy(u) = 0, (1.1)

with suitable initial and boundary conditions. The extension to a three dimensional spatial domain
follows immediately. Here, u is the vector of conserved variables and f , g are the non-linear flux vectors.
Examples of (1.1) are numerous, including, e.g., the shallow water equations and the compressible Euler
equations. The entropy of a non-linear hyperbolic system is an auxiliary conservation law for smooth
solutions (and an inequality for discontinuous solutions), see [31,32] for details. Given a strongly convex
entropy function, S = S(u), there exists a set of entropy variables defined as

v =
@S
@u

. (1.2)

Contracting the system of conservation laws (1.1) from the left by the new set of variables (1.2) yields
a scalar conservation law for smooth solutions

vT (ut + fx(u) + gy(u)) = St + Fx +Gy = 0, (1.3)
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provided certain compatibility conditions are satisfied between the physical fluxes f , g and the entropy
fluxes F,G [31,32]. In the presence of discontinuities the mathematical entropy decays [31,32] and satisfies
the inequality

St + Fx +Gy  0, (1.4)

in the sense of weak solutions to the non-linear PDE [10,32]. The final goal in this subsection is to
determine a high-order DGSEM that is entropy stable on conforming meshes.

We first provide a brief overview for the derivation of the standard nodal DGSEM on rectangular grids.
Complete details can be found in the book of Kopriva [21]. The DGSEM is derived from the weak form
of the conservation laws (1.1). Thus, we multiply by an arbitrary discontinuous L2(⌦) test function '
and integrate over the domain Z

⌦

(ut + fx + gy)' dxdy = 0, (1.5)

where, for convenience, we suppress the u dependence of the non-linear flux vectors. We subdivide the
domain ⌦ into K non-overlapping, geometrically conforming rectangular elements

Ek = [xk,1, xk,2]⇥ [yk,1, yk,2], k = 1, . . . ,K. (1.6)

This divides the integral over the whole domain into the sum of the integrals over the elements. So, each
element contributes Z

Ek

(ut + fx + gy)' dxdy = 0, k = 1, . . .K, (1.7)

to the total integral. Next, we create a scaling transformation between the reference element E0 =
[�1, 1]2 and each element, Ek. For rectangular meshes we create mappings (Xk, Yk) : E0 ! Ek such
that (Xk(⇠), Yk(⌘)) = (x, y) are defined as

Xk(⇠) = xk,1 +
⇠ + 1
2

�xk, Yk(⌘) = yk,1 +
⌘ + 1
2

�yk, (1.8)

for k = 1, . . . ,K where �xk = (xk,2 � xk,1) and �yk = (yk,2 � yk,1). Under the transformation (1.8)
the conservation law in physical coordinates (1.1) becomes a conservation law in reference coordinates
[21]

ut +
1
J

h
f̃⇠ + g̃⌘

i
= 0, (1.9)

where

J =
�xk�yk

4
, f̃ =

�yk
2

f , g̃ =
�xk

2
g, (1.10)

and k = 1, . . . ,K.

We select the test function ' to be a piecewise polynomial of degree N in each spatial direction

'k =
NX

i=0

NX

j=0

'k
ij`i(⇠)`j(⌘), (1.11)

on each spectral element Ek, but do not enforce continuity at the element boundaries. The interpolating
Lagrange basis functions are defined by

`i(⇠) =
NY

j=0
j 6=i

⇠ � ⇠j
⇠i � ⇠j

for i = 0, . . . , N, (1.12)
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with a similar definition in the ⌘ direction. The values of 'k
ij on each element Ek are arbitrary and

linearly independent, therefore the formulation (1.7) is
Z

E0

⇣
Jut + f̃⇠ + g̃⌘

⌘
`i(⇠)`j(⌘) d⇠d⌘ = 0, (1.13)

where i, j = 0, . . . , N .

We approximate the conservative vector u and the contravariant fluxes f̃ , g̃ with the same polynomial
interpolants of degree N in each spatial direction written in Lagrange form, e.g.,

u(x, y, t)|Ek = u(⇠, ⌘, t) ⇡
NX

i,j=0

Uij`i(⇠)`j(⌘) ⌘ U ,

f̃ (u(x, y, t)) |Ek = f̃(⇠, ⌘, t) ⇡
NX

i,j=0

F̃ij`i(⇠)`j(⌘) ⌘ F̃ .

(1.14)

Any integrals present in the DG approximation are approximated with N + 1 Legendre-Gauss-Lobatto
(LGL) quadrature nodes and weights, e.g.,

Z

E0

JUt`i(⇠)`j(⌘) d⇠d⌘ ⇡
NX

n,m=0

 
NX

p,q=0

Jpq (Ut)pq `p(⇠n)`q(⌘m)

!
`i(⇠n)`j(⌘m)!n!m = Jij (Ut)ij !i!j ,

(1.15)
where {⇠i}Ni=0 , {⌘j}

N
j=0 are the LGL quadrature nodes and {!i}Ni=0 , {!j}Nj=0 are the LGL quadrature

weights. Further, we collocate the interpolation and quadrature nodes which enables us to exploit that
the Lagrange basis functions (1.12) are discretely orthogonal and satisfy the Kronecker delta property,
i.e., `j(⇠i) = �ij with �ij = 1 for i = j and �ij = 0 for i 6= j to simplify (1.15).

Next, we introduce the discrete mass matrix M and the discrete derivative matrix D = M�1Q, where

Mij ⇡
Z +1

�1
`i`j d⇠, Qij =

Z +1

�1
`i`

0
j d⇠, (1.16)

with i, j = 0, . . . , N . By considering LGL quadrature, we obtain

Dij = `0j(⇠i). (1.17)

and a diagonal mass matrix
M = diag(!0, . . . ,!N ), (1.18)

with positive weights for any polynomial order, which indicates that M is invertible [15]. Note, that the
mass matrix is constructed by performing mass lumping.

For spectral element methods where the nodes include the boundary of the reference space (⇠0 = ⌘0 = �1
and ⇠N = ⌘N = 1), these operators satisfy the summation-by-parts (SBP) property [4]

MD+ (MD)T = Q+ QT = B := diag(�1, 0, . . . , 0, 1). (1.19)

We also define the boundary matrix B in (1.19). The SBP property (1.19) gives the relation

D = M�1B�M�1DTM. (1.20)

By rewriting the polynomial derivative matrix as (1.20) we can move discrete derivatives off the con-
travariant fluxes and onto the test function. This generates surface and volume contributions in the
approximation. To resolve the discontinuities that naturally occur at element interfaces in DG methods
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we introduce the numerical flux functions F̃ ⇤, G̃⇤. We apply the SBP property (1.20) again to move
derivatives off the test function back onto the contravariant fluxes. This produces the strong form of the
nodal DGSEM

J (Ut)ij +
1

Mii

⇣
�iN

h
F̃ ⇤(1, ⌘j ; n̂)� F̃Nj

i
� �i0

h
F̃ ⇤(�1, ⌘j ; n̂)� F̃0j

i⌘
+

NX

m=0

DimF̃mj

+
1

Mjj

⇣
�jN

h
G̃⇤(⇠i, 1; n̂)� G̃iN

i
� �j0

h
G̃⇤(⇠i,�1; n̂)� G̃i0

i⌘
+

NX

m=0

DjmG̃im = 0,

(1.21)
for each LGL node with i, j = 0, . . . , N . We introduce notation in (1.21) for the evaluation of the
contravariant numerical flux functions in the normal direction along each edge of the reference element
at the relevant LGL nodes, e.g. F̃ ⇤(1, ⌘j ; n̂) for j = 0, . . . , N . Note that selecting the test function to
be the tensor product basis (1.11) decouples the derivatives in each spatial direction.

Next, we extend the standard strong form DGSEM (1.21) into a split form DGSEM [3,17] framework.
Split formulations of the DG approximation offer increased robustness, e.g. [17,29], as well as increased
flexibility in the DGSEM to satisfy auxiliary properties such as entropy conservation or entropy stability
[3,17,28]. To create a split form DGSEM we rewrite the contributions of the volume integral, for example
in the ⇠�direction, by

NX

m=0

DimF̃mj ⇡ 2
NX

m=0

DimF̃# (Uij ,Umj) , (1.22)

for i, j = 0, . . . , N where we introduce a two-point, symmetric numerical volume flux F̃# [17]. This step
creates a baseline split form DGSEM

J (Ut)ij +
1

Mii

⇣
�iN

h
F̃ ⇤(1, ⌘j ; n̂)� F̃Nj

i
� �i0

h
F̃ ⇤(�1, ⌘j ; n̂)� F̃0j

i⌘
+ 2

NX

m=0

DimF̃# (Uij ,Umj)

+
1

Mjj

⇣
�jN

h
G̃⇤(⇠i, 1; n̂)� G̃iN

i
� �j0

h
G̃⇤(⇠i,�1; n̂)� G̃i0

i⌘
+ 2

NX

m=0

DjmG̃# (Uij ,Uim) = 0,

(1.23)
that can be used to create an entropy conservative/stable approximation. All that remains is the precise
definition of the numerical surface and volume flux functions.

The construction of a high-order entropy conserving/stable DGSEM relies on the fundamental finite
volume framework developed by Tadmor [30,31]. An entropy conservative (EC) numerical flux function
in the ⇠�direction, fEC, is derived by satisfying the condition [32]

JvKT fEC =
r
 f

z
, (1.24)

where v are the entropy variables (1.2),  f is the entropy flux potential

 f = v · f � F, (1.25)

and
J·K = (·)R � (·)L, (1.26)

is the jump operator between a left and right state. Note that (1.24) is a single condition on the numerical
flux vector fEC, so there are many potential solutions for the entropy conserving flux vector. However,
we reduce the number of possible solutions with the additional requirement that the numerical flux
must be consistent, i.e. fEC(u,u) = f(u). Many such entropy conservative numerical flux functions
are available for systems of hyperbolic conservation laws, e.g. the Euler equations [7,19]. The entropy
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conservative flux function creates a baseline scheme to which dissipation can be added and guarantee
discrete satisfaction of the entropy inequality (entropy stability), e.g. [7,13,33].

Remarkably, Fisher et al. [12] and Fisher and Carpenter [11] demonstrated that selecting an entropy
conservative finite volume flux for the numerical surface and volume fluxes in a high-order SBP dis-
cretization is enough to guarantee that the property of entropy conservation remains. As mentioned
earlier, the DGSEM constructed on the LGL nodes is an SBP method. Entropy stability of the high-
order DG approximation is guaranteed by adding proper numerical dissipation in the numerical surface
fluxes, similar to the finite volume case. Thus, the final form of the entropy conservative DGSEM on
conforming meshes is

J (Ut)ij +
1

Mii

⇣
�iN

h
F̃EC(1, ⌘j ; n̂)� F̃Nj

i
� �i0

h
F̃EC(�1, ⌘j ; n̂)� F̃0j

i⌘
+ 2

NX

m=0

DimF̃EC (Uij ,Umj)

+
1

Mjj

⇣
�jN

h
G̃EC(⇠i, 1; n̂)� G̃iN

i
� �j0

h
G̃EC(⇠i,�1; n̂)� G̃i0

i⌘
+ 2

NX

m=0

DjmG̃EC (Uij ,Uim) = 0,

(1.27)
where we have made the replacement of the numerical surface and volume fluxes to be a two-point,
symmetric EC flux that satisfies (1.24).

Remark 1. We note that the entropy conservative DGSEM (1.27) is equivalent to a SBP finite difference
method with boundary coupling through simultaneous approximation terms (SATs), e.g. [11,12].

In summary, we demonstrated that special attention was required for the volume contribution in the
nodal DGSEM to create a split form entropy conservative method. Additionally, the SBP property
was necessary to apply previous results from Fisher et al. [12] and guarantee entropy conservation at
high-order. For the conforming mesh case the surface contributions required little attention. We simply
replaced the numerical surface flux with an appropriate EC flux from the finite volume community.
However, we next consider non-conforming DG methods with the flexibility to have differing polynomial
order or non-conforming interfaces.

1.2 Non-Conforming DGSEM

We consider the standard DGSEM in strong form (1.21) to discuss the commonly used mortar method
for non-conforming high-order DG approximations [2,20]. The mortar method allows for the polyno-
mial order to differ between elements (Fig. 1(a)), sometimes called p refinement or algebraic non-
conforming/functionally non-conforming, as well as meshes that contain hanging corners (Fig. 1(b)),
sometimes called h refinement or geometric non-conforming, or both for a fully h/p non-conforming
approach (Fig. 1(c)). For ease of presentation we assume that the polynomial order within an element is
the same in each spatial direction. Note, however, due to the tensor product decoupling of the approxi-
mation (e.g. (1.27)) the mortar method could allow the polynomial order to differ within an element in
each direction ⇠ and ⌘ as well.

The key to the non-conforming spectral element approximation is how the numerical fluxes between
neighbor interfaces are treated. In the conforming approximation of the previous section the interface
points between two neighboring elements coincide while the numerical solution across the interface was
discontinuous. This allowed for a straightforward definition of unique numerical surface fluxes to account
for how information is transferred between neighbors. It is then possible to determine numerical surface
fluxes that guaranteed entropy conservation/stability of the conforming approximation.

The only difference between the conforming and non-conforming approximations is precisely how the
numerical surface fluxes are computed along the interfaces. In the non-conforming cases of h/p refinement
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(a) Neighboring elements with different nodal distributions

(b) Neighboring elements with a hanging corners

(c) Neighboring elements with a hanging corner and differing
polynomial order

Fig. 1: Examples of simple meshes with (a) p refinement (b) h refinement or (c) h/p refinement

(Fig. 1(a)-(c)), the interface nodes may not match. So, a point-by-point transfer of information cannot be
made between an element and its neighbors. To remedy this the mortar method “cements” together the
neighboring “bricks” by connecting them through an intermediate one-dimensional construct, denoted
by ⌅, see Fig. 2(a)-(b).

In this overview we only discuss the coupling of the p refinement case (Fig. 1(a)), but the process is
similar for the h refinement case and is nicely described by Kopriva [20]. Also, the extension to curvilinear
elements is briefly outlined. We distinguish the polynomial orders on the left, NL, and right, NR. The
polynomial on the mortar is chosen to be N⌅ = max(NL, NR) [20,22]. Without loss of generality we
assume that NL < NR, as depicted in Fig. 1(a), such that N⌅ = NR. The construction of the numerical
flux at such a non-conforming interface follows three basic steps:
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E1

E2

E3

(a) Three element h/p non-conforming mesh

E1

E2

E3⌅12

⌅13

⌅23

(b) Mortar projections

Fig. 2: Diagram depicting communication of data to and from mortars between three non-conforming
elements.

1. Because the polynomial order on the right (R) and the mortar match, we simply copy the data. From
the left (L) element we use a discrete or exact L2 projection to move the solution from the element
onto the mortar ⌅.

2. The node distributions on the mortar match and we compute the interface numerical flux similar to
the conforming mesh case.

3. Finally, we project the numerical flux from the mortar back to each of the elements. Again, the left
element uses a discrete or exact L2 projection and the right element simply copies the data.

We collect these steps visually in Fig. 3 and introduce the notation for the four projection operations
to be PL2⌅ , P⌅2L, PR2⌅ , P⌅2R. Here the subscript L2⌅ describes the projection from the element L
to the mortar ⌅ with analogous notation for projections from the right element R. For this example
we note that the right to mortar and inverse projections are the appropriate sized identity matrix, i.e
PR2⌅ = P⌅2R = INR . We provide additional details in Appendix B regarding the mortar method for p
non-conforming DG methods and clarify the difference between interpolation and projection operators.
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RL
⌅

PL2⌅ PR2⌅

(a) Element to mortar projections

RL
⌅

P⌅2L P⌅2R

(b) Mortar to element projections

Fig. 3: Schematic of mortar projections for the case of p refinement.

1.3 Interaction of the Standard Mortar Method with Entropy Conservative DGSEM

With the machinery of the mortar method now in place to handle non-conforming interfaces we are
equipped to revisit the discussion of the entropy conservative DGSEM. For linear problems, where
entropy conservation becomes energy conservation, it is known that the mortar method is sufficient to
extend the energy conserving DG schemes to non-conforming meshes, e.g. [14,23,24]. This is because
no non-linearities are present and there is no coupling of the left and right solution states in the central
numerical flux. However, for non-linear problems we replace this simple central numerical flux with
a more complicated entropy conservative numerical flux that features possible polynomial or rational
non-linearities as well as strong cross coupling between the left and right solution states, e.g. [7,13,15].
This introduces complications when applying the standard mortar method to entropy conservative DG
methods.

As a simple example, consider the Burgers’ equation which is equipped with an entropy conservative
numerical flux in the ⇠�direction of the form [15]

FEC =
1
6

⇣
U2
L + ULUR + U2

R

⌘
. (1.28)

Continuing the assumption of NL < NR from the previous subsection we find the numerical flux com-
puted on the mortar is

FEC
⌅ =

1
6

h
(PL2⌅UL)

2 + (PL2⌅UL)UR + U2
R

i
. (1.29)

The back projections of the mortar numerical flux (1.29) onto the left and right elements are

FEC
L = P⌅2LF

EC
⌅ , FEC

R = FEC
⌅ . (1.30)

However, it is clear that the projected numerical fluxes will exhibit unpredictable behavior with regards
to entropy. For example, because the entropy conservative flux was derived for conforming meshes with
point-to-point information transfer, it is not obvious how the operation to compute the square of the
projection of UL and then L2 project the numerical flux back to the left element will change the entropy.
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The focus of this article is to remedy these issues and happily marry the entropy conservative DGSEM
with a h/p non-conforming mortar-type method. To achieve this goal requires careful consideration and
construction of the projection operators to move solution information between non-conforming element
neighbors. Our main results are presented in the next section. First, in Sec. 2.1, we address the issues
associated with p refinement similar to Carpenter et al. [6] only in a split form DG framework. We build
on the p refinement result to construct projections that guarantee entropy conservation for h refinement
in Sec. 2.2. Then, Sec. 2.3 describes how additional dissipation can be included at non-conforming
interfaces to guarantee entropy stability. Finally, we verify the theoretical derivations through a variety
of numerical test cases in Sec. 3.

2 Entropy Stable h/p Non-Conforming DGSEM

Our goal is to develop a high-order numerical approximation that conserves the primary quantities
of interest (like mass) as well as obey the second law of thermodynamics. In the continuous analysis,
neglecting boundary conditions, we know for general solutions that the main quantities are conserved
and the entropy can be dissipated (in the mathematical sense)

Z

⌦

uq
t d⌦ = 0,

Z

⌦

St d⌦  0, (2.1)

for each equation, q = 1, . . . ,M , in the non-linear system. We aim to develop a DGSEM that mimics
(2.1) on rectangular meshes for general h/p non-conforming approximations.

As discussed previously, the most important component of a non-conforming method for entropy stable
approximations is the coupling of the solution at interfaces through numerical fluxes. For convenience
we clarify the notation of the numerical fluxes in the entropy conservative approximation (1.27) along
interfaces in Fig. 4.

X
X
X
X
X
X
X

XX X X X X

X
X
X
X
X

XXXXXX

F̃00
. . . . . . F̃0N

F̃N0
. . . . . . F̃NN

G̃00

...

...

G̃N0

G̃0N

...

...

G̃NN

Fig. 4: Entropy conservative numerical fluxes at the interfaces of an element.

We seek an approximation that discretely preserves primary conservation and discrete entropy stability.
The definition of this continuous property (2.1) is translated into the discrete by summing over all
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elements to be

X

all elements

J
NX

i,j=0

!i!j (U
q
t )ij = 0, (primary conservation), (2.2)

X

all elements

J
NX

i,j=0

!i!j (St)ij  0, (entropy stability), (2.3)

where (St)ij is a discrete evaluation of the time derivative of the entropy function.

While our goal is the construction of an entropy stable scheme, we will first derive an entropy conservative
scheme for smooth solutions, meaning that

X

all elements

J
NX

i,j=0

!i!j (St)ij = 0, (entropy conservation). (2.4)

After deriving an entropy conservative scheme we can obtain an entropy stable scheme by including
carefully constructed dissipation within the numerical surface flux as described in Sec. 2.3.

To derive an approximation which conserves the primary quantities and is entropy stable we must ex-
amine the discrete growth in the primary quantities and entropy in a single element.

Lemma 1. We assume that the two point volume flux satisfies the entropy conservation condition
(1.24). The discrete growth on a single element of the primary quantities and the entropy of the DG
discretization (1.27) are

J
NX

i,j=0

!i!j (U
q
t )ij =�

NX

j=0

!j

⇣
F̃EC,q
Nj � F̃EC,q

0j

⌘
�

NX

i=0

!i

⇣
G̃EC,q

iN � G̃EC,q
i0

⌘
, (2.5)

where q = 1, . . . ,M and

J
NX

i,j=0

!i!j (St)ij =�
NX

j=0

!j

 
MX

q=1

V q
NjF̃

EC,q
Nj �  ̃f

Nj �
 

MX

q=1

V q
0jF̃

EC,q
0j �  ̃f

0j

!!

�
NX

i=0

!i

 
MX

q=1

V q
iN G̃EC,q

iN �  ̃g
iN �

 
MX

q=1

V q
i0G̃

EC,q
i0 �  ̃g

i0

!!
, (2.6)

rescpectively.

Proof. The proof of (2.5) and (2.6) is given in Fisher et al. [12], however, for completeness, we included
the proof consistent to the current notation and formulations in Appendix A.

We first examine the volume contributions of the entropy conservative approximation because when
contracted into entropy space the volume terms move to the interfaces [12,16] in the form of the entropy
flux potential, i.e. (1.25). Note that the proof in Appendix A concerns the contribution of the volume
integral in the DGSEM and only depends on the interior of an element. Therefore, the result of Lemma
1 holds for conforming as well as non-conforming meshes.

Therefore, to obtain a primary and entropy conservative scheme on the entire domain we need to choose
an appropriate numerical surface flux. In comparison to the volume flux, the surface flux depends on the
interfaces of the elements. Here, we need to differ between elements with conforming and non-conforming
interfaces. We will first describe how to determine such a scheme for conforming interfaces, but differing
polynomial orders. Then, we extend these results to consider meshes with non-conforming interfaces
(hanging corners).
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2.1 Conforming Interfaces

In this section we will show how to create a fully conservative scheme on a standard conforming mesh, i.e.
the polynomial orders match and there are no hanging corners. As shown in (2.5) and (2.6) the primary
conservation and entropy growth is only determined by the numerical surface fluxes on the interface.
Here we exploit that the tensor product basis decouples the approximation in the two spatial directions
and many of the proofs only address the ⇠�direction because the contribution in the ⌘�direction is
done in an analogous fashion. Furthermore, the contribution at the four interfaces of an element follow
similar steps. As such, we elect to consider all terms related to a single shared interface of a left and
right element. For a simple example we present a two element mesh in Fig. 5 and consider the coupling

Fig. 5: Two neighboring elements with a single coinciding interface.

through the single shared interface. Due to Lemma 1 the terms referring to the shared interface are

IU I
t =

NX

j=0

!R
j F̃

EC,q,R
0j �

NX

j=0

!L
j F̃

EC,q,L
Nj , (2.7)

ISI
t =

NX

j=0

!R
j

 
MX

q=1

V q,R
0j F̃EC,q,R

0j �  ̃R,f
0j

!
�

NX

j=0

!L
j

 
MX

q=1

V q,L
Nj F̃EC,q,L

Nj �  ̃L,f
Nj

!
, (2.8)

where the subscript L and R refer to the left and right element, respectively. Here, IU I
t and ISI

t

approximate the integral of ut and St on a single interface. In order to derive a discretely conservative
scheme, meaning that (2.2) and (2.4) hold, we need to derive numerical surface fluxes so that

IU I
t = 0,

ISI
t = 0,

(2.9)

is satisfied.

Here, since we consider conforming interfaces, it is assumed that �y := �yR = �yL. Also, as we focus
on a one dimensional interface (first component of F̃EC,q, V q,R and  ̃f are fixed), we set

F̃EC,q,L := (F̃EC,q,L
NL0 , . . . , F̃EC,q,L

NLNL
)T ,

F̃EC,q,R := (F̃EC,q,R
00 , . . . , F̃EC,q,R

0NR
)T ,

(2.10)

and the same for  ̃L,f ,  ̃R,f ,V q,L,V q,R respectively.

Furthermore, we introduce the notation of the discrete inner product to approximate the L2 inner
product. Assume we have two continuous functions a(x), b(x) with their discrete evaluation A,B on
[�1, 1], then

hA,BiN := ATMB ⇡
Z 1

�1
a(x)b(x) dx =: ha, biL2

. (2.11)
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In the inner product notation we can rewrite (2.7) and (2.8) by

IU I
t =

D
1R, F̃EC,q,R

E

NR

�
D
1L, F̃EC,q,L

E

NL

, (2.12)

ISI
t =

MX

q=1

D
V q,R, F̃EC,q,R

E

NR

�
D
1R,  ̃R,f

E

NR

�
MX

q=1

D
V q,L, F̃EC,q,L

E

NL

+
D
1L,  ̃L,f

E

NL

., (2.13)

where 1L,1R are vectors of ones with size NL + 1 and NR+1, respectively. The choice of the numerical
flux depends on the nodal distribution in each element. Here, we differ between conforming and non-
conforming nodal distributions, which is done in the next section.

2.1.1 Conforming Nodal Distribution

We first provide a brief overview on the entropy conservative properties of the conforming DGSEM
(1.27). This is straightforward in the conforming case and we use this discussion to introduce notation
which is necessary for the non-conforming proofs presented later. That is, the nodal distributions in each
element are identical and there are no hanging corners in the mesh. For a conforming approximation it is
possible to have a point-to-point transfer of solution information at interfaces because the mass matrix,
polynomial order and numerical flux “match”

M := MR = ML,

N := NR = NL,

F̃EC,q := F̃EC,q,R = F̃EC,q,L.

(2.14)

Primary and entropy conservation can be achieved by choosing an entropy conservative numerical flux
function as shown by Fisher et al. [12]. We include the proof for completeness and recast it in our nota-
tion in Lemma 2.

Lemma 2. Assume we have an entropy conservative numerical flux function, F̃EC, that satisfies
(1.24), then the split form DGSEM is primary and entropy conservative for the DGSEM (1.23) by
setting the numerical volume and surface fluxes to be F̃# = F̃ ⇤ := F̃EC.

Proof. Primary conservation can be shown easily by inserting (2.14) in (2.12):

IU I
t :=

D
1, F̃EC,q

E

N
�
D
1, F̃EC,q

E

N
= 0. (2.15)

For entropy conservation we analyze (2.13)

ISI
t =

MX

q=1

D
V q,R, ˜FEC,q

E

N
�

MX

q=1

D
V q,L, F̃EC,q

E

N
�
D
1,  ̃ f,R

E

N
+
D
1,  ̃ f,L

E

N
. (2.16)

For the discrete inner product it holds

hA,BiN = h1,A �BiN , (2.17)

where � denotes the Hadamard product for matrices. Then (2.16) is rearranged to become

ISI
t =

*
1,

MX

q=1

V q,R � F̃EC,q

+

N

�
*
1,

MX

q=1

V q,L � ˜FEC,q

+

N

�
D
1,  ̃ f,R

E

N
+
D
1,  ̃ f,L

E

N

=

*
1,

MX

q=1

(V q,R � V q,L) � F̃EC,q � ( ̃ f,R �  ̃ f,L)

+

N

(2.18)

= h1,�iN ,
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where � :=
MP
q=1

(V q,R �V q,L) � F̃EC,q � ( ̃ f,R �  ̃ f,L). By analyzing a single component of � we find

�i =
MX

q=1

⇣
V q,R
i0 � V q,L

iN

⌘
F̃EC,q(UL

iN ,UR
i0)� ( ̃f,R

i0 �  ̃f,L
iN ) = 0, (2.19)

due to (1.24). So
ISI

t = h1,0iN = 0, (2.20)

which leads to an entropy conservative nodal DG scheme.

How to modify the entropy conservative numerical flux with dissipation to ensure that the scheme is
entropy stable is described later in Sec. 2.3. For now, we address the issue of h/p refinement where non-
conforming meshes may contain differing nodal distributions or hanging corners. To do so, we consider
the entropy conservative fluxes in a modified way. Namely, the projection procedure of the standard
mortar method is augmented in the next sections to guarantee the entropic properties of the numerical
approximation.

2.1.2 Non-Conforming Nodal Distribution

In this section we focus on a discretization, where the nodes do not coincide (p-refinement), see Fig.
1(a). As such, we introduce projection operators

PL2R 2 R(NR+1)⇥(NL+1), PR2L 2 R(NL+1)⇥(NR+1). (2.21)

In particular, the solution on either element is always moved to its neighbor where the entropy conser-
vative numerical flux is computed. In a sense, this means we “hide” the mortar used to cement the two
elements together in the non-conforming approximation by

PL2R = P⌅2RPL2⌅ , PR2L = P⌅2LPR2⌅ . (2.22)

This presentation is motivated to simplify the discussion. The mortars are a useful analytical tool to
describe the idea of a non-conforming DG method, but in a practical implementation they can be removed
with a careful construction of the projection operators.

Here PL2R denotes the projection from the left element to the right element, whereas PR2L denotes the
projection from the right element to the left. In the approximation we have two solution polynomials
pL and pR evaluated at the corresponding interfaces of each element. The numerical approximation is
primary and entropy conservative provided both (2.12) and (2.13) are zero. However, the subtractions
involve two discrete inner products with differing polynomial orders between the left and right elements.
Therefore, we require projection operators that move information from the left node distribution to the
right and vice versa. As such, in discrete inner product notation, the projections must satisfy [24]

hpL,PR2LpRiNL
= hPL2RpL,pRiNR

, pT
LMLPR2LpR = pT

LP
T
L2RMRpR. (2.23)

As the polynomials in (2.23) are arbitrary, we set the projection operators to be M-compatible, meaning

PT
R2LML = MRPL2R, (2.24)

which is the same constraint considered in [6,14,23,24,26]. Non-conforming methods with DG operators
have been derived by Kopriva [22] on LGL nodes, which imply a diagonal SBP norm. The construction
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and implementation of the projection operators is motivated by a discrete L2 projection over Lagrange
polynomials and can be found in Appendix B.

The conditions for primary conservation (2.12) and entropy conservation (2.13) can be directly adapted
from the conforming case. Before proving total conservation, we first introduce the operator E to simplify
the upcoming proof of Theorem 1 and to make it more compact. The operator E extracts the diagonal
of a matrix:

E

0

BBBB@

a11 . . . . . . a1n
...

. . .
...

...
. . .

...
an1 . . . . . . ann

1

CCCCA
=

0

BBBBB@

a11
a22
...

an�1,n�1

ann

1

CCCCCA
, (2.25)

and has the following property.

Lemma 3. Given a vector a 2 RNL+1, a diagonal matrix A = diag(a) 2 R(NL+1)⇥(NL+1) and a
dense rectangular matrix B 2 R(NL+1)⇥(NR+1), then

D
a,E(PR2LB

T )
E

NL

=
D
1R,E(PL2RAB)

E

NR

. (2.26)

Proof.
D
a,E(PR2LB

T )
E

NL

=
⇣
1L
⌘T

AMLE(PR2LB
T ) =

⇣
1L
⌘T

E(A MLPR2L| {z }
(2.24)
= PT

L2RMR

BT ),

=
⇣
1L
⌘T

E(APT
L2R| {z }

=:Ã

MRB
T

| {z }
=:B̃

) =
⇣
1L
⌘T

E(ÃB̃),
(2.27)

since A and the norm matrix ML are diagonal matrices they are free to move inside the extraction
operator (2.25) and Ã 2 R(NL+1)⇥(NR+1), B̃ 2 R(NR+1)⇥(NL+1). Note, that

⇣
1L
⌘T

E(ÃB̃) =
NLX

i=0

1
NRX

j=0

ÃijB̃ji =
NRX

j=0

1
NLX

i=0

B̃jiÃij =
⇣
1R
⌘T

E(B̃Ã).

By replacing Ã, B̃ we get
D
a,E(PR2LB

T )
E

NL

=
⇣
1R
⌘T

E(MRB
TAPT

L2R) =
⇣
1R
⌘T

MRE(PL2RAB),

=
D
1R,E(PL2RAB)

E

NR

,
(2.28)

because E(W) = E(WT ) for any square matrix W.

Furthermore, we introduce the following matrices

[F̃EC,q
L,R ]ij = F̃EC,q(UL

iNL
,UR

j0),

[ ̃f,L]ij =  ̃f (UL
iNL

),

[ ̃f,R]ij =  ̃f (UR
j0),

(2.29)

for i = 0, . . . , NL, j = 0, . . . , NR, where NL and NR denote the number of nodes in one dimension in
left and right element and q = 1, . . . ,M . Here, F̃EC,q denotes a flux satisfying (1.24). We note that the
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matrices containing the entropy flux potential are constant along rows or columns respectively and that
for the non-conforming case NL 6= NR, so all matrices in (2.29) are rectangular.

With the operator E, Lemma 3 and (2.29), it is possible to construct an entropy conservative scheme for
non-conforming, non-linear problems.
Theorem 1. Assume we have an entropy conservative numerical flux F̃EC from a conforming
discretization satisfying the condition (1.24). The fluxes

F̃EC,q,L
i :=

NRX

j=0

[PR2L]ij

⇣
F̃EC,q
L,R

⌘T �

ji

, i = 0, . . . , NL, (2.30)

F̃EC,q,R
j :=

NLX

i=0

[PL2R]ji [F̃
EC,q
L,R ]ij , j = 0, . . . , NR, (2.31)

or in a more compact matrix-vector notation

F̃EC,q,L := E
✓
PR2L

⇣
F̃EC,q
L,R

⌘T◆
, (2.32)

F̃EC,q,R := E
⇣
PL2RF̃

EC,q
L,R

⌘
, (2.33)

are primary and entropy conservative for non-conforming nodal distributions.

Proof. First, we prove primary conservation by including (2.32) and (2.33) in (2.12)

IU I
t :=

D
1R,E

⇣
PL2RF̃

EC,q
L,R

⌘E

NR

�
⌧
1L,E

✓
PR2L

⇣
F̃EC,q
L,R

⌘T◆�

NL

. (2.34)

We apply the result of Lemma 3 to the last term of (2.34) with a = 1L and B = F̃EC,q
L,R to get the

conservation for the primary variables

IU I
t =

D
1R,E

⇣
PL2RF̃

EC,q
L,R

⌘E

NR

�
D
1R,E

⇣
PL2RF̃

EC,q
L,R

⌘E

NR

= 0. (2.35)

Next, we show that the discretization is entropy conservative. To do so, we substitue the fluxes (2.32)
and (2.33) in (2.13).

ISI
t :=

MX

q=1

D
V q,R,E

⇣
PL2RF̃

EC,q
L,R

⌘E

NR

�
D
1R,  ̃ f,R

E

NR

�
MX

q=1

⌧
V q,L,E

✓
PR2L

⇣
F̃EC,q
L,R

⌘T◆�

NL

+
D
1L,  ̃ f,L

E

NL

.

(2.36)

We divide (2.36) into three pieces to simplify the analysis.

ISI
t =

MX

q=1

D
V q,R,E

⇣
PL2RF̃

EC,q
L,R

⌘E

NR

| {z }
=(I)

�
MX

q=1

⌧
V q,L,E

✓
PR2L

⇣
F̃EC,q
L,R

⌘T◆�

NL

| {z }
=(II)

�

0

BB@
D
1R,  ̃ f,R

E

NR

�
D
1L,  ̃ f,L

E

NL| {z }
=(III)

1

CCA .

(2.37)
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For (I) we see that

(I) =
MX

q=1

D
V q,R,E

⇣
PL2RF̃

EC,q
L,R

⌘E

NR

=
MX

q=1

D
1R,V q,R � E

⇣
PL2RF̃

EC,q
L,R

⌘E

NR

. (2.38)

By introducing Vq,R := diag(V q,R) we can shift the entropy variables inside the E operator and obtain

(I) =
MX

q=1

D
1R,E

⇣
Vq,RPL2RF̃

EC,q
L,R

⌘E

NR

=

*
1R,E

 
PL2R

 
MX

q=1

Vq,RF̃EC,q
L,R

!!+

NR

, (2.39)

because E(AB) = E(BA) for square matrices A,B.

Considering the second term (II) of (2.37)

(II) =
MX

q=1

⌧
V q,L,E

✓
PR2L

⇣
F̃EC,q
L,R

⌘T◆�

NL

, (2.40)

and applying Lemma 3 with a = V q,L,A = Vq,L, and B = F̃EC,q
L,R gives

(II) =
MX

q=1

D
1R,E

⇣
PL2RV

q,LF̃EC,q
L,R

⌘E

NR

=

*
1R,E

 
PL2R

 
MX

q=1

Vq,LF̃EC,q
L,R

!!+

NR

. (2.41)

Last, we analyze term (III),

(III) =
D
1R,  ̃ f,R

E

NR

�
D
1L,  ̃ f,L

E

NL

. (2.42)

For this analysis we rewrite (III) in terms of the matrices  ̃f,L,  ̃f,R. Note, that each column of  ̃f,R

and each row of  ̃f,L remain constant. The projection operators are exact for a constant state, i.e.
PR2L1

R = 1L and PL2R1
L = 1R. Hence, we define

 ̃ f,R = E
⇣
PL2R ̃

f,R
⌘
, (2.43)

 ̃ f,L = E
✓
PR2L

⇣
 ̃f,L

⌘T◆
. (2.44)

Substituting the above definitions in (2.42) we arrive at

(III) =
D
1R,E

⇣
PL2R ̃

f,R
⌘E

NR

�
⌧
1L,E

✓
PR2L

⇣
 ̃f,L

⌘T◆�

NL

. (2.45)

Again applying Lemma 3 (where a = 1L,B =  ̃f,L) yields

(III) =
D
1R,E

⇣
PL2R ̃

f,R
⌘E

NR

�
D
1R,E

⇣
PL2R ̃

f,L
⌘E

NR

, (2.46)

=
D
1R,E

⇣
PL2R

⇣
 ̃f,R �  ̃f,L

⌘⌘E

NR

. (2.47)

Substituting (I), (II), (III) in (2.37) we have rewritten the entropy update to be

ISI
t =

*
1R,E

 
PL2R

 
MX

q=1

Vq,RF̃EC,q
L,R �

MX

q=1

Vq,LF̃EC,q
L,R �

⇣
 ̃f,R �  ̃f,L

⌘!!+

NR

,

=
D
1R,E

⇣
PL2RS̃

⌘E

NR

,

(2.48)
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with

S̃ :=
MX

q=1

Vq,RF̃EC,q
L,R �

MX

q=1

Vq,LF̃EC,q
L,R �

⇣
 ̃f,R �  ̃f,L

⌘
. (2.49)

Next, we analyze a single component of S̃. Let i = 0, . . . NL and j = 0, . . . NR, then

[S̃]ij =
MX

q=1

⇣
V q,R
j0 � V q,L

iNL

⌘
F̃EC,q(UL

iNL
,UR

j0)� ( ̃f,R
j0 �  ̃f,L

iNL
). (2.50)

Since the entropy conservative fluxes is contained in (2.50) and due to (1.24) we obtain

[S̃]ij = 0. (2.51)

Inserting this result in (2.48) we arrive at

ISI
t =

D
1R,E (PL2R0)

E

NR

= 0. (2.52)

Therefore, ISI
t is zero for F̃EC,q,L := E

✓
PR2L

⇣
F̃EC,q
L,R

⌘T◆
and F̃EC,q,R := E

⇣
PL2RF̃

EC,q
L,R

⌘
.

Note, that this proof is for general for any hyperbolic PDE with physical fluxes f, g where we have
an entropy. Based on this proof, we can construct entropy conservative schemes with algebraic non-
conforming discretizations (p refinement). To introduce additional flexibility, we next consider geometric
non-conforming discretizations where the interfaces may not coincide (h refinement).

2.2 Non-Conforming Interfaces with Hanging Corners

In Sec. 2.1.2 we created numerical fluxes for elements with a coinciding interface but differing polynomial
orders. As such, each numerical interface flux only depends on one neighboring element. For example the
numerical flux F̃EC,R in (2.33) only contained the projection operator PL2R, so it only depended on one
neighboring element L. This was acceptable if the interfaces had no hanging corners, however for the
more general case of h refinement as in Fig. 6 the interface coupling requires addressing contributions
from many elements.

L1

X
L2

X
...

X
LE�LE

�L2

�L1

�RR

Fig. 6: h refinement with hanging corners X

Throughout this section we will focus on discrete meshes as in Fig. 6. For the h refinement analysis we
adapt the results derived in the previous section, where the interfaces coincide. Therefore, we consider
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all left elements as if they are one element L =
SE

i=1 Li. Again, this procedure “hides” the mortars
within the new projection operators. Thus, we see that each sub-element L has a conforming interface
with element R (red line) and has the nodes of the elements Li on the red lined interface

⌘L = (⌘L1
0 , . . . , ⌘L1

NL1
, . . . , ⌘LE

0 , . . . , ⌘LE
NLE

)T , (2.53)

where ⌘Li denotes the vertical nodes of the element Li. For element L and element R the projection
operators need to satisfy the M-compatibility condition (2.24):

PT
L2RMR = MLPR2L, (2.54)

where

ML =
1
�R

0

B@
�L1ML1

. . .
�LEMLE

1

CA , (2.55)

where � denotes the height of an element. We can interpret the “large” projection operators into parts
that contribute from/to each of the smaller elements with the following structure

PL2R =
⇥
PL12R . . . PLE2R

⇤
, (2.56)

and

PR2L =

2

64
PR2L1

...
PR2LE

3

75 . (2.57)

With this new notation we adapt the M-compatibility condition (2.54) to become

�LiP
T
R2Li

MLi = �RMRPLi2R, i = 1, . . . , E. (2.58)

When constructing PR2L and PL2R as in Appendix B and setting the mortar element nodes to be ⌘L,
then PR2L and PL2R are of a certain degree, say pR2L and pL2R, meaning

PR2L

⇣
⌘R
⌘k

=
⇣
⌘L
⌘k

, for k = 0, . . . , pR2L,

PL2R

⇣
⌘L
⌘k

=
⇣
⌘R
⌘k

, for k = 0, . . . , pL2R.

(2.59)

Due to (2.56) and (2.57) we obtain

PR2Li

⇣
⌘R
⌘k

=
⇣
⌘Li

⌘k
, for i = 1, . . . , E and k = 0, . . . , pR2L,

EX

i=1

PLi2R

⇣
⌘Li

⌘k
=
⇣
⌘R
⌘k

, for k = 0, . . . , pL2R.
(2.60)

So operators PR2Li with i = 1, . . . , E are also of degree pR2L. In comparison, the operators PLi2R for
i = 1, . . . , E can not necessarily project a constant exactly.

As in Sec. 2.1 we choose the numerical surface fluxes so that the scheme is primary and entropy conser-
vative. We note that for the h non-conforming case (just like p non-conforming) the result of Lemma 1 is
still valid. That is, the volume contributions have no effect on the non-conforming approximation. Only
a careful definition of the interface coupling is needed to construct an entropy stable non-conforming DG
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approximation. Therefore, we analyze all terms which are related to the interface connecting L1, . . . , LE

and R. Similar to (2.12) and (2.13), we arrive at the following terms

IU I
t =

D
1R, F̃EC,q,R

E

NR

�
EX

i=1

D
1Li , F̃EC,q,Li

E

NLi

, (2.61)

ISI
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D
V q,R, F̃EC,q,R

E

NR

�
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1R,  ̃R,f

E

NR

�
EX
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q=1

D
V q,Li , F̃EC,q,Li

E

NLi

�
D
1Li ,  ̃Li,f

E

NLi

!
,

which need to be zero to obtain a discretely primary and entropy conservative scheme.

Corollary 1. Given a set of projection operators that satisfy (2.58), we can prove analogously to
Theorem 1 that the fluxes

F̃EC,q,R := E
⇣
PL2RF̃

EC,q
L,R

⌘
=

EX

i=1

E
⇣
PLi2RF̃

EC,q
Li,R

⌘
, (2.62)

and
F̃EC,q,Li := E

✓
PR2Li

⇣
F̃EC,q
Li,R

⌘T◆
, (2.63)

for i = 1, . . . , E lead to primary and entropy conservative schemes.

Proof. This result requires a straightforward modification of the result from Lemma 3

�Li

D
a,E(PR2LiB

T )
E

NL

= �R

D
1R,E(PLi2RAB)

E

NR

. (2.64)

Now, the proof follows identical steps as given for Lemma 1, but now keeping track of the adjustable
element sizes.

2.3 Including Dissipation within the Numerical Surface Flux

In Sec. 2.1 and Sec. 2.2 we derived primary and entropy conservative schemes for non-linear problems
on non-conforming meshes with h/p refinement. From these results, we can include interface dissipation
and arrive at an entropy stable discretization for an arbitrary non-conforming rectangular mesh.

While conservation laws are entropy conservative for smooth solutions, discontinuities in the form of
shocks can develop in finite time for non-linear problems despite smooth initial data. Considering shocks,
the mathematical entropy should decay, which needs to be reflected within our numerical scheme. Thus,
we will describe how to include interface dissipation which leads to an entropy stable scheme. We note
that the numerical volume flux in (1.27) is still an entropy conservative flux which satisfies (1.24).

We will focus on the general case, where we have differing nodal distributions as well as hanging corners
(h refinement) as in Fig. 6. As in Sec. 2.2 we assume that the projection operators satisfy the compati-
bility condition (2.58).

Theorem 2. The scheme is primary conservative and entropy stable, for the following numerical
surface fluxes.

F̃ES,q,Li = F̃EC,q,Li � �
2

⇣
PR2LiV

q,R � V q,Li

⌘
(2.65)

F̃ES,q,R = F̃EC,q,R � �
2

EX

i=1

PLi2R

⇣
PR2LiV

q,R � V q,Li

⌘
(2.66)

where � > 0 is a scalar which controls the dissipation rate.



An Entropy Stable h/p Non-Conforming DG Method with the SBP Property 21

Proof. By including dissipation we can prove primary conservation by substituting the new fluxes (2.65)
and (2.66) into (2.61)

IU I
t =

⌧
1R, F̃EC,q,R � �

2
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��
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.

(2.67)
Due to Corollary 1 we know that

D
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E

NR

�
EX

i=1

D
1Li , F̃EC,q,Li

E

NLi

= 0, (2.68)

and we find that
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t = ���R
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(2.69)
Due to (2.58) we arrive at
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(2.70)
assuming that PR2Li can project a constant exactly, meaning PR2Li1

R = 1Li , it yields

IU I
t = 0, (2.71)

which leads to a primary conservative scheme.

To prove entropy stability we include (2.65) and (2.66) in (2.13) and adapt the results from Corollary 1
to find that
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(2.72)

Again, we apply the condition (2.58) and obtain
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 0,

(2.73)

since each MLi is a symmetric positive definite matrix and ��Li > 0, so the non-conforming DG scheme
is entropy stable.
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Note, that the dissipation terms (2.65) and (2.66) are non-symmetric. An alternative choice would be

F̃ES,q,Li

alt = F̃EC,q,Li � �
2
PR2Li

⇣
V q,R � PLi2RV

q,Li

⌘
, (2.74)

F̃ES,q,R
alt = F̃EC,q,R � �

2

 
V q,R �

EX

i=1

PLi2RV
q,Li

!
. (2.75)

However, for (2.74) and (2.75) the proof in Theorem (2) would not hold as PLi2R can not necessarily
project a constant exactly. Also, when considering a constant initial solution the dissipation term for
F̃ES,q,Li

alt would not vanish which leads to an unphysical behaviour of the solution. Note, that this proof
of Theorem (2) also holds for deriving an entropy stable scheme for geometrically conforming interfaces
but differing polynomial order (p refinement) by setting E = 1. Here, the choice of (2.65),(2.66) or
(2.74),(2.75) do not affect the properties or the scheme nor the experimental order of convergence.

To summarize, we derived a primary conservative and entropy stable DGSEM for non-linear problems
on general h/p non-conforming meshes. Note, that all results hold for an arbitrary system of non-linear
conservation laws as long as entropy conservative numerical fluxes exist that satisfy (1.24).

3 Numerical results

For all numerical results presented in this work we considered the two dimensional Euler equations
0

BB@

⇢
⇢u
⇢v
E

1

CCA

t

+

0

BB@

⇢u
⇢u2 + p
⇢uv

u(E + p)

1

CCA

x

+

0

BB@

⇢v
⇢uv

⇢v2 + p
v(E + p)

1

CCA

y

=

0

BB@

0
0
0
0

1

CCA , (3.1)

on ⌦ ⇢ R2 and t 2 [0, T ] ⇢ R+ with E = 1
2⇢(u

2 + v2) + p
��1 and adiabatic coefficient � = 1.4.

The entropy conservative/stable non-conforming implementation of the DGSEM of the Euler equations
uses the Ismail and Roe entropy conserving flux [19] in (2.32) and (2.33) for p refinement and in (2.62)
and (2.63) to apply h refinement.

We use an explicit time integration method to advance the approximate solution. In particular, we select
the five-stage, fourth-order low-storage Runge-Kutta method of Carpenter and Kennedy [5]. The explicit
time step �t is selected by the CFL condition [14]

�t := CFL
mini{�xi

2
�yi

2 }
maxj{Nj + 1}�max

, (3.2)

where �xi and �yi denote the width in x- and y-direction of the ith element, Nj denotes the number
of nodes in one dimension of the jth element, and �max denotes the maximum eigenvalue of the flux
Jacobians over the whole domain.

In this section, we verify the experimental order of convergence as well as conservation of the primary
quantities and entropy for the novel h/p non-conforming DGSEM described in this work.

3.1 Experimental Order of Convergence

For our numerical convergence experiments, we set T = 1 and CFL = 0.2. We analyze the experimental
order of convergence for an entropy stable flux. Therefore, we include dissipation to the baseline entropy
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conservative Ismail and Roe flux [19] at each element interface. In particular, we consider a local Lax-
Friedrichs type dissipation term with z = n1u+ n2v, where n = (n1, n2)

T denotes the normal vector

�L = max {||zL + cL||1, ||zL||1, ||zL � cL||1} ,
�R = max {||zR + cR||1, ||zR||1, ||zR � cR||1} ,

� =
1
2
max {�L,�R} ,

(3.3)

with c =
q

�p
⇢ . We include �L and �R in (2.65) and (2.66).

For convergence studies we consider the isentropic vortex advection problem taken from [8]. Here, we set
the domain to be ⌦ = [0, 10]⇥ [0, 10]. The initial conditions are

w(x, y, 0) ⌘ w0(x, y) =

0

BBBB@

T
1

��1

1� (y � 5)�(r)

1 + (x� 5)�(r)

T
�

��1

1

CCCCA
, (3.4)

where we introduce the vector of primitive variables w(x, y, t) = (⇢, u, v, p)T and

r(x, y) =
p
(x� 5)2 + (y � 5)2,

T (x, y) =1� � � 1
2�

�(r2),

�(r) ="e↵(1�r2),

(3.5)

with " = 5
2⇡ and ↵ = 0.5. With these initial condition the vortex is advected along the diagonal of the

domain. We impose Dirichlet boundary conditions using the exact solution which is easily determined
to be

w(x, y, t) = w0(x� t, y � t). (3.6)

To examine the convergence order for a h/p non-conforming method we consider a general mesh setup
that includes pure p non-conforming interfaces, pure h non-conforming interfaces and h/p non-conforming
interfaces. Therefore we define three element types A,B,C. Here, the mesh is prescribed in the following
way

– Elements of type A in ⌦1 = [0, 5]⇥ [0, 10]

– Elements of type B in ⌦1 = [5, 10]⇥ [0, 5]

– Elements of type C in ⌦1 = [5, 10]⇥ [5, 10].

For each level of the convergence analysis, a single element is divided into four sub-elements. This mesh
refinement strategy is sketched in Fig. 7.

The DG derivative matrix (i.e. the SBP operator) depends on the polynomial degree within each element.
Therefore, for p refinement the SBP operator may differ between elements A,B,C.

We consider the DGSEM on Legendre-Gauss-Lobatto nodes as in [15]. To do so, we investigate the
following configurations:

– Element A with a degree pA = p operator in x- and y-direction
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Fig. 7: Three levels of mesh refinement used to investigate the experimental order of convergence for the
h/p non-conforming DG approximation.

– Element B with a degree pB = p+ 1 operator in x- and y-direction

– Element C with a degree pC = p operator in x- and y-direction,

with p = 2, 3.

With such element distributions we consider p refinement along the line x = 5 for y 2 [5, 10] and h
refinement along the line y = 5 for x 2 [0, 10]. To carefully treat the non-conforming interfaces we create
the projection operators described in Appendix B. With these operators included in the non-conforming
entropy stable scheme we obtain the experimental order of convergence (EOC) rates collected in Tables
1 and 2.

DG operators with mixed polynomial degree

DOFS L2 EOC
544 1.90E-01
2176 3.06E-02 2.6
8704 4.28E-03 2.8
34826 8.44E-04 2.3
139264 1.80E-04 2.2

Table 1: Experimental order of conver-
gence for the non-conforming entropy sta-
ble scheme using DG-operators of degree
two and three.

DOFS L2 EOC
912 2.55E-02
3648 2.02E-03 3.7
14592 1.81E-04 3.5
58368 1.98E-05 3.2
233472 2.28E-06 3.1

Table 2: Experimental order of conver-
gence for the non-conforming entropy sta-
ble scheme using DG-operators of degree
three and four.

We verify a convergence order slightly higher than p, where p = min{pA, pB , pC}. This result is also doc-
umented for non-conforming schemes as in [14] for linear problems. In comparison, conforming schemes
have an EOC of p + 1. The order reduction occurs presumably because of the degree of the projection
operators.

Focusing on two elements with SBP operators (MA,DA) and (MB ,DB), where DA and DB are of degree
pA and pB . For SBP operators constructed on LGL nodes (DGSEM [15]) or on uniform distributed
nodes (SBP-SAT finite difference [9]) the norm matrices MA and MB can integrate polynomials of
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degree 2pA � 1 and 2pB � 1 exactly. Let PA2B denote the projection operator of degree p1 and PB2A

denote the projection operator of degree p2, then Lundquist and Nordström [25] proved that

p1 + p2  2pmin � 1, (3.7)

where pmin = min{pA, pB}. So, when considering non-conforming schemes, not all projection operators
can be of degree pmin. The upper bound of 2pmin � 1 is due to the accuracy of the integration matrix.
For this reason Friedrich et al. [14] created a special set of SBP-finite difference operators, where the
norm matrix can integrate polynomials of degree > 2pmin exactly. With these operators it is possible
to construct projection operators of the same degree as the SBP-operators (degree preservation). The
construction of the projection operators is outlined in [14]. Convergence test with these operators are
documented in Appendix C and show a full convergence order of p+ 1 for the non-conforming case.

To summarize, the non-conforming entropy stable scheme has the flexibility to chose different nodal
distribution as well as elements of different sizes and obtains an experimental order of convergence of p.

3.2 Verification of Primary and Entropy Conservation/Stability

In this section we numerically verify primary conservation and entropy conservation/stability for the
new derived scheme. We first demonstrate entropy conservation which was the result of Theorem 1
and Corollary 1. Therefore we consider the entropy conservative flux of Ismail and Roe [19] without
dissipation. To verify the conservation of entropy, we consider the mesh in Fig. 7(c) on ⌦ = [0, 1]⇥ [0, 1]
with periodic boundary conditions. For each type of element we consider DG operators with pA = pC = 3
and pB = 4. To calculate the discrete growth in the primary quantities and entropy we rewrite (1.23) by

J (Ut)ij +Res (Ut)ij = 0, (3.8)

where
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(3.9)
The growth in entropy is computed by contracting (3.8) with the vector of entropy variables, i.e.,

JV T
ij (Ut)ij = �V T

ij Res (Ut)ij , J (St)ij = �V T
ij Res (Ut)ij , (3.10)

where we use the definition of the entropy variables (1.2) to obtain the temporal derivative, (St)ij ,
at each LGL node. As shown in Theorem 2, the scheme is primary and entropy conservative when no
interface dissipation is included, meaning that

X

all elements

J
NX

i,j=0

!i!j (Ut)ij = 0,

X

all elements

J
NX

i,j=0

!i!j (St)ij = 0,

(3.11)
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for all time. We verify this result numerically inserting (3.10) and calculate

IUt := �
X

all elements

NX

i,j=0

!i!jRes (Ut)ij = 0,

ISt := �
X

all elements

NX

i,j=0

!i!jV
T
ij Res (Ut)ij ,

(3.12)

using a discontinuous initial condition
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Here µk,l are uniformly generated random numbers in [0, 1]. The random initial condition is chosen to
demonstrate entropy conservation independent of the initial condition. We calculate IUt and St for
1000 different initial conditions which gives us (IUt)lk and (ISt)k for k = 1, . . . , 1000 and l = 1, . . . , 4.
Within the L2 product we obtain the results in Table 3.

Verification of primary and entropy conservation

L2(ISt) L2((IUt)1,:) L2((IUt)2,:) L2((IUt)4,:) L2((IUt)4,:)
4.56E-14 2.57E-14 1.35E-14 2.26E-14 8.53E-14

Table 3: Calculating the growth of the primary quantities IUt and entropy IUt for 1000 different random
initial conditions with the new scheme. The growth is presented within the L2 product. All values are
near machine precision which demonstrates primary and entropy conservation.

In Table 3 we verify primary and entropy conservation. In comparison, when considering the same setup
and calculating the numerical flux with the standard mortar method by Kopriva [20] we verify primary
conservation but the method is not entropy conservative, see Table 4.

Calculating the growth in the primary quantities and entropy with the standard
mortar method

L2(ISt) L2((IUt)1,:) L2((IUt)2,:) L2((IUt)4,:) L2((IUt)4,:)
3.07E-02 5.90E-15 2.62E-14 6.27E-15 1.04E-13

Table 4: Calculating the growth of the primary quantities IUt and entropy IUt for 1000 different
random initial conditions with the mortar element method. The growth is presented within the L2-
product. Here, we verify conservation of the primary quantities but not entropy conservation.

Next, we demonstrate the increased robustness of the novel entropy conservative, non-conforming scheme.
Therefore, we approximate the total entropy on the spatial domain as

IS :=
X

all elements

J
NX

i,j=0

!i!j (S)ij (3.14)
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over the time interval t 2 [0, T ], where we choose T = 25 and CFL = 0.5. For the Euler equations the
entropy function is defined by

S = � ⇢
� � 1

log

✓
p
⇢�

◆
. (3.15)

We solve for the total entropy in time with the low-storage Runge-Kutta time integration method of
Carpenter and Kennedy [5] using a discontinuous initial condition
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and periodic boundaries. Again, we use the new derived method and the classical mortar method [2,
20]. In Fig. 8 we plot the temporal evolution of the entropy for the standard mortar method against the
newly derived scheme.
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Fig. 8: Evolution of the total entropy comparing the behavior of the standard mortar method against
the new scheme derived in this work with an entropy conservative surface flux. We see that the total
entropy grows for the mortar method with this test configuration whereas the entropy is conserved for
the new scheme. In fact, the mortar method crashes at t ⇡ 1.

The new scheme conserves the total entropy. However, for the mortar method we observe an unpredictable
behavior of the entropy for t < 1 and note that at t ⇡ 1 the approach even crashes. This has been verified
for the CFL numbers CFL = 0.5; 0.25; 0.125; 0.0625 and demonstrates the enhanced robustness of
entropy conserving/stable schemes.

Finally, we verify the entropy stability and conservation of the primary quantities. Therefore, we in-
clude dissipation in a local Lax-Friedrichs sense as described in Sec. 2.3. For this test we use the same
configuration as for verifying entropy conservation and set CFL = 0.5.

In Fig. 10 we can see that the primary quantities are conserved over time. Note, that in comparison the
non-entropy conserving mortar scheme crashes at t ⇡ 1. Also, we note that the plot remains the same
whether or not dissipation is included. In Fig. 9 we can see that the total entropy remains constant when
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Fig. 9: Evolution of the total entropy of
the solution with and without dissipation.
We see that the total entropy is conserved
when no interface dissipation is included
and total energy decays with interface dis-
sipation.
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Fig. 10: A plot that demonstrates the con-
servation of the primary quantities. The
plots do not depend on interface dissipa-
tion.

using an entropy conservative flux. Therefore, when including dissipation, the total entropy decays which
numerically verifies entropy stability.

4 Conclusion

In this work we derived a h/p non-conforming primary conservative and entropy stable discontinuous
Galerkin spectral element approximation with the summation-by-parts (SBP) property for non-linear
conservation laws. We first examined the standard mortar method and found that it did not guarantee
entropy conservation/stability for non-linear problems. Hence, we present a modification of the mortar
method with special attention given to the projection operators between non-conforming elements. As
an extension of the work [6] we extend an entropy stable p non-conforming discretization to a more
general h/p non-conforming setup. Neither the nodes nor the interface of two neighboring elements need
to coincide in the novel approach. Throughout the derivations in this paper it was required to consider
SBP operators, like that for the LGL nodal discontinuous Galerkin spectral method, as these operators
mimic the integration-by-parts rule in a discrete manner. To demonstrate the high-order accuracy and
entropy conservation/stability of the non-conforming DGSEM we selected the two-dimensional Euler
equations. However, we reiterate that the proofs contained herein are general for systems of non-linear
hyperbolic conservation laws and directly apply to all diagonal norm SBP operators, as e.g. presented
in Appendix C.
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A Derivations of the Growth of Primary Quantities and Entropy

The proof below is the same result as presented by Fisher et al. [12]. For completeness, we re-derive the proof in
our notation. We analyze the two dimensional discretization of (1.27) on a single element.

J!i!j (Ut)ij + !jL(Uij)x + !iL(Uij)y = 0, (A.1)

with

L(Uij)x = 2
NX

m=0

!iDimF̃EC(Uij ,Umj)�
⇣
�iN [F̃ � F̃EC]Nj � �i0[F̃ � F̃EC]0j

⌘
,

L(Uij)y = 2
NX

m=0

!jDjmG̃EC(Uij ,Uim)�
⇣
�Nj [G̃� G̃EC]iN � �0j [G̃� G̃EC]i0

⌘
.

(A.2)

Assuming, that F̃EC and G̃EC satisfy the appropriate entropy condition (1.24)

F̃EC(Uij ,Uml)
T �

Vij � V q
ml

�
=  ̃f

ij �  ̃f
ml,

G̃EC(Uij ,Uml)
T �

Vij � V q
ml

�
=  ̃g

ij �  ̃g
ml.

(A.3)

First, we derive the growth of the primary quantities on each element Ek, k = 1, . . . ,K. Summing over all nodes
i, j = 0, . . . , N yields

J
NX

i,j=0

!i!j (Ut)ij

| {z }
⇡

R
Ut dE

+
NX

j=0

!j

NX

i=0

L(Uij)x +
NX

i=0

!i

NX

j=0

L(Uij)y = 0, (A.4)

with
NX

i=0

L(Uij)x = 2
NX

i=0

NX

m=0

QimF̃EC(Uij ,Umj)� [F̃ � F̃EC]Nj + [F̃ � F̃EC]0j . (A.5)
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Using the SBP property of the matrices 2Q = Q� QT + B we find

NX

i=0

L(Uij)x =
NX

i=0

NX

m=0

QimF̃EC(Uij ,Umj)�
NX

i=0

NX

m=0

QimF̃EC(Umj ,Uij) + F̃EC
Nj � F̃EC

0j . (A.6)

Due to nearly skew-symmetric nature of Q we arrive at

NX

i=0

L(Uij)x = F̃EC
Nj � F̃EC

0j . (A.7)

And similar for
NP
j=0

L(Uij)y we have

NX

j=0

L(Uij)x = G̃EC
iN � G̃EC

i0 . (A.8)

Together both directions yield

J
NX

i,j=0

!i!j (Ut)ij

| {z }
⇡

R
Ut dE

= �
NX

j=0

!j
⇣
F̃EC
Nj � F̃EC

0j

⌘
�

NX

i=0

!i
⇣
G̃EC

iN � G̃EC
i0

⌘
, (A.9)

which is precisely (2.5).

Next, we derive the entropy growth on the single element. To do so, we pre-multiply with the entropy variables
and sum over all nodes to get

J
NX

i,j=0

!i!j V
T
ij (Ut)ij| {z }
=:(St)ij

+
NX

j=0

!j

NX

i=0

V T
ij L(Uij)x +

NX

i=0

!j

NX

j=0

V T
ij L(Uij)y = 0, (A.10)

with

NX

i=0

V T
ij L(Uij)x =2

NX

i=0

NX

m=0

QimV T
ij F̃

EC(Uij ,Umj)�
h
V T F̃ � V T F̃EC

i

Nj
+

h
V T F̃ + V T F̃EC

i

0j
.

(A.11)
Again using 2Q = Q� QT + B we have

NX

i=0

V T
ij L(Uij)x =

NX

i=0

NX

m=0

QimV T
ij F̃

EC(Uij ,Umj)�
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NX

m=0

QimV T
ji F̃

EC(Umj ,Uij)

+ V T
Nj F̃

EC
Nj � V T

0j F̃
EC
0j .

(A.12)

Due to entropy conservation condition (1.24) and the consistency of the derivative matrix, i.e. D1 = 0 (, Q1 = 0)
we find

NX

i=0

V T
ij L(Uij)x =

NX

i=0
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And similar for
NP
j=0

V T
ij L(Uij)y we get

NX

j=0

V T
ij L(Uij)y =

⇣
V T
iN G̃EC
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(A.14)

Both directions together yield
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(A.15)

which is precisely (2.6).

B Projection operators for Discontinuous Galerkin methods

The projection operators for DG methods are constructed with the Mortar Element Method by Kopriva [22].

Here we assume two neighboring elements with a single coinciding interface as in Fig. 5. Let N,M denote the
polynomial degrees of both elements with corresponding one-dimensional nodes xN0 , . . . , xNN and xM0 , . . . , xMM
and integration weights !N

0 , . . . ,!N
N and !M

0 , . . . ,!M
M . The corresponding norm matrices are defined as MN =

diag(!N
0 , . . . ,!N

N ) and MM = diag(!M
0 , . . . ,!M

M ) and each element is equipped with a set of Lagrange basis
functions lN0 , . . . , lNN and lM0 , . . . , lMM .

As for the elements, the mortar also consists of a set of nodes, integration weights, norm matrix and Lagrange
basis functions. Without lose of generality, we assume N < M . Therefore, the polynomial order on the mortar
N⌅ = max{N,M} = M . So the mortar will simply copy the solution data from the element with the higher
polynomial degree M because the nodal distributions are identical. Thus, the projection operator from the element
to the mortar as well as back from the mortar to the element are simply the identity matrix of size M , i.e.
PM2⌅ = IM and P⌅2M = IM . Next, we briefly describe how to project the element of degree N to the mortar
and back.

Step 1 (Projection from element of degree N to the mortar): Assume we have a discrete evaluated
function f = (f0, . . . , fN )T with f(x) =

PN
i=0 `

N
i (x)fi. We want to project this function onto the mortar to

obtain f⌅ = (f⌅0 , . . . , f⌅M )T with f⌅(x) =
PM

j=0 `
M
j (x)f⌅j . Note, that f(x) 6= f⌅(x) for a polynomial of higher

degree. In [22] the operator PN2⌅ is created by a L2 projection on the mortar

D
f, `Mj

E

L2

=
D
f⌅ , `Mj

E

L2

,
NX

i=0

D
`Ni , `Mj

E

L2

fi =
MX

i=0

D
`Mi , `Mj

E

L2

f⌅i , (B.1)

for j = 0, . . . ,M . Here, the L2 inner products are evaluated discretely using the appropriate norm matrices. The
L2 inner product on the left in (B.1) is evaluated exactly due to the high-order nature of the LGL quadrature
and the assumption that N < M . Therefore, using M -LGL nodes and weights we have

D
`Ni , `Mj

E

L2

=
D
`Ni , `Mj

E

M
=

MX

k=0

!M
k `Ni (xMk )`Mj (xMk ) =

MX

k=0

!M
k `Ni (xMk )�jk = !M

j `Ni (xMj ), (B.2)

for i = 0, . . . , N , j = 0, . . . ,M and use the Kronecker delta property of the Lagrange basis. On the right side of
(B.1) we evaluate an inner product of two polynomial basis functions of order M . Therefore, due to the exactness
of the LGL quadrature, the L2 inner product is approximated by an integration rule with mass lumping, e.g. [2],

D
`Mi , `Mj

E

L2

⇡
D
`Mi , `Mj

E

M
=

MX

k=0

!M
k `Mi (xMk )`Mj (xMk ) =

MX

k=0

!M
k �ik�jk = �ij!

M
j , (B.3)
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for i, j = 0, . . . ,M . Next, we define interpolation operators

[LN2⌅ ]ij := `Nj (xMi ), (B.4)

with i = 0, . . . , N and j = 0, . . . ,M to rewrite (B.1) in a compact matrix-vector notation

MMLN2⌅f = MMf⌅ , LN2⌅| {z }
:=PN2⌅

f = f⌅ . (B.5)

So the projection operator to move the solution from the element with N nodes onto the mortar is equivalent to
an interpolation operator. However, this does not hold for projecting the solution from the mortar back to the
element.

Step 2 (Projection from the mortar to element of degree N): To construct the operator P⌅2N we consider
the L2 projection from the mortar back to an element with N nodes. Here, we assume a discrete evaluation of the
solution on the mortar f⌅ = (f⌅0 , . . . , f⌅M )T with f⌅(x) =

PM
i=0 `

M
i (x)f⌅i and seek the solution on the element

f = (f0, . . . , fN )T with f(x) =
PN

i=0 `
N
i (x)fi. The L2 projection back to the element is

D
f⌅ , `Nj

E

L2

=
D
f, `Nj

E

L2

,
MX

i=0

D
`Mi , `Nj

E

L2

f⌅i =
NX

i=0

D
`Ni , `Nj

E

L2

fi, (B.6)

for j = 0, . . . , N . The L2 inner product on the left in (B.6) is computed exactly using M -LGL points and the L2

inner product on the right in (B.6) is approximated with mass lumping at N -LGL nodes. Thus, we obtain

D
`Mi , `Nj

E

L2

=
D
`Mi , `Nj

E

M
=

MX

k=0

!M
k `Mi (xMk )`Nj (xMk ) = !M

i `Nj (xMi ), (B.7)

where i = 0, . . . ,M , j = 0, . . . , N and

D
`Ni , `Nj

E

L2

⇡
D
`Ni , `Nj

E

N
=

NX

k=0

!N
i `Ni (xNk )`Nj (xNk ) = �ij!

N
j , (B.8)

for i, j = 0, . . . , N . Again, we write (B.6) in a compact matrix-vector notation which gives us

LTN2⌅MMf⌅ = MNf . (B.9)

As LN2⌅ = PN2⌅ we obtain
M�1

N PT
N2⌅MM| {z }

:=P⌅2N

f⌅ = f , (B.10)

where we introduce the projection operator (not interpolation operator) from the mortar back to the element
with N nodes. With this approach we constructed projection operators satisfying the M-compatibility condition
(2.24), i.e.,

P⌅2N = M�1
N PT

N2⌅MM , MNP⌅2N = PT
N2⌅MM . (B.11)

By combining the operators, we can construct projections which directly move the solution from one element to
another (in some sense “hiding” the mortar) to be

PN2M = P⌅2MPN2⌅ ,

PM2N = P⌅2NPM2⌅ .
(B.12)

Note, that in this paper we only consider LGL-nodes for the approximating the L2-projection. However, the
approach in [22] is more general as it also considers Legendre Gauss nodes and the construction of projection
operators on interfaces with hanging corners.
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C Experimental Order of Convergence - Degree Preserving Element based Finite
Difference Operators

Besides Discontinuous Galerkin SBP operators, we analyze the convergence of degree preserving, element based
finite difference operators (DPEBFD) operators. As described in [14] these operators are SBP operators by con-
struction, for which our entropy stable discretization remains stable. The norm matrix of the DPEBFD operator
integrates polynomials up to degree of 2p + 1 exactly, where p denotes the minimum polynomial degree of all
elements. In comparison to SBP finite difference operators as in [9] these operators are element based, meaning
that the number of nodes is fixed as for DG operators.

As we focus on elements with SBP operators of the same degree, we set all elements to be DPEBFD elements
with degree p where p = 2, 3. To approximate the convergence order of the non-conforming discretization, we
consider the same mesh refinement strategy as in Fig. 7 with element types A,B,B. These types are set up in
the following way:

– Element A with 22 nodes in x- and y-direction,

– Element B with 24 nodes in x- and y-direction,

– Element C with 22 nodes in x- and y-direction.

This leads to a mesh considering h/p refinement. Here, we obtain the results in Tables 5-6

DPEBFD SBP operators

DOFS L2 EOC
6176 6.09E-01
24704 1.60E-01 1.9
98816 2.44E-02 2.7
395264 3.11E-03 3.0
1581056 3.97E-04 3.0

Table 5: Experimental order of conver-
gence for DPEBFD operators with p = 2.

DOFS L2 EOC
768 3.47E-01
3072 8.70E-02 2.0
12288 6.83E-03 3.7
49152 4.69E-04 3.9
196608 2.99E-05 4.0

Table 6: Experimental order of conver-
gence for DPEBFD operators with p = 3.

As documented in [14] we numerically verify an EOC of p+1. So when considering degree preserving SBP operators
our entropy stable non-conforming method can handle h/p refinement and possesses full order. However when
considering DG-operators we obtain a smaller L2 error for a more coarse mesh. We do not claim that DPEBFD
operators have the best error properties, but considering these operators is a possible cure for retaining a full
order scheme. The development of optimal degree preserving SBP operators is left for future work.
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