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Abstract

In this paper, we develop an ultra-weak discontinuous Galerkin (DG) method to
solve the one-dimensional nonlinear Schrodinger equation. Stability conditions and
error estimates are derived for the scheme with a general class of numerical fluxes. The
error estimates are based on detailed analysis of the projection operator associated
with each individual flux choice. Depending on the parameters, we find out that in
some cases, the projection can be defined element-wise, facilitating analysis. In most
cases, the projection is global, and its analysis depends on the resulting 2 x 2 block-
circulant matrix structures. For a large class of parameter choices, optimal a priori L?
error estimates can be obtained. Numerical examples are provided verifying theoretical
results.

Keywords. Ultra-weak discontinuous Galerkin method, stability, error estimates, pro-
jection, one-dimensional Schrodinger equation.

1 Introduction

In this paper, we develop and analyze a discontinuous Galerkin (DG) method for one-
dimensional nonlinear Schrédinger (NLS) equation:

ity + Uge + f(Jul*)u =0, (1)

where f(u) is a nonlinear real function and u is a complex function. The Schrédinger equation
is the fundamental equation in quantum mechanics, reaching out to many applications in fluid
dynamics, nonlinear optics and plasma physics. It is also called Schrodinger wave equation
as it can describe how the wave functions of a physical system evolve over time. Many
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numerical methods have been applied to solve NLS equations [5, 14], 17, 18, 23, 28, 30]. In
[5, [30], several important finite difference schemes are implemented, analyzed and compared.
In [23], the author introduced a pseudo-spectral method for general NLS equations. Many
finite element methods have been tested, such as quadratic B-spline for NLS in [14] 28] and
space-time DG method for nonlinear (cubic) Schrédinger equation in [I7, [18]. In this paper,
we focus on the DG methods, which is a class of finite element methods using completely
discontinuous piecewise function space for test functions and numerical solution, to solve the
Schrodinger equation. The first DG method was introduced by Reed and Hill in [24]. A
major development of DG methods is the Runge-Kutta DG (RKDG) framework introduced
for solving hyperbolic conservation laws containing only first order spatial derivatives in
a series of papers [12, [I1l, 10, O 13]. Because of the completely discontinuous basis, DG
methods have several attractive properties. It can be used on many types of meshes, even
those with hanging nodes. The methods have h-p adaptivity and very high parallel efficiency.
Various types of DG schemes for discretizing the second order spatial derivatives have
been used to compute . One group of such methods is the so-called local DG (LDG)
method invented in [I2] for convection-diffusion equations. The algorithm is based on intro-
ducing auxiliary variables and reformulating the equation into its first order form. In [32], a
LDG method using alternating fluxes is developed with L? stability and proved (k + %)—th
order of accuracy. Later in [33], Xu and Shu proved optimal accuracy for both the solution
and the auxiliary variables in the LDG method for high order wave equations based on re-
fined energy estimates. In [19], the authors presented a LDG method with exponential time
differencing Runge-Kutta scheme and investigated the energy conservation performance of
the scheme. Another group of method involves treating the second order spatial derivative
directly in the weak formulations, such as IPDG method [31} 5] and NIPG method [26, 27].
Those schemes enforce a penalty jump term in the weak formulation, and they have been
extensively applied to acoustic and elastic wave propagations [16], I, 25]. As for Schrédinger
equations, the direct DG (DDG) method was applied to Schrodinger equation in [21] and
achieved energy conservation and optimal accuracy. Among all those various formulations,
the work in this paper focus on the ultra-weak DG methods, which can be traced backed
to [4], and refer to those DG methods [29] that rely on repeatedly applying integration by
parts so all the spatial derivatives are shifted from the solution to the test function in the
weak formulations. In [7], Cheng and Shu developed ultra-weak DG methods for general
time dependent problems with higher order spatial derivatives. In [3], Bona et. al. proposed
an ultra-weak DG scheme for generalized KdV equation and performed error estimates.
The focus of this paper is the investigation of a most general form of the numerical
flux functions that ensures stability along with our ultra-weak formulation. The fluxes
under consideration include the alternating fluxes, and also the fluxes considered in [21],
and therefore allows for flexibility for the design of the schemes. It is widely known that
the choice of flux can have significant impact on the convergence order of the scheme as
evidenced in DG methods for linear first-order transport equations, two-way wave equations
[6], and the KAV equations [7], 8] and many others. The main contribution of the work is a
systematic study of error estimates based on the flux parameters. To this end, we define and
analyze projection operator associated with each specific parameter choice. We assume the
dependence of parameters on the mesh size can be freely enforced, therefore many cases shall
follow. We find out that under certain conditions, the projections are “local”, meaning that
they can be defined element-wise. In the most general setting, the projections are global, and



detailed analysis based on block-circulant matrices are necessary. This type of analysis has
been done in [3], 22] for circulant matrices and in [20] for block-circulant matrices, but our
case is more involved due to the 2 x 2 block-circulant structure, for which several cases need
to be distinguished based on the eigenvalues of the block matrices, and some requires tools
from Fourier analysis. Our analysis reveals that under a large class of parameter choices, our
method is optimally convergent in L? norm, which is verified by extensive numerical tests
for both the projection operators and the numerical schemes for .

The remainder of this paper is organized as follows. In Section [2| we introduce an ultra-
weak DG method with general flux definitions for one-dimensional nonlinear Schrodinger
equations and study its stability properties. The main body of the paper, the error estimates,
is contained in Section [3] We introduce a new projection operator and analyze its properties
in Section [3.I} which is later used in Section to obtain the convergence results of the
schemes. Numerical validations are provided in Section [d] Conclusions are made in Section
bl Some technical details, including proof of most lemmas are collected in the Appendix.

2 A DG Method for One-Dimensional Schrodinger Equa-
tions

In this section, we formulate and discuss stability results of a DG scheme for one-dimensional
NLS equation on interval I = [a,b] with initial condition u(z,0) = ug(x) and periodic
boundary conditions. Here f(u) is a given real function. Our method can be defined for
general boundary conditions, but the error analysis will require slightly different tools, and
therefore we only consider periodic boundary conditions in this paper.

To facilitate the discussion, first we introduce some notations and definitions. For a 1-D
interval I = [a, b], the usual DG meshes are defined as:

a=21<x3<---<Tpn,1=2b
2 2 N+3 ’

Ij = (xj—%vxj—&-%)v Tj =

and

hj:ijr%—x-

iLs h = mjaxhj,

h
min h;
The approximation space is defined as:

with mesh regularity requirement < 0, o is fixed during mesh refinement.

V= {on: o, € PHI;), j=1, .-+, N},

meaning vy, is a polynomial of degree up to k on each cell I;. For a function v, € V¥, we use
(vh)j__l and (Uh);__ 1 to refer to the value of v, at 2;_1 from the left cell I;_; and the right cell
2 2
I; respectively. The jump and average are defined as [vs] = v} — v, and {v,} = 3 (v +v;,)
at cell interfaces.

In this paper, we consider a DG scheme motivated by [7] and based on integration by

parts twice, or the so-called ultra-weak formulation. In particular, we look for the unique



function uy, = uy(t) € V¥, t € (0,T), such that

Z/ (uh)tvhd:c + / uh(vh)mdx — ﬁh(vh)ﬂﬂ% + ﬁh(vh)ﬂj%

I Ij
e |y = vl + [ F(lunPyuends =0 )
I
holds for all v;, € V¥ and all j =1, --- , N. Here, we require k > 1, because k = 0 yields a

inconsistent scheme. Notice that can be written equivalently in a weak formulation by
performing another integration by parts back as:

i [ Cundeonde = [ (non)ade + ;= )00 ey + Gn =)o)

—_~— —~—

iy — aotly + [ SwPuods =0 @)

The “hat” and“tilde” terms are the numerical fluxes we pick for u and u, at cell bound-
aries, which are single valued functions defined as:
(un)e = {(un)zttan[(un)e]+61[unl,  n = {un}+aslup]+Ba[(un)z], 1,0 € C, B, Ba E(C),
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where a1, as, f1, B2 are prescribed parameters. They may depend on the mesh parameter
h. Commonly used fluxes such as the central flux (by setting a; = s = 1 = o = 0) and
alternating fluxes (by setting a; = —ay = i%, p1 = B2 = 0) belong to this flux family. The
direct DG scheme considered in [21] is a special case of our method when oy = —an, 1 =
7382 = 0,c > 0,y € R. The IPDG method can also be casted in this framework as
0[1204225220,51:%,0>0.

Using periodic boundary condition, we can sum up on j for the numerical scheme
and reduce it into the following short-hand notation

oo ns ) = 1 [ F(funJunond =0 (5)
I
where
tonon a1y 00) = [ (wn)eonde = [ wn(on)uads i 3 (inl(un).] = CanlelonDl
I 1

J
The following theorem contains the results on semi-discrete L? stability.

Theorem 2.1. (Stability) The solution of semi-discrete DG scheme using numerical
fluzes (4]) satisfies L? stability condition

d 2
lt/I|Uh| r > U,

ImBy > 0, ImpB; <0, |a; + az]? < —4ImpBImp,. (6)
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In particular, when all parameters aq, s, 81, B2 are restricted to be real, this condition
amounts to
a1 +ag =0 (7)

without any requirement on [y, Ps.

Proof. From integration by parts, we have, for Vv, € V¥

Gonon i nns ) = [ Can)sondo +7 [ (w)o(onde 3 Funlon)a] = tnl(wn)e] + @)oo

1 1 j

Taking v, = @y, in and compute its conjugate as well, we get

0—i / F(lunP)lunPda + / £ (lun|?)un2dz

= Qay,a9,81,82 (ufu ﬂh) + Qay,a0,81,8 (uhv ﬂh)

—~—

- %/I|Uh|2dl“ — 2Im zj:([uh(uh)m] — Un[(@n)a] + (un)etn])l;y 1

1
2

Define

([un(@n)e) — @nl(tn)2] + (un)e[tn])|;4 1

2

({untl(@n)a] + [un{(@n)e} = {un}(@n)e] = colun][(@n)e] = Fol(un)a][(@n)a]

A(uh, ﬂh) =

-1

+ {(un)e Han] + an[(un)o][@n] + Bi[un]ltn])l;, 1

(2Re([un]{(an)s}) — Ball(un)e]l” + Bl [un]l® + enl(un)o]lin] — cvalun][(@n)a]) | 1-

r

Therefore, ImA(up, wn) = Y (=TmpBa[(up).]|* +Imp[[us][* + Im{ (e +@3) [an][(un)e] })]j41-
Plug it back into (8):

%/j|uh|2dl’ + Z 21m o [(un) ]| — 2Im By |[us][* — 2Im{(a + @) @] [(un)e]} ;1 = 0. (9)

J

If the stability condition @ is satisfied, we have

d 2
— dr < 0.
dt/j|uh| <0

If all parameters are real and is satisfied, then @ further yields:

d 2
— dx =0

which implies energy conservation. O

Remark 2.1. For simplicity of the discussion, in the next section, we will only consider real
parameters, i.e. when aq, g, 81, Ba are real and o + ag = 0.
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3 Error Estimates

In this section, we will derive error estimates of the DG scheme for the model NLS
equation . As mentioned before, we consider L? stable real parameter choices, which
means the numerical fluxes are defined by three parameters as,

(un)e = {(un)o} +an[(un)e] 4 Bulunl,  n = {un} —ulup] + Bal(un)a], @, Br, Bo € R. (10)

We will focus on the impact of the choice of the parameters oy, 51, 82 on the accuracy of
the scheme. We proceed as follows: first, we define and discuss the properties of projection
operator Py in Section . Then, we use the projection error estimates to obtain convergence
result for DG scheme in Section 3.2

3.1 Projection Operator

In this subsection, we perform detailed studies of a projection operator defined as follows.

Definition 3.1. For our DG scheme with flux choice , we define the associated projection
operator Py for any periodic function u € WH(I) to be the unique polynomial Piu € V}F
(when k > 1) satisfying

/ Pruvdx :/ uvpdx Yo, € PF2(1)), (11a)
1 I;
Pru = {Pu} — ai[Piu] + B[ (Piu)a] = u at w4, (11b)
Prug = {(Pyu):} + on[(Pru)a] + B[ Pru) = u, at z;1, (11c)
for all j. When k =1, only conditions (11b))-(11c)) are needed.

—~—

This definition is to ensure ufP\,ju = 0 and u, — Pfu, = 0, which will be used in error
estimates for the scheme. In the following, we analyze the projection when the parameter
choice reduces it to a local projection in Section(3.1.1], and then we consider the more general
global projection in Section [3.1.2]

3.1.1 Local projection results

In general, the projection P} is globally defined, and its existence, uniqueness and approxima-
tion properties are quite complicated mathematically. However, with some special parameter
choices, P} can be reduced to a local projection, meaning that it can be solved element-wise,
and hence the analysis can be greatly simplified.

For example, with the alternating fluxes a; = i%, B1 = P2 =0, PF can be reduced to P}
and P? defined below. P} = P} for parameter choice a; = %, £1 = B2 = 0 is formulated as:
for each cell I;, we find the unique polynomial of degree k, Pjlu, satisfying

/ Pluvpdz :/ uvpdx Yoy, € PF2(1), (12a)
I 1
(Plu)” = u atw; 1, (12b)
(Paw)y = uq atr; 1. (12¢)



When k = 1, only conditions ({12b)-(|12d|) are needed.

Similarly, we can define Py = P? for parameter choice a; = —%, B1 = B2 = 0 as: for each
cell I;, we find the unique polynomial of degree k, Plu, satisfying

/ Pluvydx :/ uvpdx Yo, € PF2(1), (13a)
I I;
(Plu)" =u atz;_1, (13b)
(Piu), = u, atx; 1. (13c)

When k = 1, only conditions ([13b])-(13c]) are needed.

Similar local projections have been introduced and considered in [7]. It is obvious that
Plu, P?u can be solved element-wise, and their existence, uniqueness are straightforward.
From a standard scaling argument by Bramble-Hilbert lemma in [§], P} and P? have the
following error estimates: let uw € W*™P(I;)(p = 2, 00), then

HU — P;;'LLHLP(]].) S Ch§+l|u‘wk+1,puj), p = 2, o0, V= 1, 2, (14>

||U$ — P}?ux“Lp([j) S Ch§|u|wk+1,p(1j)’ p= 2, o0, V = 1, 2,
where here and below, C' is a generic constant that is independent of the mesh size h;, the
parameters a1, (1, B2 and the function u, but may take different value in each occurrence.

Naturally, the next question is that if there are other parameter choices such that P} can
be reduced to a local projection. The following lemma addresses this issue.

Lemma 3.1 (The condition for reduction to a local projection). If a? + (3,8 = %1, Prisa
local projection.

Proof. We can write (11b)-(11c) as

1 1 )
u :(5 + 1) (Pyu)” — Bo(Piu), + (5 — o) (Pyu)® + Ba(Pru)y atw; 1, Vj, (15)
1 1 .
Uy = — B1(Pru)” + (5 — ) (Pru), + Si(Pru)t + (5 + ay)(Pru)f  at T, Vi (16)
By simple algebra, if a2 + 318, = Zi’ we obtain:
e if 31 # 0, then at Tyl for all j, we have

1 1 2 1
wt 8, B+ G D Bt = (B + 2 P
1 1 1
(17)
1 1 2 1
u—2Bf%%=0%m-—wy+ﬁ7fﬁﬁu%m;=u¢w-—QBf%%m;

meaning that P can be defined element-wise on cell I; as:

/ P}fuvhdx:/ uvpdx Yo, € PF2(15),
I I

J J

1 1
5+« s+
(P + 2o =(Biu)f =u+ 2p—u, atw, (18)
1 1
5 —Q 55— Q
(Pru)™ = 2= (Ppu); = u— 25 at ).



o if 35 # 0, then at Tyl for all j, we have

%_al *  \+ (%_al)z * N+ *, \+ %—041 * N+
2 52 52 (19>
1 1 2 1
s+ o . N— (——l—a1) o\ o s+ a; o
Uy — u=(Pyu), — (b + 2———)(Pu)” = (Pyu); — 2 (Bru)™,
B2 Ba Ba
meaning that P can be defined element-wise on cell I; as:
/ Pruvpdr = / uvpdz Yo, € PF2(1),
1 I
L L g,
(Pru)f + 20 (B =+ 2D atay (20)
Ba B2 2
1 1
5+ 5 t+oq
Pru). — 2 Pru)” =u, — 2 u atwz.. 1.
( h );r 62 ( h ) 52 Jj+s

o if By = 3, =0, then ay = £3, and P; = P, or P?, which are local projections.
]

This lemma implies that for any parameter satisfying a2 + 3,8, = %n Py is locally defined.
We remark that this condition turns out to be the same as the optimally convergent numerical
flux families in [6] for two-way wave equations, although they arise in different contexts.
Unfortunately, for the general definition of P}, unlike P} and P?, we cannot directly use the
Bramble-Hilbert lemma and the standard scaling argument to obtain optimal approximation
property, since the second and third relations in and may break the scaling. The
next lemma performs a detailed analysis of this local projection when 31 # 0 or By # 0.
Indeed for some parameter choices, only suboptimal convergence rate is obtained.

Lemma 3.2 (Local projection: existence, uniqueness and error estimates). If a2 + 3,3, = }1
with B # 0 or By # 0, the local projection Py exists and is uniquely defined when
k2 K2 (k* —1)

Uy =fi— o + 6

In addition, the following error estimates hold for p = 2,00:

o (ameal lHaal) |Bel
max (|ﬁ1|7mln< h h R

* k+1
P = wllioy < Wl | 1+ ming |T] (22)
Proof. The proof of this lemma can be found in the Appendix [A.1] ]

If we assume (31 = ¢/h, 53 = ch, then a; = constant, and as long as the solvability condi-
tion is satisfied, we have the optimal approximation property for P;. Such conclusions
are not surprising, because and will maintain the correct scaling relation. However,
for general parameter choices, the convergence rate may be suboptimal. This is verified by
numerical experiment in Table [2]



3.1.2 Global projection results

In this subsection, we consider o + (3,35 # %1, where P} is a global projection. For simplicity,
only uniform mesh is investigated, which makes the coefficient matrix of the linear system
block-circulant. First, we analyze the existence and uniqueness of P;.

Lemma 3.3 (Global projection: existence and uniqueness). If a? + 310y # %, assuming a
uniform mesh of size h, let T := B +=% k g, 22 (0461 5o+1) and A := =2 (af+516—1),
then we have

Case 1. if [T'| > |A|, then P} exists and is uniquely defined.

Case 2. if |I'| = |A|, then Py exists and is uniquely defined if N is odd, and furthermore,
if k is odd, we require I' = —A; if k is even, we require I' = A.

Case 3. if |I'| < |A|, then P} exists and is uniquely defined if

N

r \?2
o (k-l—l)N - - o
(-1) 1+ (A) 1] #1.

Proof. The proof of this lemma can be found in the Appendix [A.2] O

Next, we will focus on error estimates of the projection P} based on the three cases as
categorized in Lemma

Lemma 3.4 (Global projection: error estimates for Case 1). When the parameter choice
belongs to Case 1 in Lemma[3.3, we have for p = 2, 00,

\ ol + 1 )
| Pru—ullrgy < Chk+1\u|wk+1m(1)< (:;" (1Q1Villos + A Q1 V2] )
1 1
+|>\2| (IVilloe + R~ ||V2||oo if T <0,
* k+1 |/\ |+ 1
HPhu_u“LP(I) < Ch |U|Wk+1!°°(l) (|)\1 (|| —Q1)Villoo + || (L2 — Q1)V2||oo)
1 1 ,
o (Villo + 7 Vall) ) ). T >0, (23)
A1 — 1

where Q1 is given by or depending on the parameter choices as shown in the proof;
15 is the 2 x 2 identity matriz; Vi, Vs are given by @; and A1, Ay are the eigenvalues of Q)

as defined in .
Proof. The proof of this lemma can be found in the Appendix [A.3] ]

(23) provides error bound that can be computed once the parameters ay, 51, B2 are given,
yet its dependence on the mesh size h is not fully revealed, particularly when the parame-
ters aq, B1, B2 also have h-dependence. To clarify such relations, next we will consider the
following common choice of parameters, where a; has no dependence on h, 5; = BihAr, By =

9



Byh2, 31, By are nonzero constants that do not depend on h. If indeed 8y or B is zero, it is
equivalent to let A;, A5 — 400 in the discussions below. We will discuss if the parameter
choice will yield optimal (k-+1)-th order accuracy. To distinguish different cases, we illustrate
the choice of parameters A, Ay in Figure [l For example, Case 1.1 means A; > —1, Ay > 1,
Case 1.5 means A; = —1, A, = 1 and Case 1.7.1 means A; > —1, Ay = 1. The main results
are summarized in Algorithm [I]

[Case 1.2] [Case 1.6.]] [Case 1.]]
I

] o

<
_________ [Case 1.7.2]_ [Case 1.5] _[Case 1.7.1h_ _ _ _ _ _ _ _.
I

I
[Case 1.3] [Case 1.6.2] [Case 1.4
T

Figure 1: A sketch to illustrate the different cases parameterized by the values of A1, As.

Algorithm 1: Interpretation of error estimate (23)).

1if k=1 and A; < 1, then

2 | Py is suboptimal and is (k + As)-th order accurate,

3 else

4 | if limy o | A, Ao| = 1 with | A, Ao = 1+ O(R%/?), then

5 ‘ P} is suboptimal and is (k4 1 — 0)-th order accurate,
6 else

7 | Py has optimal (k + 1)-th order error estimates.

8 end

9 end

The main reason of order reduction for £ = 1, Ay < 1 in Statement [2| (i.e. line 2 of the
algorithm above) is that the term such as ﬁ\]@ﬂfl oo is of O(h#271) instead of O(1), and
this will cause (1 — As)-th order reduction. This happens for Cases 1.3, 1.4 and 1.6.2 when
k=1.

The main reason of order reduction in Statement [Bl is because of the terms such as
ﬁ, % in (23). The fractions ﬁ, Rzlﬂ cannot be controlled by a constant if limy,_, [A2| =
1. By definition of Ay, Ag in (54)), we know that ‘H — 1 < |\, o] = 1. More precisely, if

5| = 14+ O(R%),8 > 0, then |\, Xo| = 1+ O(h*/?), then }f\‘ili or |A21|—1 = O(h™/?). The

10



relation T'? — A% = (by — by)(by + b2) + ¢ also indicates that there is some cancellation of
leading terms in by — by or by + by, making ||Q1|lc ~ O(h™%/%), multiplying these factors
together will result in J-th order reduction in the error estimation of P;. Note that by, by, co

and ()1 are defined in , , and .

Then we look at what parameter choices make |%| — 1. Since

k(k—l)
P k™ b BUE ks,
- 1
A+ 2 =1,
we have
1
1. Case 1.1 (A; > —1, A, > 1) with k= 1,a; = 0,|§| = ;j;ﬁ‘zl

5 2
2. Case 1.6.1 (A, = —1, 4, > 1) 1 = "0 4 902k (k¥ 1), 5| — ‘;H &Th‘ 1.

~ M

3. Case 1.6.2 (A; =—1,Ay < 1) with k > 1, 51 = 'k: + ——1 1.
~ 90,2 M K2

4. Case 1.7.1 (A > —1, Ay = 1) fr = 5555 + 55y x| = ’k+ | L

5. Case 1.7.2 (A4; < —1, Ay =1) 52:m,‘%}—>|/€+%‘—>1.

Remark 3.1. We only considered T given by in the discussion above. By Appendix
we can conclude that under the parameter conditions in Case 1, (by + by)(by — be) =0
only can happen if Ay = —1, Ay = 1 with or . This is Case 1.5, for which we always
have optimal error estimate.

Remark 3.2. Through numerical tests, we found that 15 mostly sharp with two excep-
tions. When limy_,o |\, Ae| = 1, the estimates show that there will be order reduction for
error of Pf, while in numerical experiments (see e.g. Tables @ @, such order reduction is
observed only when limy,_,o A1, Ao = 1 but not —1. We believe when limy_,o A1, Ao = —1, a
refined estimate can be obtained similar to Lemma[3.§ for Case 2. We have not carried out
this estimate in this work.
Another example we find for which (| is not sharp is k = 2,A; = —2,-3,A4, =
(al,ﬁl,ﬁg) (0.25, -1, 12) where pammeters belong to Case 1.7.2, By = m
A, Ay — 1+ O(R=(HAN/2) - The theoretical results predict accuracy order of (k4 2+ A;) but
numerical experiments in Table [d show the order to be (k+ 3 + A;y). Our estimations can't
resolve this one order difference. This special parameter may trigger a cancellation we didn’t
capture in analysis. We will improve this estimate in our future work.

and

We can then generalize the approach to Cases 2 and 3.

11



Lemma 3.5 (Global projection: error estimates for Case 2). When the parameter choice
belongs to Case 2 in Lemma (3.3 and Py is well defined, we have

. _ ht 00 B
1P =l < CHE ulyessen (1 e (1 ; M) (Voo + 1| Valloc) )

Tl
(24)
where p = 2,00, Qs is given by and V1, Vy are given by .
Proof. The proof of this lemma can be found in the Appendix [A.3] O

Remark 3.3. Detailed discussions on the parameter choices for C’ase 2 are contained in
Appendix|A. 7. Under these conditions, we actually have I' = C (51 + B k2 ). Bg) , and

by (68)

max(|41], % —aq] /h
[Villw + 57 Ve ~ € <1+ - ||p2| W/ ))7 (25)
in addition
jQulle _ (1111 52)
Tl Tl '
In the best-case scenario, the right hand side of the two equations above are bounded by a
constant. Therefore, yields the accuracy order to be (k — 1) at best.

(26)

Lemma 3.6 (Global projection: error estimates for Case 3). When the parameter choice
belongs to Case 3 in Lemma and Py is well defined, assuming |1 — )\{V} ~ O(R?), we
have

1B~ ullzony < R ulreny (14 h70 D [Qulle (Wil + 27 Vall)) (27)

where p = 2,00 and Q1, V1, Va are given by and .
Proof. The proof of this lemma can be found in the Appendix [A.3] ]

Remark 3.4. In the best-case scenario, the term ||Q1]|so and ||Vi|loo+h71||Valloo are bounded
by constants. While the term h=*Y is of order at least h=", leading to loss of at least one
order of accuracy.

Lemmas and only give suboptimal results. In what follows, we aim at improving
the convergence order with stronger assumption on the regularity of the solution by using
additional techniques involving cancellation of errors from neighboring terms and global
approximation by Fourier expansions. We will need the following lemma that resembles
Proposition 3.2 in [3], and also the fast decay property of Fourier coefficients of the exact
solution. The proof of Lemma follows the same line as in [3] and is skipped for brevity.

Lemma 3.7. (Detailed error estimates for P!) When P} is applied to a periodic and suf-
ficiently smooth function uw on uniform mesh, denote n; = (u — P}}u)+|j+% and 6; = (uy; —
(Pﬁu)x)_|j+%7 7=0,--- N —1, we have:

N1 = th+1 (k+1)< )+M hk+2 k+2)( )+Chk+3 (28)
9]' _ phku(k+1)( ' )+p hk—H k+2)( ' )—|—C hk+2 (29)

1 1
2 2

12



where p, po, p and ps are constants that depend only on k. Cy and Cs depend on k and
|U|Wk‘+3,oo(]].). Thus, by using Mean-Value Theorem, an additional h can be extracted,

n; — | < Chk+2|u|wk+2vw(1), (30)
<

0, — 0,14] Ch* ! ulyiszoo (). (31)

With Lemma and Fourier analysis, we can prove the following two lemmas with
refined error estimates.

Lemma 3.8 (Global projection: refined error estimates for Case 2). When the parameter
choice belongs to Case 2 in Lemma[3.5 and P} is well defined, we have

* |Q2||oo —
1Pt =l < O ullnsacy (14 (1 1920 ) il + 1 val ) 32

where p = 2,00, Qs is given by , Vi, Vo are given by @
Proof. The proof of this lemma can be found in the Appendix [A.4] ]

Remark 3.5. The difference between and are the two h™' factors and the norm of
u, which corresponds to the different regularity requirement for the estimation. It is obvious
that is always a better estimate if the solution is smooth enough.

In most cases, yields optimal accuracy order, except when k =1,a; = 0,5, =0, 8y =
O(h*2), Ay < 1, where the Py is only (k + As)-th order accurate because HQ‘j\'Jw — |b1|41§b2| -
iﬁ ~ O(h*271) in . This is verified numerically in Table .

2h

Lemma 3.9 (Global projection: refined error estimates for Case 3). When the parameter
choice belongs to Case 3 in Lemma and P} is well defined, assuming ‘1 - /\{V‘ = O(h%)
and |1 — 1] = O(h%/?) with 0 < 6/2 < 1, we have

1Piu = wlliry < R ullwrssceqny (14 B2 Qul(Villoo + A7 Vall) )« (33)

where p = 2,00, A is the eigenvalue of @ defined in (54)), Q1 is given by , Vi, Va are
given by .

Proof. The proof of this lemma can be found in the Appendix [A.5] m

Remark 3.6. If 0 < §/2 < 1, Lemma 15 always a better estimate than Lemma
when the solution is smooth enough. If 6/2 > 1, we can show §/2 = § + 1. This is because
11— M| = |1 =€ =2]sin(/2)|, and |1 — N\| = |1 — N0 = 2|sin(NO/2)|. When §/2 > 1,
one can assert that |1 — | ~ 0,1 — A\| ~ N0, i.e. §/2 = + 1. With this condition, we
notice that Lemma [3.6 yields an reduction of d-th order in convergence rate by checking the
order of each term as is done for Case 1. This order reduction is consistent with numerical

experiments in Example[{.]. Therefore, there is no need to further improve the estimates as
is done for 0 < ¢6/2 <1 in Lemma .
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Now we can summarize the estimation of P for some frequently used flux parameters.
For IPDG scheme with ay = §; = 0,87 = ¢/h, and DDG scheme discussed in [21] with
a; = constant,f; = ¢/h, 3, = 0, and the more general scale invariant parameter choice
a; = constant, By = c/h,[y = ch, P} always have optimal error estimates. For those
parameters, we can show that the eigenvalues A\, Ao are always constants independent of
h, therefore, either by estimates for local projection in Lemma or global projection in
Lemmas[3.4} 3.8 we will have optimal convergence rate. Corresponding numerical results
are shown in Tables [2 and [6l

For a natural parameter choice where ay, 81, B2 are all real constants, if 32 # 0, then Py
has first order convergence rate when £ = 1 and optimal convergence rate when & > 1 by
Lemmas 8.4 3.8, B.-9 Corresponding numerical results are shown in Tables [I] and [11}
Lastly, for central flux a; = ay = 8, = 52 = 0, this parameter choice belongs to Case 2 when
k =1 and Case 1 when k > 1, thus we can verify that P} has optimal convergence rate by
Lemmas and Corresponding numerical results are shown in Table [10]

3.2 Error estimates of the DG scheme

We are now ready to state the main theorem, which is the semi-discrete L? error estimates
of the DG scheme ({2) with numerical flux (10)).

Theorem 3.10. Assume that the exact solution u and the nonlinear term f(|ul?) of are
sufficiently smooth with bounded derivatives for any time t € (0,T,] and that the numerical
flux parameters in satisfy the existence conditions of Py in Lemmas or . Fur-
thermore, assume €, = u— Pfu has at least first order convergence rate in L* and L™ norm
from the results in Section[3.1. With periodic boundary conditions, uniform mesh size and
solution space V;¥ (k > 1), the following error estimation holds for uy,, which is the numerical

solution of with fluz (10):
lu = unll 2y < Cs (1w = un)l=oll 2ty + N (en)ell 2y + Nlenll 2y (34)

where C, depends on k, || f|lwze, u as well as final time T, but not on h. In other words,
the error of the DG scheme has same order of convergence rate as the projection Py in
Lemmas depending on the parameter choices, if the numerical initial condition
is chosen sufficiently accurate.

Proof. When Pj exists, we can decompose the error into two parts.
e=u—u,=u— Pfu+ Piu—up =€, + (.

By Galerkin orthogonality
0 = Gay—a.p1,6, (€, Vn) — i/f(|u|2)uvhdx +i/f(|uh|2)uhvhdx Yoy, € VF
I I

— s 60, 00) + o) =1 [ (Yo 47 [ £ Ppunends.
I I
Let v, = (3, and take conjugate of above equation, we have
Aoy, —a1,B1,82 (Ch, a) + Gay,—a1,81,82 (Cha 5) (35)

oy o 51,52 (€02 Gr) — B o (€ o) — 2 / £(luf)m(uGy)dz + 2 / £ (lunl?) (G
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By Taylor expansion
1 -
F(lwnl®) = f(uP) + f(jul*)E + 5 /"E,

where f” = f”(c), ¢ is a value between |up|? and |ul?. E = |up|? — |ul> = —2Re(en) + |e|2.
Therefore, the nonlinear part becomes

/I £ () (uGy)dz — / £ (lunl?) i (unGr)da

- / F(lun2)Im(eG) + (F([uf) — F(un?)) Im(uly)de
=N + N5+ N5,

where
Ni = [ Qullin(eG) = 7' (uf) Elin(uy)da
No = [ P1P)En(eG) = 5 Em(uG)da
No == [ 5B (),

will be estimated separately as follows.

e N, and N terms.
Since e(y = €., + |Guf”, |BIm(ugy)| = |(—2Re(en) + [e[*)Im(uly)| < ClullZoery +
[l zee(ry el o) (lenl| 22y + [1Gull72(r))s we have

NI < Cllfllwree (1+ lullZoe ) + lullzomllelzem) (lenllZaay + 1< lz20m),
N < Cllfllwee | Ell ooy (1 + Nl Loy + ull ey llellzen) (lenlZag + 1€allZ20))-

° /\/}, term.

N3 < ClF Nz 1B ooy UlenllZary + 161122y

To conduct a proper estimate for the nonlinear part, we would like to make an a priori
assumption that, for A small enough,

lell 2y = llw — unllr2y < RO (36)

By our assumption on P, ||ex|| oy < Cih,p = 2,00, thus || G| 2 < C1A%® and [|Cy || o () <
C by inverse inequality, then ||e|| oy < C4, || E H reo(ry < C1. Here and below, C is a generic
constant that has no dependence on h, but may depend on u according to the lemma used
to estimate ¢y,.

Therefore, we get the estimate:

Wil + IN2| + NG| < Culllenllair + a2 ) (37)
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where C depends on || f||wz~ and u.
For linear part of the right hand side in (35]), we have

Gy, —ay,B1,62 (Ehva) + aal,—al,,@hﬂQ(ehaa) = /(Eh)ta + mgﬁdm - Z/(Eh)(a)xl‘dm

1 1

+1 /[@@h)mdl‘ — ZZ(@[(&)HC] _ @AC}J)M;

2

A RECYR @) s

= Q/IRe((eh)ta)dx.

The last equality holds because of the definition of Pju. For the left hand side of , by
similar computation in stability analysis we have

_ — d
Aay,—aq,B1,82 (C}u Ch) + a’al,—al,ﬁl,ﬁb(gm Ch) - E [ |Ch|2dx (38)

Combine these two equations with :

d
N Gullzeay < len)ellzzqy + 161z + Crlllenlizaay + 16l Z2(r)-

Assuming uy, u have sufficient smoothness, then by Gronwall’s inequality, we can get:

IGl3ry < Cr (IGhlecol gy + enellZan + e

and we obtain ((34)).

To complete the proof, we shall justify the a priori assumption. To be more precise,
we consider hg, s.t., Vh < hg,Cih < %h0’5, where C, is defined in , dependent on
T., but not on h. Suppose It* = sup{t : [Ju(t*) — up(t*)||2(n} < h®, we would have
Ju(t*) — up(t*)|| 2¢ry = h®® by continuity if ¢* is finite. By ([34)), we obtain |le||r2(r) < Cih <
$h5 if t* < T,, which contradicts the definition of ¢*. Therefore, t* > T, and the a priori
assumption is justified.

]

Remark 3.7. If f is a constant function, we can prove the same error estimates without
using the a priori assumption. Therefore, the assumption that e, = w— Pju has at least first
order convergence rate in L? and L™ norm is no longer needed.

4 Numerical experiments

In this section, we present numerical experiments to validate our theoretical results. Partic-
ularly, in Section [4.1], we provide numerical validations of convergence rate for the projection
Py as discussed in Section with focus on the dependence of the errors on parameters
a1, b1, Bo . Section 4.2]illustrates the energy conservation property and validates theoretical
convergence rate of DG scheme for NLS equation (|1)).
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4.1 Numerical results of the projection operator Py

Example 4.1. In this example, we focus on local projection where a2 + (152 = }l, and
verify the conclusions in Lemma by considering a smooth test function u = cos(x) on
0, 27] with a uniform mesh of size h = 2n /N and k = 1,2,3 for various sets of parameters

(a1, B, Ba).

We first consider two sets of parameters (aq, 51, 82) = (0.3,0.4,0.4) and (o, 51, f2) =
(0.3,0.4/h,0.4h). The results with (aq,f1,82) = (0.3,0.4,0.4) are listed in Table By
plugging in the parameters into (22)), we have that when k = 1, the projection has suboptimal
first order convergence rate, while for £ > 1, optimal (k+1)-th order convergence rate should
be achieved. Results in Table[I|agree well with the theoretical prediction. On the other hand,
when we choose parameters (a4, 1, f2) = (0.3,0.4/h,0.4h), by Lemma[3.2] we should observe
optimal convergence rate for all £ > 1, and this is verified by the numerical results in Table
2

Then, we choose the parameters as (aq, 81, 52) = (0.5,1,0) to verify the super-closeness
claim ([44)), i.e., the difference between P} and P can have convergence rates higher than
k + 1. The results are listed in Table [3] The difference of the two projections is indeed of
(k 4+ 2)-th order for any k£ > 1 in all norms. Finally, we take (ay, (1, 52) = (0.5, h(f—ih),O).
In this case, I'; = O(1). The numerical results in Table [4] verify the order reduction to k-th
order accuracy for all k£ > 1 as predicted by .

Table 1: Example Error of local projection P;u — u. Flux parameters: a1 = 0.3, 81 = 0.4, 82 = 0.4.

N L' error | order | L? error | order | L™ error | order
160 | 0.49E-02 - 0.27E-01 - 0.16E-01 -
320 | 0.25E-02 | 0.99 | 0.14E-01 | 0.99 | 0.79E-02 | 1.00
640 | 0.12E-02 | 0.99 | 0.69E-02 | 0.99 | 0.39E-02 | 1.00
1280 | 0.62E-03 | 1.00 | 0.35E-02 | 1.00 | 0.20E-02 | 1.00
160 | 0.52E-06 - 0.32E-05 - 0.26E-05 -
320 | 0.64E-07 | 3.01 | 0.39E-06 | 3.01 | 0.32E-06 | 3.02
640 | 0.80E-08 | 3.01 | 0.49E-07 | 3.01 | 0.40E-07 | 3.01
1280 | 0.10E-08 | 3.00 | 0.61E-08 | 3.00 | 0.49E-08 | 3.01
160 | 0.58E-09 - 0.39E-08 - 0.33E-08 -
320 | 0.36E-10 | 4.00 | 0.24E-09 | 4.00 | 0.21E-09 | 4.01
640 | 0.22E-11 | 4.00 | 0.15E-10 | 4.00 | 0.13E-10 | 4.00
1280 | 0.14E-12 | 4.00 | 0.94E-12 | 4.00 | 0.80E-12 | 4.00

PS

Example 4.2. In this example, we consider global projection when the parameter choices
belong to Case 1. We consider a smooth test function u = e°*®) on [0, 27| with a uniform
mesh of size h = 2n /N and k = 1,2,3 for various sets of parameters (ay, By, P2).

We first test the situation when limy,_, [A1, Ao| # 1 by setting the parameters (a, B, 52) =
(0.25,1,1), 41 = —0.5, Ay = 2. Another example is (o, 1, 52) = (0,5, k), for which the
eigenvalues \i, Ay are constant dependent on k but not h. These two parameter choices
belong to Case 1.1 and Case 1.5, respectively. The numerical results shown in Tables [5[ and

|§] verify the optimal (k + 1)-th order convergence rate predicted by Lemma .
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Table 2: Example Error of local projection PFu — u. Flux parameters: a1 = 0.3, 81 = 0.4/h, 82 = 0.4h.

N L' error | order | L? error | order | L™ error | order
160 | 0.82E-04 - 0.61E-03 - 0.74E-03 -
pl 320 | 0.20E-04 | 2.00 | 0.15E-03 | 2.00 | 0.19E-03 | 2.00
640 | 0.51E-05 | 2.00 | 0.38E-04 | 2.00 | 0.46E-04 | 2.00
1280 | 0.13E-05 | 2.00 | 0.95E-05 | 2.00 | 0.12E-04 | 2.00
160 | 0.14E-05 - 0.88E-05 - 0.89E-05 -
p? 320 | 0.17E-06 | 3.00 | 0.11E-05 | 3.00 | 0.11E-05 | 3.00
640 | 0.22E-07 | 3.00 | 0.14E-06 | 3.00 | 0.14E-06 | 3.00
1280 | 0.27E-08 | 3.00 | 0.17E-07 | 3.00 | 0.17E-07 | 3.00
160 | 0.68E-09 - 0.45E-08 - 0.43E-08 -
p3 320 | 0.43E-10 | 4.00 | 0.28E-09 | 4.00 | 0.27E-09 | 4.00
640 | 0.27E-11 | 4.00 | 0.18E-10 | 4.00 | 0.17E-10 | 4.00
1280 | 0.17E-12 | 4.00 | 0.11E-11 | 4.00 | 0.11E-11 | 4.00

Table 3: Example Difference of local projection P} with Pﬁ: Pru— Pﬁu. Flux parameters: a; = 0.5,81 = 1,82 = 0.

N L' error | order | L? error | order | L error | order
160 | 0.50E-05 - 0.32E-04 - 0.31E-04 -
320 | 0.61E-06 | 3.03 | 0.40E-05 | 3.03 | 0.38E-05 | 3.03

1

P 640 | 0.76E-07 | 3.01 | 0.49E-06 | 3.01 | 0.47E-06 | 3.01
1280 | 0.95E-08 | 3.01 | 0.61E-07 | 3.01 | 0.58E-07 | 3.01
160 | 0.12E-08 - 0.81E-08 - 0.12E-07 -

p2 320 | 0.75E-10 | 4.01 | 0.50E-09 | 4.01 | 0.72E-09 | 4.01
640 | 0.46E-11 | 4.00 | 0.31E-10 | 4.00 | 0.45E-10 | 4.00
1280 | 0.29E-12 | 4.00 | 0.20E-11 | 4.00 | 0.28E-11 | 4.00
160 | 0.75E-12 - 0.50E-11 - 0.80E-11 -

p3 320 | 0.23E-13 | 5.00 | 0.16E-12 | 5.00 | 0.25E-12 | 5.00

640 | 0.73E-15 | 5.00 | 0.49E-14 | 5.00 | 0.78E-14 | 5.00
1280 | 0.23E-16 | 5.00 | 0.15E-15 | 5.00 | 0.24E-15 | 5.00

Table 4: Example Error of local projection Pju — u. Flux parameters: oy = 0.5,81 = h(fij—h)’ B2 = 0.

N L' error | order | L? error | order | L™ error | order

160 | 0.33E-02 - 0.21E-01 - 0.20E-01 -
pl 320 | 0.16E-02 | 1.04 | 0.10E-01 | 1.03 | 0.98E-02 | 1.03
640 | 0.79E-03 | 1.02 | 0.51E-02 | 1.02 | 0.49E-02 | 1.01
1280 | 0.39E-03 | 1.01 | 0.25E-02 | 1.01 | 0.24E-02 | 1.01

160 | 0.33E-05 - 0.22E-04 - 0.31E-04 -
p2 320 | 0.79E-06 | 2.04 | 0.54E-05 | 2.04 | 0.76E-05 | 2.03
640 | 0.20E-06 | 2.02 | 0.13E-05 | 2.02 | 0.19E-05 | 2.02
1280 | 0.49E-07 | 2.01 | 0.33E-06 | 2.01 | 0.47E-06 | 2.01

160 | 0.47E-08 - 0.31E-07 - 0.49E-07 -
P 320 | 0.57E-09 | 3.06 | 0.38E-08 | 3.05 | 0.59E-08 | 3.03
640 | 0.69E-10 | 3.03 | 0.46E-09 | 3.02 | 0.73E-09 | 3.02
1280 | 0.86E-11 | 3.01 | 0.57E-10 | 3.01 | 0.91E-10 | 3.01

Then we test the situation when limy_,o |\, A2] = 1 by using two sets of parameters
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(o1, A1, Bo) = (0.25, HED L HERD 4y Ay — 1, Ay = 2,3, and (o, £, B2) = (0.25, = 1) A =
—2,—3, A, = 1. The first set of parameters belongs to Case 1.6.1 and we can verify that
limy_0 A1, A2 = (—1)*. Lemma [3.4/and Algorithm [1|imply (k+ 2 — As)-th convergence order.
The numerical results listed in Table [7]show that the expected order reduction only happens
when limy,_,g A1, A2 = 1, but not for lim;,_,g A1, \s = —1. The second set of parameters belongs
to Case 1.7.2 and we can verify that limj, A1, A» = (—1)¥*1. Lemma and Algorithm
imply (k + 2 + A;)-th convergence order. The numerical results listed in Table |8 also show
that order reduction is only observed when limy o A1, Ay = 1.

Lastly, we test (ozl,ﬁNl,Bg) = (0.25,—1, 1—12) with k£ = 2, A; = —2, -3, As = 1, where our
theoretical results predict accuracy order of (k + 2 + A;), but numerical experiments show
the order to be (k+ 3+ A;) in Table[9] This is one of the exceptions that Lemma[3.4]is not

sharp and has been commented in Remark [3.2]

Table 5: Example Error of global projection Pfu — u. Flux parameters (Case 1.1): a1 = 0.25,51 = 1,52 =1, A} =
—0.5, A2 = 2.

N L' error | order | L? error | order | L™ error | order
160 | 0.10E-03 - 0.69E-03 - 0.89E-03 -
320 | 0.26E-04 | 1.93 | 0.18E-03 | 1.93 | 0.23E-03 | 1.94
640 | 0.67E-05 | 1.98 | 0.46E-04 | 1.97 | 0.58E-04 | 1.98
1280 | 0.17E-05 | 1.99 | 0.12E-04 | 1.99 | 0.15E-04 | 2.00
160 | 0.63E-06 - 0.52E-05 - 0.87E-05 -
320 | 0.88E-07 | 2.85 | 0.71E-06 | 2.88 | 0.11E-05 | 2.95
640 | 0.11E-07 | 2.95 | 0.91E-07 | 2.97 | 0.14E-06 | 3.00
1280 | 0.14E-08 | 2.99 | 0.11E-07 | 2.99 | 0.17TE-07 | 3.01
320 | 0.64E-10 - 0.49E-09 - 0.72E-09 -
640 | 0.45E-11 | 3.82 | 0.35E-10 | 3.80 | 0.52E-10 | 3.79
1280 | 0.29E-12 | 3.93 | 0.23E-11 | 3.91 | 0.34E-11 | 3.92
2560 | 0.19E-13 | 3.97 | 0.15E-12 | 3.96 | 0.22E-12 | 3.96

Pl

Table 6: Example Error of global projection Pfu — u. Flux parameters (Case 1.5): a1 = 0,61 = ﬁ, B2 = h.

N L' error | order | L? error | order | L™ error | order
320 | 0.11E-03 - 0.63E-03 - 0.38E-03 -
640 | 0.28E-04 | 2.00 | 0.16E-03 | 2.00 | 0.95E-04 | 2.00
1280 | 0.70E-05 | 2.00 | 0.39E-04 | 2.00 | 0.24E-04 | 2.00
2560 | 0.18E-05 | 2.00 | 0.98E-05 | 2.00 | 0.60E-05 | 2.00
320 | 0.11E-06 - 0.71E-06 - 0.62E-06 -
640 | 0.14E-07 | 3.00 | 0.89E-07 | 3.00 | 0.77E-07 | 3.00
1280 | 0.18E-08 | 3.00 | 0.11E-07 | 3.00 | 0.96E-08 | 3.00
2560 | 0.22E-09 | 3.00 | 0.14E-08 | 3.00 | 0.12E-08 | 3.00
320 | 0.38E-10 - 0.25E-09 - 0.22E-09 -
640 | 0.24E-11 | 4.00 | 0.16E-10 | 4.00 | 0.14E-10 | 4.00
1280 | 0.15E-12 | 4.00 | 0.99E-12 | 4.00 | 0.86E-12 | 4.00
2560 | 0.92E-14 | 4.00 | 0.62E-13 | 4.00 | 0.54E-13 | 3.99

Pl

P2
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Table 7: Example Error of global projection Pyu—wu. Flux parameters (Case 1.6.1): a1 = 0.25, 5’1 = w + k(kg—l) s 5’2 =
1.0,A; = —1, Ay = 2,3. Note here limj,_,g A1, A2 = (=1)F.

N L' error | order | L? error | order | L™ error | order
pl 640 | 0.75E-05 - 0.52E-04 - 0.66E-04 -
Ay =2 1280 | 0.19E-05 | 1.97 | 0.13E-04 | 1.97 | 0.17E-04 | 1.97
55 2560 | 0.48E-06 | 1.99 | 0.34E-05 | 1.98 | 0.42E-05 | 1.99
Pr=1 5120 | 0.12E-06 | 1.99 | 0.84E-06 | 1.99 | 0.11E-05 | 1.99
p? 640 | 0.15E-06 - 0.12E-05 0.23E-05 -
Ay =2 1280 | 0.39E-07 | 1.94 | 0.32E-06 | 1.93 | 0.61E-06 | 1.94
55 g 2560 | 0.98E-08 | 1.97 | 0.82E-07 | 1.97 | 0.16E-06 | 1.97
hr=1 5120 | 0.25E-08 | 1.98 | 0.21E-07 | 1.98 | 0.39E-07 | 1.99
P2 640 | 0.14E-04 - 0.12E-03 - 0.21E-03 -
Ay = 3 1280 | 0.71E-05 | 1.00 | 0.58E-04 | 1.00 | 0.11E-03 | 1.00
55 7 2560 | 0.35E-05 | 1.00 | 0.29E-04 | 1.00 | 0.54E-04 | 1.00

1= 5120 | 0.18E-05 | 1.00 | 0.15E-04 | 1.00 | 0.27E-04 | 1.00
p3 320 | 0.12E-09 - 0.95E-09 - 0.20E-08 -
Ay =2 640 | 0.78E-11 | 3.99 | 0.60E-10 | 3.99 | 0.13E-09 | 3.99
55 9 1280 | 0.49E-12 | 3.99 | 0.38E-11 | 3.99 | 0.80E-11 | 3.99

1=3 2560 | 0.31E-13 | 4.00 | 0.24E-12 | 3.99 | 0.51E-12 | 3.97

N L' error | order | L? error | order | L™ error | order
P2 320 | 0.28E-07 - 0.21E-06 - 0.24E-06 -
A = -3 640 | 0.35E-08 | 3.00 | 0.27E-07 | 3.00 | 0.31E-07 | 3.00
51 1280 | 0.44E-09 | 3.00 | 0.33E-08 | 3.00 | 0.38E-08 | 3.00
Pa=1 2560 | 0.55E-10 | 3.00 | 0.41E-09 | 3.00 | 0.48E-09 | 3.00
p3 320 | 0.70E-08 - 0.57E-07 - 0.12E-06 -
Ay = 2 640 | 0.94E-09 | 2.90 | 0.77E-08 | 2.90 | 0.16E-07 | 2.91
51 1280 | 0.12E-09 | 2.95 | 0.99E-09 | 2.95 | 0.20E-08 | 2.95
P2 =13 2560 | 0.15E-10 | 2.98 | 0.13E-09 | 2.98 | 0.26E-09 | 2.98
p3 320 | 0.16E-06 - 0.13E-05 - 0.24E-05 -
A = -3 640 | 0.40E-07 | 2.00 | 0.32E-06 | 2.00 | 0.61E-06 | 2.00
51 1280 | 0.10E-07 | 2.00 | 0.79E-07 | 2.00 | 0.15E-06 | 2.00
Po=1 2560 | 0.25E-08 | 2.00 | 0.20E-07 | 2.00 | 0.38E-07 | 2.00

Table 8: Example Error of global projection P}u—u. Flux parameters (Case 1.7.2): a1 = 0.25, B =1, Bg = m, Ay =
—2,-3, Ay = 1. Note here limp_,g A1, A2 = (—1)FF1.

Example 4.3. In this example, we consider global projection when the parameter choices
are central-like fluzes belonging to Cases 1 and 2, for smooth function u = e“*) on [0, 27]
with a uniform mesh of size h = 2w /N and k = 1,2, 3.

For central flux (o, f1, 32) = (0,0,0), T = —£ il

—or A= % Ifk>1, N = k > 1, it belongs
to Case 1, and if £ = 1, I' = —A and it belongs to Case 2. We conclude that P; exists
and is unique for £ = 1 when N is odd and k > 1 for arbitrary N. P} has optimal error
estimates as proved in Lemmas [3.4] and [3.8] Our numerical test in Table [I0] demonstrates
optimal convergence rate for all k.

A similar flux is (g, f1, 52) = (0,0, 1). Lemmayields first order convergence rate when

k = 1 as discussed in Remark When k£ = 2,3, similar to central flux, this parameter
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Table 9: Example Error of global projection Pju—wu. Flux parameters (Case 1.7.2): a1 = 0.25, B1=—1,B = m, Al =
—2, -3, Ay = 1. Note that limj_,g A1, A2 = (=1)F = 1.

N L' error | order | L? error | order | L*> error | order
320 | 0.72E-07 | 2.99 | 0.56E-06 | 2.98 | 0.94E-06 | 2.97
- 640 | 0.90E-08 | 2.99 | 0.71E-07 | 2.99 | 0.12E-06 | 2.99
5 1280 | 0.11E-08 | 3.00 | 0.89E-08 | 3.00 | 0.15E-07 | 2.99
br=1 2560 | 0.14E-09 | 3.00 | 0.11E-08 | 3.00 | 0.19E-08 | 3.00
320 | 0.80E-06 | 2.01 | 0.63E-05 | 2.01 | 0.12E-04 | 2.01
_ 640 | 0.20E-06 | 2.00 | 0.16E-05 | 2.00 | 0.30E-05 | 2.00
51 1280 | 0.50E-07 | 2.00 | 0.39E-06 | 2.00 | 0.75E-06 | 2.00
P2 =13 2560 | 0.13E-07 | 2.00 | 0.98E-07 | 2.00 | 0.19E-06 | 2.00

choice belongs to Case 1, showing optimal convergence rate. The numerical test in Table
verifies the theoretical results.

Table 10: Example Error of global projection Pfu — u. (Central flux) Flux parameters: a1 = 0,51 = 0,82 = 0.

N L' error | order | L? error | order | L™ error | order
93 | 0.12E-03 - 0.74E-03 - 0.55E-03 -
pl 279 | 0.13E-04 | 2.00 | 0.82E-04 | 2.00 | 0.61E-04 | 2.00
837 | 0.156E-05 | 2.00 | 0.91E-05 | 2.00 | 0.68E-05 | 2.00
2511 | 0.17E-06 | 2.00 | 0.10E-05 | 2.00 | 0.76E-06 | 2.00
160 | 0.11E-05 - 0.85E-05 - 0.10E-04 -
p2 320 | 0.14E-06 | 3.00 | 0.11E-05 | 3.00 | 0.13E-05 | 2.99
640 | 0.17E-07 | 3.00 | 0.13E-06 | 3.00 | 0.16E-06 | 3.00
1280 | 0.22E-08 | 3.00 | 0.17E-07 | 3.00 | 0.20E-07 | 3.00
160 | 0.11E-08 - 0.83E-08 - 0.11E-07 -
p3 320 | 0.68E-10 | 4.00 | 0.52E-09 | 4.00 | 0.68E-09 | 4.00
640 | 0.42E-11 | 4.00 | 0.32E-10 | 4.00 | 0.42E-10 | 4.00
1280 | 0.27E-12 | 4.00 | 0.20E-11 | 4.00 | 0.26E-11 | 4.00

Table 11: Example Error of global projection PYu — u. Flux parameters: oy = 0,81 =0, 82 = 1.

N L' error | order | L? error | order | L™ error | order
93 | 0.21E-01 - 0.12E+00 - 0.68E-01 -
pl 279 | 0.72E-02 | 1.00 | 0.40E-01 | 1.00 | 0.23E-01 | 1.00
837 | 0.24E-02 | 1.00 | 0.13E-01 | 1.00 | 0.75E-02 | 1.00
2511 | 0.80E-03 | 1.00 | 0.44E-02 | 1.00 | 0.25E-02 | 1.00
160 | 0.11E-05 - 0.86E-05 - 0.10E-04 -
p2 320 | 0.14E-06 | 3.00 | 0.11E-05 | 3.00 | 0.13E-05 | 3.00
640 | 0.17E-07 | 3.00 | 0.13E-06 | 3.00 | 0.16E-06 | 3.00
1280 | 0.22E-08 | 3.00 | 0.17E-07 | 3.00 | 0.20E-07 | 3.00
2560 | 0.27E-09 | 3.00 | 0.21E-08 | 3.00 | 0.25E-08 | 3.00
160 | 0.27E-08 - 0.23E-07 - 0.36E-07 -
p3 320 | 0.17TE-09 | 4.00 | 0.14E-08 | 4.00 | 0.22E-08 | 4.00
640 | 0.11E-10 | 4.00 | 0.89E-10 | 4.00 | 0.14E-09 | 4.00
1280 | 0.66E-12 | 4.00 | 0.55E-11 | 4.00 | 0.87E-11 | 4.00
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Example 4.4. In this example, we consider global projection when the parameter choices

belong to Case 3 for the smooth function u = €@ on [0,27] with uniform mesh size
h=2nx/N and k =1,2,3.

An example of Case 3 is shown in Table , where the parameters are (o, B, 52) =
1

(0.25, -1, m), A = =2,-3, Ay = 1, similar to the parameters in Table . The asymp-
totic behavior of A1, Ay when h approaches 0 is indeed similar to Table , that is, | A1, Ao| =
1+O(h~M1+0/2) and limy_0 A1, A2 = (—1)¥L. Same as previous examples, order reductions
are only observed when limy,_.g A1, Ay = 1, that is for £ = 3.

We use this example to compare the error bounds obtained in Lemmas [3.6|and When
A =-2,6=—(4; +1) =1, we can verify |1 —AY| ~ O(1), i.e., & = 0, thus by Lemma
3.9} the convergence rate of P} is k, which agrees with the simulation and is better than the
one in Lemma [3.6] by half order. When A; = =3, 6 = —(4; 4+ 1) = 2, = 0, Lemma 3.6/ and
Lemma both show a convergence rate of k — 1. These estimations are confirmed by the
numerical results in Table [[2 when & = 3.

We performed more numerical results of Case 3, and all are similar to those of Case 1 as
long as the eigenvalues Ay, Ay are approaching 1 at the same rate. Hence, we will not show

more examples about Case 3.

Table 12: Example Error of global projection P}u — u. Flux parameters (Case 3, and similar to Case 1.7.2 in Table :

a1 = 025,41 = —1, f2 = grqy, A1 = —2, -3, A2 = 1. Note here limy 0 A1, A2 = (=1)F .
N LY error | order | L? error | order | L error | order
P2 320 | 0.28E-07 - 0.21E-06 - 0.24E-06 -
A 3 640 | 0.35E-08 | 3.00 | 0.27E-07 | 3.00 | 0.31E-07 | 3.00
1= —

Gy =1 1280 | 0.44E-09 | 3.00 | 0.33E-08 | 3.00 | 0.38E-08 | 3.00
271 2560 | 0.55E-10 | 3.00 | 0.41E-09 | 3.00 | 0.48E-09 | 3.00
320 | 0.70E-08 - 0.57E-07 - 0.12E-06 -

3
Zl _ 640 | 0.94E-09 | 2.90 | 0.77E-08 | 2.90 | 0.16E-07 | 2.91
51 1280 | 0.12E-09 | 2.95 | 0.99E-09 | 2.95 | 0.20E-08 | 2.95
b2 =1 2560 | 0.15E-10 | 2.98 | 0.13E-09 | 2.98 | 0.26E-09 | 2.98
p3 320 | 0.16E-06 - 0.13E-05 - 0.24E-05 -
A = -3 640 | 0.40E-07 | 2.00 | 0.32E-06 | 2.00 | 0.61E-06 | 2.00

3 __L 1280 | 0.10E-07 | 2.00 | 0.79E-07 | 2.00 | 0.15E-06 | 2.00
2712 2560 | 0.25E-08 | 2.00 | 0.20E-07 | 2.00 | 0.38E-07 | 2.00

4.2 Numerical results of the DG scheme

In this subsection, we show the numerical results of the DG scheme applied to the NLS
equation. For the time discretization, we use third order IMEX Runge-Kutta method [2]
and fix At = 1/10000, which is small enough to guarantee that the spatial errors dominate.
To be more precise, we treat the DG discretization of linear term w,, implicitly and nonlinear
term f(Ju|?)u explicitly.

Example 4.5. In this example, we verify the energy conservation property of our scheme
by considering the following linear equation

iut + Ugpr = O,
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with the progressive plane wave solution: u(x,t) = Aexp(i(x —t)), with A = 1.

We use L? projection as the numerical initial condition. In the discussion of stability
condition, we derive that when Imf; > 0,Tmf3; < 0, |a;+az|* < —4ImByIm By, our scheme for
Schrodinger equation is stable. Furthermore, when oy + as = 0, 1, B2 are real numbers, the
scheme is energy conservative. In this example, we compare two different parameter choices
to verify the energy conservation property. The parameter choices are (aq, as, (1, 52) =
(0.25,—0.25,1—14,1417), and (ay, e, 1, B2) = (0.25,—0.25,1,1) when k = 2, N = 40, ending
time T' = 100. Both are numerically stable flux parameters. For the first set of parameters,
we expect energy decay due to the contributions from the imaginary part of 3, 55 as in @
For the second set of parameter, energy should be conserved.

In Fig. 2] we verify that as ¢ increases from 0 to 100, the flux with only real parameters
preserve ||up||r2(ry, while the flux with complex numbers have much larger errors. More
precisely, for real parameters, ||uy(0,-)||r2(ry — ||ua(100, )| 2 = 7.9E-09, for complex pa-
rameters, ||up(0, )| z2(ry — [|un(100, )| L2(r) = 5.7E-04.

Figure 2: Example Absolute difference of |lup (¢, )| L2(ry with [[up (0, )| L2y With two sets of parameters (o1, o2, B1, B2) =
(0.25,—-0.25,1 — 4,1+ 1) (denoted by “imag”) and (a1, a2, 81, 82) = (0.25,—0.25,1,1) (denoted by “real”) when k = 2, N = 40,
ending time T, = 100.

0.0006
— real

— imag

0.0005 A

0.0004 4

0.0003 1

0.0002 4

Absolute value of ||ua(E, -)||2 difference

0.0001 A

0.0000 A

Example 4.6. Accuracy test for NLS equation
ity + Uge + [ul?u + |u|*u =0, (39)

which admits a progressive plane wave solution: wu(x,t) = Aexp(i(cx — wt)), where w =
A — A2 — |A]* withec=1,A=1.

For numerical initial condition, P} is used when applicable, otherwise standard L? pro-
jection is applied. We use six sets of parameters. The numerical errors and orders are shown
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in Tables [13] [I4] [15] and [18 where corresponding projection results are listed in
Tables [10} [11], [} 2] , [7] and [9] respectively. Our numerical experiments show that the order of

convergence for the scheme is the same as the order of error estimates for the projection FPy.

We would like to make some additional comments on Tables [13| and [14] whose parameter
choices belong to Case 2 when k£ = 1. The existence of P} requires N to be odd for this case.
However, this assumption is not needed for the optimal convergence rate of the numerical

scheme for as shown in Tables 13| and [14] Similar comments have been made in [3].

Table 13: Example Error in L', L? and L* norm for solving NLS equation using central flux (corresponding to Case
2 in Table a1 = B1 = B2 = 0, ending time T, = 1.

N | L' error | order | L? error | order | L> error | order
40 | 0.28E-02 - 0.22E-02 - 0.27E-02 -

80 | 0.71E-03 | 2.00 | 0.56E-03 | 2.00 | 0.67TE-03 | 2.02
P'| 160 | 0.18E-03 | 2.00 | 0.14E-03 | 2.00 | 0.17E-03 | 2.01
320 | 0.45E-04 | 2.00 | 0.35E-04 | 2.00 | 0.41E-04 | 2.00
640 | 0.11E-04 | 2.00 | 0.88E-05 | 2.00 | 0.10E-04 | 2.00
40 | 0.13E-03 - 0.11E-03 - 0.16E-03 -
80 | 0.16E-04 | 2.99 | 0.14E-04 | 2.99 | 0.20E-04 | 3.00
P?| 160 | 0.21E-05 | 3.00 | 0.18E-05 | 3.00 | 0.25E-05 | 3.01
320 | 0.26E-06 | 3.00 | 0.22E-06 | 3.00 | 0.31E-06 | 3.00
640 | 0.32E-07 | 3.00 | 0.27E-07 | 3.00 | 0.39E-07 | 3.00
40 | 0.22E-06 - 0.18E-06 - 0.24E-06 -

80 | 0.16E-07 | 3.76 | 0.13E-07 | 3.80 | 0.13E-07 | 4.16
P3| 160 | 0.10E-08 | 4.00 | 0.79E-09 | 4.00 | 0.84E-09 | 4.00
320 | 0.62E-10 | 4.00 | 0.49E-10 | 4.00 | 0.52E-10 | 4.00
640 | 0.39E-11 | 3.99 | 0.31E-11 | 3.99 | 0.33E-11 | 3.96

Table 14: Example Error in L', L? and L°° norm for solving NLS equation using flux parameters (corresponding to
Case 2 in Table : a1 = 1 =0,82 =1, ending time T, = 1.

N L' error | order | L? error | order | L* error | order
40 | 0.17E+00 - 0.13E+400 - 0.14E+00 -
80 | 0.92E-01 | 0.90 | 0.72E-01 | 0.89 | 0.75E-01 | 0.87
P'| 160 | 0.48E-01 | 0.94 | 0.38E-01 | 0.94 | 0.38E-01 | 0.97
320 | 0.24E-01 | 0.97 | 0.19E-01 | 0.97 | 0.19E-01 | 0.98
640 | 0.12E-01 | 0.98 | 0.97E-02 | 0.98 | 0.98E-02 | 0.99
40 | 0.13E-03 - 0.11E-03 - 0.17E-03 -
80 | 0.16E-04 | 3.00 | 0.14E-04 | 3.00 | 0.20E-04 | 3.02
P?| 160 | 0.21E-05 | 3.00 | 0.18E-05 | 3.00 | 0.25E-05 | 3.01
320 | 0.26E-06 | 3.00 | 0.22E-06 | 3.00 | 0.31E-06 | 3.01
640 | 0.32E-07 | 3.00 | 0.27E-07 | 3.00 | 0.39E-07 | 3.00
40 | 0.68E-06 - 0.56E-06 - 0.83E-06 -
80 | 0.42E-07 | 4.00 | 0.35E-07 | 4.01 | 0.51E-07 | 4.01
P3| 160 | 0.26E-08 | 4.00 | 0.22E-08 | 4.00 | 0.32E-08 | 4.00
320 | 0.16E-09 | 4.00 | 0.14E-09 | 4.00 | 0.20E-09 | 4.00
640 | 0.10E-10 | 4.00 | 0.85E-11 | 4.00 | 0.13E-10 | 4.00
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Table 15: Example Error in L', L? and L norm for solving NLS equation using flux parameters (corresponding to
Table a1 = 0.3, 81 = B2 = 0.4, ending time T = 1.

N L' error | order | L? error | order | L™ error | order
40 | 0.69E-01 - 0.54E-01 - 0.59E-01 -

80 | 0.37E-01 | 0.89 | 0.29E-01 | 0.89 | 0.30E-01 | 0.95
P'| 160 | 0.19E-01 | 0.95 | 0.15E-01 | 0.95 | 0.15E-01 | 0.98
320 | 0.98E-02 | 0.98 | 0.77E-02 | 0.98 | 0.78E-02 | 0.99
640 | 0.50E-02 | 0.99 | 0.39E-02 | 0.99 | 0.39E-02 | 0.99
40 | 0.14E-03 - 0.12E-03 - 0.18E-03 -

80 | 0.17E-04 | 3.05 | 0.15E-04 | 3.06 | 0.21E-04 | 3.09
P?| 160 | 0.21E-05 | 3.03 | 0.18E-05 | 3.03 | 0.26E-05 | 3.05
320 | 0.26E-06 | 3.01 | 0.22E-06 | 3.01 | 0.32E-06 | 3.02
640 | 0.32E-07 | 3.01 | 0.28E-07 | 3.01 | 0.40E-07 | 3.01
40 | 0.69E-06 - 0.57E-06 - 0.85E-06 -
80 | 0.42E-07 | 4.02 | 0.35E-07 | 4.02 | 0.52E-07 | 4.03
P3| 160 | 0.26E-08 | 4.01 | 0.22E-08 | 4.01 | 0.32E-08 | 4.01
320 | 0.16E-09 | 4.00 | 0.14E-09 | 4.00 | 0.20E-09 | 4.01
640 | 0.10E-10 | 4.00 | 0.85E-11 | 4.00 | 0.13E-10 | 3.99

Table 16: Example Error in L', L? and L°° norm for solving NLS equation using flux parameters (corresponding to
Table a1 = 0.3, 81 = 0.4h, B2 = 0.4/h, ending time T, = 1.

N L' error | order | L? error | order | L™ error | order
40 | 0.66E-02 - 0.57E-02 - 0.97E-02 -

80 | 0.24E-02 | 1.42 | 0.20E-02 | 1.50 | 0.33E-02 | 1.56
P'| 160 | 0.43E-03 | 2.51 | 0.35E-03 | 2.56 | 0.52E-03 | 2.66
320 | 0.11E-03 | 2.00 | 0.86E-04 | 2.00 | 0.13E-03 | 1.99
640 | 0.27E-04 | 2.00 | 0.22E-04 | 2.00 | 0.33E-04 | 1.99
40 | 0.36E-03 - 0.31E-03 - 0.56E-03 -

80 | 0.45E-04 | 2.99 | 0.39E-04 | 2.99 | 0.70E-04 | 3.01
P?| 160 | 0.56E-05 | 3.00 | 0.49E-05 | 3.00 | 0.87E-05 | 3.00
320 | 0.70E-06 | 3.00 | 0.62E-06 | 3.00 | 0.11E-05 | 3.00
640 | 0.88E-07 | 3.00 | 0.77E-07 | 3.00 | 0.13E-06 | 3.00
40 | 0.79E-06 - 0.66E-06 - 0.11E-05 -

80 | 0.49E-07 | 4.00 | 0.41E-07 | 4.00 | 0.66E-07 | 4.00
P3| 160 | 0.31E-08 | 4.00 | 0.26E-08 | 4.00 | 0.41E-08 | 4.00
320 | 0.19E-09 | 4.00 | 0.16E-09 | 4.00 | 0.26E-09 | 4.00
640 | 0.12E-10 | 4.00 | 0.10E-10 | 4.00 | 0.16E-10 | 4.00

Example 4.7. A simulation for the NLS equation
iy + Ugy + 2|u|*u =0 (40)
with double-soliton collision
u(x,t) = sech(x+10—4t) exp(i(2(2x+10)—3t))+sech(x—10+4t) exp(i(—2(z—10)—3t)). (41)

We use periodic boundary condition and L? projection initialization to run the simulation
for double-soliton collision solution. The two waves propagate in opposite directions and
collide at t = 2.5, after that, the two waves separate. Such behaviors are accurately captured
by our numerical simulations, see Figure |3| for details.
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Table 17: Example Error in L', L? and L norm for solving NLS equation using flux parameters (corresponding to
Case 1.6.1 in Table[7): a1 = 0.25,f; = ¥E-D 4 FOED 50 — 10,4 = —1, 45 = 2,3, ending time T. = L.

N | L' error | order | L? error | order | L™ error | order

40 | 0.41E-02 - 0.37E-02 - 0.72E-02 -
pt 80 | 0.12E-02 | 1.77 | 0.10E-02 | 1.82 | 0.21E-02 | 1.80
Ay =2 160 | 0.31E-03 | 1.93 | 0.25E-03 | 2.05 | 0.39E-03 | 2.39
3, = i 320 | 0.87E-04 | 1.86 | 0.69E-04 | 1.87 | 0.10E-03 | 1.94
640 | 0.23E-04 | 1.93 | 0.18E-04 | 1.94 | 0.26E-04 | 1.97

40 | 0.49E-04 - 0.49E-04 - 0.13E-03 -
p? 80 | 0.83E-05 | 2.55 | 0.73E-05 | 2.74 | 0.14E-04 | 3.23
Ay =2 160 | 0.31E-05 | 1.44 | 0.29E-05 | 1.32 | 0.65E-05 | 1.12
3, = % 320 | 0.95E-06 | 1.69 | 0.92E-06 | 1.69 | 0.20E-05 | 1.70
640 | 0.26E-06 | 1.85 | 0.25E-06 | 1.86 | 0.55E-06 | 1.87

40 | 0.36E-03 - 0.34E-03 - 0.74E-03 -
p? 80 | 0.21E-03 | 0.78 | 0.20E-03 | 0.76 | 0.43E-03 | 0.77
Ay =3 160 | 0.11E-03 | 0.92 | 0.11E-03 | 0.92 | 0.23E-03 | 0.92
6~1 = % 320 | 0.56E-04 | 1.00 | 0.53E-04 | 1.00 | 0.11E-03 | 0.99
640 | 0.28E-04 | 1.00 | 0.27E-04 | 1.00 | 0.58E-04 | 1.00

p3 40 | 0.19E-05 - 0.19E-05 - 0.43E-05 -
Ay — 9 80 | 0.43E-07 | 5.50 | 0.38E-07 | 5.65 | 0.84E-07 | 5.66
~2_ 9 160 | 0.15E-08 | 4.88 | 0.15E-08 | 4.68 | 0.26E-08 | 5.00
172 320 | 0.91E-10 | 4.00 | 0.90E-10 | 4.02 | 0.17E-09 | 3.94
640 | 0.58E-11 | 3.96 | 0.57E-11 | 3.99 | 0.11E-10 | 3.98

Table 18: Example Error in L}, L? and L°° norm for solving NLS equation using flux parameters (corresponding to
Case 1.7.2 in Table gp a1 =0.25,61 = —1,5; = m,Al = —2,-3, Ay = 1, ending time T, = 1.

N L' error | order | L? error | order | L™ error | order
40 | 0.60E-04 - 0.54E-04 - 0.95E-04 -
p? 80 | 0.76E-05 | 2.99 | 0.68E-05 | 2.98 | 0.12E-04 | 2.96
A= -2 160 | 0.96E-06 | 3.00 | 0.85E-06 | 3.00 | 0.15E-05 | 2.99
51 = % 320 | 0.12E-06 | 3.00 | 0.11E-06 | 3.00 | 0.19E-06 | 2.99
640 | 0.15E-07 | 3.00 | 0.13E-07 | 3.00 | 0.24E-07 | 3.00
40 | 0.95E-04 - 0.85E-04 - 0.15E-03 -
p? 80 | 0.21E-04 | 2.22 | 0.18E-04 | 2.20 | 0.33E-04 | 2.18
A1 =-3 160 | 0.49E-05 | 2.08 | 0.44E-05 | 2.07 | 0.79E-05 | 2.06
51 = % 320 | 0.12E-05 | 2.02 | 0.11E-05 | 2.02 | 0.20E-05 | 2.02
640 | 0.29E-06 | 2.02 | 0.27E-06 | 2.02 | 0.48E-06 | 2.02

5 Conclusions and future work

In this paper, we studied the ultra-weak DG method with a general class of numerical
fluxes for solving one-dimensional nonlinear Schrodinger equation with periodic boundary
conditions. Semi-discrete L? stability and error estimates are obtained when the polynomial
degree k > 1. Focusing on the real parameters, we performed detailed investigation of the
associated projection operators. Our analysis assume the dependence of parameters on the
mesh size h can be freely enforced, hence several cases follow. A variety of analytic tools are
employed, including decoupling of global projection into local projection, analysis of block-

26



u,|
u,|

051 J

u,|

Figure 3: Example Double soliton collision graphs at t = 0,2.5,5 and a = — t plot of the numerical solution. N = 250, P2
elements with periodic boundary conditions on [-25,25]. Central flux (a1 = 81 = B2 = 0) is used.

circulant matrix and Fourier analysis. We acquire error bounds that are sharp in most cases
from numerical verifications. Future work includes improvement of the error bounds for some
suboptimal cases, superconvergence studies and generalization to higher-dimensions.

A Appendix
A.1 Proof of Lemma 3.2

First, we consider the case when 3; # 0. Define the difference operator Wu = Pfu — Plu,
then (18]) implies:

/ Wuvpdr =0 Yoy, € Pk_Q(Ij),
I;
1
5 T«
Wut + 2B—1(V[/u);cF =u— (Plu)" atw; 1, (42)
1
1 1
_ 55— _ 5 — (1 _
Wu™ — QT(WU)Q; = _2T(U'CC — (Pyu);) atz;, 1.
For [ > 0, let F(€) be the I-th order Legendre polynomials on [-1,1], with & = Hezzy) o

h;
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I;, and define P;;(z) = PZ(M) = P,(§). Then Wu can be expressed as:

hy
k k
x) =Y ayPy(x) = ajPi(E)
=0 =0

By the first equation in and orthogonality of Legendre polynomials, one can get:
aj; =0, 1=0,--- k=2, j=1,---,N.

We can then move on to solve for a;;_1 and a;; on each cell directly by the second and
third equations in (42)). By properties of Legendre polynomials: Pj(£1) = (£1), P/(£1) =
$(£1)"1(1 + 1), the following 2 X 2 linear system holds on each cell I;:

S ¢j
M; { Wjk ] {%} ’

where
+a1 k(k—1) —1 3+a1 k(k+1)
M. — (M (Mya] _ (—1)~ 1( 1)k2 1 i’ (_1)k+(—11)k 126_11 2
! (MJ) (Mj)22 1 — 2= k(k—1) 1) ] — 2-v k(k+1)
B h; b1 h;

1 — —
and ¢; = (u — (Pﬁu)+)|$]‘7% and v; = 5 ~(ugy — (Pi%u)x”crﬂ%
We can calculate the determinant of the matrix M; to be 2(—1)F1 + 2(—1)F £ 4

B1h;
2(—1)]6_1% = 2(—1)k7'T;/B;. Hence, when T'; # 0, Vj, P} exists and is unique. We
now move on to estimate the a; k1, ;. Clearly,

1
Gkl = A, ((Mj)2205 — (Mj)129);)

1

aj = m(_<Mj)21¢j + (M) ),

and from the projection property of P}, |¢;] < C’th Ul wrtroo(r), [U] < Chk
The error estimates can be obtained based on the followmg cases

(1)

o If k=1, then

o= 5 (= (g =) D= Bl L, | = (= o= 2w = (Bl L, )

1 1 _
a1 =5 (=Bl —Pw)'le = (5 —a)(te = (Pyu)e) L, )
J

Thus we have estimates

Chz’“|w2m(lﬂ) 1—2m| |[3—a1 26,
|aj0| S —L max 61 - ) 2 - 79 )
’ 151 h; h h;
Chzlu\wz,oo(f.) i_ (075}
. < J J 2 )
gl < 1T e (’61” h; >




Then,
|1 Pru— Prullpoory) = llajoPo(€) + i Pu(€) |z,
Ch2|uly2.007.
< Chilulweeqy (!& 52). (43)

B 1T "\ 5
Combining with the error estimates for P! and the mesh regularity assumption, we get

max (|, 25, 121)

hj

|| hu u“LP |u|VV2 (I + mlnj |FJ| , P , OO
If £ > 1, then we need to discuss the case when By = 0 or 5y # 0.
If 55 =0, then a; = jzl When oy = 2, we have ¢; = 0, and
p
|a]"k,1‘ S Chk+1|’u|wk+1 09 (1) ||F1||
p
|CL]"]C‘ < Ch;ﬁ_l’U'W’HLw(Ij)%'
j
Therefore,
* 1 k+1 |51|
HPhu—PhuHLoo < Ch ’ulwk-u (L)) (44)

1T

implying a supercloseness between P} and P if 51/T'; = o(1). In summary, we have

|1 Ppu — ul| oy < CREulypnroe (1 + ﬂ) , p=2,00.

min; |T';]

When oy = —%, we then should compare the projection with P? instead of Pl. We
skip the details of the calculations. The conclusion is similar, i.e.

|51

HP;:U—P}?'U,HLOO < C(]/Lkaklh’tl‘/‘/lwd °°(I)| ’
and

A
||Phu — UHLp < Chk+1|u|wk +1.00(]) (1 + m , b= 2, 00.

If B # 0, similar to previous case, we can show

Chk+1|u|wk+1oo I;) — Oél
‘a]}()l < |P | ( max <|51‘ . ﬁ ) )
] ;
Chk—i_l‘uywk-&-l oo(]
laja| < max (‘51 ) :
’ |FJ| j h?
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Therefore,

1
2~

h;
T

B2

2
h]'

Y

max (\51 ,

)

|1 Pru — ul|poo(r;y < ChE  ulwsroory | 1+

and it leads to

1_
max <|51’7 2 hal‘a |i_§|)

min; 1|

| Pru — ull oy < CRF  ulprsroory | 14 , p=2,00.

Finally, when 8, = 0,8 # 0,1 = :I:%, we have the following estimates

Bal
Pru — < ChFH! 0o 1 |— , = 2, 0.
|| U uHLp |u’Wk+1 () + % min, |Fj’ p 0

Summarizing all the estimates, we have shown for all cases.

A.2 Proof of Lemma [3.3
We adopt similar notations as in the proof of Lemma . Define £ = 2(””;”’7 ) and let

k k
Pru(@)]s, = Y vuPu(@) =Y vRi(6)
=0 =0

By ({l1a]) and orthogonality of Legendre polynomials, one can get:

20+1 (! h ,

-1

We can then move on to solve for v, and v;, from (11b)-(11c). At Tl

Pru= Z{’Ygl + a)Pi(1) — 52%135/(1))

+ wﬂ,l«% ~ @) R(-1) + o FI(-1))}

= u(xj+l> (45>
P, = Zw o) 2R() ~ B ()

+ %‘+1,l((% + an%P/(—l) + B (1)

= ux(ijr%).
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Combining for all 7 and using the periodic boundary condition will result in the following
2N x 2N linear system

V1,k—1 O
M,k (e}
M [N | = [N — 1 (46)
YN-1k Yy —1
YN k-1 ON
INE | | VN
where M = circ(A, B,0g,- -+ ,0s), denoting a 2N x 2N block-circulant matrix with first two
rows as (A, B, 0y, -+ ,05), with 0y as a 2 x 2 zero matrix, and
1
star —p } [ Pea(1)  P(1) }
A — 2 / / 5 47
[ B - 2P (1) 2P(1) (47)
1
5 — 1 B2 Pea(—1) Pk(_l)}
B - 2 / / 3 4:8
R | P e )

63 = ) = T (5 + ) PV = AR +351(3 = ) D) + 527 PL-D),
by = () = S (a((3 = ) FP) = BR() + 751004 + a0 FR(=1) 4+ BR(-1))}.

We can calculate that

—2k 1
detA = detB = A (Oél + 1P — Z> =A#0. (49)
It is clear that the existence and uniqueness of P} is equivalent to detM # 0. By a direct

computation, detM = det ANdet(I, — QY), where I, denotes the 2 x 2 identity matrix, and

_ _A-lp_ (=D [er+c2 by +be
@=-A"B= A by —by c1 —cal’
with
k2 (k? 2k? 1
=f1+ %52 - T(al + B1fa2 + 4) =T, (50)
k
Co = E(2a1)7 (51)
E2(k? +1 2k? 1
by = —f1 — %Bz + T(a% + B1fa2 + Z)» (52)
2k3 2k 1
S+ (0l + BB+ ). (59
The eigenvalues of () are
( 1)(k+1) (_1)(k+1)
A = — (T 4+ VI?2=A%), X\= — N (I = VI2 — A2). (54)
Since det() = detB/detA = 1, we have the relations \; Ay = 1 and
b — by =12 — A% — . (55)
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Below we will discuss the existence and uniqueness of P based on three cases depending

on the relation of I" and A.
Case 1. If [T'| > |AJ, then A, 5 are real and different. Therefore, we can perform eigenvalue

decomposition of @),

Q=TDT",
where
A0
D=y n)
and
1 __ bitbo 1 1 b1+4bo
T = co+VI2—A2 T-1 — ca+VI2—A2 56
- b1 —bo 1 ) - _ b1 —ba 1 ? ( )
T VIZ AT detl” | = T Fr7e
where detT = C;— %, except for the case when (by — by)(by + by) = 0 and ¢ < 0, where
1 _ bitbo . 1 b1+bo
T = [bl—bQ fCQ ] I = [_bl—lm 2? } : (57)
2co 2co
In both situations, we have
A0

11—V 0 )
0 1-=XY|”

detM = det AN det (I, — { }) = detANdet({

0 AN

detM # 0 if and only if ()" # 1 and (\g)" # 1. This is clearly true since |\, Ag| # 1.
Case 2. If |T| = |A], then Ay = Ay = (—1)F"'L and we have two repeated eigenvalues.
Perform Jordan decomposition:

|:Cl + Co b1 + b2:| _ 7_ |:Cl 1:| 7__1

bl — bg C1 — Coy 0 C1
and
1 .
T = |:bl C_g b2 01 , 1fb1 §£ bg, (58)
201 0 .
T: |: Ol 11 s 1fb1 = b2.
We define
J _ 1 1 j _ (_1)k‘+1 1 1 )\1 (—1/)\k+1
0 |’ A 0 ¢ 0 A ’
then



. (_1)(k+1)j j—1
where r; = ~—5— 177",

In both situations, detM # 0 if and only if (A\;)" # 1, meaning that we require N to be
odd and further, if k£ is odd, we require I' = —A; if k is even, we require I' = A. In both
cases, A\y = Ay = —1.

Case 3. If |I'| < |A|, then A, 5 are complex, |A;o| = 1, A} = Ay, still Q is diagonalizable,
and similar to Case 1, detM # 0 turns to (A)N # 1 and (A\)Y = (A\)N # 1, i.e. we require

r 2
kN [ L =) 4 1
(1) o (A) ”

A.3 Proof of Lemmas [3.443.6
A.3.1 Proof of Lemma [3.4]

In the proof, we still use the difference operator Wu = Pfu — Pru = ) Pji(z) =
SlouPi(€), with ajy =0, 1=0,--- k=2, j=1,--- N, and

a1 k-1 T1
a1k L1
M |ay—1p—1| = |Tv=1], (59)
ON_1k IN—-1
N k-1 N
aONE | | (N ]
where . ) -
prd 1 3 — 1 .
Lj Bl 5 aq ‘9]' Gj _Um — (Phu)x j+%

We will now analyze the inverse of the matrix M. It is known that the inverse of a
nonsingular circulant matrix is also circulant, so is a block-circulant matrix. In particular,

M~ = circ(rg,r1, - ,7n_1) @ A
where ® means Kronecker product for block matrices and r; is a 2 x 2 matrix defined as,

r; =Q (I, - Q") j=0,--- ,N—1

. 60
=TD/(I, — DN 'T 1, (60)
. 1)‘;1;1\, 0 dj 0 j N—j
DJ(IQ - DN)il — e )\j = |: 1 ]:| 5 and d% — _dl 7].
0 v 0 &
For the convenience of further analysis, we separate r; in terms of d{ and d%,
r; = dT B 8} T +dT [8 ﬂ 7!

= Qi+ B —Q), (61)
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where

Q . 1 CQ+\/F2—A2 b1—|—b2 (62)
DT ooz b —o+ VT A

when T’ is given by , and

1 202 b1 + bg}

Q1 = 2—62[61_[)2 0 (63)

when T’ is given by .

) N-1l|4 | _ 1 1=V
For Case 1, eigenvalues Ajo are real. » .7 [di,| =

=] TN,
generality, we assume |A;| < 1 < |Az|, which is equivalent to I" < 0, then

Without loss of

: 1 | Az
& < _ , 64
ZO|1| T[N A= (6
]7
N-1 1
dj < ) 65
. ‘2‘ — |/\2|_1 ( )
7=0
We let
{:j} — 7! |:Tj:| — Vi + 0;Va, j=1,--- N (66)
SF Lj
where
k(k+1) /71 2 2 1 h
fy+ (L2 4 iy L[ et ] A
V,=21 A h 2 R A 1 1 — 2k | (67
[ A ¥ 01 R Y SRCT R Y ) Bl A R
max e
[Villoo < € (14 2Bl g, < O (68)

from basic algebraic calculations. Therefore,
N N-1
m,k—1 . Si4m -
= r; , m=1,--- N, 69
{ Clm } ; ’ [@ﬁm} (99
where by periodicity, when 7 +m > N, =1, = Zj4m-n~, Oj4m = Ojim_n-

In summary, we obtain the estimation when |A;| <1 < |Ay],

‘ N-1

- o
| S ) (s QY+ 11l

j=0
N—-1 '
+ > Id (m]axmjmvluoo +m?X!9j\HVzHoo> ,
j=0
Ao| +1 _
< On ubynsnngn (2] (10l + b QVel)
1 _
tor— (Wille + 27 Vallae) ), m=1,- N (70)
[Ao| — 1
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Thus, the estimates for the difference between Py and P} are

. | + 1 .
1B Bl < OB ubysnin (12 (1QuV e + 5 1Q1VilL)
1 -
b (IVilloo + 27 Valo) ). (71)
[Az| — 1

Similar estimates can be proved when I' > 0 and |A;| > 1 > |Ag],

. M| +1 _
1B = Blull < CH alyuonen ([ (102 = @)Ville + 171 = @u)Vall)
1
—— (IVillse + 2 [Vallos) ), 72
ooy (Wil + 07 Vallo) ) (72)
and is obtained.
A.3.2 Proof of Lemma 3.5
Since Py is well defined, we know that A\ = —1. Therefore, we can obtain

N 2 X —1 Ny—1 A —1
—QV =T T| T (@Y t=T |3 | T
2

Qi — Q) = (= >j[2 n (_1)3'M

1
where _—
B 01 _ Co 1+ 02
cb_TbO]T b_® _@}. (74)
Therefore, we have for m =0,--- /N — 1:

O k—1 N =,
" < N1 Il o] g )
|Ca )L < o (1 s mae (S]]

h™ | Qallo

< Chk|u’Wk:+1,oo(I) (1 + T

) (1l 17 V2l
Similar to Lemma we can estimate || Pyu — Pyu ey and follows.

A.3.3 Proof of Lemma [3.6

In Case 3, A1 2 are conjugate to each other and |A; 2| = 1. Therefore, &' > 0, and

N-
41 Z - )\N‘ Z 5.
=0

=2

1—>\N

Il
o

J
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Similar to , we obtain

O k—1
O k

N-1
< S+ 1) (s l1QUi e +ma 1211 )

‘ o0

_|_
Zw

) (e i s+ 151 )

j=0
CRF ulyrstoo yh”™ O (|Q1 Vi ]l + A 7HIQ1 Valloo + [Villoo + A7 Valloo)
CRE ulpstoe (yh™ Q1 oo (IVilloo + 27 Vallo)

IAINA

and we reach the estimation (27)).

A.4 Proof of Lemma [3.8
From and , we have

N-1
|:Oém,k:1:| Z s |:Hj+m:| m=1- N

Qm k

= U1V1 + U V3,

where U, = Zév:_ol 7i0jtm, Uz = Zjv 01 7;0j1m. We first estimate Uy, then U, can be estimated
in a similar way. From (73)),

N-1

1 , Q —N +2j
U = b > (1 njm + 2—13 Z(—l)ij‘wn- (75)

j=0 J=0

By Lemma the first term in can be estimated by

N-1 N1
| (=) 0jm| = | Z(an’-i-m — Mojrt14m) + IN-14m]
7=0 /=0
N -1
S TChk+2|u|Wk+2,oo(]) + Ohk+1|u|wk+1,oo([)
< CR Yullwrszeo s (76)

because N must be odd from Lemma The second term in can be estimated by
using ([28),

—N + 27
Z 5 i+m — th+15k+1 - MQhk+2Sk+2

hk+3’u‘Wk+3,oo(]) < Chk+1’u‘wk+3,oo([), (77)

N+2j’
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where Sgi1, Skye are defined as:

N-1

N +2) rs
Seew 1= ) (- ——=u ay,0), v=12
j=0

We assume u € WH4L(I). Then V) € W3(I), is periodic, and has the follow-
ing Fourier series expansion u**V(z) = Y°°° _ f(n)e?™ /L [ = b — a, where its fourier
coefficient f(n) satisfies:

5 |ulwrren )
<ol 78
fo| < e (78)

Since x;,1 = jAr = j%, j = 0,---,N — 1, then u(’”l)(xﬁ%) =3 . f(n)w™ with

- 27
w = e'~. Then
N-1

Sk+1:Z( N2 —N+2] Z F(n)witmn,

Due to (78), 3 |f(n)] is convergent and we can switch the order of summation, which
results in
—9mthn

Spi1 = Z f(n)W(n), where W(n):m

n=—oo

Since N is odd, w" = >~ # —1,VYn. Hence, W (n) and Sy, are well defined. Because
W (n) is N-periodic, it’s helpful to split Sk;; into blocks of size N as

(79)

IN+ 8L
Sk+1 = Z Sk+1a where Sllc+1 = Z fn)W(n).
I=—00 n=IN-~-1

Let’s estimate S, first. For In] < 2], [W(n)| = |1+in‘2 < |1+e§,,/4|2 = 2_2\/5. For other
n, [Win)| < |[W(E2)| = ‘HW(N_I)/QP < C'N? from Taylor expansions.

(28] n=—[2¥]-1 b
Stal < Y [fwm)|+ Y [fowm|+ > [fowm)
n=— Jé\f] _ 2—1 TL_[BN]+].
5 n=—[3]1
< + CON? ]+CN2 ‘
- 2_\/§ Z3N f(n> ;1 f() 3ZN f
n=—[%] - n=[75]+1
(28]
25 imlrov—L (N o
< n)| + — + Ul yk+4,1(]
2-v2 T 1+ (5)% 4 w
N-1
2 1 1
C —+ 1
< 3 g o
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Then, in a similar way;,

z IN+ 2L ] )
Skl <C n:lZNZI 1+ [nf® + (1] + 2)? |ulyran ).
Therefore,
- 1 = 1
|Sks1| <C ( Z TP +I_Z M+28 §)3> ulwerar(ry < Clulwrrar . (80)

By similar Fourier expansion technique, we can show
|Sk+2| < CN|U|Wk+4,1([) = Ch_1|ulwk+4,1([). (81)

Combine , with , and , we get

Qoo
[0l < O sy (14 1820 (52)
Similarly, by and the Fourier expansion technique
Qoll o
02l < Ol (14 1320 (53)

Therefore,

Qe
ke < Nl Vil + 11021 V2|
Qm, k 0o
1@l

T

< Ol (14 1) (i), =
and is obtained.

A.5 Proof of Lemma [3.9

From the discussion in Lemma , we can write A\;» = e and assume 6 € (0, 7). First,

we want to make clear of the conditions on 6,d". Since [A;| = |AY| = 1, we have §,8’ > 0.
Because 1 — AN = (w")V — (e?)V = (w" — ®)(T 1 (wM) N1 (e?)), thus [1— Y] <
N |w™ — €| ,¥n. With the assumption |1 — M| ~ Ch¥, we get |w" — €| > Ch?*!. Partic-

ularly, when n = 0, we have |1 — \;| > Ch%*! hence §/2 < & + 1.
Similar to in Case 1, we can get

N-1

Ol o =,

kel o Erj tml s m=1,---, N,
Ak

=0 @j-l-m
=1 UVi + U V5,
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where

N—-1

=@ Zm-&-md + (I — Q1) Z J+mdj27 d; = 1_;%,
7=0 7=0
N-1 N-1

Ql Z 9]+md + (]2 Ql) 9j+md%7 dJQ - _di\/*j = %'

J

I\
=)

We introduce:

— 176 (k+1
Sio= 1= ezNe Z € (@jmr1):

N-1
-1 (N
S, = 1__€im§ :G(N J)eu(kzﬂ)(xﬂm_%)
3=0

Then by Lemma |3.7}

Uy — ph* Q1S — b (1 = Q1)Ss| < O™ (1 + (| Qulloo) [ul 2o 1,
[Us — ph* Q181 — ph*(Io — Q1)S2| < CHM(1 4 [|Quloo) [l wrs2c (1)-

Therefore,
U] < CRF2 (1 [|Qulloo) [ulwiszoe + Qi lloo (1 + max(|Si],[Sa]))), v =1,2. (84)

. . . . . . k+1 - 00 A jn .
By using similar Fourier expansion: u! )($j+%) = > f(nw™. Since now we

assume u € WH3(J), ‘f(n)‘ < Cﬁ|U|Wk+3,l(1).

S = o 3 0 Y= 3

n=—oo 7=0 n=—oo
N-1
S = 1_€@N92f VD= 3
n=-—00 7=0 n=-—00
where from simple algebra
mn (m—1)n
w w
w =— W = —
1(n) 1 — efun 2(n) 1 — e Wyn

From the discussion at the beginning of the proof, we have [Wh(n)| = |A;—w"|~! < Ch=@'+1),
and similarly |[W;(n)| < Ch~®+Y. Since S; and S, can be estimated in the same way, we

only show details for S; in what follows. Similar to the proof of Lemma [3.8] we split Sy into
blocks of size N,

(I+1)N-1
Sy = Z S}, where Sh= > f(n
l=—0 n=IN
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With the assumption that 0 < §/2 < 1, there Ing ~ O(hY/271) sit. 275 < 0 < 277edtL,
Let ny = |ng/2],ne = 2ng — nq, then for n; < n < ny, ‘f(n)‘ < C—Hlng |u| s (py. For other
1
n, [Wa(n)| < [Wa(ni) ! < Ch™%?2. Thus,

| < semtemN=73)

ni—1 N-—1 no
83| < O (Z+ > )f( )’) +Ch Y

n=0 n=ns+1 n=ni

fo

/ 1
h8/2 p—(0'+1) _
=C Z T W (2 = 1)7 +n%) s

N-1

B 1 s e
S clhn 5/2 Z = ‘n‘z + h (6 +1)h5/2 th 5) |U|Wk+371(1)
n=0

N-1

- 1 5
<C\lh o2 Z TW +h 5/2> |Ulwk+3,l(l).
n=0

Using similar approaches, for [ # 0,

(I+1)N—1 1 1
Sl <C h—5/2 - h—5'+6/2— . .
5] < zl;v T+ e " In1 /N + 1|2 [l

Summing up, we reach the estimation

1 !/ ! 1
—4/2 —6'=0/2 —6'46/2
S| < C (h / E e +h 24 h / E —WQ) || sy

n=—00 1EN,I£0
< Ch_6/_§/2|U|Wk+3,1(]). (85)

Similarly, we obtain
|31| < Ch™° _5/2|U|Wk+3,1(]). (86)

Combine , and , we get

Uy | < CRE2 (1 RO Q) o) ullwrssoey, v =1,2,

and follows.

A.6 Detailed discussions on the choice of the 7" matrix as in (56)

or (57)

We discuss what parameters result in ]bl + by| = 0, under the assumption that a; has no
dependence on h, 81 = B1h™, By = Bah™2, By, By are nonzero constants that do not depend
on h.

k(k—1) k(k=1), 2
(1= B, )+ 2

hoooo
k(k—1 -
%hl)(l — 2k(k — 1)oh™ ™) 4+ k(k — 1)2a3h7,

bi—by = (—f+ 2k(k —1)

= (_BlhAl +
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ntts = (—p HEE g LD, KL,
= (ot @hl)u — 2k(k + 1)B:h™ ) + k(k + 1)2a7h 7"

If by — by = 0,Vh < hg, then
o oy #0, then A; = —1, Ay, =1 and B4, (3, satisfies
= k(k—-1 ~
(=B + %)(1 —2k(k — 1)B2) + k(k — 1)2a3 = 0.
Similarly, for by 4+ by = 0,Vh < hg, then
e a; #0, Ay =—1, Ay =1 and By, By satisfies

(=1 + k(k; 1>)(1 —2k(k +1)B2) + k(k 4+ 1)2a% = 0.
A.7 Detailed discussions on Case 2
Parameter choices for |T'| = |A| imply
T+A = B+ kQ(kZ; D, 1 k(khi D (“202 — 28,8,) + _k;;t i
- (- k;(k;; Dy 252k:(k;;: ), _ k(k]j: Doa2 — o,

which indicates

e if ay # 0, then by & by can be greatly simplified as follows.
— If '+ A =0, then k is odd from Lemma [3.3] and

bl_i_bQ:E(l_ﬁQw)’

h h
bl—bQ:—kiH@—k(g;l)),
A== kil(ﬂl_kj %@)'
— If I' = A =0, then k is even from Lemma [3.3, and
bl‘l‘bQZ%(ﬁl_k(]ZZl));
o=t (1 p200)
A——ﬁ(ﬁl—%?Jer(kZ;l)ﬂg), k> 1
e If oy =0, then _— .
Pr= (2h Lor o= 2h(k+1)

(87)

(88)

(89)
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