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Abstract
In this paper, we propose a two-layer depth-integrated non-hydrostatic system with 
improved dispersion relations. This improvement is obtained through three free parameters: 
two of them related to the representation of the pressure at the interface and a third one that 
controls the relative position of the interface concerning the total height. These parameters 
are then optimized to improve the dispersive properties of the resulting system. The 
optimized model shows good linear wave characteristics up to kH  ≈ 10, that can be 
improved for long waves. The system is solved using an efficient formally second-order 
well-balanced and positive preserving hybrid finite volume/difference numerical scheme. 
The scheme consists of a two-step algorithm based on a projection-correction type scheme. 
First, the hyperbolic part of the system is discretized using a Polynomial Viscosity Matrix 
path-conservative finite-volume method. Second, the dispersive terms are solved using 
finite differences. The method has been applied to idealized and challenging physical 
situations that involve nearshore breaking. Agreement with laboratory data is excellent. 
This technique results in an accurate and efficient method.

Keywords Dispersive waves · Non-hydrostatic · Shallow-water · Finite-volume ·
Finite-difference · Breaking waves

1 Introduction

When modelling and simulating geophysical flows, the non-linear shallow-water equations, 
from now on SWE, is often a good choice as an approximation of the Navier–Stokes 
equations. Nevertheless, SWE does not take into account effects associated with dispersive 
waves. In recent years, a great effort has been made in the derivation of relatively simple 
mathematical models for shallow water flows that include long non-linear water waves. As 
computational power increases, Boussinesq type models [1,15,40,52,58,59,67–69] become 
more accessible.
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This means that one can use more sophisticated models to accurately describe reality, despite 
the higher computational cost.

Moreover, to improve the non-linear dispersive properties of the model, information on the 
vertical structure of the flow should be included. The Boussinesq-type wave equations have 
prevailed due to their computational efficiency. The main idea is to include non-hydrostatic 
effects due to the vertical acceleration of the fluid in the depth-averaging process of the 
equations. For instance, one can assume that both non-linearity and frequency dispersion 
are weak and of the same order of magnitude. Since the early works of Peregrine [59], 
several improved and enhanced Boussinesq models have been proposed over the years: 
Madsen and Sørensen [52], Nwogu [58], Serre Green–Naghdi equations [40], and non-
linear and non-hydrostatic higher order shallow-water type models [16,22,34,71] among 
many others. One may use different approaches to improve non-linear dispersive properties 
of the models: considering a Taylor expansion of the velocity potential in powers of the 
vertical coordinate and in terms of the depth-averaged velocity [52] or the particle velocity 
components (u, w)  at a chosen level [58]; including two scalars representing the vertical 
profile of the non-hydrostatic pressure [42]; using a better flow resolution in the vertical 
direction with a multi-layer approach [46,47,70].

Weakly-dispersive weakly-nonlinear Boussinesq systems ([16,52,58,71] among others) 
may offer good dispersive properties such as phase, group velocity and shoaling for kH  
values up to 3, where k denotes the wave number and H the typical depth. In intermediate 
waters, this range could not be enough, and much more information on the vertical structure 
must be retained. High order Boussinesq equations can offer better linear and non-linear 
dispersive properties. The counterpart is that extremely complex systems with high order 
derivatives arise (fifth order derivatives in [38] for  kH  up to 6), requiring an equally complex 
numerical scheme. The complexity increases for a two-horizontal dimension problem.

The development of non-hydrostatic models for coastal water waves has been the topic of 
many studies over the past 15 years. Non-hydrostatic models are capable of solving many rel-
evant features of coastal water waves, such as dispersion, non-linearity, shoaling, refraction, 
diffraction, and run-up. For example, in [22], Casulli splits the pressure into a hydrostatic 
and a non-hydrostatic part. Then, the system is approximated with a fractional step method, 
wherein the first step the hydrostatic free-surface flow model is approximated and in a second 
step a Poisson equation is solved.

The decomposition of the pressure into a hydrostatic and non-hydrostatic parts is also 
considered in many other works. This decomposition has been considered for example by 
Ma et al. [50] and Gallerano et al. [37], where the system is reformulated in σ -coordinates. 
Stansby and Zhou [63] also considered this decomposition, where the main difference is that 
the σ -coordinate is not considered for the horizontal non-hydrostatic pressure gradients, to 
avoid the numerical truncate errors introduced by this approximation.

Zijlema and Stelling, in [24,64,72], propose a multi-layer method based in a layered 
depth-averaging of the system. A similar procedure has been considered by Ai and Jin 
(see [4,5]). The main differences reside in the horizontal gradient of the non-hydrostatic 
pressure component, which is assumed to be independent of the depth at each layer. Another 
multi-layer model has been proposed in [10] where a numerical study of the linear dispersive 
celerity shows convergence to the results given by the linear Stokes theory. The linear shoaling 
properties of this model are studied in [11]. In [34], a hierarchy of layer-averaged multi-layer 
models has been proposed based on the hypothesis made for the vertical velocity and pressure 
profiles. Moreover, an explicit linear dispersion relation for each one is done. This allows 
proving analytically that when the number of layer increases, celerity converges to the exact 
one given by Euler equations in the Stokes linear theory.



Bai and Cheung [9] proposed a modification of the depth-integrated two-layer model
introduced in [8]. They include a free-parameter that relates the pressures at each of the two
layers. This parameter allows improving the linear dispersion relation. Cui et al. introduced
in [27] a two-layer model based in a depth-averaging of the system written in σ -coordinates.
They introduced two free-parameters that relate the height of the two layers and the non-
hydrostatic pressures unknowns of the two-layer system. The choice of these parameters is
also related to the accuracy of the linear dispersive properties of the system.

The paper is organized as follows. In Sect. 2 we present a new two-layer depth-averaging
system depending on three different free-parameters that are optimized to improve the dis-
persive relation of the system. The main hypothesis for the derivation is the assumption of a
constant vertical profile of the horizontal velocity within each layer. This corresponds to the
assumption of a shallow water regime as it is usual when deriving non-hydrostatic multilayer
systems.

The proposed two-layer system can be seen as a modification of one of the models pre-
sented in [34] with a correction in the non-hydrostatic pressure profile. This will leads to
a system that improves the main dispersive properties of other two-layer non-hydrostatic
pressure systems proposed in the literature (see for instance [27]), and can even improve the
dispersive properties of some multi-layer systems with 5 layers (see for instance [11]). We
recall that the resulting system is a model which is less expensive from the computational
point of viewwhile keeping good dispersive relations. Thus, the final model can be applied to
intermediate waters for a wide range of waves for a kH up to 10. This is discussed through a
linear analysis in Sect. 3, as well as numerical tests. It is worth mentioning that this approach
leads to a system that does not present those aforementioned high order derivatives.

In Sect. 4 a numerical scheme is introduced based on a two-step projection-correction
type scheme. In the first step we solve the hyperbolic hydrostatic system and in the second
one, we include the non-hydrostatic effects. The proposed numerical scheme present a novel
treatment of wet–dry fronts, that is very robust, as it will be shown in Sect. 6. No special
treatment is required for the non-hydrostatic pressure since in the presence of wet–dry fonts
it vanishes automatically thanks to the rewriting of the incompressibility equations. This is an
improvement on non-hydrostatic pressure numerical schemes, where usually non-hydrostatic
pressure is truncated to zero up to a threshold value.

The reader should keep in mind that detailed small-scale breaking driven physics are not
described by the model. This means that one has to include some breaking mechanism in the
depth-integrated equations. In Sect. 5, a new robust and straightforward breaking mechanism
is presented. The breaking mechanism consists in the extension to the two-layer system of
the viscous mechanism used in [33]. The breaking criteria used here to switch on/off the
breaking mechanism is a simplification of the criteria presented in [61] and is one of the
simplest that can be found in the literature. Nevertheless some other and more sophisticated
breaking criteria could be considered and implemented similarly.

Finally, in Sect. 6, some numerical tests including comparisons with analytical solutions
from the Stokes linear theory and laboratory data are shown.

2 The Non-hydrostatic Two-Layer System

In this section, a two layer-averaged system derived from Euler equations is presented. This
model is obtained by setting a non-material interface that separates two layers with different
velocities and pressures. In the deduction of the equations is assumed that the horizontal



velocity has a piecewise constant vertical profile, by while the vertical velocity and the non-
hydrostatic counterpart pressure are piecewise linear, being the three unknowns discontinuous
at the interface.

The 2D (x, z) Euler system reads
⎧
⎪⎪⎨

⎪⎪⎩

∂xu + ∂zw = 0,

∂t u + ∂x
(
u2 + pT

) + ∂z (uw) = 0,

∂tw + ∂x (uw) + ∂z
(
w2 + pT

) = −g,

(1a)

(1b)

(1c)

where x and z denote the horizontal Ox and the vertical Oz axis respectively. We consider
this system for

t > t0, x ∈ R, −H(x, t) ≤ z ≤ η(x, t),

where η is the unknown water elevation, H is the bathymetry that can vary in space and time,
u and w are the horizontal and vertical velocities. The water height is h = η+ H . The model
is completed with boundary conditions at the free surface

{
∂tη(x, t) + u(x, η(x, t), t)∂xη(x, t) − w(x, η(x, t), t) = 0,

pT ((x, η(x, t), t)) = patm,

(2a)

(2b)

where patm is the atmospheric pressure. At the bottom, no-penetration boundary condition
is imposed

u(x,−H(x, t), t)∂x H + w(x,−H(x, t), t) + ∂t H = 0. (3)

The total pressure pT is supposed to be decomposed into a sum of a hydrostatic and non-
hydrostatic part:

pT = patm + g(η − z) + p (4)

where p(x, z, t) is the non-hydrostatic pressure. Hereinafter, the atmospheric pressure will
be supposed to be zero and the non-hydrostatic pressure is assumed to vanish at the free
surface

p(x, η(x, t), t) = 0. (5)

Given a positive water height h(x, t), we consider l1, l2 ∈ [0, 1] such that l1 + l2 = 1,
and we decompose the fluid along the vertical axis into two virtual layers of height

hα = lαh, α = 1, 2.

In what follows, α = 1 stands for the lower layer and α = 2 for the upper one (see Fig. 1).
Let us denote

L1(x, t) = {z : −H(x, t) ≤ z ≤ z I (x, t)} , L2(x, t) = {z : zI (x, t) ≤ z ≤ η(x, t)} ,

where zI (x, t) = h1 − H . zα will denote the level of the middle point of the layers:

z1(x, t) = zI − H

2
, z2(x, t) = zI + η

2
.

For a given function (x, z, t) → f (x, z, t), in the case that it is discontinuous at the interface
z I , let us denote

f I+(x, t) = lim
z→zI (x,t)
z>zI (x,t)

f (x, z, t), f I−(x, t) = lim
z→zI (x,t)
z<zI (x,t)

f (x, z, t),



Fig. 1 Bilayer setting

as well as fb ≡ f (x,−H(x, t), t), fη(x, t) ≡ f (x, η(x, t), t).
As we mentioned before, to derive the model we assume a given vertical profile on the

unknowns of the problem. First, a piecewise constant profile of the horizontal velocity is
considered. We denote by u1(x, t) and u2(x, t) the horizontal velocities at layers L1(x, t)
and L2(x, t), respectively. This is the main hypothesis for the derivation of the model, which
corresponds to a shallow water regime. In fact, if we take p = 0 in (4) and l1 = 1, we can
derive in the same way the SWE.

From previous assumption and the incompressibility condition (1a), we obtain that the
vertical velocity has a piecewise linear profile. Let us recall that, using the notation introduced
before, its limits at the interface level z = zI (x, t) are denoted by wI± . The vertical velocity
at the bottom and the free surface are denoted by wb and wη, respectively.

Finally, we also consider a piecewise linear profile of the non-hydrostatic pressure, which
can be determined from its atmospheric value, which is supposed to be zero, its limits at the
interface and the pressure at the bottom. Thus we have pη = 0, and denote its limits at the
interface level z = zI (x, t) by pI± , and the pressure at the bottom, pb(x, t). We also denote
by p1(x, t) and p2(x, t) the non-hydrostatic pressure part evaluated at the middle level of
the corresponding layer, that is,

p1(x, t) = p(x, z1(x, t), t), p2(x, t) = p(x, z2(x, t), t).

From the incompressibility condition (1a), we get that a weak solution which is discon-
tinuous at z = zI (x, t) must verify the following jump condition (see [34,35])

wI+ − wI− = (u2 − u1) ∂x z I . (6)

Let us denote by w1 and w2 the vertical velocity at the middle level of the corresponding
layer, that is,

w1(x, t) = w(x, z1(x, t), t), w2(x, t) = w(x, z2(x, t), t).

Then, the incompressibility condition (1a) inside each layer reads,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂xu1 + 2
w1 − wb

h1
= 0,

∂xu2 + 2
w2 − wI+

h2
= 0.



The integration over each layer of the incompressibility Eq. (1a), combined with condi-
tions (2a), (3), gives the mass equations at each layer,

⎧
⎪⎨

⎪⎩

∂t h1 + ∂x (h1u1) = − (wI− − (∂t z I + u1∂x z I )) ,

∂t h2 + ∂x (h2u2) = (wI+ − (∂t z I + u2∂x z I )) .

(8a)

(8b)

Let us define

ΓI− = wI− − ∂t z I − u1∂x z I ,

ΓI+ = wI+ − ∂t z I − u2∂x z I .

Using the jump condition (6), we get ΓI+ = ΓI− and we may define

ΓI = wI+ + wI−

2
− ∂t z I − u1 + u2

2
∂x z I . (9)

Then Eq. (8) becomes
⎧
⎪⎨

⎪⎩

∂t h1 + ∂x (h1u1) = −ΓI ,

∂t h2 + ∂x (h2u2) = ΓI .

(10a)

(10b)

Thus, ΓI can be interpreted as an approximation of the mass transfer across the interface zI .
Moreover, by combining Eqs. (10a) and (10b) we obtain

ΓI = l1∂x (h2u2) − l2∂x (h1u1) . (11)

Following the procedure described in [34], and taking into account the piecewise lin-
ear discontinuous profile of non-hydrostatic pressure, we obtain the following horizontal
momentum equations

∂x (h1u1) + ∂x
(
h1u

2
1 + h1 p1

) + u1 + u2
2

ΓI − pb∂x H − pI−∂x z I = −gh1∂xη. (12)

∂x (h2u2) + ∂x
(
h2u

2
2 + h2 p2

) − u1 + u2
2

ΓI + pI+∂x z I = −gh2∂xη. (13)

Note that the gradients of p1 and p2 appear because, inside each layer, we assume that
the pressure is linear. The following vertical momentum equations are also deduced,

∂x (h1w1) + ∂x (h1u1w1) + w1 + w2

2
ΓI + pI− − pb = 0. (14)

∂x (h2w2) + ∂x (h2u2w2) − w1 + w2

2
ΓI − pI+ = 0. (15)

We shall consider in this work the unknowns

pb and pI := pI− ,

for the non-hydrostatic pressure unknowns. To close the system, we will suppose that

pI+ = γ1 pb + γ2 pI , γ1 + γ2 �= 0, (16)

and therefore, due to the assumption on the non-hydrostatic vertical profile:

p1 = pb + pI
2

, p2 = γ1 pb + γ2 pI
2

.



The underlying reason to assume this discontinuity for the non-hydrostatic pressure is to
introduce an artificial set of free parameters, which will help to improve the dispersive
properties of the system (see Sect. 3).

Remark 1 Notice that for γ1 = 0, γ2 = 1 we recover the original system derived in [34],

and for γ1 = 1, γ2 = δ

δ − 2
the approach

pI+ − pI− = δ(p2 − p1).

We will avoid the case γ1 + γ2 = 0 (see Sect. 3.1 and “Appendix D.3”).

To sum up, collecting all the equations described before, the system reads as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t h + ∂x (l1hu1) + ∂x (l2hu2) = 0,

∂t (l1hu1) + ∂x
(
l1hu

2
1 + l1hp1

)

+ u1 + u2
2

ΓI − pb∂x H − pI ∂x z I = −gl1h∂xη,

∂t (l1hu2) + ∂x
(
l2hu

2
2 + l2hp2

)

− u1 + u2
2

ΓI + (γ1 pb + γ2 pI )∂x z I = −gl2h∂xη,

∂t (l1hw1) + ∂x (l1hu1w1) + w1 + w2

2
ΓI = pb − pI ,

∂t (l2hw2) + ∂x (l2hu2w2) − w1 + w2

2
ΓI = γ1 pb + γ2 pI ,

∂xu1 + 2
w1 − wb

l1h
= 0,

∂xu2 + 2
w2 − wI+

l2h
= 0,

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

(17g)

where
⎧
⎪⎨

⎪⎩

wI+ = u2∂x z I − ∂x (l1hu1) − ∂t H ,

wb = −u1∂x H − ∂t H .

(17h)

(17i)

The system depends on the parameters (l1, γ1, γ2), which need to be chosen. This will
be done following a criterion that improves the dispersive relations of the system. Note that
the proposed system has the same number of variables as when considering a continuous
pressure, that is pI+ − pI− = 0, that are

h, uα,wα, pI , pb



and therefore the computational cost of the improvedmodel will be the same than the original
one proposed in [34].

Finally, system (17) can be written in the compact form
⎧
⎨

⎩

∂tU + ∂x F(U) + B(U)∂xU = G(U)∂x H + T (h, ∂xh, H , ∂x H , P, ∂x P),

B(U, ∂xU, H , ∂x H) = 0,
(18)

where we introduce the notation

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h

qu,1

qu,2

qw,1

qw,2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, F(U) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

l1qu,1 + l2qu,2

q2u,1

h
+ 1

2
gh2

q2u,2

h
+ 1

2
gh2

qu,1qw,1

h

qu,2qw,2

h

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G(U) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

gh

gh

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

being

qu,α = huα, qw,α = hwα, α = 1, 2

the horizontal and vertical discharges.
B(U) is a matrix function such that B(U)∂xU involves the non-conservative products

related to the mass transfer across interfaces that appear in the momentum equations

B(U) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0

0 − l2
u1 + u2

2
l2
u1 + u2

2
0 0

0 l1
u1 + u2

2
− l1

u1 + u2
2

0 0

0 − l2
w1 + w2

2
l2

w1 + w2

2
0 0

0 l1
w1 + w2

2
− l1

w1 + w2

2
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that the corresponding equations for the horizontal and vertical momentum at the layer
Lα , have been divided by lα . The limit case l1 = 1, l2 = 0 corresponds to the one-layer
model presented in [16]. For the sake of simplicity, we will assume that lα ∈ (0, 1).

Finally, the non-hydrostatic terms are given by

P =
⎛

⎝
pb

pI

⎞

⎠ , T (h, ∂xh, H , ∂x H , P, ∂x P) = −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
∂x (hp1) − pb∂x H/l1 − pI ∂x z I /l1

∂x (hp2) + (γ1 pb + γ2 pI )∂x z I /l2

(pI − pb)/l1

−(γ1 pb + γ2 pI )/l2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,



where

p1 = pb + pI
2

, p2 = γ1 pb + γ2 pI
2

,

and

B(U, ∂xU, H , ∂x H) =
⎛

⎝
l1h∂xqu,1 − 2qu,1∂x z1 + 2qw,1 + 2h∂t H

2l1h∂xqu,1 + l2h∂xqu,2 − 2qu,2∂x z2 + 2qw,2 + 2h∂t H

⎞

⎠ . (19)

Operator (19) contains the incompressibility condition for each layer, and is obtained mul-
tiplying Eqs. (17f) and (17g) by l1h2 and l2h2 respectively. Equations (17h) and (17i) have
been used as well. This allows to write the full two-layer system in terms of discharges.

Remark 2 Let us consider the underlying hydrostatic system given by

∂tU + ∂x F(U) + B(U)∂xU = G(U)∂x H . (20)

Then the system (20) is hyperbolic for every l1 ∈ (0, 1). A proof is given in “Appendix A.1”.
In the case of l1 = 1

2 , the eigenvalues can be computed explicitly and are given by:

λ1 = u1, λ2 = u2, λ3 = u1 + u2
2

, λ4,5 = u1 + u2
2

±
√

gh + 3

4
(u1 − u2)

2.

An approximation of the eigenvalues for the general case are given in “Appendix A.2”.

Remark 3 Concerning the well-possessedness of the proposed system, if we restrict just to
the hyperbolic problem (20), without non-hydrostatic pressure, some studies can be found
although there is no final answer. For classical two-layer shallow water systems some results
can be found in [54–57]. In the case of multi-layer shallow water systems, we may cite the
work [7], where the authors prove that the multilayer model is hyperbolic for the case of two
layers, but the question remains open for the general case. Another work related to this topic
is [36]. In this paper, it is shown that the solution of the multilayer model is a particular weak
solution of the Navier-Stokes system. Concerning multilayer problems with non hydrostatic
pressure, to our knowledge, not much is known concerning well-possessedness.

3 Linear Analysis of the NewModel

In this section, dispersive relations of the integrated two-layer system (17) are studied as
usual (see [25,45,46,52,62]). In particular, we focus on the linear dispersion relation, the
group velocity, and the linear shoaling. This constitutes a standard study of PDE systems for
dispersive water waves modelling. The two first properties are related to the propagation of
dispersive wave trains, and the latter with shoaling processes. This can occur when waves
arrive at the continental shelf, from intermediate to shallow waters.

In Sect. 3.1, a flat bottom H is assumed and the governing Eq. (17) are linearised around a
steady state solution. Then, we conduct a standard Stokes-type Fourier analysis to obtain the
linear dispersion relation and group velocity. In Sect. 3.2, a shoaling analysis of the linearised
equations is carried out. The linear dispersion relation, group velocity and linear shoaling are
derived following the procedure described in [62].Remark that the studied dispersive relations
are dependent on the parameters (l1, γ1, γ2). In Sect. 3.3 the aforementioned (l1, γ1, γ2)
parameters will be chosen through examination of the derived dispersive relations following
the standard procedure on such topics (see [46,52,62]).



3.1 Linear Dispersion Relation

Assuming that both η and u are very small perturbation of a still steady state, and flat
bathymetry, the linearised version of system (17) reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tη + H∂x (ū) = 0,

∂tU + g∂xηI2 + 1

2
A1∂x P = 0,

H∂tW + A2P = 0,

H A3∂xU + 2W = 0,

(21)

being

U =
(
u1
u2

)

, W =
(

w1

w2

)

, P =
(
pb
pI

)

,

I2 =
(
1 0
0 1

)

, A1 =
(
1 1
γ1 γ2

)

, A2 =
( −1/l1 1/l1

−γ1/l2 −γ2/l2

)

, A3 =
(
l1 0
2l1 l2

)

.

If we assume γ1 + γ2 �= 0, then after some algebraic manipulations, the system (21) can
be expressed in terms of η, U and its derivatives,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tη + H∂x (ū) = 0,

∂tU + g∂xηI2 + 1

4
H2A1A

−1
2 A3∂xxtU = 0.

(22)

We shall make a Stokes-type Fourier analysis and look for first-order solutions of the form,

η(x, t) = η0e
i(ωt−kx), U (x, t) =

(
u1
u2

)

ei(ωt−kx), (23)

where η0 is the wave amplitude, ω is the cyclic frequency and k the wave number. By
substituting (23) into (22), we get the linear system

⎛

⎜
⎜
⎜
⎝

Λ
g

g

l1H l2H −C

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

u1

u2

η0

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0

0

0

⎞

⎟
⎟
⎟
⎠

, (24)

where C is the wave celerity defined by C = ω/k and

Λ = −C

(

I2 + 1

4
(kH)2 A1A

−1
2 A3

)

.

Looking for non-trivial solutions, the matrix of the linear system (24) must be singular, and
yields the linear dispersion relation

C2

gH
= N0 + N1 (kH)2

D0 + D1 (kH)2 + D2 (kH)4
. (25)



Since l2 = 1 − l1, the coefficients N0, N1, D0, D1, D2, given in “Appendix B.1”, are
solely functions of l1, γ1, γ2.

Now, we can derive the group velocity Cg , which is essentially computed by taking the
derivative of C in (25) with respect to the wave number k. This will be related with the
propagation of irregular wave trains (see [52]) and it is defined as

Cg = C + k∂kC .

Remark 4 If the relation γ1+γ2 = 0 holds, then regarding the linear vertical velocity equation
in (21), one has that P can not be uniquely expressed in terms of ∂tW , due to the fact that A2

is a singular matrix. According to this, we assume in this work that γ1 + γ2 �= 0, and thus
the matrix A2 has an inverse A−1

2 .

3.2 Linear Shoaling Analysis

Madsen and Sørensen introduced the linear shoaling gradient as another quantity to measure
the applicability of Boussinesq equations (see [52]). The linear shoaling of the present two-
layer model can be expressed as,

∂xη

η
= −∂x H

H
γ,

where the shoaling gradient γ is a function of the wave number k and H and it is determined
using the concept of the constancy of the energy flux,

∂x
(
η2Cg

) = 0,

and thus,

∂xη

η
= −1

2

∂xCg

Cg
.

Given the group velocity, it can be seen

∂xCg

Cg
= S1

∂x (kH)

kH

where S1 is a function to be determined such that the equality holds. Taking the derivative of
the dispersive relation with respect to x , gives

∂x k

k
= S2

∂x H

H
,

where, again, S2 is another function to be determined. Finally, the linear shoaling gradient is
given by:

γ = 1

2
S1 (1 + S2) .

The determination of γ is performed on a computer using symbolic calculation. The
resulting expression is tedious and will not be given here.



3.3 Dispersive Optimization

For the studied quantities, i.e. wave celerity, group velocity and linear shoaling, a reference
formula can be derived from the Stokes linear theory. The exact linear dispersion relation is
given by

C2
e

gH
= tanh(kH)

kH
,

and group velocity, Cg,e, can be derived from the above expression. Finally, based on Stokes
linear theory Madsen & Sørensen derived the exact shoaling gradient (see [52]):

γe = kH tanh(kH)
(1 − kH tanh(kH))

(
1 − tanh2(kH)

)

(
tanh(kH) + kH

(
1 − tanh2(kH)

))2 .

Now, the most accurate set of parameters l1, γ1 and γ2, in a sense that will be described
later, will be chosen in this section attending to the previous formulas. For this analysis,
a representation of the overall error, including errors in wave celerity, group velocity and
shoaling, is sought. To do that, we shall minimize the error

Δs(l1, γ1, γ2) =
∫ s

0

1

kH

( |C − Ce|
|Ce| + |Cg − Cg,e|

|Cg,e| + |γ − γe|
|γe|

)

dkH , (26)

and therefore we define

(l(s)1 , γ
(s)
1 , γ

(s)
2 ) := arg min

(l∗1 ,γ ∗
1 ,γ ∗

2 )

l∗1∈(0,1)
γ1+γ2 �=0

[
Δs(l

∗
1 , γ

∗
1 , γ ∗

2 )
]
.

When simulating dispersivewaterwaves, errors at lowwave numbers k aremore relevant than
errors at high wave numbers. Due to that, as in [47], the sum of the relative errors is divided
by kH inside the integral (26). Then, the proposed election of (l(s)1 , γ

(s)
1 , γ

(s)
2 ) minimizes

properly the sum of the relative errors of wave celerity, group velocity and linear shoaling,
with respect to the reference formulas in a range of kH ∈ [0, s]. The integral is approximated
numerically via Gaussian quadrature points, avoiding the singularity at kH = 0. The argmin
function is approximated by using an iterative method for non-linear optimization.

Attending to the range of applicability, two set of parameters are obtained. The first one
(see Fig. 2) is

(
l(5)1 , γ

(5)
1 , γ

(5)
2

) = (0.4929,− 0.1530, 1.1192). (27)

This choice, leads to an excellent agreement with Stokes first order theory for kH up to 5.
The percentage errors in phase celerity is less than 0.8% and for the group velocity is less
than 2%. Linear shoaling is reproduced very well in this range also. Another choice (see
Fig. 3) for an extended range is

(
l(15)1 , γ

(15)
1 , γ

(15)
2

) = (0.7194, 0.1386, 0.7305). (28)

This ensures a percentage error for the celerity less than 1.5% for kH up to 15. For the group
velocity this choice provides an error less than 8% for kH up to 10. Figures 2 and 3, also
show a comparison with the standard two-layer approximation corresponding to the choice:

(
l(2L)
1 , γ

(2L)
1 , γ

(2L)
2

) = (1/2, 0, 1). (29)



(a)

(b)

(c)

Fig. 2 a, b Relative errors for the phase and group velocity respectively. c The comparisons with the reference

shoaling gradient (in red). The results with the optimized parameters (l(5)1 , γ
(5)
1 , γ

(5)
2 ) are given in blue dashed

lines and with the non-optimized parameters (l(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ) in black dash-dotted lines (Color figure

online)

(a)

(b)

(c)

Fig. 3 a, b Relative errors for the phase and group velocity respectively. c The comparisons with the reference

shoaling gradient (in red). The results with the optimized parameters (l(15)1 , γ
(15)
1 , γ

(15)
2 ) are given in blue

dashed lines and with the non-optimized parameters (l(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ) in black dash-dotted lines (Color

figure online)

Although the second optimization (28) does not seem to improve the errors with respect
to (29), it ensures reasonable errors for an extended range of kH .

Let us remark that the model proposed in this work presents a good agreement for linear
shoaling gradient with just two layers. In order to have similar results, at least five layers
are needed for multi-layer models like the one presented in [11]. Moreover, the results for
the phase velocity with parameters (l(15)1 , γ

(15)
1 , γ

(15)
2 ) show that we obtain a smaller relative



error for kH up to 15, when compared with the two-layer system proposed in [27]. This
means that the model proposed here can achieve better dispersive properties than models that
have similar o even more computational complexity.

As the equations are largely used to simulate shallow water flows, the linear analysis is
supplemented with an asymptotic analysis in the limit kH → 0. To do that, we compare the
resulting Taylor expansion of the phase velocity (25) with the one coming from the Stokes
linear theory at order O(kH)4:

C2
e

gH
= 1 − 1

3
(kH)2 + O(kH)4,

C2

gH
= 1 − γ1 + γ2 − l1(γ1 + γ2 + l1(γ1 + γ2 − 2(γ2 − 1)l1) − 2)

4(γ1 + γ2)
(kH)2 + O(kH)4,

which coincides for

γ1 = 3l1(1 − l1)(2 − γ2 − 2(γ2 − 1)l1) − γ2

3l1(l1 + 1) + 1
. (30)

Note that the original two-layer non-hydrostatic system derived in [34], which corresponds

to the election of l1 = 1

2
and γ1 = 0, γ2 = 1, verify at order O(kH)4 :

C2
2L

gH
= 1 − 5

16
(kH)2 + O(kH)4.

Thus, the proposed system can satisfy up to orderO(kH)4 the Stokes linear theory, by setting
γ1 as in (30). The parameters l1 and γ2 are still free parameters, and a similar tuning as the
one explained in this subsection can be made in order improve the linear dispersive relation
for higher values of kH .

4 Numerical Scheme

We describe now the numerical scheme used to discretize the system (18) for a fixed bed, that
is, ∂t H = 0. The numerical scheme employed is based on a two-step projection-correction
method. First, we shall solve the underlying non-conservative hydrostatic and hyperbolic
system given by

∂tU + ∂x F(U) + B(U)∂xU = G(U)∂x H . (31)

Then, in a second step, non-hydrostatic terms will be taken into account. System (31) is
discretized by a second order finite volume Polynomial Viscosity Matrix (hereinafter PVM)
positive-preserving well-balanced segment path-conservative method (see [17]). As usual,
we consider a set of N finite volume cells Ii = [xi−1/2, xi+1/2] with constant lengths Δx
and define

U i (t) = 1

Δx

∫

Ii
U(x, t) dx,

the cell average of the function U(x, t) on cell Ii at time t . Regarding non-hydrostatic terms, 
we consider the mid-points xi of each cell Ii and denote the point values of the function P 
at time t by

P i (t) = P(xi , t).

Non-hydrostatic terms will be approximated by second order compact finite-differences.



4.1 Time Stepping

Assume given time steps Δtn , and denote tn = ∑
j≤n Δt j . To obtain second order accuracy

in time, the two-stage second-order TVD Runge–Kutta scheme [39] is adopted. At the kth
stage, k ∈ {1, 2}, the two-step projection-correction method is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (̃k) − U (k−1)

Δt
+ ∂x F(U (k−1)) + B(U (k−1))∂xU (k−1) = G(U (k−1))∂x H ,

U (k) − U (̃k)

Δt
= T (h(k), ∂xh

(k), H , ∂x H , P (k), ∂x P (k))

B(U (k), ∂xU (k), H , ∂x H) = 0

(32a)

(32b)

(32c)

whereU (0) isU at the time level tn ,U (̃k) is an intermediate value in the two-step projection-
correction method that contains the numerical solution of the SWE [system (32a)] at the
corresponding kth stage of the Runge–Kutta, and U (k) is the kth stage estimate. After that, a
final value of the solution at the tn+1 time level is obtained:

Un+1 = 1

2
Un + 1

2
U (2). (33)

Note that, Eqs. (32b–32c) requires, at each stage of the calculation respectively, to solve a
Poisson-like equation for each one of the variables contained in P (k). This will be described
below.

Remark that the usual CFL restriction should be considered for the computation of the
time step Δt .

4.2 Finite Volume Discretization for the Underlying Hyperbolic System

A second order path-conservative PVM scheme for the discretization in space of the sys-
tem (32a), at the kth stage of the Runge–Kutta, reads as follows (see [17,19] for more details
about PVM schemes and the extension to high order):

U (̃k) − U (k−1)

Δt
= − 1

Δx

(
D(k−1),−
i+1/2 + D(k−1),+

i−1/2 + Ii
)

, (34)

where, skipping the time dependence in k to relax the notation,

D−
i+1/2 = D−

i+1/2(U
−
i+1/2,U

+
i+1/2, H

−
i+1/2, H

+
i+1/2)

= 1

2

(
F(U+

i+1/2) − F(U−
i+1/2) + B( ˜U i+1/2)

(
U+

i+1/2 − U−
i+1/2

)

− Gi+1/2

(
H+
i+1/2 − H−

i+1/2

))

± 1

2
Qi+1/2

((
U+

i+1/2 − U−
i+1/2

)
− Ai+1/2

−1Gi+1/2

(
H+
i+1/2 − H−

i+1/2

))
,

Ii = F(U−
i+1/2) − F(U+

i−1/2) + B(U i )
(
U−

i+1/2 − U+
i−1/2

)

− G(U i )
(
H−
i+1/2 − H+

i−1/2

)
(35)



where

˜U i+1/2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h̃i+1/2

h̃i+1/2ũ1,i+1/2

h̃i+1/2ũ2,i+1/2

h̃i+1/2w̃1,i+1/2

h̃i+1/2w̃2,i+1/2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Gi+1/2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

gh̃i+1/2

gh̃i+1/2

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

being

h̃i+1/2 = h+
i+1/2 + h−

i+1/2

2
, ũα,i+1/2 =

u+
α,i+1/2

√
h+
i+1/2 + u−

α,i+1/2

√
h−
i+1/2

√
h+
i+1/2 +

√
h−
i+1/2

for α = 1, 2.

w̃α,i+1/2 is defined in the same way as ũα,i+1/2. The vector U
±
i+1/2 is defined by a recon-

struction procedure on the variables to the to the left (−) and right (+) of the inter-cell xi+1/2:
h±
i+1/2, η

±
i+1/2, u±

α,i+1/2, w±
α,i+1/2. This reconstruction procedure is done using a MUSCL

reconstruction operator (see [66]), combined with a minmod limiter. The MUSCL recon-
struction operator takes into account the positivity of the water height. Finally, the variable
H±
i+1/2 is recovered from H±

i+1/2 = h±
i+1/2 − η±

i+1/2. This procedure allows the scheme to
deal with emerging topographies, since the variable η is reconstructed instead oh H in those
situations, which means that the gradient of η is set to zero to avoid spurious non-physical
pressure forces (see [18]).

Qi+1/2 is the viscosity matrix associated to the numerical method. For PVM schemes,
Qi+1/2 is obtained by a polynomial evaluation of the Roe Matrix. In this work, Qi+1/2 is
defined as

Qi+1/2 = β0 I d + β1Ai+1/2,

being

β0 = SR |SL | − SL |SR |
SR − SL

, β1 = |SR | − |SL |
SR − SL

,

where SL , SR are estimates of the smallest and biggest wave speeds respectively at the
interface xi+1/2, as it is usually considered for such methods. Here, we use

SL = min

(

ûi+1/2 −
√

gĥi+1/2, ūi − √
ghi

)

,

SR = max

(

ûi+1/2 +
√

gĥi+1/2, ūi+1 + √
ghi+1

)

,

where

ûi+1/2 = ūi
√
hi + ūi+1

√
hi+1√

hi + √
hi+1

, ūi = l1u1,i + l2u2,i .

Ai+1/2 denotes the matrix

Ai+1/2 = JF ( ˜U i+1/2) + B( ˜U i+1/2),

being JF the Jacobian matrix of the flux F.



The scheme is a segment path-conservative extension of HLL scheme [41] for non-
conservative systems. Notice that the term

Qi+1/2Ai+1/2
−1Gi+1/2

(
H+
i+1/2 − H−

i+1/2

)

in (35) can be interpreted as the up-winding part of the source term discretization. This term
makes no sense if any of the eigenvalues of Ai+1/2 vanishes. One way to deal with this kind
of resonant problems has been proposed in [20].

Remark 5 It is clear that the concept of weak solution and the definition of path-conservative
schemes strongly depends on the chosen family of paths, which is a priori arbitrary. The
crucial question is thus how to choose the “good” family of paths. The answer to this
question is not easy and it is not the scope of this article. We refer to [21] for a detailed
discussion on the subject. In this paper, we consider the canonical path that is the segment
path. In the reference [13] a negative result of convergence for path-conservative numer-
ical methods was given together with several numerical examples. Later, a new example
was given in [2]. These results have led in many cases to an over-simplified picture accord-
ing to which these convergence difficulties are a specific drawback of path-conservative
methods.

Moreover, the experience proves that path-conservative numerical methods and in partic-
ular PVM schemes converge with the expected order of accuracy and, under the adequate
CFL condition, with the same stability property as their conservative counterparts for
geophysical problems. The difficulty comes from the fact that the limits of numeri-
cal solutions may differ from the correct ones in the case of non-conservative systems
as weak solutions of non-conservative systems may be defined in infinitely many ways
(paths).

In fact, the key point to understand the problem of convergence in non-conservative
systems is the following: the limits of the numerical solutions satisfy a jump condition
which is related to the numerical viscosity of the method and not to the physically relevant
one. Of course, this phenomenon affects any numerical method in which the small-scale
effects (the vanishing diffusion and/or dispersion) are not taken into account, regard-
less of whether it is path-conservative or not. For instance, even the Godunov method
based on the right weak solutions of the Riemann problems fails, in general, to converge
to the right solution: this is due to the numerical viscosity introduced in the averaging
step.

Remark 6 The numerical scheme considered for the underlying hyperbolic system (32a
and 34) is well-balanced for water at rest solutions and linearly L∞ − stable under the
usual CFL condition. Moreover, the scheme is positive preserving for the water height for a

smooth bathymetry under
1

2
CFL condition.

4.3 Finite Difference Discretization for the Non-hydrostatic Terms

In this subsectionwe describe the discretization of the non-hydrostatic terms. FromEq. (32b),
for every k ∈ {1, 2} of the Runge–Kutta stage, we get



⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(k)
u,1 = q (̃k)

u,1 − Δt

(

∂x (h
(k) p(k)

1 ) − 1

l1

(
p(k)
b ∂x H + p(k)

I ∂x z I
(k)

))

,

q(k)
u,2 = q (̃k)

u,2 − Δt

(

∂x (h
(k) p(k)

2 ) + 1

l2

(
γ1 p

(k)
b + γ2 p

(k)
I

)
∂x z I

(k)
)

,

q(k)
w,1 = q (̃k)

w,1 − Δt

l1

(
p(k)
b − p(k)

I

)
,

q(k)
w,2 = q (̃k)

w,2 − Δt

l2

(
γ1 p

(k)
I + γ2 p

(k)
b

)
.

(36a)

(36b)

(36c)

(36d)

Replacing Eqs. (36a–36d) into (32c), we obtain the Poisson-like equations

a1∂xx p
(k)
b + a2∂x p

(k)
b + a3 p

(k)
b + a4∂xx p

(k)
I + a5∂x p

(k)
I + a6 p

(k)
I = RHS1, (37)

b1∂xx p
(k)
b + b2∂x p

(k)
b + b3 p

(k)
b + b4∂xx p

(k)
I + b5∂x p

(k)
I + b6 p

(k)
I = RHS2, (38)

where the coefficients a j , b j as well as the Right-Hand-Sides RHSj , j ∈ {1, 2}, are given
in “Appendix D.1”. We point out the dependency of the aforementioned coefficients

a j ≡ a j (U (k)), b j ≡ b j (U (k)), RHSj ≡ RHSj (U (̃k))

and remark that, due to the form of the numerical scheme and the operator T , then one has
that h(k) = h (̃k), and thus

a j ≡ a j (U (̃k)), b j ≡ b j (U (̃k)), RHSj ≡ RHSj (U (̃k)).

Equations (37) and (38) are discretized using second order finite differences. In order to
obtain point value approximations of the non-hydrostatic pressure variables, terms p(k)

I ,i , p(k)
b,i

and RHSj,i , j ∈ {1, 2}, i ∈ {1, . . . , N } will be approximated at every mid point xi of each
cell Ii . In the same way, the corresponding space derivatives will be approximated using
compact second order finite differences

∂x P
(k)
i = P (k)

i+1 − P (k)
i−1

2Δx
, ∂xx P

(k)
i = P (k)

i+1 − 2P (k)
i + P (k)

i−1

Δx2
. (39)

To compute the coefficients a j , b j , RHSj , that contains terms depending on U (̃k) as well

as first derivatives ∂xU (̃k), we will use the averaged values on the cell Ii of variables U (̃k)

and H as second order point value approximations of U (̃k)
i and Hi at the centre of the cell Ii .

The space derivatives are computed from the averaged values using compact second order
finite differences

∂xU
(̃k)
i = U (̃k)

i+1 − U (̃k)
i−1

2Δx
, ∂x Hi = Hi+1 − Hi−1

2Δx
. (40)

After replacing (39) and (40) in (37) and (38), one has to solve a linear system

AP = RHS, (41)



where

RHS =
⎛

⎝
RHS1

RHS2

⎞

⎠ , RHS j =
⎛

⎜
⎝

RHS j, 1
...

RHS j, N

⎞

⎟
⎠ , P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p(k)
b,1
...

p(k)
b,N

p(k)
I ,1
...

p(k)
I ,N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

A = D + M, D =
⎛

⎝
T(1) 0

0 T(2)

⎞

⎠ , M =
⎛

⎝
0 C(1)

C(2) 0

⎞

⎠ , (42)

being T( j),C( j) tridiagonal and symmetrical matrices of dimension N × N (see details in
“Appendix D.2”).

To solve the linear system (41), we propose an iterative linear solver based on a block
version of the Jacobi method:

⎧
⎨

⎩

P(0) = 0,

DP(s) = RHS − MP(s−1), s ∈ 1, 2, . . . ,
(43)

where at each iteration s, a tridiagonal linear system is efficiently solved by using the Thomas
algorithm. As stopping criteria for the iterative linear solver (43), we choose

||P(s+1) − P(s)|| < εtol .

In the subsequent numerical test performed in this work, εtol is set to 10−8.
Once the non-hydrostatic pressure terms P (k) have been computed, the velocities U (k)

can be updated from Eqs. (36a–36d), wherein a similar way, a second order point value
approximation in the centre of the cell will be used.

Remark 7 Although T( j) and C( j) are symmetrical matrices, in general the same does not
hold true for the matrix A. A particular analysis of the singularity of the matrix A has been
made for the case of small water height in “Appendix D.3”, but the same question remains
open for the general case. Nevertheless, the numerical experiments performed show that the
system is indeed invertible. Furthermore, the fast convergence of the iterative method used
to solve the linear system let us make the hypothesis that it has a good condition number.

Remark 8 The proposed iterative linear solver has some advantages over other standard linear
solvers such asKrylov gradient-basedmethods (e.g., biconjugate gradient stabilizedmethod)
or LU factorization. A short discussion is summarized:

– The proposed linear solver reaches the convergence in less than 20 iterations for the
numerical tests showed in this work.

– It can be easily implemented, and it is matrix-free, since only tridiagonal systems have
to be solved, which is done with the matrix-free Thomas algorithm. This makes this
algorithm extremely convenient for an implementation on GPU architectures, where
memory is an important issue.



– A LU factorization method it is not feasible since the matrix of the linear system A
depends on time step. This will demand a considerable computational effort. Moreover,
this choice is more memory consuming than the iterative method proposed in this work
in (43).

– Let us denote by ˜P a convenient reorganization of the variable P, such that

˜P =
(

p(k)
b,1, p

(k)
I ,1, . . . p

(k)
b,N , p(k)

I ,N

)t
.

Then the corresponding associated matrix ˜A is symmetric and penta-diagonal. This orga-
nization is more convenient for an iterative Krylov space based method. Nevertheless,
we have found that this methods are more memory and time consuming, even with pre-
conditioners, when compared with the iterative solver proposed in this work.

– Considering future works and the extension of the scheme to bidimensional domains,
this will lead to a Poisson-like equation in two dimensions. The proposed algorithm can
be combined with a Jacobi or Jacobi relaxation method (see [3]) to take into account this
extension.

4.4 Final Numerical Scheme

For the sake of clarity, a guideline of the final numerical scheme will be highlighted in what
follows. For every kth stage k ∈ {1, 2} of the Runge–Kutta method, the problem (18) is split
into two parts. A two-step projection-correction method is used:

– Finite volume step (solving the hydrostatic system): From (34), solve explicitly the hyper-
bolic system at the kth stage of the Runge–Kutta:

U (̃k) = U (k−1) − Δt

Δx

(
D(k−1),−
i+1/2 + D(k−1),+

i−1/2 + Ii
)

,

by means of a PVM path-conservative finite volume scheme (34) combining a MUSCL
reconstruction operator to obtain the intermediate value U (̃k) in the two-step projection-
correction method that contains the numerical solution of the underlying hyperbolic
system.

– Finite Difference step (non-hydrostatic pressure correction):

– Solve the Poisson-like Eqs. (37) and (38) to obtain the non-hydrostatic pressures

P (k) =
⎛

⎝
p(k)
b

p(k)
I

⎞

⎠ .

To do so, compact centred second order finite differences are used for the discretiza-
tion of the derivatives that appear in (37)–(38), and a linear system is solved to obtain
P (k).

– With the computed non-hydrostatic pressure terms P (k), the velocities can be updated
from (36a)–(36d), where in a similar way, a second order point value approximation
in the centre of the cell will be used to compute the non-hydrostatic contribution.

Finally,

Un+1 = 1

2
Un + 1

2
U (2).



4.5 Boundary Conditions

In this work, three types of Boundary Conditions (BC) have been considered: periodic,
outflow and generating/absorbing BCs.

– Periodic BCs: given a spatial domain subdivided into a set of N computing cells, cell
I1 and IN , which are the extremes of the domain, are considered as the same cell. This
means that its neighbour cells are IN−1 on the left and I2 on the right.

– OutflowBCs: homogeneous Neumann conditions are applied on the left and right bound-
aries. Since we use a second order MUSCL scheme, the usage of one ghost cell I0, IN+1

at each boundary is required in order to determine the values of the closest nodes to the
boundary. The values of the variables at the ghost cells are extrapolated from the adjacent
cells

U0 = U1, P0 = P1, UN+1 = UN , PN+1 = PN .

Nevertheless, reflections at the boundaries might perturb the numerical solution at the
inner domain. As in many other works (see [43,45,53,60] among others), this condition
is sometimes supplemented here with an absorbing BC, described below.

– Generating/absorbing BCs: Periodic wave generation as well as absorbing BCs are
achieved by using a generation/relaxation zone method similar to the one proposed
in [53].
Generation/absorption of waves is achieved by simply defining a relaxation coeffi-
cient 0 ≤ m(x) ≤ 1, and a target solution (U∗, P∗). Given a width LRel of the
relaxation zone on each boundary, we define kRel as the first natural number that
kRelΔx ≥ LRel . The solution within the relaxation zone is then redefined to be,
∀i ∈ {1, . . . , kRel , N − krel , . . . N } :

˜U i = miU i + (1 − mi )U∗
i

˜P i = mi P i + (1 − mi )P∗
i ,

where mi is defined as

mi =
√

1 −
(

di
L Rel

)2

,

where di is the distance between the centre of the cells Ii and I1 (or Ii and IN−k), in the
case of i ∈ {1, . . . , k} (or i ∈ {N − k, . . . , N }).
In our numerical experiments, we set

L ≤ LRel ≤ 1.5L,

being L the typical wavelength of the outgoing wave.
Absorbing BC is the special case U∗

i = P∗
i = 0, that will dump all the waves passing

through.

Remark 9 In Sect. 6, some laboratory tests are studied and the effects of the friction of the
water with the bottom H must be considered. In order to include friction with the bottom, a
Manning empirical formula is added to the right hand side of (18) as a source term

S(U) = (
0 −τ 0 0 0

)t
, τ = gl1hn

2 u1|u1|
(l1h)4/3

, (44)



and it is discretized in a semi-implicit way at the end of the second step of the proposed 
numerical scheme, at each Runge–Kutta stage.

Remark 10 Since non-hydrostatic and friction terms appear only in the momentum equa-
tions, the final numerical scheme is well-balanced for the water at rest solution and positive 
preserving for the water height.

Remark 11 The extension of the proposed numerical scheme to the case of moving bottom 
is straightforward.

Remark 12 It is well known the fact that higher order schemes should be used when dis-
cretizing PDEs of dispersive nature, such as Serre–Green–Naghdi [40], Nwogu [58] among 
others, since the leading numerical error of the numerical scheme is of dispersive nature (see 
[25,45,48,60] among many other works where Boussinesq-type systems are discretized). In 
this case, a linear stability Von-Neumann analysis shows that second order schemes, as well 
as first order splitting schemes, may destroy the continuum dispersive relation of the origi-
nal system. Although we did not perform such an analysis in this work, we obtain positive 
results in the numerical tests. Concretely, Sect. 6.2.2 includes a convergence analysis. Results 
in Table 1 show that the numerical scheme is formally second-order in space and time. We 
have also measured the impact on the phase velocity for the propagation of solitary waves 
for long integration times with the second order scheme. In Sect. 6.2.3 we have measured the 
variations on amplitude and celerity of a solitary wave of big amplitude. Results in Table 2 
show excellent agreement, obtaining a variation of less than 0.1128%.

5 Breaking Wave Modelling and Wet–Dry Treatment

5.1 Breaking Wave Modelling

As pointed in [61], in shallow water complex events can be observed related to turbulent 
processes. One of these processes corresponds to the breaking of waves near the coast. As it 
will be seen in the numerical tests proposed in this work, the model presented here cannot 
describe this process without an additional term which allows the model to dissipate the 
required amount of energy on such situations. When breaking processes occur, mostly close 
to shallow areas, two different approaches are usually employed when dispersive Boussinesq-
type models are considered.

Close to the coast where breaking starts, the SWE propagates breaking bores at the correct 
speed, since kH  is small, and dissipation of the breaking wave is also well reproduced. Due 
to that, the simplest way to deal with breaking waves, when considering dispersive systems, 
consists in neglecting the dispersive part of the equation. This means to force the non-
hydrostatic pressure to be zero where breaking occurs. Due to that, this technique has the 
advantage that only a breaking criterion is needed to stop and start it. However, the main 
disadvantage is that the grid-convergence is not ensured when the mesh is refined, and global 
and costly breaking criteria should be taken into account (see [43]).

The other strategy, that will be adopted in this work, consists in the dissipation of breaking 
bores with a diffusive term. Again, breaking criteria to switch on/off the dissipation is needed. 
Usually, an eddy viscosity approach (see [61]) solves the matter, where an empirical param-
eter is defined, based on a quasi-heuristic strategy to determine when the breaking occurs. 
The main difficulty that presents this mechanism is that usually the diffusive term must be 
discretized implicitly due to the high order derivatives from the diffusion. Otherwise, it will



lead to a severe restriction on the CFL number. As a consequence, an extra linear system has
to be solved, losing efficiency. In any case, this challenge is overcome in [33] for the one
layer non-hydrostatic system derived in [71], and a natural extension of this procedure for
the two-layer case will be described in what follows.

Let us consider the vertical component of the stress-tensor

τzz = 2ν∂zw,

where ν(x, z, t) is a positive function. We use the same process as in Sect. 2 to depth-average
the vertical component of the stress-tensor. By taking into account the incompressibility
condition and that the vertical velocity has a linear profile within each layer we obtain

∫

Lα

∂zτzz dz = −ςαhα∂xuα,

where ςα = ∫

Lα
∂zν.

Let us denote T (h, ∂xh, H , ∂x H , P, ∂x P) as T (P, ∂x P) for the sake of brevity. Adding
the proposed integrated viscosity terms, system (18) reads
⎧
⎨

⎩

∂tU + ∂x F(U) + B(U)∂xU = G(U)∂x H + T (P, ∂x P) − τ + Rb(U, ∂xU, ς1, ς2),

B(U, ∂xU, H , ∂x H) = 0,
(45)

where

Rb(U, ∂xU, ς1, ς2) = (
0 0 0 −ς1h∂xu1 −ς2h∂xu2

)t
.

Nowwe close the system defining ςα(x, t). The linear combination of the non-hydrostatic
pressures, pb and pI , at the fourth and fifth component of T (P, ∂x P), can be expressed
in terms of uα and its derivatives ∂xxuα, ∂xt uα, ∂xuα and ∂t uα . The proposed election of
ςα in this work is based on the idea of cancelling those aforementioned ∂xuα terms with
−ςαhα∂xuα . The procedure is detailed in “Appendix C”. The following definition, for the
case of immobile bed ∂t H = 0, is proposed:

⎧
⎪⎨

⎪⎩

ς1 = w1 − 3u1∂x H ,

ς2 = w2 + 3u2∂x z I .

(46)

Note that fourth and fifth components of Rb are essentially first order derivatives of u1, u2,
and can be discretized explicitly.

Finally, a breaking criteria to switch on/off the dissipation is needed. Following a natural
and simpler extension of the criteria proposed by [61], wave energy dissipation associated
with breaking begins when |∂x (l1hu1 + l2hu2)| ≥ U1 and continues as long as |∂x (l1hu1 +
l2hu2)| ≥ U2, where

U1 = B1
√
gh, U2 = B2

√
gh,

denote the flow speeds at the onset and termination of the wave-breaking process and B1, B2

are calibration coefficients that should be calibrated through laboratory experiments. In this
work, as in [61], we use B1 = 0.5 and B2 = 0.15 for al the test cases studied.

Note that the breaking criteria to switch on/off the dissipation is a simplified version of
the one proposed in [61], that includes some improvements such as: taking into account
a residence time for the activation/deactivation of the criteria to accounting a continuous



dissipation; or computing in the breaking criteria |∂x (hu)| as 1
2 (|∂x (hu)| + ∂x (hu)) which

would automatically become zero on the back of the crest of the wave.
The breaking mechanism proposed in this work can be considered with this improved

breaking criteria given in [61], as well as the one proposed in [43], which are more sophisti-
cated and expensive.

Nevertheless, although we have chosen fast and straightforward breaking criterion, the
numerical tests in Sect. 6 will show that this technique performs adequately. Moreover, the
simple breaking mechanism considered in this work: corrects the classical overshoot that
dispersive models present for the run-up of waves (see Fig. 13); ensures the grid convergence
even if breaking mechanism is switching on/off during the experiment. Although the simple
breaking criteria do not detect hydraulic jumps, we have observed that the proposed system
without the breaking dissipation can handle well with hydraulic jumps. In any case, a more
sophisticated breaking detector that reveals hydraulic jumps can be considered as well.

Remark 13 In [33], the one layer non-hydrostatic system, which corresponds to the election
of l2 = 0 for the presented system in this work, is studied. There, the classical eddy viscosity
model approach for breaking waves is considered. The eddy viscosity model, which consists
in a diffusion term in the horizontal momentum equation, is reinterpreted as a term of the
form ςh∂xu at the vertical momentum equation. The resulting terms in this work in Rb can
be seen as the natural extension of the idea presented in [33], and thus as a natural extension
of the classic eddy viscosity models for small-scale turbulence.

5.2 Wet–Dry Treatment

For the computation of U (̃k) in the finite volume discretization of the underlying hyperbolic
system, a wet–dry treatment adapting the ideas described in [18] is applied. The key to the
numerical treatment for wet–dry fronts with emerging bottom topographies relies on:

– The hydrostatic pressure terms gl1h∂xη, gl2h∂xη at the horizontal velocity equations
are modified for emerging bottoms to avoid spurious pressure forces (see [18]).

– To compute velocities appearing in Sect. 4.2 from the discharges, very small values for
the water height h may appear. To overcome the difficulties due to large round-off errors
in computing the velocities uα,wα appearing in the scheme, we define the velocities
analogously as in [44] applying the desingularization formula

uα =
√
2hhuα

√
h4 + max(h4, ε4)

, wα =
√
2hhwα

√
h4 + max(h4, ε4)

, α ∈ {1, 2},

which gives the exact value of uα and wα for h ≥ ε, and gives a smooth transition of uα

and wα to zero when h tends to zero without truncation. In this work we set ε = 10−5

for the numerical tests. A more detailed discussion about the desingularization formula
can be seen in [44].

In the second step of the projection method, no special treatment is required due to the 
rewriting of the two incompressibility equations, that have been multiplied by h2, in terms 
of discharges. In presence of wet–dry fonts, non-hydrostatic pressure P vanishes and no 
artificial truncation up to a threshold value is needed. In “Appendix D.3”, a particular analysis 
is detailed for the case of

h = ε, uα = wα = 0, ∂x H = m.



We also assume that

ε2 ≈ 0, ε · m ≈ 0,

to simplify the analysis. A more general case is considered in “Appendix D.3”. In this case,
the Right hand side of the linear system becomes zero, and the matrix A as well as the right
hand side RHS defined in (41) simplifies to

A = 4(m2 + 1)

⎛

⎝
I −I

γ2 I γ1 I

⎞

⎠ ,RHS =

⎛

⎜
⎜
⎜
⎝

RHS1

RHS2

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0

0

⎞

⎟
⎟
⎟
⎠

.

Note that A is invertible, since γ1+γ2 �= 0, and thus the non-hydrostatic pressureP becomes
zero.

Remark 14 The definition of the coefficients of the matrix A, are given in terms of l1h, l2h
and η, and the topography H does not appear. Thus, in the case of emerging bottoms,
the derivatives of ∂xη are treated as the pressure terms ghα∂xη in the horizontal velocity
equations, and the numerical scheme can deal with a wide variety of complex situations
involving wet–dry fronts and emerging topographies, as we will see in the numerical tests.

6 Numerical Tests

In this section we present five numerical tests for the model presented in (45) with the
breaking and friction terms introduced previously. The chosen tests have been widely studied
in dispersive water waves modelling (see [23,31–33,43,46,49,50,60]). Thus, this constitutes
a proper way to validate the presented dispersive model and the numerical scheme with
analytical solutions and real laboratory tests.

The first three tests aim to validate the mathematical model and the numerical scheme
with a comparison to analytical or reference solutions. The other two tests show that the
solved equations can simulate complex laboratory experiments, showing comparisons with
real data.

Comparisons with the one-layer system results, which corresponds to the choice l2 = 0,
are presented for some of the considered tests. These comparisons show that the one-layer
system does not give good results in some cases. This means that at least a two-layer model
should be used.

The quantities of the parameters concerning the following numerical simulations are
expressed in units of measure of the International System of Units.

6.1 StandingWave in Closed Basin

First,we shall study the dispersive properties of themodel. To do so,we consider the analytical
solution from the Stokes linear theory of a standing wave in a closed basin with length L and
flat bottom H = 10. The initial surface elevation is given by

η(x, 0) = A cos

(
2πx

L

)

,
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Fig. 4 Comparison of analytical (red) and numerical (blue) for the case L = 20. In a the numerical results for

the one-layer (l2 = 0); b the numerical results with the non-optimized parameter (l(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ); c the

numerical results with the optimized parameters (l(5)1 , γ
(5)
1 , γ

(5)
2 ) (Color figure online)

where A = 0.1 is the amplitude of the standing wave. The wavelength is the same than
the length of the basin. This test case has been studied by various authors. For instance,
Casulli and Stelling [23] use more than 20 vertical layers in order to correctly simulate wave
dispersion. Using Keller-box scheme, Stelling and Zijlema [64] obtained good agreement
with the analytical solution by using two layers. Using a σ -coordinates discretization of the
free-surface Euler equations, [50] shows excellent agreement with three layers.

To check the performance of the two proposed improved parameters, we will show two
cases: L = 20/n, n = 1, 3. Since kH = 20π/L = nπ , thewaves are highly dispersive. From
the dispersion relationship, we know that 2π/T = √

gk tanh (kH), and we can calculate the
wave period T . The Stokes first order solution for this standing wave is

η(x, t) = A

2
cos (kx) cos

(
2π

T
t

)

.

As in [51], a grid Δx = 0.2/n that corresponds to 100 cells per wavelength for both cases
of n = 1, 3. A CFL = 0.45 is employed. Periodic boundary conditions are imposed. The
gravity acceleration is set to g = 9.81 and the simulation time is 40 s. The test is performed
with the one-layer system that corresponds to l2 = 0, and with the two-layer system proposed
in this work for some values of the optimization parameters that will be detailed.

Figure 4 shows the comparison of the time series between the analytical solution for the
case of L = 20 and the numerical solution, at x = L/2. In this case, kH = π , and the
two-layer system with the non-optimized parameters (l(2L)

1 , γ
(2L)
1 , γ

(2L)
2 ) gives good results.

Nevertheless, the optimized parameters (l(5)1 , γ
(5)
1 , γ

(5)
2 ) improve the results and the solution

matches perfectly with the analytical reference solution. This case highlights that the one-
layer system cannot reproduce well these dispersive waves. This is due to the poor accuracy 
of the linear dispersion relation that the one-layer has for kH  ≈ π .

The case L = 20/3 gives kH  ≈ 9.42 and becomes more challenging. Figure 5 shows 
comparisons of the time series at x = L/2. In this case, the two-layer model with the non-
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Fig. 5 Comparison of analytical (red) and numerical (blue) for the case L = 20/3. In a the numerical results

for the one-layer (l2 = 0); b the numerical results with the non-optimized parameters (l(2L)
1 , γ

(2L)
1 , γ

(2L)
2 );

c the numerical results with the optimized parameters (l(15)1 , γ
(15)
1 , γ

(15)
2 ) (Color figure online)

optimized parameters cannot maintain the correct frequency, and it quickly loses the initial
trim, which is also missed from the beginning in the case of the one-layer system. Figure 5
also shows the results with the presenting improved parameters (l(15)1 , γ

(15)
1 , γ

(15)
2 ) with an

excellent agreement. The numerical test shows the ability of the optimized model presented
here to deal with a wide range of waves.

6.2 Eulerian Solitary GravityWaves

This subsection is split into three parts: first,we prove thatwith the proposed set of parameters,
(l(5)1 , γ

(5)
1 , γ

(5)
2 ), the model can propagate eulerian solitary gravity waves of amplitude up

to A = 0.6 in a more accurate way than the original two-layer system, which corresponds
to the election of the parameters (l(2L)

1 , γ
(2L)
1 , γ

(2L)
2 ). Second, the numerical accuracy of the

scheme presented in the paper is verified by performing a grid convergence study on the
solitary wave described. Third, a solitary wave is propagated in a very long integration of
time for different grid sizes, showing the excellent performance of the numerical scheme in
such situations. In the subsequent test, we consider periodic boundary conditions and the
minmod limiter for the SWE step of the numerical scheme is turned off to measure the order
of accuracy of the numerical scheme.

6.2.1 Eulerian Solitary Gravity Waves: Description and Choosing the Parameters

In this test, we study the case of solitary waves with very large amplitudes. Solitary waves
travel at constant speed with permanent shape, which can exist due to the balance between
non-linear and linear wave dispersion.

When the amplitude of a solitary wave is small compared to the typical depth H , the
characteristic length of the wave is relatively large. Thus, the solitary wave is a long wave
and weakly-nonlinear weakly-dispersive models such as as [16], or [71] can simulate the
wave correctly. However, as the amplitude increases, the wavelength decreases, and therefore



higher-order non-linear and dispersive effects becomemore important. This phenomenonwill
be investigated here with the two-layer model.

To compute the initial condition in the form of a solitary wave for the model, we use
the numerical method presented in [26,30]. The tool given in [26] provides the free-surface
ηE , and profiles at a given level z = sh − H for s from 0 to 1, for horizontal and vertical
velocities uE (z), wE (z). Note that due to the form of the presented numerical scheme, no
initial condition for the non-hydrostatic pressure is needed. Thus, given an election of the
free-parameter l1, we compute the initial condition for the depth-integrated horizontal and
vertical velocities within each layer. To do that, we use Gaussian quadrature points of third
order.

For the two solitary waves examined in this section, with amplitudes of A1 = 0.2, A2 =
0.6, a grid lengthΔx = 0.01 and a CFL number 0.4 is employed. The bathymetry is constant
H = 1.0, the gravity acceleration is set to g = 1, and the simulations are carried out in a
channel of 500 m during 350 s. The tests are performed with the one-layer system, with the
two-layer with the improved parameters (l(5)1 , γ

(5)
1 , γ

(5)
2 ) and with the non-improved param-

eters (l(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ). Only the results obtained with the parameters (l(5)1 , γ

(5)
1 , γ

(5)
2 )will

be commented.
As this wave solution is not an analytical solitary-wave solution of the two-layer model

when the numerical simulation is started the solitary wave drops some waves at the tail. Due
to this initial fluctuation in waveform, the wave decreases in amplitude and so the celerity.
Nevertheless, the solitary wave, which moves rapidly due to its large amplitude, eventually
leaves this tail far behind and reaches a steady form. This initial mismatch effects also occur
when considering approximated solitary wave solutions for Boussinesq systems (see [46]).

Figure 6 shows the evolution of the amplitude and speed of both solitary waves. The
steady amplitudes and speeds reached for both cases are Ã1 = 0.197, c̃A1 = 1.094 and
Ã2 = 0.588, c̃A2 = 1.243. Steady states are achieved not so far. This means that waves
travel at a constant speed even in the case of large amplitudes, which is one of the abilities
of the two-layer model that is intended to show in this test.

It can be seen that celerities of the simulations c̃A1 and c̃A2 are both in agreement with the
reference celerities that can be seen in [30].

Figure 7 shows the numerical solutions obtained with the two-layer model at 350 s shifted
by (x − 350cAi ) meters and compared with the corresponding initial conditions. For all the
cases, the two-layer model matches the initial conditions to a very high accuracy. It can be
observed that a better fit is obtained when considering the two-layer model with the improved
parameters.

Figure 8 shows the results obtained with the one-layer system corresponding to l2 = 0 for
the case of A2 = 0.6. In this case, although a steady amplitude and celerity are also reached,
it can be observed that the system can not maintain the initial amplitude. Thus the celerity
decreases and the computed solitary wave is delayed in approximately 5 m at 350 s.

It can be stated from these comparisons that the two-layer model presented here captures,
to a highly accurate degree, the physics of a non-linear solitary wave.

6.2.2 Convergence Analysis

Hereinafter, the set of parameters (l(5)1 , γ
(5) (5)

2 ) are used to verify that the proposed numer-
1 , γ

ical scheme is second order accurate in both space and time. Some numerical simulations 
for different grids have been computed up to time t = 30 s for the case of the solitary wave 
of amplitude A = 0.2.



(a) (b)

(c) (d)

Fig. 6 Comparison of surface at time t = 350 shifted by (x−cAi t)m (blue) and initial condition (red). a, c The

comparison with the improved parameters (l(5)1 , γ
(5)
1 , γ

(5)
2 ) for the trial A1 = 0.2 and A2 = 0.6 respectively.

b, d The comparison with the non-improved parameters (l(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ) for the trial A1 = 0.2 and

A2 = 0.6 respectively (Color figure online)

(a) (b)

(c) (d)

Fig. 7 Variation through the time of the amplitude (blue) and celerity (red). a, c The comparison with the

improved parameters (l(5)1 , γ
(5)
1 , γ

(5)
2 ) for the trial A1 = 0.2 and A2 = 0.6 respectively. b, d The comparison

with the non-improved parameters (l(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ) for the trial A1 = 0.2 and A2 = 0.6 respectively

(Color figure online)



(a) (b)

Fig. 8 a Comparison of surface at time t = 350 shifted by (x − cA2 t) m (blue) and initial condition (red)
for the trial A = 0.6 with the one-layer system. b The variation through the time of the amplitude (blue) and
celerity (red) for the trial A2 = 0.6 with the one-layer system (Color figure online)

Table 1 L1 errors and
convergence rates for the solitary
wave problem of amplitude
A = 0.2

Δx L1 error h L1 order h L1 error hu L1 order hu

0.2 3.96E−03 – 3.97E−03 –

0.1 9.81E−04 2.01 8.79E−04 2.18

0.05 2.10E−04 2.22 2.14E−04 2.04

0.025 5.14E−05 2.03 4.38E−05 2.29

0.0125 1.28E−05 2.00 1.16E−05 1.92

The errors have been computed for the variables h and hu = l1qu,1 +
l2qu,2

Since the considered solitary wave is not an exact solution for the system, we take as
reference solution a numerical simulation at time t = 30 s for a very fine grid with Δx =
3.125 · 10−3.

Table 1 shows the L1 errors and numerical orders of accuracy obtained. We would like
to remark that the proposed convergence analysis test is usually done for solitary waves of
amplitude less than A = 0.2 and for an integration time less than t = 30 s (see [6,14,60]).
Thus, this constitutes a standard test to check the order of accuracy of the numerical scheme
for dispersive water waves models.

6.2.3 A Solitary Wave Over a Long Integration Time: A Grid Analysis

A solitary wave of amplitude A = 0.6 is propagated in a very long integration time of 1000 s
for different grid sizes.

Attending to the results in Fig. 9, since the shape of the computed solitary waves are well
preserved, wewill focus on the delay that the computed numerical waves present with respect
to the reference as well as the differences in amplitude. To do that, we will define eA and eS
as the relative errors

eA = |AΔx − A1|
A1

, eS = |SΔx − S1|
S1

,

being A1 and AΔx the maximum amplitude of the reference and computed solitary waves 
respectively. S1 and SΔx are the distance covered during 1000 s by the reference and computed 
solitary waves respectively. Table 2 summarizes the results in percent.

The results in Fig. 9 and Table 1 show that with relatively coarse meshes, the numerical 
scheme can handle with solitary typical waves with a very reasonable delay and decay on



Table 2 L1 errors and
convergence rates for the Solitary
wave problem of amplitude
A = 0.2

Δx 100eA (%) 100eS (%)

0.2 0.1128 0.0279

0.1 0.1037 0.0098

0.05 0.0334 0.0029

0.025 0.0098 0.0009

0.0125 0.0025 0.0002

The errors have been computed for the variables h and hu = l1qu,1 +
l2qu,2

Fig. 9 Comparison of surface at time t = 1000 shifted by (x − cA1 t) m for different mesh grids and initial
condition (in red) for the trial A = 0.2 (Color figure online)

amplitude less than 0.1128%. Thus, this shows that the numerical scheme, although second
order accurate both space and time, does not introduce big errors when propagating waves
over long integration times.

6.3 Head-On Collision of Two SolitaryWaves

The head-on collision of two equal solitary waves is again a standard test for the Boussinesq-
type models (see [60,61]). The collision of two solitary waves is equivalent to the reflection
of one solitary wave by a vertical wall when the viscosity is neglected.

After the interaction of the two waves, one should ideally recover the initial profiles. The
collision of the two waves presents additional challenges to the model due to the sudden
change of the non-linear and frequency dispersion characteristics.

We present here the interaction of two solitary waves propagating on a depth of H = 1m
with amplitude A = 0.4m. The computational domain is [0, 200] and Δx = 0.1 The CFL
is set to 0.4 and g = 1.

The initial condition consists of two solitary waves that travel in opposite directions,
placed at x = 50 and x = 150 following the same procedure as in Sect. 6.2 for the initial
condition. Finally, free-outflow boundary conditions are considered.

Figure 10 shows the collision of the two solitary waves at the midpoint of the domain at
time T = 50/

√
g(A + H), and after the collision both maintain the initial amplitude and



Fig. 10 Head-on collision of two solitary waves at times T
√
g(A + H) = 0, 25, 50, 75, 100

Fig. 11 Head-on collision of two solitary waves. Final state after the interaction. Comparison of the computed 
free-surface with the exact soliton profiles

the same speed but in opposite directions. Figure 11 shows the final state after the collision 
compared with the exact profile, showing an excellent agreement.

6.4 Solitary Wave Run-Up on a Plane Beach

Synolakis [65] carried out laboratory experiments for incident solitary waves, to study propa-
gation, breaking and run-up over a planar beach with a slope 1:19.85. Many researchers have 
used this data to validate numerical models. With this test case, we assess the ability of the 
model to describe shoreline motions and wave breaking when it occurs. Experimental data 
are available in [65] for surface elevation at different times. The bathymetry of the problem 
is described in Fig. 12.

A solitary wave of amplitude A = 0.3 is placed at point x = 20 as initial condition for the 
free-surface elevation following the same procedure as in Sect. (6.2). A Manning coefficient 
of nm = 0.01 is used in order to define the glass surface roughness used in the experiments. 
The computational domain is [− 10, 40] and the numerical parameters used are Δx = 0.02, 
CFL  = 0.9 and  g = 9.81. Free-outflow boundary conditions are considered. Simulations 
are carried out with the improved parameters (27).



Fig. 12 Sketch of the bathymetry

Fig. 13 Comparison of experiments data (red) and simulated ones with breaking terms proposed in (46) (blue)
at different times during the run-up. Between bars, regions where breaking mechanism is active are shown
(Color figure online)

Figures 13 and 14 show snapshots, at different times, t
√
g/H = t0 where H = 1,

comparing experimental and simulated data. Here we use the proposed ςα for the breaking
mechanism described in Sect. 5. Breaking parameters are set to B1 = 0.5 and B2 = 0.15.
Fig. 13 also shows where the breaking mechanism is active (region between the bars), and
demonstrates the efficacy of the criteria. As we discussed in Sect. 5, the breaking criteria
does not take into account the presence of hydraulic jumps. However, Fig. 14 shows that the
system without the extra breaking dissipation proposed in this work can handle this situation
correctly.

The breaking mechanism also works properly in terms of grid convergence. Figure 15
shows the snapshots at times t

√
g/H = 15 (run-up) and t

√
g/H = 55 (run-down) for

different mesh sizes.
Besides, good results are obtained at maximum run-up, where friction terms play an

important role. Note that no additional wet–dry treatment on the second step of the scheme
is necessary.



Fig. 14 Comparison of experiments data (red) and simulated ones with breaking terms proposed in (46) (blue)
at different times during the run-down (Color figure online)

Fig. 15 Comparison of free-surface simulation at times t
√
g/H = 15 and t

√
g/H = 55 for different mesh

sizes

Since the propagated wave in this test is weakly-nonlinear weakly-dispersive, the results 
obtained with the two-layer system are quite similar to the results obtained with the one-layer 
system (see [33]). Nevertheless, this test shows that the breaking mechanism introduced in 
this work, as well as friction terms, perform adequately for the two-layer system. Moreover, 
the corresponding discretization is robust and can deal with the presence of wet–dry fronts 
correctly.



Fig. 16 Periodic waves breaking over a submerged bar. Sketch of the bathymetry

6.5 RegularWave Propagation Over a Submerged Bar

Theexperiment of plungingbreakingperiodicwaves over a submergedbar byDingemans [28]
is considered here. The experiment studies the frequency dispersion characteristics and non-
linear interaction. As waves propagate over a submerged bar, multiple phenomena occur,
such as non-linear shoaling, amplification of higher harmonics and wave breaking.

The one-dimensional domain [0, 30] is discretized with Δx = 0.01 and the bathymetry is
defined in the Fig. 16. The CFL is set to 0.5 and g = 9.81. Horizontal and vertical velocities
and η are set initially to 0. Boundary conditions correspond to free-outflow at x = 30 and a
sinusoidal wave train for η generated at x = 0. This is done using the target initial condition
at the relaxation zone:

η∗(t) = A sin

(
2π

T
t

)

, u∗
α(t) = √

gH0η
∗(t), w∗

α(t) = p∗
b(t) = p∗

I (t) = 0, α = 1, 2

where A and T denotes amplitude and period and H0 = 0.4. We focus on test cases (a), (b)
and (c) described in the table below

Case A (m) T (s)

(a) 0.01 2.02 Non-breaking waves
(b) 0.0145 2.525 Breaking waves
(c) 0.0205 1.01 Non-breaking waves

Finally, the relaxation length for the initial generating/absorbing boundary conditions are
set to LRel = 2 for cases (a)-(c).

Depth gauges, which measure the free surface elevation, are placed for cases along x =
gi , g1 = 4, g2 = 5.7, g3 = 10.5, g4 = 12.5, g5 = 13.5, g6 = 14.5, g7 = 15.7, g8 =
17.3, g9 = 19, g10 = 21.

Test (a) and (c) produce, up to the front slope, waves with kH ≈ 0.63 and kH ≈ 1.58
respectively. Figure 17 shows the time series of free surface for case (a). The numericalmodel
maintains a good agreement with the experimental data at each station. Minor discrepancies
can be observed behind the bar at stations g5 − g10, where higher harmonics are released.
The test case (a) coincides with one of the proposed in [12], and similar good agreement with
other numerical models can be found in the literature. Let us remark that in [50] σ -coordinate



Fig. 17 Comparison of experiment data (a) (red points) and simulated ones with improved dispersive param-

eters (l(5)1 , γ
(5)
1 , γ

(5)
2 ) (green) and (l(2L)

1 , γ
(2L)
1 , γ

(2L)
2 ) (blue) (Color figure online)

discretization of the free-surface Euler equations is used.While in that paper the authors need
three layers for the test, we can achieve good results with the technique proposed here that
only considers two layers. The results in [25] with a three-parameter Green-Naghdi model
optimized for uneven bottoms, are also in good agreement. Comparing to that, let us remark
that the Green-Naghdi system described there includes high order terms using third order
derivatives. We would like to stress the ability of the proposed two-layer system to deal with
a wide range of dispersive waves, which is achieved without including high order terms in the
system of equations. Only first order derivatives are used here. In [9] the test is also studied
with a depth-integrated free-surface two-layer non-hydrostatic system.

The results from case (c) are given in Fig. 18. In this situation, larger values of kH give
short waves and make this case more challenging. Due to this fact, waves propagate and
typical cnoidal profile can be observed over the top of the bar. This is well reproduced at
gauges g1, g2, g3, g4. Behind the bar, at g5, g6, g7, higher harmonics appear. As we see,
a good fit for the amplitude is observed. This test case was studied in [46], where excellent
results are obtained at g5, g6, g8, g10,with a two-layer system that it has been also optimized
up to the second-order nonlinear dispersive analysis.

Figures 17 and 18 also show comparison with (l(5)1 , γ
(5)
1 , γ

(5)
2 ) and (l(2L)

1 , γ
(2L)
1 , γ

(2L)
2 )

parameters. One can see a better matching in favour of the former.



Fig. 18 Comparison of experiment data (c) (red points) and simulated ones with improved dispersive param-

eters (l(5)1 , γ
(5)
1 , γ

(5)
2 ) (green) and (l(2L)

1 , γ
(2L)
1 , γ

(2L)
2 ) (blue) (Color figure online)

The next case presented is (b), where waves start to break on the top of the bar. Numerical
time series of surface elevation are shown in Fig. 19 for (l(5)1 , γ

(5)
1 , γ

(5)
2 ). Here we use the

proposed ςα for the breaking mechanism described in Sect. 5.Breaking parameters are set to
B1 = 0.5 and B2 = 0.15. To evince that a breaking mechanism is needed, the corresponding
numerical simulation without the breaking mechanism is also shown in Fig. 19. The test
shows the need to consider a breaking mechanism. Before reaching the bar, both simulations
coincide as expected, since the wave breaking starts around x = 12, revealing that the
start/stopping criteria performs properly. In all gauges that follow, the wave shape, frequency
and amplitude are well reproduced in favour of the simulations with the breakingmechanism.
In [29], the test case (b) is performed with a Serre Green–Naghdi system and a different and
well-validated breakingmechanism. The results obtained in this work, are in accordance with
the ones presented in [29].

The comparison with experimental data emphasizes the need to consider a dispersive
model to faithfully capture the shape of the waves near the continental shelf, where a wide
range of dispersive waves can be released. Thus, the two-layer system presented in this work
can simulate an extensive range of frequencies of dispersive waves, which typically arises in
nature from intermediate to shallow waters.



Fig. 19 Comparison of experiment data (b) (red points) and simulated ones with breaking mechanism (green) 
and without (blue) (Color figure online)

7 Conclusions

In this work, a non-hydrostatic two-layer model has been proposed to incorporate dispersive 
effects in the propagation of waves in a homogeneous, inviscid and incompressible fluid. The 
presented model corresponds to the system derived by E.D.Fernández Nieto et al. in [34] for  
the two-layer case, with a slight difference in the definition of the non-hydrostatic pressure 
at the interface. This allows us to derive a two-layer non-hydrostatic model with improved 
dispersive properties. The advantage is that this is done while keeping the computational cost 
of the model low.

The numerical scheme employed combines a finite volume segment path-conservative 
scheme for the underlying hyperbolic system and finite differences for discretization of non-
hydrostatic terms. Furthermore, it is second order accurate and it is well-balanced for the water 
at rest solution, positive preserving and linearly L∞-stable under the usual CFL condition. 
The extension to bidimensional domains has been done. More detail about the validation of 
the model is carrying out.

The model is also able to simulate correctly the run-up and run-down process in wet–dry 
areas. Moreover, no numerical truncation for the non-hydrostatic pressure is needed at wet–
dry areas, where non-hydrostatic pressure vanishes. To the best of our knowledge, this is an



improvement in non-hydrostatic numerical schemes, where usually non-hydrostatic pressure
is truncated to zero up to a threshold value.

As it iswell known, non-hydrostaticmodels need somedissipativemechanism for breaking
waves to accurately model waves near the coastal areas (see [33]). We have proposed a new,
efficient and straightforward breaking mechanism that performs appropriately in the tests
shown.

Numerical simulations show that the approach presented here correctly solves the propaga-
tion of eulerian solitary waves of high amplitude, preserving their shape for large integration
times accurately. Comparison with experimental data is also presented. Experimental data
justifies the need to incorporate dispersive effects to capture faithfully waves in the vicinity of
the continental shelf. Moreover, complex processes such as run-up, shoaling, the appearance
of higher harmonics and wet–dry areas, that can not be well reproduced with a one-layer
non-hydrostatic system, are simulated successfully for the proposed tests. We would like to
stress the good performance when dealing with a wide range of non-linear dispersive waves,
as it was said in Sect. 6.5, where usually a Green–Naghdi type model or multilayer non-
hydrostatic model is needed to correctly simulate the tests. The system proposed in this work
can deal with such dispersive waves with a two-layer system, without the need of increasing
the order of the derivatives o more layers which would increase the complexity of the model
and its computational cost.

Numerical tests also evince that the proposed model introduced in this work with the
jump of the non-hydrostatic pressure at the interface (16), improves the results with respect
to the two-layer system derived in [34]. This has been shown by comparing with analytical
solutions from the Stokes first order theory. This improvement is achieved with the same
computational cost than the original two-layer system derived in [34].

The two-layer model and the numerical scheme presented in this work provides thus an
efficient and accurate approach to model dispersive effects in the propagation of waves near
coastal areas and intermediate waters.
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A Hyperbolicity of the Underlying Hydrostatic System

A.1 Hyperbolicity

Let us consider the underlying hydrostatic system (20) written in quasi-linear form

∂tU + A∂xU = G(U)∂x H , (47)

whereA = JF+B, beingJF the Jacobianmatrix of theflux F. The characteristic polynomial
of the matrix A is given by

P(λ, l1) = 1

2
(u1 − λ) (u2 − λ)Q(λ, l1),

being Q(λ, l1) a third order polynomial on λ given by

Q(λ, l1) = f (λ) − R(l1),

f (λ) = (3u1 − u2 − 2λ)
(
(u2 − λ)2 − gh

)
,



R(l1) = l1K ,

K = (u1 − u2)
(
(u1 − u2)

2 − 4gh
)
.

For the sake of simplicity on the notation, we do not write explicitly the dependence on U .
Let us study the hyperbolicity of the hydrostatic system. It is easily to check that

λ1 = u1, λ2 = u2

are eigenvalues of the system for every l1 ∈ (0, 1). It remains to check if the cubic polynomial
Q(λ) has three distinct roots.

We will prove that the cubic polynomial it has always three different roots for every
l1 ∈ [0, 1], and in particular for every l1 ∈ (0, 1) as we just request. Let us give a sketch of
the proof:

1. Let us remark that Q is a cubic polynomial on λ satisfying

Q(−∞, l1) = +∞, Q(∞, l1) = −∞.

2. Note that f (λ) is a cubic polynomial that does not depend on l1. Moreover, it has two
local extrema given by the roots of f ′(λ):

λ± = u1 + u2
2

±
√

1

3
+

(
u1 − u2

2

)2

.

3. A sufficient and necessary condition for the existence of three real and distinct roots of
the cubic polynomial Q(λ, l1) is that:

f (λ−) < R(l1) and f (λ+) > R(l1).

4. Note that when l1 = 0, the polynomial Q(λ, 0) has three roots:

λ3 = 3u1 − u2
2

, λ4,5 = u2 ± √
gh,

and thus f (λ−) < R(0) and f (λ+) > R(0).
Similarly, when l1 = 1, the polynomial Q(λ, 1) has three roots:

λ3 = −u1 + 3u2
2

, λ4,5 = u1 ± √
gh,

and therefore f (λ−) < R(1) and f (λ+) > R(1).

Thus, if we assume that K ≥ 0, then R(1) ≥ R(l1) ≥ R(0) and therefore

f (λ+) > R(1) ≥ R(l1)

f (λ−) < R(0) ≤ R(l1).

If we assume that K ≤ 0, then R(1) ≤ R(l1) ≤ R(0) and therefore

f (λ+) > R(0) ≥ R(l1)

f (λ−) < R(1) ≤ R(l1).

This concludes the proof.



A.2 A First Order Approximation for the Eigenvalues

Let us denote the eigenvalues that depends on l1 as

λ1(l1) = u1, λ2(l1) = u2,

as the known eigenvalues for any l1 ∈ (0, 1), and

λ3(l1), λ4(l1), λ5(l1)

as the eigenvalues that are roots of the cubic polynomial Q(λ, l1). As a particular case, we
have found an explicit form of the eigenvalues for l1 = 1/2,

λ1 = u1, λ2 = u2, λ3 = u1 + u2
2

, λ4,5 = u1 + u2
2

±
√

gh + 3

4
(u1 − u2)

2.

Let us consider

λ(l1) ∈ {λ3(l1), λ4(l1), λ5(l1)},
an eigenvalue that depends on l1 and is a root of the cubic polynomialQ(λ, l1).We propose the
following approximation of the eigenvalues, that gives the exact roots of the cubic polynomial
Q(λ, l1) for l1 ∈ {0, 1/2, 1}.

λ3(l1) ≈ λ̃3(l1) =
(
3

2
− 2l1

)

u1 +
(

2l1 − 1

2

)

u2,

λ4,5(l1) ≈ λ̃4,5(l1) = l1u1 + l2u2 ±
√

gh + 3l1l2 (u1 − u2)2.

Another approximation for the eigenvalues is proposed in the following. Since λ(l1) is a root
of Q(λ, l1), then

Q(λ(l1), l1) = 0,

and deriving with respect to l1 it yields

λ′(l1) =
(
(u1 − u2)2 − 4gh

)
(u1 − u2)

2 (gh − 3u1u2 + 3 (u1 + u2 − λ(l1)) λ(l1))
.

Thus, we propose to approximate the eigenvalues that are roots ofQ(λ, l1)with the first order
approximation

λi (l1) ≈ λ̃i = λi (1/2) + λ′
i (1/2)(l1 − 1/2), i ∈ {3, 4, 5},

that can be explicitly computed, since λi (1/2) are known:

λ3(l1) ≈ λ̃3 = u1 + u2
2

+ (u1 − u2) (1 − 2l1)
gh − 1

4 (u1 − u2)2

gh + 3
4 (u1 − u2)2

+ O(l21),

λ4,5(l1) ≈ λ̃4,5 = u1 + u2
2

±
√

gh + 3

4
(u1 − u2)

2

+ (u1 − u2)

(

l1 − 1

2

)
gh − 1

4 (u1 − u2)2

gh + 3
4 (u1 − u2)2

+ O(l21).

This procedure is more rigorous and lead to a more sophisticated expressions of the approx-
imated eigenvalues.



B Linear Dispersion Properties

B.1 Linear Dispersion Relation

Substituting (23) into (24) yields the linear dispersion relation:

C2

gH
= N0 + N1 (kH)2

D0 + D1 (kH)2 + D2 (kH)4
, (48)

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N0 = 1, N1 = l1l2(−γ1 − γ2 + 2(γ2 − 1)l1 + 2)

4(γ1 + γ2)
,

D0 = 1, D1 = γ 1 + γ 2 + 2(γ 2 − 2)l21 − 2l1(γ 1 + γ 2 − 2)

4(γ 1 + γ 2)
, D2 = l21 l

2
2(γ 1 − γ 2)

16(γ 1 + γ 2)
.

C BreakingWaves Parameters

By taking into account the two vertical velocities equations in (45) and the incompressibility
equations, which relates wα with uα , lead us to write P in terms of the derivatives of U

A(xx)∂xxU + A(xt)∂xtU + A(x)∂xU + A(t)∂tU + AU + B =
⎛

⎝
pb − pI

γ1 pb + γ2 pI

⎞

⎠ + I(ς)∂xU,

where

I(ς) =
⎛

⎝
−ς1l1h 0

0 −ς2l2h

⎞

⎠ , A(·) ∈ M2(R).

We propose define ςα such that

I(ς) := Diag(A(x)).

We then proceed to compute A(x). The two continuity equations can be written as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w1 = u1∂x H − 1

2
l1h∂xu1 − ∂t H ,

w2 = −u1∂x l1h + u2∂x z I − l1h∂xu1 − 1

2
l2h∂xu2 − ∂t H .

Neglecting mass transfer terms due to ΓI , the vertical equations can be written as
⎧
⎪⎨

⎪⎩

∂t (l1hw1) + ∂x (l1hu1w1) = pb − pI + ς1l1h∂xu1,

∂t (l2hw2) + ∂x (l2hu2w2) = γ1 pb + γ2 pI + ς2l2h∂xu2.

(50)



Then, retaining at the left hand side of Eq. (50) only the terms multiplied by ∂xuα at the
equation concerning to the layer α, leads to

I(ς) =
⎛

⎝
l1h (−∂t l1h + w1 − u1∂x (l1h + H)) 0

0 l2h (−∂t l2h + w2 + u2∂x (zI − l2h))

⎞

⎠ ,

Again, using that ΓI = 0, I(ς) can be rewritten as

I(ς) =
⎛

⎝
l1h (−w1 + 3u1∂x H − 2∂t H) 0

0 l2h (−w2 − 2∂t H − 3u2∂x z I )

⎞

⎠ ,

and finally we propose ⎧
⎪⎨

⎪⎩

ς1 = (w1 − 3u1∂x H + 2∂t H) ,

ς2 = (w2 + 3u2∂x z I + 2∂t H) .

(51)

D Coefficients andMatrices of the Linear System

D.1 Coefficients of the Poisson-Like Equations

The coefficients appearing in (37) and (38) are:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = −(l1h)2,

a2 = −l21h∂xh,

a3 = l1h∂xx (l1h + 2l2h − 2η) + ∂x (h1 + 2l2h − 2η)2 + 4,

a4 = −(l1h)2,

a5 = −l1h∂x (3l1h + 4l2h − 4η) ,

a6 = −l1h∂xx (l1h + 2l2h − 2η) − ∂x (l1h + 2l2h − 2η)2 − 4,

(52)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = −(l2h)2
(

γ1 + 2
l1
l2

)

,

b2 = l2h∂x ((4 − γ1)l2h − 4η) ,

b3 = l2h∂xx (2l1h + (2γ1 + 3)l2h − 2(γ1 + 2)η) + γ1∂x (l2h − 2η) + 4γ1,

b4 = −(l2h)2
(

γ2 + 2
l1
l2

)

,

b5 = l2h∂x (4l1h + (4 − γ2)l2h − 4η) ,

b6 = l2h∂xx (−2l1h + (2γ2 − 5)l2h − 2(γ2 − 2)η) + γ2∂x (l2h − 2η) + 4γ2,

RHS1 = l1h
(̃k)∂xq

(̃k)
u,1 − 2q (̃k)

u,1∂x z
(̃k)
1 + 2q (̃k)

w,1 + 2h (̃k)∂t H ,



RHS2 = 2l1h
(̃k)∂xq

(̃k)
u,1 + l2h

(̃k)∂xq
(̃k)
u,2 − 2q (̃k)

u,2∂x z
(̃k)
2 + 2q (̃k)

w,2 + 2h (̃k)∂t H . (53)

D.2Matrices of the Linear Systems

After replace (39) and (40) in (37) and (38), one has to solve a linear system

AP = RHS,

A = D + M, D =
(
T(1) 0
0 T(2)

)

, M =
(

0 C(1)

C(2) 0

)

,

being T( j),C( j) tridiagonal matrices of dimension N × N given by:

T(1) = A(1)

Δx2
T(1,−2,1) + A(2)

2Δx
T(−1,0,1) + A(3) I ,

C(1) = A(4)

Δx2
T(1,−2,1) + A(5)

2Δx
T(−1,0,1) + A(6) I ,

T(2) = B(1)

Δx2
T(1,−2,1) + B(2)

2Δx
T(−1,0,1) + B(3) I ,

C(2) = B(4)

Δx2
T(1,−2,1) + B(5)

2Δx
T(−1,0,1) + B(6) I ,

where

T(a,b,c) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b c 0
a b c

. . .
. . .

. . .

a b c
0 a b

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

gather the centred finite difference matrix of second (T(1,− 2,1)) and first (T(−1,0,1)) order, and
I the identity matrix of dimension 2N × 2N .
The matrices A( j) and B( j), j ∈ {1, . . . , 6} are diagonal matrices of dimension N × N

A( j) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a j,1 0
a j,2

. . .

a j,N−1

0 a j,N

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, B( j) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b j,1 0
b j,2

. . .

b j,N−1

0 b j,N

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where the coefficients a j,i (and b j,i ) are the point value approximations of a j (and b j )
described in Appendix D.2. For example,

a3,i = h1,i
2Hi−1 − h1,i−1 − 2

(
2Hi − h1,i

) + 2Hi+1 − h1,i+1

Δx2

+ 2Hi+1 − h1,i+1 − (
2Hi−1 − h1,i−1

)

2Δx
+ 4.

D.3 Analysis of the Linear System for SmallWater Heights

If we assume

h = ε, uα = wα = 0,



then the coefficients (52) and (53) reduce to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = −l21ε2,

a2 = 0,

a3 = 4(1 + (∂x H)2) + 2l1ε∂xx H ,

a4 = −l21ε2,

a5 = −4l1ε∂x H ,

a6 = −4(1 + (∂x H)2) − 2l1ε∂xx H ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = −l2((γ1 − 2)l2 + 2)ε2,

b2 = 4l2ε∂x H ,

b3 = 4γ1(1 + (∂x H)2) + 2l2(γ1 + 2)ε∂xx H ,

b4 = −l2((γ2 − 2)l2 + 2)ε2,

b5 = −4l2ε∂x H ,

b6 = 4γ2(1 + (∂x H)2) + 2l2(γ2 − 2)ε∂xx H ,

and the Right Hand Side vectors reduce to

RHS =
⎛

⎝
RHS1

RHS2

⎞

⎠ =
⎛

⎝
0

0

⎞

⎠ .

In the following analysis we will assume:

ε2 ≈ 0, ε∂x H ≈ 0, ε∂xx H ≈ 0, (54)

and for the sake of simplicity we assume that ∂x H = m. Then the linear system becomes

A = 4(1 + m2)

⎛

⎝
I −I

γ2 I γ1 I

⎞

⎠ .

The matrix A is invertible

A−1 = 1

4(γ1 + γ2)(m2 + 1)

⎛

⎝
γ1 I I

−γ2 I I

⎞

⎠ ,

since we assume in Remark 4 that γ1 + γ2 �= 0.
We note that (54) collects the particular case of a slowly varying bathymetry ∂x H ≈ 0,

and in particular the case under study in this work, when ∂x H = m with ε · m ≈ 0.
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