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Abstract. The phase retrieval problem is a fundamental problem in many fields, which is
appealing for investigation. It is to recover the signal vector x̃ ∈ Cd from a set of N measurements
bn = |f∗nx̃|2, n = 1, · · · , N , where {fn}Nn=1 forms a frame of Cd. Existing algorithms usually use a
least squares fitting to the measurements, yielding a quartic polynomial minimization. In this paper,
we employ a new strategy by splitting the variables, and we solve a bi-variate optimization problem
that is quadratic in each of the variables. An alternating gradient descent algorithm is proposed,
and its convergence for any initialization is provided. Since a larger step size is allowed due to
the smaller Hessian, the alternating gradient descent algorithm converges faster than the gradient
descent algorithm (known as the Wirtinger flow algorithm) applied to the quartic objective without
splitting the variables. Numerical results illustrate that our proposed algorithm needs less iterations
than Wirtinger flow to achieve the same accuracy.
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1. Introduction. Let f(x) ∈ L2(Rd). It is well known that the map f 7→ f̂ ,

where f̂ denotes the Fourier transform of f , is an isometry in L2(Rd) and hence f can

be uniquely reconstructed from f̂ . In many applications such as X-ray crystallography,
however, we can only measure the magnitude |f̂ | of the Fourier transform. This raises

the following question: Is it still possible to reconstruct f from |f̂ |? This is the classic
phase retrieval problem.

The phase retrieval problem has a natural generalization to finite dimensional
Hilbert spaces. Such an extension has important applications in imaging, optics,
communication, audio signal processing and more [9, 12, 13, 16, 20]. It is in this
finite Hilbert space setting that phase retrieval has become one of the growing areas
of research in recent years.

Let H be a (real or complex) Hilbert space of finite dimension. Without loss of
generality we identify H with Hd where H = R or H = C. A set of elements F = {fn}
in H is called a frame if it spans H. Given this frame any vector x ∈ H can be
reconstructed from the inner products {〈x, fn〉}. Often it is convenient to identify the
frame F with the corresponding frame matrix F = [f1, f2, . . . , fN ]. The phase retrieval
problem in H is:

The Phase Retrieval Problem. Let F = {fn} be a frame in H. Can we reconstruct
any x ∈ H up to a unimodular scalar from {|〈x, fn〉|}, and if so, how?

F is said to be phase retrievable (PR) if the answer is affirmative. There is an
alternative formulation. Consider the equivalence relation ∼ on H: x1 ∼ x2 if there is
a constant b ∈ H with |b| = 1 such that x1 = bx2. Let H := H/ ∼. We shall use x to
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2 Fast Rank One Alternating Minimization Algorithm for Phase Retrieval

denote the equivalent class containing x. For any given frame F = {fn : 1 ≤ n ≤ N}
in H define the map MF : H−→RN+ by

MF (x) = [|〈x, f1〉|2, . . . , |〈x, fN 〉|2]T . (1.1)

The phase retrieval problem asks whether a x ∈ H is uniquely determined by MF (x),
i.e. whether MF is injective on H.

Many challenging and fundamental problems in phase retrieval remain open. For
example, for phase retrieval in Cd it is still unknown what is the minimal number of
vectors needed for a set of vectors F to be phase retrievable. A challenging problem
of very practical importance is the computational efficiency of phase retrieval algo-
rithms. So far the existing phase retrieval algorithms can be loosely divided into four
categories: (A) Using frames with very large N , in the order of N ≥ O(d2), (B) Con-
vex relaxation algorithms using random frames, (C) Non-convex optimization with a
quartic objective with random frames, and (D) Constructing special frames F that
allow for fast and robust phase retrieval reconstruction of x.

The first category is based on the fact that each |〈x, fn〉|2 is a linear combination
of monomials x∗i xj . The reconstruction of x can be attained by solving for these
monomials, provided that there are enough equations, i.e. N is large enough. We will
need N ≥ 1

2d(d+1) in the real case and N ≥ d2 in the complex case. The reconstruc-
tion then becomes solving a system of linear equations if we treat all monomials as
independent variables. One can also obtain robustness results under such framework.
The weakness of this approach is that when d is large the number of variables and the
number of measurements needed will explode, making it generally impractical and
slow. Several constructions for special frames were designed (e.g. [2]) with which one
can compute x efficiently (“painless reconstruction”). But this doesn’t reduce the
number of required measurements.

The second category of methods employ convex relaxation techniques like those
of compressive sensing. By considering X = xx∗ we can rewrite the map MF as

MF (X) = [x∗A1x, . . . ,x
∗ANx]T = [tr(A1X), . . . , tr(ANX)]T (1.2)

where An = fnf∗n, which is a linear map from Cd×d to RN . The original problem is now
a linear equation MF (X) = b subject to the constraints X ≥ 0 and has rank 1. This
type of problems is not convex and cannot be solved efficiently in general. However,
it was shown in [8] that with high probability for random frames with N ≥ O(d log d)
the original problem is equivalent to the convex problem of solving for

argminXtr(X) subject to X ≥ 0, MF (X) = b. (1.3)

The bound was later improved to N ≥ O(d) [6]. The robustness of the method was
also proved. This convex relaxation method, called PhaseLift, solves (2.3) using semi-
definite programming. It can be done with reasonable efficiency for small d (typically
up to about d = 1000 on a PC). Several refinements and variations of PhaseLift have
also being proposed, e.g. PhaseCut and MaxCut [5, 19] for Fourier measurements
with random masks. But all employ semi-definite programming, which for larger d
becomes slow and impractical.

The third category of methods consider the non-linear least square fittings to the
measurements |〈x, fn〉|2, n = 1, . . . , N , and solve

min
x∈Cd

N∑
n=1

(
|〈x, fn〉|2 − bn

)2
. (1.4)
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Since the objective is a quartic polynomial, (1.4) is a smooth non-convex optimization.
Such an optimization is very difficult to solve in general because the non-convex
objective may have numerous local minima. However, when random frames are used,
(1.4) is not as difficult as it appears. In [7], a Wirtinger gradient flow algorithm is
applied to solve (1.4), and it was proven that the algorithm is guaranteed to converge
to the global minimizer of (1.4) when the algorithm is initialized by the so-called
spectral initialization and the frame is random Gaussian or Fourier with random
masks. To further improve the efficiency and robustness to noise, variants of the
Wirtinger flow algorithm are proposed in, e.g., [10, 22], and their convergence to the
correct solution are provided. More recently, it is revealed in [17] that the objective
in (1.4) actually has no spurious local minima if F is a random Gaussian frame with
N ≥ O(d log3 d). Therefore, there are many other efficient algorithms that may be
able to find the global minimizer of (1.4). However, all these non-convex algorithms
assumes random frames, which may be impractical in real applications.

In the fourth category one strives to build special frames with far fewer elements
but which still allow for fast and robust reconstruction. In [1] a deterministic graph-
theoretic construction of a frame with Cd measurements was obtained based. This
is the few known deterministic construction that uses only O(d) measurements and
can robustly reconstruct all x ∈ Cd, at least in theory. Unfortunately the constant
C is very large, so again computationally it would be impractical for large d. In
[14] a highly efficient phase retrieval scheme using a small number of random lin-
ear combinations of Fourier transform measurements is developed. It uses O(d log d)
measurements to guarantee robustness with high probability, and achieves the compu-
tational complexity of O(d log d). In numerical tests it easily performed robust phase
retrieval for d = 64, 000 in seconds on a laptop. A drawback is that it is robust only
in the probabilistic sense; for a given x there is a small probability that the scheme
will fail.

In this paper we develop an algorithm for phase retrieval that is both highly
efficient and works for very general measurement matrices. Our algorithm is based on
the ideas of convex relaxation in PhaseLift and the alternating minimization algorithm
used for low rank matrix completion. By splitting the variables, our algorithm solves
a bi-variant optimization problem whose objective is quadratic in one of the variables
with the other fixed. We shall present both theoretical and numerical results, and
discuss its efficient implementation.

2. Rank One Minimization for Phase Retrieval. Let X = {xx∗ : x ∈ Hd}.
As we noted in (1.2), F = {fn} in Hd is phase retrievable if and only if the map

MF (X) = [x∗A1x, . . . ,x
∗ANx]T = [f1Xf∗1 , . . . , fNXf∗N ]T (2.1)

is an injective map from X to RN , where An = fnf∗n. In the PhaseLift scheme the
phase retrieval problem of solving for MF (X) = b subject to the constraints X ≥ 0
and has rank 1 (equivalent to X ∈ X ) is being relaxed to solving the convex problem
(1.3)

argminXtr(X) subject to X ≥ 0, MF (X) = b.

This relaxation yields the same solution to the original phase retrieval problem with
high probability provided that the measurement matrix A is a Gaussian random N×d
matrix with N = O(d) for some unspecified constant, or the DFT matrix with random
masks.
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Still the drawback is that the measurement matrices are restricted to some specific
types, which may or may not be practical for any given application. The optimization
requires the use of semi-definite programming, which is slow in general and impractical
for phase retrieval for large dimensions. Here we propose a new approach that resolves
these difficulties.

The main idea is to relax the requirement X ∈ X to simply rank(X) = 1. In
other words we drop the requirement that X is Hermitian and positive semi-definite.
Thus we consider solving the problem

MF (X) = [f1Xf∗1 , . . . , fNXf∗N ]T = b subject to rank(X) = 1, (2.2)

or alternatively, given that noise might be present, solving the following problem:

argminX ‖MF (X)− b‖ subject to rank(X) = 1. (2.3)

Observe that in general the solution to (2.3) is not unique. If X is a solution then so
is X∗. To account for this ambiguity we shall use Rd(H) to denote the set of d × d
rank one matrices with the equivalence relation X ≡ X∗. We shall also let Sd(H)
denote the set of d× d Hermitian rank one matrices with entries in H.

Theorem 2.1. For F = {fn}Nn=1 ⊂ Hd and X ∈Md(H) let

MF (X) = [f1Xf∗1 , . . . , fNXf∗N ]T .

(A) For a generic F ⊂ Hd, MF is injective on Rd(H) if N ≥ 4d− 1 for H = R,
or if N ≥ 8d− 3 for H = C.

(B) For a generic F ⊂ Hd, MF is injective on Sd(H) if N ≥ 2d+ 1 for H = R,
or if N ≥ 4d− 1 for H = C.

Proof. We shall identify F = {f1, f2, . . . , fm} with its frame matrix F whose
columns are {fn}. Consider the set of all 3-tuples

A := {(F,X, Y )}

where X,Y ∈ Rd(H) or X,Y ∈ Sd(H) are distinct and satisfy MF (X) = MF (Y ).
We follow the technique in [3] of local dimension counting to prove our theorem.

Let Hd+ denote the set of vectors of Hd whose the first nonzero entry is real and
positive. Note that any d×d rank one matrix Z can be written uniquely as Z = afg∗

where a ∈ H, f ,g ∈ Hd+ and ‖f‖ = ‖g‖ = 1. Under this factorization Z ∈ Sd(H) if
and only if f = g and a ∈ R.

To prove the theorem there are 4 cases to be considered, with H = R or C and
X,Y ∈ Rd(H) or Sd(H). We deal with each case. Due to the similarity of the
arguments we shall skip some redundant details.

Case 1: H = R and X,Y ∈ Rd(R).
In this case, because X,Y are distinct in Rd(R) each equality fnXf∗n = fnY f∗n

yields a nontrivial constraint in the form of a quadratic polynomial equation for
the (real) entries of fn. Furthermore, for different n the entries fn are independent
variables. Thus viewing the entries of F as points in RNd, for any distinct X,Y ∈
Rd(R), those satisfying the constraint MF (X) = MF (Y ) is a real algebraic variety
of co-dimension Nd−N . By the unique factorization X = afg∗ discussed above each
X has 2d−1 degrees of freedom. The same 2d−1 degree of freedom holds also for Y .
Thus the projection of A = {(F,X, Y )} to the first component has local dimension
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everywhere at most Nd−N + 2(2d− 1). Suppose that N ≥ 4d− 1. Then this local
dimension has

Nd−N + 2(2d− 1) ≤ Nd− 1 < Nd.

In other words, a generic F ∈ RN×d is not a projection of an element in A to the
first component. Thus for a generic F with N ≥ 4d− 1 the map MF is injective on
Rd(R).

Case 2: H = R and X,Y ∈ Sd(R).
All arguments from Case 1 carry to this case, except in the counting of degrees of

freedom for X and Y . Because now X = aff∗ there are exactly d degrees of freedom
for X. The same holds true for Y . Thus the projection of A = {(F,X, Y )} to the
first component has local dimension everywhere at most Nd−N + 2d. Suppose that
N ≥ 2d+ 1. Then this local dimension has

Nd−N + 2d ≤ Nd− 1 < Nd.

In other words, a generic F ∈ RN×d is not a projection of an element in A to the first
component. Thus for a generic F with N ≥ 2d+1 the map MF is injective on Sd(R).

Case 3: H = C and X,Y ∈ Rd(C).
The main arguments from Case 1 carry to this case with slight modifications. A

key difference is that we now view F as a point in R2Nd. Each constraint fnXf∗n =
fnY f∗n where X,Y ∈ Rd(C) are distinct now yields an independent nontrivial real
quadratic equation for the real variables Re(fn), Im(fn). Each X = afg∗ with a ∈ C,
f ,g ∈ Hd+ and ‖f‖ = ‖g‖ = 1 has 2 + (2d − 2) + (2d − 2) = 4d − 2 real degrees of
freedom. The same holds for Y . Thus the projection of A = {(F,X, Y )} to the first
component has real local dimension everywhere at most 2Nd−N+2(4d−2). Suppose
that N ≥ 8d− 3. Then this real local dimension has

2Nd−N + 2(4d− 2) ≤ 2Nd− 1 < 2Nd.

In other words, a generic F ∈ CN×d is not a projection of an element in A to the
first component. Thus for a generic F with N ≥ 8d− 3 the map MF is injective on
Rd(C).

Case 4: H = C and X,Y ∈ Sd(C).
All arguments from Case 3 carry to this case, except in the counting of degrees

of freedom for X and Y . Because now X = aff∗ where a ∈ R, f ∈ Hd+ and ‖f‖ = 1
there are exactly 1 + 2d− 2 = 2d− 1 real degrees of freedom for X. The same holds
true for Y . Thus the projection of A = {(F,X, Y )} to the first component has real
local dimension everywhere at most 2Nd−N + 2(2d− 1). Suppose that N ≥ 4d− 1.
Then this local dimension has

Nd−N + 2(2d− 1) ≤ Nd− 1 < Nd.

In other words, a generic F ∈ CN×d is not a projection of an element in A to the
first component. Thus for a generic F with N ≥ 4d− 1 the map MF is injective on
Sd(C).

We can now reformulate the phase retrieval problem into two alternative opti-
mization problems. Each rank one matrix X can be written as X = xy∗ for some
x,y ∈ Hd, although this representation is not unique. We have

Theorem 2.2. Let F = {fn}Nn=1 be vectors in Hd such that MF is injective on
Rd(H). Let x0 ∈ Hd(H) and b = MF (x0x

∗
0) = [|〈f1,x0〉|2, . . . , |〈fN ,x0〉|2]T . Then
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any global minimizer

(x̂, ŷ) = argminx,y∈Hd ‖MF (xy∗)− b‖ (2.4)

must satisfy x̂ = ŷ = cx0 for some |c| = 1.
Proof. The result follows trivially from the injectivity of MF (X) on Rd(H). Clearly
if x̂ = ŷ = cx0 then xy∗ = x0x

∗
0 which gives the global minimizer. Conversely,

the global minimizer must have MF (xy∗) = b. The injectivity now implies that
x̂ŷ = x0x

∗
0. Thus x̂ = ŷ = cx0 for some |c| = 1.

The above minimization problem is not convex so solving for the global minimum
is very challenging. Such is the case for solving the phase retrieval problem in gen-
eral. The advantage of the above formulation is that it allows us to use the popular
alternating minimization technique used for many other applications such as low rank
matrix completion, see e.g. [15, 11, 21, 18] the references therein. In the alternating
minimization algorithm, we first pick an initial x1 and minimize ‖MF (x1y

∗) − b‖
with respect to y to obtain y1. This step is a standard `2-minimization and is linear
problem. From y1 we then update x to x2 via minimizing ‖MF (xy∗1) − b‖. This
process is iterated to yield a sequence xky

∗
k. Often the sequence converges to the

desired result.
The drawback of the above setup is that because there is no penalty for xy∗ being

non-symmetric, when noise is added to the measurement vector b, the stability and
robustness is harder to analyze. It also requires, at least in theory, almost twice as
many measurements as the minimally required number for phase retrieval. A better
alternative is to add a regularization term to the previous minimization problem. Let
λ > 0 and

Eλ,b(x,y) = ‖MF (xy∗)− b‖2 + λ‖x− y‖2. (2.5)

Below we study the consequences of minimizing this function. In particular, we wish
to establish certain robustness properties.

Lemma 2.3. Let F = {fn}Nn=1 be a frame in Hd. Let X ∈ Md(H). Then
‖MF (X)‖1 ≤ C‖X‖∗ where ‖X‖∗ denotes the nuclear norm of X, and C is the upper
frame bound of F , i.e. C is the largest eigenvalue of FF ∗ where F = [f1, . . . , fN ] is
the frame matrix for F . Furthermore, this C is optimal.
Proof. Assume that X = vv∗ for some v ∈ Hd and ‖v‖ = 1. Then ‖X‖∗ = 1

‖MF (X)‖1 =

N∑
n=1

|〈fn,v〉|2 ≤ C‖v‖2 = C.

Note that here this constant C is the best possible since it can be achieved by taking
v to be an eigenvector of FF ∗ corresponding to its largest eigenvalue. Now assume
that X is Hermitian. Then we may write X as

X =

d∑
j=1

λjvjv
∗
j

where {vj} is an orthonormal basis for Hd. Thus

‖MF (X)‖1 ≤
d∑
j=1

|λj |‖MF (vjv
∗
j )‖1 ≤ C

d∑
j=1

|λj | = C‖X‖∗.
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For a non-Hermitian X, let Y = 1
2 (X +X∗). Then ‖Y ‖∗ ≤ ‖X‖∗, and

‖MF (X)‖1 = ‖MF (Y )‖1 ≤ C‖Y ‖∗ ≤ C‖X‖∗.

For a phase retrievable set F = {fn}Nn=1 in Hd we say MF satisfies the c-stability
condition if for any x,y ∈ Hd we have

‖MF (xx∗)−MF (yy∗)‖ ≥ c‖xx∗ − yy∗‖∗. (2.6)

Theorem 2.4. Let F = {fn}Nn=1 be phase retrievable in Hd. Let x0 ∈ Hd(H) and
b = MF (x0x

∗
0) = [|〈f1,x0〉|2, . . . , |〈fN ,x0〉|2]T . Then

(A) Any global minimizer

(x̂, ŷ) = argminx,y∈HdEλ,b(x,y)

must satisfy x̂ŷ∗ = x0x
∗
0, or equivalently x̂ = ŷ = cx0 for some |c| = 1.

(B) Let b′ ∈ Hd such that ‖b−b′‖ ≤ ε. Assume that MF satisfies the c-stability
condition for some c > 0. Then any x,y ∈ Hd such that Eλ,b′(x,y) ≤ δ2

must satisfy

‖zz∗ − x0x
∗
0‖∗ ≤

1

c

( C
4λ
δ2 + δ + ε

)
, (2.7)

where z = 1
2 (x + y) and C is the upper frame bound of F .

Proof. Part (A) is rather straightforward. Note that Eλ,b(x0,x0) = 0, so we must
have Eλ,b(x̂, ŷ) = 0. It follows that x̂ = ŷ. Hence MF (x̂x̂∗) = b = MF (x0x

∗
0). The

fact that F is phase retrievable now implies x̂x̂∗ = x0x
∗
0.

To prove part (B), we have λ‖x − y‖2 ≤ δ2. Thus ‖x − y‖ ≤ δ/
√
λ. Let

Z = 1
2 (xy∗ + yx∗). Clearly MF (Z) = MF (xy∗). Furthermore one checks easily that

zz∗ − Z =
1

4
(x− y)(x− y)∗.

Hence ‖zz∗ − Z‖∗ = 1
4‖x− y‖2 ≤ δ2

4λ . It follows that

‖MF (zz∗)−MF (x0x
∗
0)‖ = ‖MF (xx∗)− b‖

≤ ‖MF (zz∗)−MF (Z)‖+ ‖MF (Z)− b′‖+ ‖b′ − b‖
≤ ‖MF (zz∗)−MF (Z)‖1 + ‖MF (Z)− b′‖+ ‖b′ − b‖

≤ C δ2

4λ
+ δ + ε.

The c-stability condition now implies (2.7) immediately.

3. Alternating Minimization Algorithm. From the formulation in the pre-
vious section, the phase retrieval problem is solved robustly by finding a global min-
imizer of Eλ,b in (2.5). This section is devoted to fast algorithms for solving such a
minimization problem. In Section 3.1, we introduce a fast alternating gradient de-
scent algorithm for minx,y Eλ,b(x,y). In Section 3.2, we prove the convergence of the
proposed algorithm.
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3.1. Alternating gradient descent algorithm. Since λ and b are fixed during
the minimization procedure, we drop the subscripts in Eλ,b for simplicity. That is,
we solve

arg min
x,y

E(x,y), (3.1)

where

E(x,y) =
1

m

N∑
n=1

|x∗fnf∗ny − bn|2 + λ‖x− y‖2. (3.2)

Since the first term in E(x,y) is quartic in (x,y), Eq. (3.1) is a non-convex optimiza-
tion. However, when one of the variables x or y is fixed, E(x,y) is quadratic with
respect to the other variable. Therefore, it is natural to solve (3.1) by an alternating
scheme.

We use the following alternating gradient descent algorithm: Fixing x, we mini-
mize E(x,y) with respect to y by one step of gradient descent, and vice versa. More
precisely, we define, for k = 0, 1, 2, · · · ,

{
xk+1 = xk − αk∇xE(xk,yk),
yk+1 = yk − βk∇yE(xk+1,yk),

(3.3)

where αk and βk are step sizes. Since E is a real-valued function with complex
variables, the gradients ∇xE and ∇yE in (3.3) are in the sense of Wirtinger gradient
[7].

Since the gradient descent is applied to only one of the variables x and y, the
corresponding Hessian matrix have a much smaller norm than the Hessian of E with
respect to (x,y). Consequently, a much larger step size is allowed in the alternating
gradient descent than the standard gradient descent for minimizing (3.2), which leads
to a faster convergence. The alternating gradient descent algorithm is also faster
than the Wirtinger flow (WF) [7] algorithm, where G(x) = 1

N

∑N
n=1(|f∗nx|2 − bn)2 is

minimized via a gradient flow. As explained in Appendix A, in the real case, when
the iterates x and y are sufficiently close, our proposed alternating gradient descent
algorithm is 1.5 times faster than the WF algorithm in terms of the decreasing of the
objectives.

The initialization of our proposed algorithm is obtained via a spectral method,
which is the same as that in the Wirtinger flow algorithm [7]. When fn, n =
1, . . . , N , follow certain probability distributions (e.g., Gaussian), the expectation

of Y = 1
N

∑N
n=1 bnfnf∗n has a leading principle eigenvector x̃. Therefore, we choose

x0 = y0 = z0, where z0 is the leading principle eigenvector of Y . For completeness,
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Algorithm 1 lists how to calculate the initial guess for our proposed algorithm.

Algorithm 1: Initialization.

Input: Observations bn, n = 1, · · · , N .
Output: Initial guess x0 = y0 = z0.

1 Set

θ2 = d

∑
n bn∑

n ‖fn‖2
,

where fn ∈ Cd, n = 1, · · · , N is the sampling vectors;
2 z0 is the eigenvector corresponding to the largest eigenvalue of

Y =
1

N

N∑
n=1

bnfnf∗n

and ‖z0‖ = θ.

3.2. Convergence. In this section, we will show the convergence of the alter-
nating gradient descent algorithm (3.3). More precisely, for any initial guess, we prove
that algorithm (3.3) converges to a critical point of E.

We first present a lemma, which shows the coercivity of E.
Lemma 3.1. If F is of full rank, i.e., rank(F ) = d, then the function E(x,y) is

coercive, i.e., E(x,y)→∞ as ‖(x,y)‖ → ∞.
Proof. Since F is of full row rank, there exists a constant C1 such that, for any x,

‖|F ∗x|2‖ = ‖F ∗x‖24 ≥ C0‖F ∗x‖2 ≥ C1‖x‖2.

Also, there exists a constant C2 such that, for any x and z,

‖(F ∗x) ◦ (F ∗z)‖ ≤ ‖F ∗x‖‖F ∗z‖ ≤ C2‖x‖‖z‖,

where ◦ is the componentwise product.

Let ‖(x,y)‖ = M . If ‖x‖ ≤ M
2 , then ‖y‖ ≥

√
3M
2 and

E(x,y) ≥ λ‖x− y‖2 ≥ λ(
√

3− 1)2M

4
.

Similarly, if ‖y‖2 ≤ M
2 , then E(x,y) ≥ λ(

√
3−1)2M
4 . Otherwise, both ‖x‖2 > M

2 and

‖y‖2 > M
2 . Define z = y − x. In this case, if ‖z‖ ≤ C1M

4C2
, then

E(x,y) ≥ 1

N

N∑
n=1

|x∗fnf∗ny − bn|2 =
1

N
‖(F ∗x) ◦ (F ∗(x + z))− b‖2

≥ 1

N
(‖|F ∗x|2‖ − ‖b‖ − ‖(F ∗x) ◦ (F ∗z)‖)2 ≥ 1

N
(C1‖x‖2 − ‖b‖ − C2‖x‖‖z‖)2

=
1

N
(‖x‖(C1‖x‖ − C2‖z‖)− ‖b‖)2 ≥

1

N
(M2/8− ‖b‖)2,

otherwise E(x,y) ≥ λ‖z‖2 ≥ λC2
1M

2

16C2
2

. In all the cases, as M → ∞, the lower bounds

approach infinity.
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Now we can prove the convergence of (3.3).
Theorem 3.2. Assume rank(F ) = d. Then, for any initial guess (x0,y0), the

sequence {(xk,yk)}k generated by (3.3) with a suitable step size converges to a critical
point of E.
Proof. For simplicity, we assume αk = βk = γ for all k. The proof with variant step
sizes can be done similarly. Since E(x,y) is a quadratic function with respect to x,
Taylor’s expansion gives

E(xk+1,yk) = E(xk,yk) +

[
xk+1 − xk
xk+1 − xk

]∗ [∇xE(xk,yk)
∇xE(xk,yk)

]
+

1

2

[
xk+1 − xk
xk+1 − xk

]∗ [∇2
xxE(xk,yk) ∇2

xxE(xk,yk)
∇2

xxE(xk,yk) ∇2
xxE(xk,yk)

] [
xk+1 − xk
xk+1 − xk

]
= E(xk,yk)− 2γ‖∇xE(xk,yk)‖2 + γ2∇xE(xk,yk)∗∇2

xxE(xk,yk)∇xE(xk,yk)

= E(xk,yk)− 2γ
(
‖∇xE(xk,yk)‖2 − γ

2
∇xE(xk,yk)∗∇2

xxE(xk,yk)∇xE(xk,yk)
)
.

(3.4)

Similarly, because E(x,y) is a quadratic function with respect to y, by Taylor’s
expansion, we obtain

E(xk+1,yk+1) = E(xk+1,yk)−

2γ
(
‖∇yE(xk+1,yk)‖2 − γ

2
∇yE(xk+1,yk)∗∇2

yyE(xk+1,yk)∇yE(xk+1,yk)
)
.

(3.5)

By Lemma 3.1, the level set S = {(x,y) : E(x,y) ≤ E(x0,y0)} is a bounded closed
set. Therefore, the continuous functions ∇2

xxE(x,y) and ∇2
yyE(x,y) are bounded on

S. Let M > 0 be the bound, i.e.,

‖∇2
xxE(x,y)‖ ≤M, ‖∇2

yyE(x,y)‖ ≤M, ∀ (x,y) ∈ S.

Suppose (xk,yk) ∈ S. Choose γ ∈ (0, 2/M), so that (3.4) and (3.5) implies that
E(xk+1,yk+1) ≤ E(xk,yk) and

E(xk,yk)− E(xk+1,yk+1) = E(xk,yk)− E(xk+1,yk) + E(xk+1,yk)− E(xk+1,yk+1)

≥ ζ(‖∇xE(xk,yk)‖2 + ‖∇yE(xk+1,yk)‖2) (3.6)

=
ζ

γ
(‖xk+1 − xk‖2 + ‖yk+1 − yk‖2)

with ζ = 2γ
(

1− γM
2

)
. Therefore, (xk+1,yk+1) ∈ S. Thus, by induction, (xk,yk) ∈

S and (3.6) hold for all k as long as γ ∈ (0, 2/M).
Summing (3.6) over k from 0 to +∞, we obtain

E(x0,y0)− lim
k→+∞

E(xk,yk) ≥ ζ
+∞∑
k=0

(‖∇xE(xk,yk)‖2 + ‖∇yE(xk+1,yk)‖2).

Because E(xk,yk) ≥ 0 is monotonically nonincreasing according to (3.6), its limit
exists and is finite, which implies

lim
k→+∞

‖∇xE(xk,yk)‖ = lim
k→+∞

‖xk+1 − xk‖ = 0,

lim
k→+∞

‖∇yE(xk+1,yk)‖ = lim
k→+∞

‖yk+1 − yk‖ = 0.
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This, together with the continuity of ∇xE, ∇yE, and the norm function, means that
any clustering point of {(xk,yk)}k is a critical point of E(x,y).

It remains to prove that {(xk,yk)}k is convergent, which is done by checking that
{(xk,yk)}k is a Cauchy sequence. Since E(x,y) is a real-valued polynomial function,
it belongs to a semi-algebraic set. By [4, Theorem 3], there exists a differentiable and
concave function ψ(t) such that

ψ′(E(xk,yk)− E(x̂, ŷ)) ·
∥∥∥∥[∇xE(xk,yk)
∇yE(xk,yk)

]∥∥∥∥ ≥ 1 (3.7)

for any k and for any critical point (x̂, ŷ) of E. Since ψ(t) is concave, by the inequal-
ities (3.6) and (3.7), we have

ψ(E(xk,yk)− E(x̂, ŷ))− ψ(E(xk+1,yk+1)− E(x̂, ŷ))

≥ψ′(E(xk,yk)− E(x̂, ŷ))(E(xk,yk)− E(xk+1,yk+1))

≥ ζ
γ

‖xk+1 − xk‖2 + ‖yk+1 − yk‖2√
‖∇xE(xk,yk)‖2 + ‖∇yE(xk,yk)‖2

.

(3.8)

Furthermore,

‖∇xE(xk,yk)‖ =
1

γ
‖(xk+1 − xk)‖ (3.9)

and

‖∇yE(xk,yk)‖ =

∥∥∥∥∇yE(xk,yk)−∇yE(xk+1,yk) +
1

γ
(yk+1 − yk)

∥∥∥∥
≤ ‖∇yE(xk,yk)−∇yE(xk+1,yk)‖+

1

γ
‖yk+1 − yk‖

≤M ′ ‖xk+1 − xk‖+
1

γ
‖yk+1 − yk‖ ,

(3.10)

where M ′ = sup(x,y)∈S ‖∇2
xyE(x,y)‖ that is finite. Plugging (3.9) and (3.10) into

(3.8) gives

ψ(E(xk,yk)− E(x̂, ŷ))− ψ(E(xk+1,yk+1)− E(x̂, ŷ))

≥C
(
‖xk+1 − xk‖2 + ‖yk+1 − yk‖2

)1/2
,

where C = ζ
γM ′+1 . Summing it over k, we get

+∞∑
k=0

(
‖xk+1 − xk‖2 + ‖yk+1 − yk‖2

)1/2
≤ 1

C

(
ψ(E(x0,y0)− E(x̂, ŷ))− lim

k→∞
ψ(E(xk,yk)− E(x̂, ŷ))

)
.

The right hand side is finite, as ψ is smooth and limk→∞E(xk,yk) is finite. This
verifies that {(xk,yk)}k is a Cauchy sequence, and therefore it is convergent.

4. Numerical Implementation. In this section, we present some numerical
experiments to evaluate the proposed alternating gradient descent algorithm and com-
pare it with the Wirtinger Flow (WF) algorithm [7]. As demonstrated in Section 4.2
on synthetic data and Section 4.3 on real image data, our proposed algorithm is more
efficient in terms that a smaller number of iterations are required to achieve the same
recovery accuracy.
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4.1. Experiment Setup. All experiments are carried out on a PC with a 3.20
GHz Intel Core i5 Processor and 8GB memory. The initialization of our proposed
algorithm is described in Algorithm 1, which is run by 50 iterations of the power
method. In WF algorithm [7], the step size is chosen heuristically and expementally
as µ̃τ = min(1 − e−τ/τ̃0 , µ̃max), with τ̃0 = 330 and µ̃max = 0.2 or 0.4, which is the
most efficient according to our test. Following this, the step size of our method is
also chosen in the form as µτ = min(1 − e−τ/τ0 , µmax) and the tuning parameter
λτ = λ0e

−ξτ . The parameters τ̃0, τ0, µ̃max µmax, λ0 and ξ will be specified later.
Throughout the test, we mainly focus on the Gaussian model and the coded

diffraction (CDF) model. In the Gaussian model, we collect the data bn = |f∗nx|2 with
the sampling vectors distributed as Gaussian model, that is,

fn
i.i.d.∼

{
N (0, I/2) + iN (0, I/2), if fn ∈ Cd,
N (0, I), if fn ∈ Rd,

where N (0, V ) is the real mean-zero Gaussian distribution with covariance matrix V .
In the CDF model, we acquire the data via

bp,q =
∑
p,q

|x∗ap,q|2, with 0 ≤ q ≤ d− 1, 1 ≤ p ≤ L,

with ap,q = Gpfq, where f∗q is the q-th row of the d × d discrete Fourier Transform
(DFT) matrix andGp is a diagonal matrix with i.i.d. diagonal entries gp(0), gp(1), · · · ,
gp(d− 1) randomly drawn from

{
±
√
2
2 , ±

√
2
2 i
}

with probability 1
5 for each element,

and
{
±
√

3, ±
√

3i
}

with probability 1
20 for each element.

4.2. Synthetic data. In this subsection, we test the algorithms on synthetic
data. Following [7], we are interested in the two signals described below:

• Random low-pass signals. The true signal x̃ ∈ Cd is generated by

x̃[t] =

M/2∑
k=−(M/2−1)

(rk + ijk)e2πi(k−1)(t−1)/d

where M = d
8 , and rk and jk are i.i.d. obeying the standard normal distribu-

tion.
• Random Gaussian signals. The true signal x̃ ∈ Cd is a random complex

Gaussian vector with i.i.d. entries of the form

x̃[t] =

d/2∑
k=−(d/2−1)

(rk + ijk)e2πi(k−1)(t−1)/d,

where rk and jk are i.i.d. normal distribution N (0, 18 ).
We first evaluate the effectiveness of our proposed algorithm in terms of the

smallest N required for successful phase retrieval. We use 100 trials for both the
Gaussian and CDF models. In each trial, we generate the random sampling vec-
tors according to the Gaussian or CDF model and stop the alternating iteration
after 2500 iterations (1250 iterations for x and 1250 iterations for y corresponding
to our method). We declare it is successful if the relative error of the construction
dist(x̃, x̂)/‖x̃‖ < 10−5, where x̂ is the numerical solution by our alternating minimiza-
tion algorithm. The empirical probability of success is defined as the average of success



Jian-Feng Cai, Haixia Liu, Yang Wang 13

over 100 trials. We use d = 128. In the Gaussian model, we choose τ0 = τ̃0 = 330,
µ̃max = 0.2, µmax = 0.4, λ0 = 300 and ξ = 0.15/330 for random Gaussian signal, and
τ0 = τ̃0 = 330, µ̃max = 0.2, µmax = 0.4, λ0 = 5 and ξ = 0.05/300 for the random low-
pass signal. In the CDF model, we choose τ0 = τ̃0 = 330, µ̃max = 0.2, µmax = 0.4,
λ0 = 0.2 and ξ = 0.0015/330 for random Gaussian signal, and τ0 = τ̃0 = 330,
µ̃max = 0.2, µmax = 0.4, λ0 = 0.05 and ξ = 1.5/330 for the random low-pass signal..
We plot the empirical probability of success against the over sampling ratio N/d in
Figure 1. We see that the minimum oversampling ratios for an almost 100% success-
ful phase retrieval by our algorithm are around 4.3 for the Gaussian model and 6 for
the CDF model, which is slightly better or the same as the requirement of the WF
algorithm as reported in [7].
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Fig. 1. The plot of the probability of success versus N/d.

Next, we demonstrate the efficiency of our proposed algorithm. We run WF 2500
times and our algorithm 1250 times for x and 1250 times for y, respectively. Figure 2
shows the plot of the relative error versus the iteration counts of our proposed method
and the WF algorithm with N = 4.5d for the Gaussian model. From Figure 2, we
see that our propose algorithm can give 10−15 relative error for x and y after about
0.8 seconds, but WF can not. This implies our algorithm needs less iterations than
Wirtinger flow algorithm to get the same relative errors.
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Fig. 2. The plot of relative error versus iteration number.
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The Naqsh-e Jahan Square. (L = 15, τ̃0 = 330, τ̃0 = 150,
µ̃max = 0.4, µmax = 1, λ0 = 8000 and ξ = 0.001.)
Method 100 125 150

WF 3.7097× 10−4 6.1209×10−7 1.2521×10−9

Our 1.4927× 10−4 5.9163× 10−8 1.2817× 10−11

The Stanford main quad. (L = 15, τ0 = 330, τ1 = 150,
µ̃max = 0.4, µmax = 1, λ0 = 8000 and ξ = 0.001.)
Method 100 125 150

WF 0.5608 9.9557× 10−4 1.4987× 10−6

Our 0.5310 1.4925× 10−4 3.6023× 10−8

The van Gogh’s painting f458. (L = 15, τ̃0 = 330, τ0 = 100,
µ̃max = 0.4, µmax = 0.5, λ0 = 5000, ξ = 0.0015.)
Method 100 125 150

WF 0.2178 0.0028 3.2730× 10−6

Our 7.7887× 10−4 1.6263× 10−6 2.6466× 10−8

Table 4.1
The relative errors.

4.3. Real image data. We also test our algorithm for the CDF model on three
real images in different sizes, namely, the Naqsh-e Jahan Square in the central Iranian
city of Esfahan (189×768×3), the Stanford main quad (320×1280×3), and the van
Gogh’s painting f458 (281 × 369 × 3). Since those are all color images, we run our
proposed algorithm and WF algorithm on each of the RGB channels. Let x denote
the underlying true image and x̂ the solution by the algorithms. The relative error is
defined as ‖x̂ − x‖/‖x‖ with ‖x‖2 =

∑
i,j,k |xijk|2. Table 4.1 lists the relative errors

for WF with 2n iterations and our method with n iterations for x and n iteration
for y with n = 100, 125, 150. From the results in the table, we see that our proposed
algorithm use less iterations than WF method to achieve the same relative error. In
Figures 3, 4 and 5, the recoveries for the three real images are illustrated after 150
iterations for x and 150 iterations for y.

Fig. 3. The recovered images for Naqsh-e Jahan Square, Esfahan.
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Appendix A. Larger step size. In this appendix, we demonstrate that, when
x and y are sufficiently close, our alternating gradient descent algorithm is roughly
1.5 times faster than the WF algorithm in the real case.

To this end, we let E(x,y) be the function defined in (3.2). Choose λ = 0 and
assume xk ≈ yk. Then, by Taylor’s expansion, we obtain

E(xk+1,yk)

≈E(xk,yk) +∇xE(xk,yk)∗
[
xk+1 − xk
xk+1 − xk

]
+

1

2

[
xk+1 − xk
xk+1 − xk

]∗
∇2

xE(xk,yk)

[
xk+1 − xk
xk+1 − xk

]
=E(xk,xk)− αk ‖∇xE(xk,yk)‖22 +

α2
k

2
<

(
∇xE(xk,yk)∗

(∑
n

fnf∗nyky
∗
kfnf∗n

)
∇xE(xk,yk)

)

=E(xk,yk)− αk ‖(∇xE(xk,yk)‖22 +
α2
k

2
∇xE(xk,yk)∗

(∑
n

fnf∗nyky
∗
kfnf∗n

)
∇xE(xk,yk)

=E(xk,yk)− αk

(
‖∇xE(xk,yk)‖22 −

αk
2
∇xE(xk,yk)∗

(∑
n

fnf∗nyky
∗
kfnf∗n

)
∇xE(xk,yk)

)
(A.1)

The last equality hold because
∑
n fnf∗nyky

∗
kfnf∗n is Hermitian. We choose αk > 0.

Therefore, E(xk+1,yk)− E(xk,yk) ≤ 0 as long as

2

αk
≥
∇xE(xk,yk)∗ (

∑
n fnf∗nyky

∗
kfnf∗n)∇xE(xk,yk)

‖∇xE(xk,yk)‖22
,
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which is guaranteed if

αk ≤
2

‖
∑
n fnf∗nyky∗kfnf∗n‖2

.

To minimize E(xk+1,yk)−E(xk,yk), it is easy seen from (A.1) that αk is chosen as

αk =
‖∇xE(xk,yk)‖22

∇xE(xk,yk)∗ (
∑
n fnf∗nyky∗kfnf∗n)∇xE(xk,yk)

.

In this case,

E(xk+1,yk)−E(xk,yk) ≈ −
‖∇xE(xk,yk)‖42

2∇xE(xk,yk)∗ (
∑
n fnf∗nyky∗kfnf∗n)∇xE(xk,yk)

. (A.2)

Now we consider the WF algorithm, which minimizes G(x) = 1
N

∑N
n=1(|f∗nx|2 −

bn)2. Assume we have the same xk as in the alternating gradient descent algorithm,
and the WF algorithm generates the new iterates by

xk+1 = xk − δk∇xG(xk).

With the optimal choice of δk, an analogous analysis leads to

G(xk+1)−G(xk) ≈ −1

2

‖∇xG(xk)‖42
< (∇xG(xk)∗H11(xk)∇xG(xk)) + < (∇xG(xk)TH21(xk)∇xG(xk))

,

(A.3)
where < denotes the real part, and

H11(xk) = 4
∑
n

fnf∗nxkx
∗
kfnf∗n,

H21(xk) =
∑
n

(
fnf∗nxkx

∗
kfnf∗n + fnf∗nxkx

∗
kfnf∗n

)
.

Since we assumed xk ≈ yk and λ = 0,

∇xG(xk) ≈ 2∇yE(xk,yk), (A.4)

which implies

< (∇xG(xk)∗H11(xk)∇xG(xk)) =∇xG(xk)∗H11(xk)∇xG(xk)

≈ (2∇yE(xk,yk))
∗

(
4
∑
n

fnf∗nxkx
∗
kfnf∗n

)
(2∇yE(xk,yk))

≈16 · (∇yE(xk,yk))
∗

(∑
n

fnf∗nyky
∗
kfnf∗n

)
∇yE(xk,yk).

(A.5)

If we further assume all vectors involved are real, then we haveH21(xk) = 2
∑
n fnf∗nxkx

∗
kfnf∗n

and

<
(
∇xG(xk)TH21(xk)∇xG(xk)

)
= ∇xG(xk)∗H21(xk)∇xG(xk)

≈ 8 · ∇yE(xk,yk)∗

(∑
n

fnf∗nyky
∗
kfnf∗n

)
∇yE(xk,yk).

(A.6)
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Substituting (A.4), (A.5), and (A.6) into (A.3), we get

(G(xk+1)−G(xk)) ≈ 2

3
(E(xk+1,yk)− E(xk,yk))

This means that the alternating gradient descent algorithm is 1.5 times faster than
Wirtinger flow in terms of the decreasing of the objective.


