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A NONCONFORMING IMMERSED FINITE ELEMENT METHODS
FOR ELLIPTIC INTERFACE PROBLEMS

TAO LIN † , DONGWOO SHEEN‡ , AND XU ZHANG§

Abstract. A new immersed finite element (IFE) method is developed for second–order ellip-
tic problems with discontinuous diffusion coefficient. The IFE space is constructed based on the
rotated–Q1 nonconforming finite elements with the integral-value degrees of freedom. The standard
nonconforming Galerkin method is employed in this IFE method without any penalty stabilization
term. Error estimates in energy– and L2–norms are proved to be better than O(h

√
| log h|) and

O(h2| log h|), respectively, where the logarithm factors reflect jump discontinuity. Numerical results
are reported to confirm our analysis.
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interface problems
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1. Introduction. We consider the second-order elliptic interface problem:

−∇ · (β∇u) = f in Ω− ∪ Ω+,(1.1a)

u = g on ∂Ω,(1.1b)

where, without loss of generality, we assume that a C2-continuous interface curve
Γ separates the physical domain Ω into two sub-domains Ω+ and Ω−, such that
Ω = Ω+ ∪ Ω− ∪ Γ, see an illustration in Figure 1.1. The physical domain Ω ⊂ R2 is
assumed to be occupied by two materials such that the diffusion coefficient β(x, y)
is discontinuous across the interface Γ, and it is assumed to be a piecewise constant
function defined by

(1.2) β(x, y) =

{
β− if (x, y) ∈ Ω−,
β+ if (x, y) ∈ Ω+,

such that min{β−, β+} > 0. Across the interface Γ, the solution and the normal
component of the flux are assumed to be continuous, i.e.,

[u]Γ = 0,(1.3a)

[[ν · β∇u]]Γ = 0,(1.3b)

where [v]Γ = v+|Γ − v−|Γ, and [[ν · β∇u]]Γ = ν+ · β+∇u+ + ν− · β−∇u−, with ν the
unit normal of Γ.

Conventional finite element methods (FEM) can solve this elliptic interface prob-
lem satisfactorily provided that solution meshes are shaped to fit the material interface
[4]; otherwise the accuracy of the solution is uncertain [1]. Immersed finite element
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Fig. 1.1. A geometry of interface problems. Body-fitting mesh and non-body-fitting mesh.

(IFE) methods [2, 5, 10, 13, 18, 23, 24, 27, 28, 30], on the other hand, do not re-
quire meshes to fit the interface. Hence, if desired, Cartesian meshes can be used to
solve interface problems which is advantageous in many simulations. For example,
in particle-in-cell methods for plasma particle simulations [19, 20], it is preferable to
solve the governing electric potential interface problem on Cartesian meshes for ef-
ficient particle tracking. Also, IFE methods, in either a standard fully discrete or a
semi discrete (the method of lines) formulation, can be used to solve time dependent
problems with moving interfaces [16, 25] on a fixed Cartesian mesh throughout the
whole simulation.

The basic idea of IFE methods is to locally modify finite element functions on
interface elements to fit the interface jump conditions (1.3a) and (1.3b). For ellip-
tic interface problems, most IFE methods in the literature are modified from the
Lagrange type conforming finite element spaces, whose degrees of freedom are deter-
mined by nodal values at the mesh points. However, IFE spaces originated from these
conforming FE spaces are usually nonconforming because IFE functions are discon-
tinuous across interface edges. This discontinuity can be harmfully large for certain
configuration of interface location and diffusion coefficient. Consequently, the IFE
solution is often less accurate around the interface than the rest of solution domain.
Our recent study in [26, 31] indicates that the convergence rates of these conforming
type IFE functions used in the Galerkin formulation can deteriorate as the mesh size
gets small.

New partially penalized immersed finite element (PPIFE) methods are recently
introduced in [26, 31] to cope with the negative impacts caused by the discontinuity
in IFE functions. In the new PPIFE scheme, the flux jump terms and penalty terms
are added on the interface edges to ensure the consistency and the stability of the
scheme. These PPIFE methods significantly improve the numerical approximation
as the errors around the interface are reduced dramatically, and overall convergence
rates are very stable in both energy and the L2- norms. Moreover, it is theoretically
proved that the PPIFE methods convergence optimally in energy norm provided that
the exact solution is piecewise smooth [26].

In this article, we develop a new IFE method that uses an alternative approach to
effectively alleviate the harmful impacts of discontinuity in IFE functions. In this new
framework, the continuity of each IFE function across element boundary is weakly
enforced; hence there is no need to add penalty terms in the new scheme. Specifically,
the new IFE space is based on nonconforming finite element spaces [3, 7, 8, 21, 29]
rather than conforming Lagrange type finite element spaces. One significant differ-
ence between conforming and nonconforming finite elements is the way to impose
the continuity of finite element functions across elements. Conforming FE functions
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enforce continuity through nodal values at mesh points, while the continuity of non-
conforming FE functions is imposed weakly through average values over edges. For
IFE methods, an interface edge is cut by the interface into two pieces. The restriction
of an IFE function to an interface edge leads to two piecewise polynomials from the
two adjacent interface elements sharing this edge. In the conforming finite element
framework, these two piecewise polynomials coincide at the two endpoints of the in-
terface edge, and this guarantees the continuity of the IFE function at the end nodes
of the interface edge but not the whole interface edge. On the other hand, in the
nonconforming framework, the continuity across an element edge is weakly enforced
over the whole edge in the integral sense, no matter whether it is a polynomial or a
piecewise polynomial. Thus we can take advantage of this nonconforming mechanism
for constructing IFE functions that weakly preserve continuity over the whole of each
interface edge.

The simplest nonconforming finite element defined on triangular meshes is the
well-known Crouzeix-Raviart element [7]. For rectangular meshes, the simplest non-
conforming finite elements are known as the rotated-Q1 finite elements [3, 8, 21, 29].
Their degrees of freedom are determined either by values at midpoints of edges or by
the integral values over edges. These two types of degrees of freedom define two dif-
ferent finite element spaces if the basis functions are taken as in [29], but an identical
space if the basis functions are taken as in [3, 17]. The Crouzeix-Raviart type IFE
method was discussed in [22]. In this article, we develop a new IFE space based on
the rotated-Q1 functions with the integral-value degrees of freedom. We will derive
quasi-optimal error estimates in both energy and L2- norms for the simple Galerkin
approximation. In our error analysis, we extend a special projection operator in-
troduced in [8] to bound the flux error on edges. We show that the flux error on
interface edges will have a log |h| factor. The techniques in our error analysis are new
to interface problems and they are different from analysis in literature such as [22].

The rest of this article is organized as follows. In Section 2, we present noncon-
forming rotated-Q1 IFE space and present some basic properties. In Section 3, we
discuss the approximation capabilities of the IFE space. In Section 4, we analyze
errors of Galerkin solutions to the elliptic interface problem in energy and L2 norms.
In Section 5, numerical results are presented to confirm our analysis and to demon-
strate features of the new IFE method. Finally, a few brief conclusions are provided
in Section 6.

2. Nonconforming Immersed Finite Element Space. This section starts
with notations and some preliminaries to be used in this paper. Then, we will intro-
duce the IFE space based on nonconforming rotated-Q1 elements.

2.1. Notations and Preliminaries. Multi-index notations will be employed
such that α = (α1, α2) ∈ [Z+]

2
, |α| = α1 + α2, together with the partial differential

operator ∂α = ∂α1

∂x
α1
1

∂α2

∂x
α2
2

, where Z+ denotes the set of all nonnegative integers. By

S̃ we denote the union of finite number of mutually disjoint open sets Sj ⊂ R2, j =

1, · · · , J , and by S the interior of S̃, which contains S̃ and all its possible interfaces. If
J = 1, S̃ = S. Let Wm,p(S̃) denote the usual Sobolev space with non-negative integer
index m, equipped the norm and seminorm:

‖v‖m,p,S̃ =
( ∑
|α|≤m

∫
S̃

|∂αv(x)|p dx
)1/p

, |v|m,p,S̃ =
( ∑
|α|=m

∫
S̃

|∂αv(x)|p dx
)1/p

,
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for 1 ≤ p <∞, and

‖v‖m,∞,S̃ = max
|α|≤m

ess.sup{|v(x)| : x ∈ S̃}, |v|m,∞,S̃ = max
|α|=m

ess.sup{|v(x)| : x ∈ S̃}.

In particular, for p = 2, we denote Hm(S̃) = Wm,p(S̃), and we omit the index
p in associated norms and seminorms for simplicity, i.e., ‖v‖m,2,S̃ = ‖v‖m,S̃ , and

|v|m,2,S̃ = |v|m,S̃ . We will also follow the convention to drop the domain index S̃ if

S̃ = Ω. For p = 2, associated with the norm ‖ · ‖m,S̃ , the inner product for Hm(S̃)

will be denoted by (·, ·)Hm(S̃), with further simplification to (·, ·)S̃ and (·, ·) if m = 0

and also if S̃ = Ω, respectively.
For m ≥ 1, we define two types of subspaces of Hm(S̃) whose functions satisfy

the interface jump conditions (1.3a) and (1.3b) on Γ. First, we set

H̃m
Γ (S) = H1(S) ∩Hm(S̃),

endowed with the inner-product and the norm

〈u, v〉H̃mΓ (S) = (u, v)H1(S) +

J∑
j=1

m∑
|α|=2

(∂αu, ∂αv)L2(Sj), ‖u‖H̃mΓ (S) =
√
〈u, u〉H̃mΓ (S).

Notice that H̃1
Γ(S) = H1(S) and that

[v]Γ = 0 in the sense of H
1
2 (Γ) ∀v ∈ H̃m

Γ (S), m ≥ 1.

Finally, for m = 2, we define a subspace of H̃m
Γ (S), which will be suitable for the

analysis of interface problem, as follows:

H̃2
β(S) =

{
v ∈ H̃2

Γ(S) : [[νΓ · β∇v]]Γ = 0
}
.

In addition, the following spaces will be useful: for p ≥ 2,

W̃ 2,p
Γ (S) = W 1,p(S) ∩W 2,p(S̃); W̃ 2,p

β (S) = {v ∈ W̃ 2,p
β (Ω) | [[νΓ · β∇v]]Γ = 0}.

Here, and in what follows, [v]Γ and [[v]]Γ will mean the jumps across Γ in the sense

of W 1− 1
p ,p(Γ) and W−

1
p ,p(Γ), respectively. However, if u ∈W 2,p(S̃), these jumps are

defined in the sense of W 2− 1
p ,p(Γ) and W 1− 1

p ,p(Γ), respectively.

Assume that f ∈ H−1(Ω), where H−1(Ω) is the dual space of H1
0 (Ω) = H̃1

Γ,0(Ω̃).
For the interface problem described by (1.1) and (1.3), we consider its weak form:
find u ∈ H1(Ω) such that u = g on ∂Ω and

(2.1) a(u, v) = L(v) ∀ v ∈ H1
0 (Ω),

where

a(u, v) = (β∇u,∇v), L(v) = 〈f, v〉H−1(Ω),H1
0 (Ω) ,

〈·, ·〉V ′,V being the duality pairing between the topological vector space V and its dual
space V ′. An application of the Lax-Milgram Lemma shows that there exists a unique
solution u ∈ H1(Ω) for (2.1) such that

‖u‖1 ≤ C‖f‖−1,

where C is a positive constant depending only on Ω and β.
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2.2. Nonconforming FE functions. Let Ω be a rectangular domain or a union
of rectangular domains. Without loss of generality, assume that {Th} is a family of
uniform Cartesian meshes for domain Ω with mesh parameter h > 0. For each element
T ∈ Th, we call it an interface element if the interior of T intersects with the interface
Γ; otherwise, we call it a non-interface element. Without loss of generality, we assume
that interface elements in Th satisfy the following hypotheses when the mesh size h is
small enough:
(H1) The interface Γ cannot intersect an edge of any rectangular element at more

than two points unless the edge is part of Γ.
(H2) The interface Γ can only intersect the boundary of an interface element at

two points, and these intersection points must be on different edges of this
element.

Denote by T ih and T nh = Th \ T ih the collections of all interface elements and non-
interface elements, respectively. For a typical rectangular element T = �A1A2A3A4 ∈
Th, the following conventions for its vertices and edges are assumed:

(2.2) A1 = (x0, y0), A2 = (x0 + hx, y0), A3 = (x0 + hx, y0 + hy), A4(x0, y0 + hy),

and

(2.3) γ1 = A1A2, γ2 = A2A3, γ3 = A3A4, γ4 = A4A1.

We follow the classical triplet definition of a finite element [6]. On the element T , the
local FE space is defined by

(2.4) ΠT = Span

{
1,
x− x0

hx
,
y − y0

hy
,

(
x− x0

hx

)2

−
(
y − y0

hy

)2
}
.

The degrees of freedom are defined as the average values over edges:

(2.5) ΣT =

{
1

|γj |

∫
γj

ψT ds, j = 1, 2, 3, 4 : ∀ ψ ∈ ΠT

}
,

where |γj | denotes the length of the edge γj . The local basis functions ψj,T , j =
1, 2, 3, 4, fulfill

(2.6)
1

|γk|

∫
γk

ψj,T ds = δjk, ∀ j, k = 1, 2, 3, 4.

Set the local finite element space on an element T as follows

(2.7) Snh (T ) = Span {ψj,T : j = 1, 2, 3, 4}.

It is obvious that on every element T ∈ Th, Snh (T ) = ΠT .

2.3. Nonconforming IFE Functions. Next, we describe the construction of a
local IFE function φT on a typical interface element T ∈ T ih whose vertices and edges
are given in (2.2) - (2.3).

Assume that an interface curve Γ intersects T ∈ T ih at two different points D
and E, and the line segment DE separates T into two subelements T+ and T−.
Depending on the adjacency of the edges containing D and E, the interface elements
will be classified as Type I and Type II interface elements such that these two edges
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are located at two adjacent edges and at two opposite edges, respectively. We use
a Type II interface element to exemplify the construction of the local IFE functions
and corresponding spaces, i.e., we assume the interface points are such that

D = (x0 + dhx, y0), E = (x0 + ehx, y0 + hy),

where d, e ∈ (0, 1). The local IFE function φT is defined as a piecewise rotated Q1

polynomial as follows:
(2.8)

φT (x, y) =


c+1 + c+2

(
x− x0

hx

)
+ c+3

(
y − y0

hy

)
+ c+4

((
x− x0

hx

)2

−
(
y − y0

hy

)2
)

in T+,

c−1 + c−2

(
x− x0

hx

)
+ c−3

(
y − y0

hy

)
+ c−4

((
x− x0

hx

)2

−
(
y − y0

hy

)2
)

in T−.

The coefficients c±j are determined by the average value vj on each edge γj :

(2.9)
1

|γj |

∫
γj

φT ds = vj , j = 1, 2, 3, 4,

and the following interface jump conditions

(2.10) [φT ]DE = 0,

and

(2.11)

∫
DE

[[νDE · β∇φT ]]
DE

ds = 0,

where νDE is the unit normal on DE. Note that the continuity condition (2.10) is
equivalent to

(2.12) [φT (D)] = 0, [φT (E)] = 0, c+4 = c−4 .

Equations (2.9)–(2.11) provide eight constraints and lead to an 8 × 8 algebraic
system McC = V about the coefficients C = (c−1 , · · · , c−4 , c+1 , · · · , c+4 )t with V =
(v1, · · · , v4, 0, · · · , 0)t. By direct calculations, one can verify that the matrix Mc is
nonsingular for all β± > 0 and 0 < d, e < 1; see [31] for more details. Hence, an
IFE function φT satisfying jump conditions (2.10) and (2.11) is uniquely determined
by its integral values vj over edges γj , j = 1, 2, 3, 4. For each j = 1, 2, 3, 4, let
V = Vj = (v1, · · · , v4, 0, · · · , 0)t ∈ R8 be the j-th canonical vector such that vj = 1
and vk = 0 for k 6= j. We can solve for Cj = (c−1 , · · · , c−4 , c+1 , · · · , c+4 )t and use it in
(2.8) to form the j-th nonconforming rotated-Q1 local IFE basis function φj,T . Figure
2.1 presents illustrations for a comparison of a standard rotated Q1 finite element basis
function and its corresponding rotated Q1 IFE basis functions in both Type I and
Type II interface elements.

Denote by Sih(T ) = Span {φj,T : j = 1, 2, 3, 4} the local rotated-Q1 IFE space on
an interface element T . The global IFE space is defined as follows

Sh(Ω) =
{
v ∈ L2(Ω) : v|T ∈ Snh (T ) if T ∈ T nh , v|T ∈ Sih(T ) if T ∈ T ih ;∫

γ

[v]γds = 0 for all interior edges γ of Th
}
.(2.13)
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Fig. 2.1. Nonconforming FE/IFE local bases with integral-value degrees of freedom

2.4. Basic Properties of IFE Space. We summarize some basic and useful
properties for the IFE space Sh(Ω) in this subsection. The results can be verified via
straightforward calculation, and we also refer to [31] for some of their proofs.

Lemma 2.1. (Unisolvency) On each interface element T ∈ T ih , an IFE function
φT ∈ Sih(T ) is uniquely determined by its integral values (2.9) and interface jump
conditions (2.10) and (2.11).

Lemma 2.2. (Continuity) On each interface element T ∈ T ih , the local IFE
space Sih(T ) ⊂ C0(T ).

Lemma 2.3. (Partition of Unity) On each interface element T ∈ T ih , the IFE
basis functions φi,T satisfy the partition of unity property, i.e.,

(2.14)

4∑
j=1

φj,T (x, y) = 1, ∀(x, y) ∈ T.

Lemma 2.4. (Consistency) On each interface element T ∈ T ih , the IFE basis
functions are consistent to standard finite element basis functions in the following
sense:

1. If there is no jump in the coefficient, i.e., β+ = β−, then the IFE basis
functions φj,T become the standard FE basis functions ψj,T .

2. If min{|T+|, |T−|} shrinks to zero, then the IFE basis functions φj,T become
the standard FE basis functions ψj,T . Here, |T s| denotes the area of T s,
s = +,−.

Lemma 2.5. (Flux continuity on Γ) On each interface element T ∈ T ih , every
IFE function φT ∈ Sih(T ) satisfies the flux jump condition weakly as follows∫

Γ∩T
[[ν · β∇φT ]]Γ∩T ds = 0,

where ν is the unit normal to Γ.
Lemma 2.6. (Boundedness) There exists a constant C, independent of interface

location, such that for j = 1, 2, 3, 4, and k = 0, 1, 2,

(2.15) ‖φj,T ‖k,∞,T ≤ Ch−k ∀ T ∈ T ih .

Theorem 2.7. (Trace Inequality) There exists a constant C > 0, depending
only on the diffusion coefficient β, such that

(2.16) ‖ν · β∇v‖0,γ ≤ Ch−
1
2

T ‖∇v‖0,T ∀v ∈ Sih(T )
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where γ is an edge of T , and ν is the unit outward normal to T .

Theorem 2.8. (Inverse Inequality) There exists a constant C, depending only
on the diffusion coefficient β, such that

(2.17) |v|k,∞,T ≤ Ch−1
T |v|k,T , |v|k,T ≤ Chl−kT |v|l,T , ∀v ∈ Sih(T ), 0 ≤ l ≤ k ≤ 2.

3. The Interpolation Operator and Approximation Capability. In this
section, we discuss the approximation capability for the nonconforming IFE space
Sh(Ω). On each non-interface element T ∈ T nh , the local interpolation is defined
canonically by IT : C(T )→ Snh (T ), such that,

(3.1) ITu =

4∑
i=1

(
1

|γi|

∫
γi

u ds

)
ψi,T ,

where γj denote the edges of T . The standard scaling argument leads to the following
error estimates [29, Lemma 1]:

(3.2) ‖ITu− u‖0,T + h|ITu− u|1,T ≤ Ch2|u|2,T .

On each interface element T ∈ T ih , the interpolation operator IT : C(T ) → Sih(T ) is
defined similarly as follows:

(3.3) ITu =

4∑
i=1

(
1

|γi|

∫
γi

u ds

)
φi,T ∀ u ∈ C(T ).

Finally, we define the global IFE interpolation Ih : C(Ω) → Sh(Ω) piecewisely such
that

(Ihu)|T = ITu ∀ T ∈ Th.

The error estimates for the interpolation operator on interface elements are re-
ported in [11, 12, 31]. We only state the results in the following theorems.

Theorem 3.1. There exists a constant C > 0, independent of interface location,
such that

(3.4) ‖ITu− u‖0,T + h|ITu− u|1,T ≤ Ch2‖u‖H̃2
β(T ) ∀u ∈ H̃2

β(T ),

on interface element T ∈ T ih .

Theorem 3.2. There exists a constant C > 0, such that the following interpola-
tion error estimate holds:

(3.5) ‖Ihu− u‖0,Ω + h

(∑
T∈Th

|ITu− u|21,T

) 1
2

≤ Ch2‖u‖H̃2
β(Ω) ∀u ∈ H̃2

β(Ω).

4. The IFE Galerkin Method and Error Estimates. In this section, we
consider a nonconforming IFE Galerkin method and carry out its error estimation.
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4.1. The nonconforming IFE Galerkin method. Given a mesh Th, we de-
note by Eh, E̊h and Ebh the set of its edges, interior edges, and boundary edges, respec-
tively. The sets of interface edges and non-interface edges are denoted by E ih and Enh ,
respectively. For the sake of simplicity, in the following discussion, we assume that
the interface curve Γ does not intersect the boundary ∂Ω. Consequently, Ebh ⊂ Enh .

Define the bilinear and linear form

ah(u, v) =
∑
T∈Th

∫
T

β∇u · ∇v dx, L(v) =
∑
T∈Th

∫
T

fv dx .

The nonconforming IFE Galerkin method is to find uh ∈ Sh(Ω) such that

(4.1) ah(uh, vh) = L(vh), ∀ vh ∈ S̊h(Ω),

subject to the boundary conditions:

(4.2)

∫
γ

uh ds =

∫
γ

g ds, ∀ γ ∈ Ebh,

and the test function space is defined as follows

S̊h(Ω) = {v ∈ Sh(Ω) :

∫
γ

v ds = 0, if γ ∈ Ebh}.

In the following, we derive the error estimation of IFE solution uh.

4.2. Projection operators. For convenience in the analysis to follow, let

γjk = ∂Tj ∩ ∂Tk, γj = ∂Tj ∩ ∂Ω, ∀Tj , Tk ∈ Th,

and write

vj = v|Tj ∀Tj ∈ Th; vjk = vj|γjk ∀γjk ∈ E ih.

Set

Λh =
{
λ | λ = (λjk, λkj) ∈ (P0(γjk))2, λjk + λkj = 0 ∀γjk ∈ E̊h;

λ = λj ∈ P0(γj) ∀γj ∈ Ebh
}
.

Denote by νj the unit outward normal to Tj . We will use the following projection

operators introduced in [8]: Π0 : Π
γ∈Eh

L2(γ)→ Π
γ∈Eh
P0(γ) and Πν : H̃2

β(Ω)→ Λh by

〈v −Π0v, 1〉γ = 0 ∀v ∈ L2(γ) ∀γ ∈ Eh,(4.3) 〈
β
∂vj
∂νj
−Πνv, 1

〉
γjk

= 0 ∀v ∈ H̃2
β(Ω) ∀γjk ∈ Eh,(4.4)

so that Πγ
0(v) := Π0(v|γ) = 1

|γ|
∫
γ
v ds is the average of v over γ and

(
Πνv|γjk ,Πνv|γkj

)
=

(
Π
γjk
0 β

∂vj
∂νj

,Π
γkj
0 β

∂vk
∂νk

)
∈ R2 ∀γjk ∈ E ih.
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Lemma 4.1. Let γ = (0, h) with γ− = (0, α) and γ+ = (α, h). Assume u ∈ L2(γ)

and u|γs ∈ H
1
2 (γs), s = −,+. Then u ∈ H 1

2−ε(γ) for every ε ∈ (0, 1
4 ), and there exists

a constant C such that

‖u‖ 1
2−ε,γ ≤

C√
ε

(
‖u‖ 1

2 ,γ
− + ‖u‖ 1

2 ,γ
+

)
.

Proof. For every ε ∈ (0, 1
4 ), let σ = 1

2 − ε. Then σ ∈ ( 1
4 ,

1
2 ). For q ≥ 1 and y ∈ γ−,∫

γ+

1

|x− y|(1+2σ)q
dx =

(h− y)1−(1+2σ)q − (α− y)1−(1+2σ)q

1− (1 + 2σ)q
.

Since σ ∈ ( 1
4 ,

1
2 ), we specifically choose

q =
1

2

(
1 +

2

1 + 2σ

)
=⇒ q =

2− ε
2(1− ε) .

Then 1 ≤ q < 2
1+2σ , 1− (1 + 2σ)q 6= −1, and 1 + 2σ ≤ (1 + 2σ)q < 2. Hence,

I(γ−, γ+, σ, q) :=

∫
γ−

∫
γ+

1

|x− y|(1+2σ)q
dxdy

=

(
1

1− (1 + 2σ)q

)(
1

2− (1 + 2σ)q

)(
h2−(1+2σ)q − (h− α)2−(1+2σ)q − α2−(1+2σ)q

)
≤ C

∣∣∣∣ 1

1− (1 + 2σ)q

∣∣∣∣ ∣∣∣∣ 1

2− (1 + 2σ)q

∣∣∣∣ = C

∣∣∣∣ 1

1− ε

∣∣∣∣ ∣∣∣∣1ε
∣∣∣∣ ≤ C

ε
.

Therefore, using p such that 1
p + 1

q = 1, and the above estimate, we have

∫
γ−

∫
γ+

|u(x)− u(y)|2
|x− y|1+2σ

dxdy

≤
∫
γ−

([∫
γ+

|u(x)− u(y)|2p dx
] 1

2p

)2 [∫
γ+

1

|x− y|(1+2σ)q
dx

] 1
q

dy

≤ 2

∫
γ−
‖u‖20,2p,γ+

[∫
γ+

1

|x− y|(1+2σ)q
dx

] 1
q

dy + 2

∫
γ−
|u(y)|2

[∫
γ+

1

|x− y|(1+2σ)q
dx

] 1
q

dy.

≤ 2‖u‖20,2p,γ+

(∫
γ−

1pdy

) 1
p

I(γ−, γ+, σ, q)
1
q + 2

(∫
γ−
|u(y)|2pdy

) 1
p

I(γ−, γ+, σ, q)
1
q

≤ C‖u‖20,2p,γ+

(
1

ε

) 1
q

+ C‖u‖20,2p,γ−
(

1

ε

) 1
q

≤ C
(

1

ε

) 2(1−ε)
2−ε (

‖u‖21
2 ,γ
− + ‖u‖21

2 ,γ
+

)
.

In the last step, we used the Sobolev embedding theorem for one dimension:

W
1
2 ,2(γs) ↪→W 0,p(γs), s = −,+, p ∈ [1,∞).
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By definition of the fractional Sobolev norm, we have

‖u‖2σ,γ = ‖u‖20,γ +

∫
γ

∫
γ

|u(x)− u(y)|2
|x− y|1+2σ

dxdy

= ‖u‖20,γ +

∫
γ−

∫
γ−

|u(x)− u(y)|2
|x− y|1+2σ

dxdy + 2

∫
γ−

∫
γ+

|u(x)− u(y)|2
|x− y|1+2σ

dxdy

+

∫
γ+

∫
γ+

|u(x)− u(y)|2
|x− y|1+2σ

dxdy

≤ ‖u‖21
2 ,γ
− + ‖u‖21

2 ,γ
+ + C

(
1

ε

) 2(1−ε)
2−ε (

‖u‖21
2 ,γ
− + ‖u‖21

2 ,γ
+

)
,

which leads to

‖u‖σ,γ ≤
C

ε(1−ε)/(2−ε)

(
‖u‖ 1

2 ,γ
− + ‖u‖ 1

2 ,γ
+

)
≤ C√

ε

(
‖u‖ 1

2 ,γ
− + ‖u‖ 1

2 ,γ
+

)
because for small ε, we have

1− ε
2− ε =

1

2
− ε

4
− ε2

8
− ε3

16
− · · · ≤ 1

2
.

Theorem 4.2. Let T ∈ Th and let γ be an edge of T . Then there exists a constant
C > 0 such that the following hold on a mesh Th with a sufficiently small mesh size:

1. If T ∈ T nh and v ∈ H2(T ) + Snh (T ), then

‖β ∂v
∂ν
−Πνv‖0,γ ≤ Ch

1
2 ‖v‖H2(T ).

2. If γ ∈ Enh but T ∈ T ih , and v ∈ H̃2
β(T ) + Sih(T ), then

‖β ∂v
∂ν
−Πνv‖0,γ ≤ Ch

1
2

(
‖v‖H2(T̃−) + ‖v‖H2(T̃+)

)
.

3. If γ ∈ E ih and v ∈ H̃2
β(T ) + Sih(T ), then

‖β ∂v
∂ν
−Πνv‖0,γ ≤ Ch

1
2 | log h| 12

(
‖v‖H2(T̃−) + ‖v‖H2(T̃+)

)
.

Here, for T ∈ T ih , designate

T̃ s =

{
T ∩ Ωs for v ∈ H̃2

β(T ),

T s for v ∈ Sh(T ),
for s = ±.

Proof. Let γ ∈ Eh. In the first two cases we assume γ ∈ Enh , but for the third case
we assume γ ∈ E ih. Then by the standard trace theorem or the lemma above, we have

β ∂v∂ν ∈ H
1
2 (γ) or β ∂v∂ν ∈ H

1
2−ε(γ) for any ε ∈ (0, 1

4 ).

Since Πνv is the L2 projection of β ∂v∂ν to the space of constant polynomials,
applying the error estimate for polynomial projection and the standard error estimate
on interpolation of Sobolev spaces (see [9, Theorem 1.4, p.6]), we have

∥∥∥∥β ∂v∂ν −Πνv

∥∥∥∥
0,γ

≤


Ch

1
2

∥∥β ∂v∂ν ∥∥ 1
2 ,γ

if γ ∈ Enh ,

Ch
1
2−ε

∥∥β ∂v∂ν ∥∥ 1
2−ε,γ

if γ ∈ E ih.
(4.5)



12

For the first two cases, by the definition of ‖ · ‖ 1
2 ,γ

, we have

∥∥∥∥β ∂v∂ν
∥∥∥∥

1
2 ,γ

≤


∥∥β ∂v∂ν ∥∥1,T

if T ∈ T nh ,∥∥β ∂v∂ν ∥∥1,T̃ s
≤
∥∥β ∂v∂ν ∥∥1,T̃−

+
∥∥β ∂v∂ν ∥∥1,T̃+ if T ∈ T ih ,

which means

∥∥∥∥β ∂v∂ν
∥∥∥∥

1
2 ,γ

≤


max{β+, β−} ‖v‖2,T if T ∈ T nh ,

max{β+, β−} ‖v‖H̃2
β(T ) if T ∈ T ih .

(4.6)

For the third case, applying Lemma 4.1, we have∥∥∥∥β ∂v∂ν
∥∥∥∥

1
2−ε,γ

≤ C√
ε

(
‖β ∂v
∂ν
‖ 1

2 ,γ
− + ‖β ∂v

∂ν
‖ 1

2 ,γ
+

)
≤ C√

ε

(
‖v‖2,T̃− + ‖v‖2,T̃+

)
.(4.7)

Finally, all the estimates in this theorem follow by applying (4.6) and (4.7) to (4.5),
and by taking the minimum of 1

hε
√
ε

over 0 < ε < 1/4. Indeed, at ε = 1
2 log 1

h

, for

0 < h < 1
e2 , the minimum value is

1

hε
√
ε

= h
1

2 log h

√
2 log

1

h
=
√

2e| log h| 12 .

4.3. The Energy-Norm Error Estimate. Define the (broken) energy norm

�u� =
√
ah(u, u).

As needed, we quote the following second Strang lemma for the IFE solution:
Lemma 4.3. Let u ∈ H̃1

Γ(Ω) and uh ∈ Sh(Ω) be the solutions of (2.1) and (4.1),
respectively. Then,

�u− uh� ≤ C
{

inf
vh∈Sh(Ω)

�u− vh� + sup
wh∈Sh(Ω)

|ah(u,wh)− L(wh)|
�wh�

}
.(4.8)

We are now ready to state and derive an error estimate in the energy norm.
Theorem 4.4. Let u ∈ H̃2

β(Ω) and uh ∈ Sh(Ω) be the solutions of (2.1) and
(4.1), respectively. Then, there exists a constant C such that

(4.9) �u− uh� ≤ Ch
‖u‖H̃2

β(Ω) + | log h| 12
∑
T∈T ih

‖u‖H̃2
β(T )

 .
If, in addition, u ∈ W̃ 2,q

β (Ω) for some q > 2, then there exists h0 > 0 such that, for
all 0 < h < h0,

(4.10) �u− uh� ≤ Ch
(
‖u‖H̃2

β(Ω) +
∑
T∈T ih

‖u‖W̃ 2,q
β (T )

)
.
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Proof. We need to estimate those terms bounding �u−uh� in (4.8) of the Strang
lemma above. By the interpolation estimate (3.5), we can estimate the first term on
the right hand side of (4.8) as follows:

inf
vh∈Sh(Ω)

�u− vh� ≤ Ch‖u‖H̃2
β(Ω).(4.11)

Next, let wh ∈ Sh(Ω) be arbitrary. Then, since u ∈ H1(Ω), it follows that

ah(u,wh) =
∑
j

(β∇u,∇wh)Tj = −
∑
j

(∇ · β∇u,wh)Tj +
∑
j

〈
β
∂uj
∂νj

, wh

〉
∂Tj

= (−∇ · β∇u,wh) +
∑
j

〈
β
∂uj
∂νj

, wh

〉
∂Tj

.

Hence, by choosing mj ∈ P0(Tj) to be the the average of wh over Tj , one sees that

ah(u,wh)− L(wh) =
∑
j

〈
β
∂uj
∂νj

, wh

〉
∂Tj

=
∑
j

〈
β
∂uj
∂νj
−Πνuj , wh

〉
∂Tj

=
∑
j

〈
β
∂uj
∂νj
−Πνuj , wh −mj

〉
∂Tj

.(4.12)

Hence, by Theorem 4.2, the trace inequality on Tj , and the approximation capability
of mj , we have

|ah(u,wh)− L(wh)|

≤
(∑

j

∥∥∥∥β ∂uj∂νj
−Πνuj

∥∥∥∥2

0,∂Tj

) 1
2
(∑

j

‖wh −mj‖20,∂Tj
) 1

2

≤
(
Ch

1
2

∑
T∈T nh

‖u‖2,T + Ch
1
2 | log h| 12

∑
T∈T ih

‖u‖H̃2
β(T )

)
Ch

1
2

(∑
j

‖∇wh‖20,Tj
) 1

2

≤ Ch
( ∑
T∈T nh

‖u‖2,T + | log h| 12
∑
T∈T ih

‖u‖H̃2
β(T )

)
�wh�.(4.13)

Then, applying (4.11) and (4.13) to (4.8) leads to (4.9).

Assume that u ∈ W̃ 2,q
β (Ω) for some q > 2. Then choose p such that 1

p + 2
q = 1, so

that, for T ∈ T ih

‖u‖H̃2
β(T ) ≤

(∑
s=±

∫
T s

∑
|α|≤2

|Dαu|2dx
) 1

2 ≤
(∫

T

1pdx

) 1
2p (∑

s=±

∫
T s

( ∑
|α|≤2

|Dαu|2
) q

2

dx
) 1
q

≤ C|T | 1
2p

(∑
s=±

∫
T s

∑
|α|≤2

|Dαu|qdx
) 1
q ≤ Ch 1

p ‖u‖W̃ 2,q
β (T ).

Hence, the second term in (4.9) can be bounded by

| log h| 12
∑
T∈T ih

‖u‖H̃2
β(T ) ≤ C

∑
T∈T ih

| log h| 12h 1
p ‖u‖W̃ 2,q

β (T ).
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Since limh→0 | log h| 12h 1
p = 0, there exists h0 > 0 such that the estimate (4.10) is valid

for 0 < h < h0. This completes the proof.
Remark 4.1. Indeed, (4.9) implies that the IFE solution converge faster than

O(h| log h| 12 ), since its multiplication factor,
∑
T∈T ih ‖u‖H̃2

β(T ), goes to zero as h→ 0.

4.4. Duality and the L2-Error Estimate. Let

ηh = Ihu− uh ∈ S̊h(Ω),

and let ψ ∈ H̃2
β(Ω) be the solution of the dual problem:

−∇ · (β∇ψ) = ηh in Ω,(4.14a)

ψ = 0 on ∂Ω.(4.14b)

Assume that the interface problem (2.1) is H̃2
β(Ω)-regular so that the elliptic regularity

estimate holds:

‖ψ‖H̃2
β(Ω) ≤ C‖ηh‖0.(4.15)

We start from recalling the following standard estimates for the IFE interpolation
Ihψ: there exists a constant C such that{

‖Ihψ‖2,T ≤ C ‖ψ‖2,T ∀ T ∈ T nh ,
‖Ihψ‖2,T−j + ‖Ihψ‖2,T+

j
≤ C ‖ψ‖H̃2

β(T ) ∀ T ∈ T ih .
(4.16)

Since ηh ∈ S̊h(Ω), it follows that

‖ηh‖20 = (−∇ · β∇ψ, ηh) = ah(ψ, ηh)−
∑
j

〈
β
∂ψj
∂νj

, ηhj

〉
∂Tj

= ah(ψ, ηh)−
∑
j

〈
β
∂ψj
∂νj
−Πνψj , ηhj − qj

〉
∂Tj

for all qj ∈ P0(Tj).

Next, for all vh ∈ S̊h(Ω), similarly to (4.12), we have

ah(ηh, vh) = ah(u, vh)− ah(uh, vh)− ah(u− Ihu, vh)

=
∑
j

〈
β
∂uj
∂νj
−Πνuj , vhj

〉
∂Tj

− ah(u− Ihu, vh).

Using the property [ψ]γjk = 0 and recalling the definition of Πν , we see that〈
β
∂uj
∂νj
−Πνuj , ψj

〉
γjk

+

〈
β
∂uk
∂νk

−Πνuk, ψk

〉
γkj

= 0.

In addition, note that for vh ∈ Sh(Ω), −∇ · (β∇vh) = 0 on every T ∈ Th; hence,

ah(u− Ihu, vh) =
∑
j

(u− Ihu,−∇ · (β∇vh))Tj +
∑
j

〈
u− Ihu, β

∂vh
∂νj

〉
∂Tj

=
∑
j

〈
u− Ihu, β

∂vh
∂νj
−Πνjvh

〉
∂Tj

.
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Therefore

‖ηh‖20 = ah(ψ, ηh)−
∑
j

〈
β
∂ψj
∂νj
−Πνψj , ηhj − qj

〉
∂Tj

= ah(ηh, ψ − vh)− ah(u− Ihu, vh)

−
∑
j

〈
β
∂ψj
∂νj
−Πνψj , ηhj − qj

〉
∂Tj

+
∑
j

〈
β
∂uj
∂νj
−Πνuj , vhj − ψj

〉
∂Tj

= ah(ηh, ψ − vh)−
∑
j

〈
u− Ihu, β

∂vh
∂νj
−Πνjvh

〉
∂Tj

−
∑
j

〈
β
∂ψj
∂νj
−Πνψj , ηhj − qj

〉
∂Tj

+
∑
j

〈
β
∂uj
∂νj
−Πνuj , vhj − ψj

〉
∂Tj

.(4.17)

With these preparations, we are ready to derive the error estimate in the L2–norm
for the IFE solution.

Theorem 4.5. Assume the interface problem (2.1) is H̃2
β(Ω)-regular. Then,

there exists a constant C such that the L2-norm error of the IFE solution satisfies the
following estimate:

(4.18) ‖u− uh‖0 ≤ Ch2

| log h| 12 ‖u‖H̃2
β(Ω) + | log h|

∑
T∈T ih

‖u‖H̃2
β(T )

 .

Proof. We proceed to estimate each term on the right hand side of (4.17). First,
choose vh = Ihψ. Then, by (3.5) and (4.15), the first term on the right-hand side of
(4.17) is bounded as follows:

|ah(ηh, ψ − vh)| = |ah(ηh, ψ − Ihψ)| ≤ Ch�ηh�‖ηh‖0.(4.19)

Again, choosing qj ∈ P0(Tj) to be the the average of ηh over Tj , by Theorem 4.2, the
trace inequality on Tj , Theorem 3.2, and (4.15), we can bound the last two terms on
the right hand side of (4.17) as follows:

∣∣∣∣∑
j

〈
β
∂ψj
∂νj
−Πνψj , ηhj − qj

〉
∂Tj

∣∣∣∣+

∣∣∣∣∑
j

〈
β
∂uj
∂νj
−Πνuj , vhj − ψj

〉
∂Tj

∣∣∣∣
≤ Ch

( ∑
T∈T nh

‖ψ‖2,T + | log h| 12
∑
T∈T ih

‖ψ‖H̃2
β(T )

)
�ηh�

+Ch2
( ∑
T∈T nh

‖u‖2,T + | log h| 12
∑
T∈T ih

‖u‖H̃2
β(T )

)
‖ψ‖H̃2

β(Ω)

≤ Ch
(
| log h| 12 �ηh� + h

∑
T∈T nh

‖u‖2,T + h| log h| 12
∑
T∈T ih

‖u‖H̃2
β(T )

)
‖ηh‖0.(4.20)
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For the second term in (4.17), by Theorem 3.2, Theorem 4.2, (4.16) and (4.15),∣∣∣∑
j

〈
u− Ihu, β

∂vhj
∂νj

−Πνjvh

〉
∂Tj

∣∣∣
≤
(∑

j

|u− Ihu|20,∂Tj
) 1

2
(∑

j

∣∣∣∣β ∂vhj∂νj
−Πνjvh

∣∣∣∣2
0,∂Tj

) 1
2

≤ Ch 3
2 ‖u‖H̃2

β(Ω)

(
h
∑
T∈T nh

‖vh‖2H̃2
β(T )

+ h| log h|
∑
T∈T ih

(
‖vh‖22,T− + ‖vh‖22,T+

)) 1
2

≤ Ch2| log h| 12 ‖u‖H̃2
β(Ω)‖ηh‖0.(4.21)

Plugging the estimates (4.19)–(4.21) in (4.17) gives

‖ηh‖0 ≤ Ch| log h| 12 �ηh� + Ch2| log h| 12 ‖u‖H̃2
β(Ω)

≤ Ch| log h| 12 (�Ihu− u� + �u− uh�) + Ch2| log h| 12 ‖u‖H̃2
β(Ω).

Finally, applying Theorem 3.2 and Theorem 4.4 to the above estimate, we arrive at
the desired estimate (4.18). This completes the proof.

Remark 4.2. The estimate given in (4.18) suggests that the IFE solution con-
verges in L2-norm better than O(h2| log h|) which is optimal sans the usual | log h|
factor.

Remark 4.3. An optimal rate O(h2) without | log h| factor may be obtained with
slightly better regularity u ∈ W̃ 2,q

β (Ω), q > 2, and the elliptic regularity assumption
based on Lq-norm. In addition, the analysis requires the interpolation error estimates
for IFE functions based on Lq-norm, which will be an interesting future work.

5. Numerical Examples. In this section, we present numerical examples to
demonstrate the features of this nonconforming rotated-Q1 IFE method for elliptic
interface problems.

We test these IFE methods with the same example as given in [14, 31]. Let
Ω = (−1, 1)2, and the interface curve Γ is the circle centered at the origin with radius
r0 = π/6.28, which separates the domain into two sub-domains:

Ω− = {(x, y) ∈ Ω : x2 + y2 < r2
0}, Ω+ = {(x, y) ∈ Ω : x2 + y2 > r2

0}.

The boundary condition g and the source function f are chosen such that the exact
solution is as follows:

(5.1) u(x, y) =


ra

β−
if r < r0,

ra

β+
+

(
1

β−
− 1

β+

)
ra0 if r > r0,

where a = 5, r =
√
x2 + y2. We use a family of Cartesian meshes (Th)0<h<1, each

of which consists of N × N congruent squares of size h = 2/N . Errors of an IFE
approximation are given in L∞-, L2-, and semi H1- norms. Error in L∞-norm is
calculated using the formula:

(5.2) ‖uh − u‖L∞ = max
T∈Th

(
max

(x,y)∈T̂⊂T
|uh(x, y)− u(x, y)|

)
,



17

where T̂ consists of the 49 uniformly distributed points in T . The L2 and semi H1

norms are computed using the 9-point Gaussian quadratures.
Our first numerical experiment considers a moderate coefficient jump (β−, β+) =

(1, 10). Errors of numerical solutions are reported in Table 5.1. Convergence rates in
semi H1-norm and L2-norm confirm our error analysis (4.9) and (4.18). Data in these
tables also suggest that the convergence rate in L∞-norm are approximately O(h2),
which is also optimal from the point view of the degree of polynomials in constructing
IFE spaces Sh(Ω).

Table 5.1
Errors of Galerkin IFE solutions u− uh with β− = 1, β+ = 10

N ‖ · ‖L∞ rate ‖ · ‖L2 rate | · |H1 rate

10 2.6183E−2 1.1395E−2 1.9585E−1
20 7.3444E−3 1.8339 2.9860E−3 1.9321 9.9065E−2 0.9833
40 1.9455E−3 1.9165 7.4374E−4 2.0054 4.9894E−2 0.9895
80 5.0072E−4 1.9580 1.8547E−4 2.0036 2.5026E−2 0.9955
160 1.2702E−4 1.9789 4.6313E−5 2.0017 1.2531E−2 0.9979
320 3.1989E−5 1.9894 1.1671E−5 1.9885 6.2702E−3 0.9990
640 8.0267E−6 1.9947 2.9122E−6 2.0027 3.1363E−3 0.9995
1280 2.0101E−6 1.9975 7.2684E−7 2.0024 1.5684E−3 0.9997

The error surface eh = |uh − u| are reported in Figure 5.1. For comparison, we
also plot the error surface of Lagrange bilinear IFE solutions [14, 15]. These plots are
generated on the same mesh containing 80 × 80 elements. We note that the error of
bilinear IFE solution is much larger around interface than the rest of domain, in fact,
the error at the interface looks like an “interface crown”. However, the nonconforming
IFE solution is much more accurate than bilinear IFE solution around the interface.
In fact, there is no apparent “crown” around interface, which indicates the accuracy
of nonconforming IFE solution around interface are comparable to the accuracy far
away from the interface.

Fig. 5.1. Comparison of point-wise errors of the nonconforming rotated Q1 IFE and the bilinear
IFE solutions

Next, we take a closer look of the nonconforming rotated-Q1 IFE functions and
Lagrange bilinear IFE functions [14]. In Figure 5.2, we plot the global bases of bilinear
and rotated-Q1 IFE function on two adjacent elements. In the left plot, there is a
large gap on common interface edge of a bilinear IFE basis, where the continuity is
only enforced at two endpoints of that edge. To see it more clearly, in the right plot,
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the traces of this bilinear IFE function are plotted in blue curves which indicate that
the largest discontinuity occurs at the intersection point of the edge and the interface.
On the other hand, the middle plot shows that the discontinuity of a rotated-Q1 IFE
basis is scattered throughout the interface edge and it is less prominent. In fact, the
rotated-Q1 basis is weakly continuous across the edge in the sense that the mean values
of the two traces are exactly the same. The traces of this rotated-Q1 IFE function
are plotted in red curves which also demonstrate a smaller discontinuity across the
interface edge. This shows why the rotated Q1 IFE methods outperform bilinear IFE
methods.
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0

0.5

1
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bilinear
RQ1

Fig. 5.2. Comparison of bilinear and rotated-Q1 IFE global bases with β− = 1, β+ = 1000.

As for robustness of our nonconforming IFE methods respect to the contrast of
jumping coefficient, we test our methods in additional three coefficient configurations
including the large contrast (β−, β+) = (1, 10000), the flipping of the coefficients,
i.e., (β−, β+) = (10, 1), and (β−, β+) = (10000, 1). Errors and convergence rates are
reported in Tables 5.2, 5.3, and 5.4, respectively. The convergence rates for all the
cases are optimal, and this suggests the robustness of our IFE scheme with respect to
the jump of coefficients.

Table 5.2
Errors of Galerkin IFE solutions u− uh with β− = 1, β+ = 10000

N ‖ · ‖L∞ rate ‖ · ‖L2 rate | · |H1 rate
10 5.9646E−3 2.7360E−3 4.0678E−2
20 2.5455E−3 1.2285 1.0526E−3 1.3782 2.7824E−2 0.5479
40 7.1692E−4 1.8281 2.5767E−4 2.0303 1.4700E−2 0.9205
80 2.1533E−4 1.7353 6.3614E−5 2.0181 7.5491E−3 0.9614
160 5.9653E−5 1.8519 1.5531E−5 2.0342 3.7978E−3 0.9911
320 1.5521E−5 1.9423 4.0823E−6 1.9277 1.9146E−3 0.9881
640 4.1575E−6 1.9005 1.0069E−6 2.0194 9.5881E−4 0.9977
1280 1.0588E−6 1.9733 2.4921E−7 2.0145 4.8004E−4 0.9981

6. Conclusions. In this article, we develop the rotated-Q1 nonconforming IFE
space based on integral value degrees of freedom. This new IFE space can be used in
the usual Galerkin formulation to solve elliptic interface problems. The IFE space is
proved to have optimal approximation capabilities. Error analysis of the Galerkin IFE
solutions using integral-value degrees of freedom shows the quasi-optimal convergence
rates in both energy and the L2 norms.
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