
Accelerated Alternating Direction Method of Multipliers: an

Optimal O(1/K) Nonergodic Analysis

Huan Li∗ Zhouchen Lin†

December 13, 2018

Abstract

The Alternating Direction Method of Multipliers (ADMM) is widely used for linearly con-
strained convex problems. It is proven to have an o(1/

√
K) nonergodic convergence rate and a

faster O(1/K) ergodic rate after ergodic averaging, where K is the number of iterations. Such
nonergodic convergence rate is not optimal. Moreover, the ergodic averaging may destroy the
sparseness and low-rankness in sparse and low-rank learning. In this paper, we modify the
accelerated ADMM proposed in [Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao, An Acceler-
ated Linearized Alternating Direction Method of Multipliers, SIAM J. on Imaging Sciences,
2015, 1588-1623] and give an O(1/K) nonergodic convergence rate analysis, which satisfies
|F (xK) − F (x∗)| ≤ O(1/K), ‖AxK − b‖ ≤ O(1/K) and xK has a more favorable sparseness
and low-rankness than the ergodic peer, where F (x) is the objective function and Ax = b
is the linear constraint. As far as we know, this is the first O(1/K) nonergodic convergent
ADMM type method for the general linearly constrained convex problems. Moreover, we show
that the lower complexity bound of ADMM type methods for the separable linearly constrained
nonsmooth convex problems is O(1/K), which means that our method is optimal.

1 Introduction

We consider the following general linearly constrained convex problem:

min
xi∈Rni

2∑
i=1

(fi(xi) + hi(xi)) , s.t.

2∑
i=1

Aixi = b, (1)

where both fi and hi are convex. fi is Li-smooth and hi can be nonsmooth. Specially, fi can vanish
in problem (1). Problems like (1) arise from diverse applications in machine learning, imaging
and computer vision, see, e.g., [1, 2, 3] and references therein. In machine learning, fi is often
the loss function to fit the data and hi is the regularizer that promotes some prior information on
the desired solution, such as sparseness and low-rankness. We say fi is Li-continuous if it satisfies
|fi(xi)−fi(yi)| ≤ Li‖xi−yi‖,∀xi,yi, and Li-smooth if ∇fi is Li-continuous: ‖∇fi(xi)−∇fi(yi)‖ ≤
Li‖xi − yi‖,∀xi,yi. We denote Fi(xi) = fi(xi) + hi(xi), x = (x1,x2), F (x) =

∑2
i=1 Fi(xi) and

Ax =
∑2
i=1 Aixi. The discussion in this paper also suits for the general constraint

∑2
i=1Ai(xi) = b,

where Ai : Rni → Rm is a linear mapping. For simplicity we focus on
∑2
i=1 Aixi = b. We denote

‖x‖ as ‖x‖2 for a vector x.

∗Peking University. Email: lihuanss@pdu.edu.cn
†Peking University. Email: zlin@pku.edu.cn

1

ar
X

iv
:1

60
8.

06
36

6v
5

 [
m

at
h.

N
A

]
 1

2
D

ec
 2

01
8

ADMM [1] is widely used in imaging and vision to solve problem (1) since the separable structure
can be exploited. ADMM consists of three steps:

xk+1
1 = argmin

x1

L(x1,x
k
2 , λ

k, ρ), (2a)

xk+1
2 = argmin

x2

L(xk+1
1 ,x2, λ

k, ρ), (2b)

λk+1 = λk + ρ

(
2∑
i=1

Aix
k+1
i − b

)
, (2c)

where

L(x1,x2, λ, ρ) =

2∑
i=1

(fi(xi) + hi(xi)) +

〈
λ,

2∑
i=1

Aixi − b

〉
+
ρ

2

∥∥∥∥∥
2∑
i=1

Aixi − b

∥∥∥∥∥
2

is the augmented Lagrangian function and λ is the Lagrange multiplier. When Fi is not simple and
Ai is non-unitary, the cost of solving the subproblems may be high. Thus the Linearized ADMM
(LADMM) is proposed by linearizing the augmented term ‖Ax − b‖2 and the complex fi [4, 5, 6]
such that the subproblems may even have closed form solutions.

Traditional convergence rate analysis on ADMM is difficult due to its serial update of x1 and x2,
which means that (xk+1

1 ,xk+1
2) is not the solution to minx1,x2

L(x1,x2, λ
k). Thus some alternative

criteria are used instead. The most popular criterion is the ergodic convergence rate.

Definition 1 Let {x1, · · · ,xK} be a sequence produced by the algorithm that they have the property
promoted by the regularizer h(x), for instance, sparseness and low-rankness. We say a convergence
rate is nonergodic if it measures the optimality at xK directly. A convergence rate is ergodic if it
considers the optimality at the point of

∑K
k=1 ckx

k with ck > 0 and
∑K
k=1 ck = 1.

The most commonly used ergodic criterion for ADMM is the average form of 1
K

∑K
k=1 xk. It

is proved in [7] that ADMM converges with an O(1/K) ergodic rate. A critical disadvantage of
the ergodic result is that the point measured for the convergence rate analysis may not have the
property promoted by h(x) since it may be destroyed by the ergodic averaging. For example, in
sparse learning, {x1, · · · ,xK} are sparse, but their average may not be sparse any more. So the
nonergodic analysis is strongly required for ADMM. He and Yuan [8] proved ‖wK+1 −wK‖2 ≤ 1

K
with wK = (xK , λK). However, this criterion does not directly measure how far F (xK) is from
F (x∗) and how much the constraint error ‖AxK −b‖ is, where x∗ is an optimal solution to problem
(1).

Recently, Davis and Yin [9] proved that the Douglas-Rachford (DR) splitting [10] converges
with an O(1/K) ergodic rate and an o(1/

√
K) nonergodic rate. Moreover, they constructed some

examples showing that this rate is tight. As is known, ADMM is a special case of DR splitting [11]. So
for ADMM, Davis and Yin [9] established |F (xK)−F (x∗)| ≤ o(1/

√
K) and ‖AxK −b‖ ≤ o(1/

√
K)

in a nonergodic sense. Thus in sparse and low-rank learning, we have that for ADMM the nonergodic
solution xK is sparse or low-rank, but has the slow o(1/

√
K) theoretical convergence rate, and the

ergodic solution
∑K
k=1 ckx

k has the faster O(1/K) theoretical convergence rate, but may not be
sparse or low-rank. We want to combine the advantages of these two aspects, i.e., a faster O(1/K)
convergence rate but still in the nonergodic sense. This paper aims to solve this problem via using
Nesterov’s acceleration scheme for ADMM.

Beck and Teboulle [12] extended Nesterov’s accelerated gradient method [13] to the nonsmooth
unconstrained problem of minx f(x) + h(x), which consists of two steps: first extrapolates a point

yk = xk + θk(1−θk−1)
θk−1 (xk − xk−1) and then computes xk+1 = Proxαh

(
yk − α∇f(yk)

)
, where

Proxαh(z) = argminx h(x) + 1
2α‖x − z‖2. On the other hand, Nesterov [14] proposed another

2

accelerated gradient method, which consists of three steps: zk = (1 − θk−1)zk−1 + θk−1xk, yk =
(1− θk)zk + θkxk and xk+1 = Prox α

θk
h

(
xk − α

θk
∇f(yk)

)
. We follow [15] to name these two schemes

as Nesterov’s first and second acceleration scheme, respectively.
Chen et al. [16] proposed an inertial proximal ADMM which uses the same idea as Nesterov’s first

scheme: first extrapolates a point (x̂k1 , x̂
k
2 , λ̂

k) and then performs the steps (2a)-(2c) on (x̂k1 , x̂
k
2 , λ̂

k).
However, they only established the o(1/

√
K) convergence rate in the sense of mink=1,··· ,K |F (xk)−

F (x∗)| ≤ o(1/
√
K) and mink=1,··· ,K ‖Axk − b‖ ≤ o(1/

√
K). Lorenz and Pock [17] analyzed the

inertial forward-backward algorithm for the general monotone inclusions, which include problem (1)
as a special case. However, no convergence rate is established in [17].

Ouyang et al. [18] proposed an accelerated ADMM via Nesterov’s second acceleration scheme.
The convergence rate is better than that of LADMM in terms of their dependence on the Lipschitz
constant of the smooth component. However, the entire convergence rate remains O(1/K) in an
ergodic sense. Nesterov’s second scheme only influences the linearization of fi in steps (2a)-(2b). It
cannot improve the nonergodic rate of ADMM. Thus, the nonergodic rate of the accelerated ADMM
in [18] cannot be better than o(1/

√
K). Please see Section 2 for detailed explanations.

When strong convexity is assumed, Goldstein et al. [19] proposed an O(1/K2) convergent ADMM
for its dual problem. When even more assumptions are made, e.g. the objective function is strongly
convex and has Lipschitz continuous gradient, or subdifferentials of the underlying functions are
piecewise linear multifunctions, linear convergence can be obtained [20, 21, 22, 23, 24]. Some re-
searchers studied the first-order primal-dual algorithm for the saddle-point problem, which includes
problem (1) as a special case. For example, Chambolle and Pock [2] established the O(1/K) ergodic
convergence rate for the general convex problems, the accelerated O(1/K2) convergence rate when
the primal or the dual objective is uniformly convex and the linear convergence rate when both
are uniformly convex. Chen et al. [25] combined Nesterov’s second scheme with the primal-dual
algorithm and also established the O(1/K) ergodic convergence rate.

1.1 Contributions

Although the O(1/K) convergence rate of ADMM and its accelerated versions is widely studied in the
literatures, they all need an ergodic averaging [7, 16, 18, 2, 25], which may destroy the sparseness and
low-rankness in sparse and low-rank learning. As far as we know, there is no literature establishing
the O(1/K) nonergodic convergence rate of ADMM type methods for the general convex problem (1).
Moreover, as proved in [9], the nonergodic convergence rate of the traditional ADMM is o(1/

√
K)

and it will be shown in Section 4 that this rate is tight. In this paper, we aim to give the first
O(1/K) nonergodic convergent ADMM type method.

We modify the accelerated ADMM proposed in [18] and give an O(1/K) nonergodic analysis
satisfying |F (xK) − F (x∗)| ≤ O(1/K) and ‖AxK − b‖ ≤ O(1/K). Compared with the O(1/K)
ergodic rate in [18, 7], our result is in a nonergodic sense and thus enjoys a more favorable sparseness
and low-rankness in applications of sparse and low-rank learning. Compared with the nonergodic
rate in [9, 18], we improve it from o(1/

√
K) to O(1/K).

We also show that the lower complexity bound of ADMM type methods for the separable linearly
constrained convex problems is O(1/K) when each Fi is nonsmooth and non-strongly convex, which
means that the convergence rate of ADMM type methods cannot be better than O(1/K) no matter
how it is accelerated. Thus our method is optimal.

3

2 Review of the Accelerated ADMM in [18]

In this section, we first review the accelerated ADMM in [18] for problem (1), which consists of the
following steps:1

yki = (1− θk)xki + θkzki , i = 1, 2, (3a)

zk+1
1 = argmin

z1

f1(zk1) +
〈
∇f1(yk1), z1 − zk1

〉
+
θkL1

2
‖z1 − zk1‖2 + h1(z1)

+
〈
λ̂k,A1z1

〉
+
〈
βAT

1 (A1z
k
1 +A2z

k
2−b), z1−zk1

〉
+
β‖A1‖2

2
‖z1−zk1‖2, (3b)

zk+1
2 = argmin

z2

f2(zk2) +
〈
∇f2(yk2), z2 − zk2

〉
+
θkL2

2
‖z2 − zk2‖2 + h2(z2)

+
〈
λ̂k,A2z2

〉
+
〈
βAT

2 (A1z
k+1
1 +A2z

k
2−b, z2−zk2

〉
+
β‖A2‖2

2
‖z2−zk2‖2, (3c)

xk+1
1 = (1− θk)xk1 + θkzk+1

1 , (3d)

xk+1
2 = (1− θk)xk2 + θkzk+1

2 , (3e)

λ̂k+1 = λ̂k + β(A1z
k+1
1 + A2z

k+1
2 − b), (3f)

where θk satisfies 1
(θk−1)2

≥ 1−θk
(θk)2

. Since the regularizer h(x) acts directly on z in (3b)-(3c),

(zk+1
1 , zk+1

2) has the property promoted by h(x) and the convergence measured at (zK1 , z
K
2) is in the

nonergodic sense. In fact, in sparse or low-rank learning, we often use the l1- norm and nuclear norm
as the regularization. The proximal operator of the l1-norm is the soft-thresholding [26], which is
defined as

argmin
z
‖z‖1 +

γ

2
‖z−w‖2 =

wi − 1

γ , if wi ≥ 1
γ ,

wi + 1
γ , if wi ≤ − 1

γ ,

0, otherwise.

Thus, if we use h(z) = ‖z‖1, (zk+1
1 , zk+1

2) tends to be sparse during the iterations. Similarly, the
proximal operator of the nuclear norm is the singular value thresholding [27], which is defined as

argmin
Z
‖Z‖∗ +

γ

2
‖Z−W‖2F = UΣ̂VT ,

where we let UΣVT = W be its SVD and

Σ̂i,i =

Σi,i − 1

γ , if Σi,i ≥ 1
γ ,

Σi,i + 1
γ , if Σi,i ≤ − 1

γ ,

0, otherwise.

Thus, if we use h(Z) = ‖Z‖∗, (Zk+1
1 ,Zk+1

2) tends to be low-rank during the iterations.

Accordingly, xK is a convex combination of z1, · · · , zK : xK = 1∑K
k=1

1

θk−1

∑K
k=1

zk

θk−1 and so it is

an ergodic result measured at (xK1 ,x
K
2). The zeros may lie in different positions of z1, · · · , zK for

sparse learning (or in different positions of their singular values for low-rank learning) and thus xK

may not be sparse or low-rank any more. It is proved in [18] that (3a)-(3f) has the O(1/K) ergodic
convergence rate measured at (xK1 ,x

K
2).

We can see that the accelerated ADMM in [18] is a direct combination of Nesterov’s second
acceleration scheme and the traditional LADMM. Nesterov’s acceleration scheme only influences

1We simplify some parameter settings and extend the class of problems it is solving, but the algorithm framework
remains the same as [18].

4

the linearization of fi and cannot improve the convergence rate of the traditional ADMM. In fact,
we can consider the special case of fi(xi) = 0, i = 1, 2 (correspondingly, Li = 0) and omit the
linearization of the augmented term (or let A1 = A2 = I for simplicity). In this case, procedure
(3a)-(3f) reduces to:

zk+1
1 = argmin

z1

h1(z1) +
〈
λ̂k,A1z1

〉
+
β

2
‖A1z1 + A2z

k
2 − b‖2, (4a)

zk+1
2 = argmin

z2

h2(z2) +
〈
λ̂k,A2z2

〉
+
β

2
‖A1z

k+1
1 + A2z2 − b‖2, (4b)

xk+1
1 = (1− θk)xk1 + θkzk+1

1 , (4c)

xk+1
2 = (1− θk)xk2 + θkzk+1

2 , (4d)

λ̂k+1 = λ̂k + β(A1z
k+1
1 + A2z

k+1
2 − b). (4e)

We can see that procedure (4a)-(4e) reduces to the traditional ADMM and (4c)-(4d) has no influence
on the iterations of the traditional ADMM. It only gives a different way of ergodic averaging. Thus
the nonergodic convergence rate of procedure (4a)-(4e) measured at (zK1 , z

K
2) remains o(1/

√
K).

Since (4a)-(4e) is a special case of (3a)-(3f), we can have that the nonergodic rate of procedure
(3a)-(3f) measured at (zK1 , z

K
2) should not be better than o(1/

√
K).

3 ALADMM-NE with O(1/K) Nonergodic Convergence Rate

In this section, we give our Accelerated LADMM with NonErgodic convergence rate (ALADMM-
NE). We first provide an equivalent description of (3a)-(3f) for the smooth case of problem (1)
in Section 3.1, which motivates our nonergodic algorithm for the nonsmooth case in Section 3.2.
Then we give the convergence rate analysis in Section 3.3 and at last, we discuss the advantage and
disadvantage of the accelerated ADMM in Section 3.4.

3.1 An Equivalent Algorithm for the Smooth Problem

In this section, we give an equivalent description of (3a)-(3f) for the smooth case of problem (1) with
hi(x) = 0, i = 1, 2:

yki = xki +
θk(1− θk−1)

θk−1
(xki − xk−1i), i = 1, 2, (5a)

xk+1
1 = argmin

x1

f1(yk1) +
〈
∇f1(yk1),x1 − y1

〉
+
L1

2
‖x1 − yk1‖2 +

〈
λk,A1x1

〉
+

β

θk
〈
AT

1 (A1y
k
1 + A2y

k
2 − b),x1 − yk1

〉
+
β‖A1‖2

2θk
‖x1 − yk1‖2, (5b)

xk+1
2 = argmin

x2

f2(yk2) +
〈
∇f2(yk2),x2 − y2

〉
+
L2

2
‖x2 − yk2‖2 +

〈
λk,A2x2

〉
+

β

θk
〈
AT

2 (A1x
k+1
1 + A2y

k
2 − b),x2 − yk2

〉
+
β‖A2‖2

2θk
‖x2 − yk2‖2, (5c)

λk+1 = λk + βτ(Axk+1 − b), (5d)

for some 1 > τ > 0.5, θ0 = 1 and θk+1 = 1
1−τ+ 1

θk
, which leads to 1

(θk−1)2
≥ 1−θk

(θk)2
and thus coincides

with the requirement for (3b)-(3f). It can be observed that if we set τ = 1, then θk = 1,yki = xki ,∀k,
and (5a)-(5d) reduces to the traditional LADMM. At first glance, (3a)-(3f) combines ADMM with
Nesterov’s second acceleration scheme while (5a)-(5d) uses Nesterov’s first acceleration scheme.

5

Proposition 1 The sequence (xk1 ,x
k
2) produced in (3a)-(3f) and (5a)-(5d) are equivalent when

hi(x) = 0, i = 1, 2.

Proof 1 We derive each step of (5a)-(5d) from (3a)-(3f). From (3a), (3d) and (3e), we have

yki = (1− θk)xki + θkzki

= (1− θk)xki +
θk

θk−1
(
xki − (1− θk−1)xk−1i

)
= xki +

θk(1− θk−1)

θk−1
(xki − xk−1i),

which is (5a). From the optimality condition of (3b), we have

0 = ∇f1(yk1) + θkL1(zk+1
1 − zk1) + AT

1 λ̂
k + βAT

1 (A1z
k
1 + A2z

k
2 − b)

+ β‖A1‖2(zk+1
1 − zk1)

3a,3d
= ∇f1(yk1) + L1(xk+1

1 − yk1) + AT
1 λ̂

k + βAT
1 (A1z

k
1 + A2z

k
2 − b)

+
β‖A1‖2

θk
(xk+1

1 − yk1)

3a
= ∇f1(yk1) + L1(xk+1

1 − yk1) + AT
1 λ̂

k

+ βAT
1

(
A1y

k
1

θk
− 1− θk

θk
A1x

k
1 +

A2y
k
2

θk
− 1− θk

θk
A2x

k
2 − b

)
+
β‖A1‖2

θk
(xk+1

1 − yk1)

= ∇f1(yk1) + L1(xk+1
1 − yk1) + AT

1 λ̂
k − β(1− θk)

θk
AT

1 (A1x
k
1 + A2x

k
2 − b)

+
β

θk
AT

1

(
A1y

k
1 + A2y

k
2 − b

)
+
β‖A1‖2

θk
(xk+1

1 − yk1)

= ∇f1(yk1) + L1(xk+1
1 − yk1) + AT

1 λ
k +

β

θk
AT

1

(
A1y

k
1 + A2y

k
2 − b

)
+
β‖A1‖2

θk
(xk+1

1 − yk1),

where we define λk = λ̂k− β(1−θk)
θk

(A1x
k
1 + A2x

k
2 −b). It is exactly the optimality condition of (5b).

Similarly, from the optimality condition of (3c), we also have

0 = ∇f2(yk2) + θkL2(zk+1
2 − zk2) + AT

2 λ̂
k + βAT

2 (A1z
k+1
1 + A2z

k
2 − b)

+ β‖A2‖2(zk+1
2 − zk2)

= ∇f2(yk2) + L2(xk+1
2 − yk2) + AT

2 λ̂
k + βAT

2 (A1z
k+1
1 + A2z

k
2 − b)

+
β‖A2‖2

θk
(xk+1

2 − yk2)

3d,3a
= ∇f2(yk2) + L2(xk+1

2 − yk2) + AT
2 λ̂

k

+ βAT
2

(
A1x

k+1
1

θk
− 1− θk

θk
A1x

k
1 +

A2y
k
2

θk
− 1− θk

θk
A2x

k
2 − b

)

+
β‖A2‖2

θk
(xk+1

2 − yk2)

6

Algorithm 1 Accelerated LADMM with NonErgodic convergence rate (ALADMM-NE)

Initialize λ0, x0
i = x−1i , i = 1, 2, 1 > τ > 0.5, β > 0, θ0 = 1, θ−1 = 1/τ .

for k = 0, 1, 2, · · · do
Update yki , i = 1, 2 using (5a),
Update xk+1

1 and xk+1
2 serially, using (11a) and (11b), respectively,

Update λk+1 using (5d),
θk+1 = 1

1−τ+ 1

θk
.

end for

= ∇f2(yk2) + L2(xk+1
2 − yk2) + AT

2 λ
k +

β

θk
AT

2

(
A1x

k+1
1 + A2y

k
2 − b

)
+
β‖A2‖2

θk
(xk+1

2 − yk2),

which is the optimality condition of (5c). From the definition of λk, we have

λk+1 − λk

= λ̂k+1 − λ̂k − β(1− θk+1)

θk+1
(Axk+1 − b) +

β(1− θk)

θk
(Axk − b)

3f
= β(Azk+1 − b)− β(1− θk+1)

θk+1
(Axk+1 − b) +

β(1− θk)

θk
(Axk − b)

3d,3e
= β

(
Axk+1 − (1− θk)Axk

θk
− b

)
− β(1− θk+1)

θk+1
(Axk+1 − b)

+
β(1− θk)

θk
(Axk − b)

= β

(
(Axk+1 − b)− (1− θk)(Axk − b)

θk

)
− β(1− θk+1)

θk+1
(Axk+1 − b)

+
β(1− θk)

θk
(Axk − b)

= β

(
1

θk
− 1− θk+1

θk+1

)
(Axk+1 − b)

= βτ(Axk+1 − b),

where we define τ = 1
θk
− 1−θk+1

θk+1 and it is the same with (5d). �

3.2 The Nonergodic Algorithm for the Nonsmooth Problem

From the discussion in Section 2, we know that the accelerated ADMM proposed in [18] has the
o(1/
√
K) nonergodic convergence rate measured at (zK1 , z

k
2) and the O(1/K) ergodic convergence

rate measured at (xk1 ,x
k
2). We want to have an algorithm with the faster O(1/K) nonergodic con-

vergence rate. After establishing the equivalence between (3a)-(3f) and (5a)-(5d), a straightforward

7

intuition is to put the nonsmooth term hi(x) in steps (5b) and (5c) directly:

xk+1
1 = argmin

x1

f1(yk1) +
〈
∇f1(yk1),x1 − y1

〉
+
L1

2
‖x1 − yk1‖2 + h1(x1)

+
〈
λk,A1x1

〉
+
β

θk
〈
AT

1 (A1y
k
1+A2y

k
2−b),x1−yk1

〉
+
β‖A1‖2

2θk
‖x1−yk1‖2, (11a)

xk+1
2 = argmin

x2

f2(yk2) +
〈
∇f2(yk2),x2 − y2

〉
+
L2

2
‖x2 − yk2‖2 + h2(x2)

+
〈
λk,A2x2

〉
+
β

θk
〈
AT

2 (A1x
k+1
1 +A2y

k
2−b),x2−yk2

〉
+
β‖A2‖2

2θk
‖x2−yk2‖2. (11b)

We describe the new method in Algorithm 1. Due to the different positions of the terms hi(xi), i =
1, 2, Algorithm 1 and procedure (3a)-(3f) are no longer equivalent for the nonsmooth problem. In
fact, when we consider the simple case of f1(x1) = 0 and f2(x2) = 0 and omit the linearization of
the augmented term, (3a)-(3f) reduces to the traditional ADMM, while Algorithm 1 reduces to the
following iterates:

yki = xki +
θk(1− θk−1)

θk−1
(xki − xk−1i), i = 1, 2, (12a)

xk+1
1 = argmin

x1

h1(x1) +
〈
λk,A1x1

〉
+

β

2θk
‖A1x1 + A2y

k
2 − b‖2, (12b)

xk+1
2 = argmin

x2

h2(x2) +
〈
λk,A2x2

〉
+

β

2θk
‖A1x

k+1
1 + A2x2 − b‖2, (12c)

λk+1 = λk + βτ(Axk+1 − b). (12d)

We can see that procedure (12a)-(12d) is totally different from the traditional ADMM, which verifies
that Algorithm 1 is different from procedure (3a)-(3f). The analysis in this paper can be easily used
to establish the O(1/K) nonergodic convergence rate of procedure (12a)-(12d) measured at {xk1 ,xk2}.
We only consider the complex case of Algorithm 1 and omit the proof for the simple case of (12a)-
(12d).

In Algorithm 1, hi(xi) acts on xi directly and thus it has the property promoted by hi(xi), such
as the sparseness or low-rankness if hi(xi) is a sparse or low rank regularizer. So the convergence
rate measured at xK in Algorithm 1 is in the nonergodic sense. As comparison, (3a)-(3f) promotes
the sparseness and low-rankness on zi, and xK is a convex combination of z1, · · · , zK and it may
not be sparse or low-rank any more due to the ergodic averaging. In applications where sparseness
or low-rankness is strongly required, we should use the nonergodic solutions and Algorithm 1 is
superior to (3a)-(3f), since the nonergodic solution in Algorithm 1 has a faster convergence rate
than the nonergodic solution in procedure (3a)-(3f). We demonstrate the differences in Table 1. It
should be noted that for the smooth case, since h(x) vanishes, we do not distinguish the ergodic and
the nonergodic rates between (3a)-(3f) and (5a)-(5d).

3.3 The Convergence Rate Analysis

In this section, we prove the O(1/K) convergence rate measured at xK for Algorithm 1. Due to the
different positions of the nonsmooth terms hi(xi), the proof technique for procedure (3a)-(3f) in [18]
cannot be extended to Algorithm 1 and more efforts are needed for the analysis on Algorithm 1.
Moreover, Ouyang et al. [18] need the assumption that the primal and dual variables are bounded
in order to accomplish the proof. As comparison, we do not need this assumption. This verifies that
our proof is totally different from [18].

ALADMM-NE is an extension of Nesterov’s first acceleration scheme from unconstrained prob-
lems to constrained ones. For unconstrained problems, a crucial property of Nesterov’s first accel-

8

Algorithm Solution Ergodic or Nonergodic Sparse/Low-rank Convergence Rate

(2a)-(2c)

∑K
k=1 xk

K Ergodic No O (1/K)

xK Nonergodic Yes O
(

1/
√
K
)

(3a)-(3f)
xK Ergodic No O (1/K)

zK Nonergodic Yes O
(

1/
√
K
)

Algorithm 1 xK Nonergodic Yes O (1/K)

Table 1: Comparing Algorithm 1 with the original ADMM, (2a)-(2c) and the accelerated ADMM,
(3a)-(3f) on the properties of the ergodic and nonergodic solutions.

eration scheme is

F (xk+1)− F (x∗)

(θk)2
− F (xk)− F (x∗)

(θk−1)2
≤ δ

(
‖zk − x∗‖2 − ‖zk+1 − x∗‖2

)
. (13)

The main step in the convergence rate proof of ALADMM-NE is to construct a counterpart of (13)
for both the objective and the constraint functions. Proposition 2 plays such a role for the objective.
As comparison, the traditional ADMM [28] can prove a similar result in the form of

F (xk)− F (x∗) +
〈
λ∗,Axk − b

〉
≤ δ

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
+ κ

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
,

which can only lead to the ergodic result after telescoping.

Proposition 2 Assume that fi(xi) is convex and Li-smooth, hi(xi) is convex, i=1,2. Let 1−θk
θk

=
1

θk−1 − τ with 0 < τ < 1 and θ0 = 1. For Algorithm 1, we have

1

θk
(
F (xk+1)−F (x∗)+

〈
λ∗,Axk+1−b

〉)
− 1

θk−1
(
F (xk)−F (x∗)+

〈
λ∗,Axk−b

〉)
+ τ

(
F (xk)− F (x∗) +

〈
λ∗,Axk − b

〉)
≤ 1

2β

(
‖λ̂k − λ∗‖2 − ‖λ̂k+1 − λ∗‖2

)
+
ηk2
2
‖dk2 − x∗2‖2 −

ηk+1
2

2
‖dk+1

2 − x∗2‖2

+

(
ηk1
2
‖dk1 − x∗1‖2 −

β

2
‖A1d

k
1 −A1x

∗‖2
)

−

(
ηk+1
1

2
‖dk+1

1 − x∗1‖2 −
β

2
‖A1d

k+1
1 −A1x

∗‖2
)
,

where λ̂k = λk + β(1−θk)
θk

(
Axk − b

)
, ηki = Liθ

k + β‖Ai‖22, dk+1
i =

xk+1
i

θk
− 1−θk

θk
xki , d0

i = x0
i , i = 1, 2,

and {x∗, λ∗} is any KKT point.

Before proving Proposition 2, we first prove the following Lemma.

9

Lemma 1 Let λ
k+1

2 = λk + β
θk

(
A1x

k+1
1 + A2y

k
2 − b

)
. Then for Algorithm 1, we have

θkb + (1− θk)Axk −Axk+1 =
θk

β

(
λ̂k − λ̂k+1

)
,

θk

2β
‖λ̂k+1 − λk+1

2 ‖2 ≤ β

2θk
‖A2‖22‖xk+1

2 − yk2‖2,

λ̂K+1 − λ̂0 =

K∑
k=0

[
β

Axk+1 − b

θk
− βAxk − b

θk−1
+ βτ

(
Axk − b

)]
.

Proof 2 From λ̂k = λk+β(1−θk)
θk

(
Axk − b

)
, 1−θk+1

θk+1 = 1
θk
−τ and λk+1 = λk+βτ

(∑2
i=1 Aix

k+1
i − b

)
we have

λ̂k+1 = λk+1 + β
(1− θk+1)

(∑2
i=1 Aix

k+1
i − b

)
θk+1

=λk+1 + β

(
1

θk
− τ
)(2∑

i=1

Aix
k+1
i − b

)

=λk + βτ

(
2∑
i=1

Aix
k+1
i − b

)
+ β

(
1

θk
− τ
)(2∑

i=1

Aix
k+1
i − b

)

=λk +
β

θk

(
2∑
i=1

Aix
k+1
i − b

)
(16a)

=λ̂k − β
(1− θk)

(∑2
i=1 Aix

k
i − b

)
θk

+
β

θk

(
2∑
i=1

Aix
k+1
i − b

)
(16b)

=λ̂k − β

θk

(
θkb + (1− θk)

2∑
i=1

Aix
k
i −

2∑
i=1

Aix
k+1
i

)
.

On the other hand, from (16a) and the definition of λ
k+1

2 we have

θk

2β
‖λ̂k+1 − λk+1

2 ‖2 =
θk

2β

∥∥∥∥ βθkA2(xk+1
2 − yk2)

∥∥∥∥2 ≤ β

2θk
‖A2‖22‖xk+1

2 − yk2‖2.

From (16b) and 1−θk
θk

= 1
θk−1 − τ we have

λ̂K+1 − λ̂0

=

K∑
k=0

(
λ̂k+1 − λ̂k

)
=

K∑
k=0

[
β

∑2
i=1 Aix

k+1
i − b

θk
− β 1− θk

θk

(
2∑
i=1

Aix
k
i − b

)]

=

K∑
k=0

[
β

∑2
i=1 Aix

k+1
i − b

θk
− β

∑2
i=1 Aix

k
i − b

θk−1
+ βτ

(
2∑
i=1

Aix
k
i − b

)]
.

�

10

Then we can prove Proposition 2 using Lemma 1.

Proof 3 Let λ
k+1

1 = λk+ β
θk

(∑2
i=1 Aiy

k
i − b

)
. From the optimality conditions of (11a) and (11b),

we have

0 ∈∇fi(yki) + ∂hi(x
k+1
i) + AT

i λ
k+1

i +

(
Li +

β‖Ai‖22
θk

)
(xk+1
i − yki),

From the convexity of hi(xi) we have

hi(xi)− hi(xk+1
i)

≥−
〈
∇fi(yki) + AT

i λ
k+1

i +

(
Li +

β‖Ai‖22
θk

)
(xk+1
i − yki),xi − xk+1

i

〉
.

On the other hand, since fi is Li-smooth and convex, we have

fi(x
k+1
i) ≤fi(yki) +

〈
∇fi(yki),xk+1

i − yki
〉

+
Li
2
‖xk+1

i − yki ‖2

=fi(y
k
i)+

〈
∇fi(yki),xi−yki

〉
+
〈
∇fi(yki),xk+1

i −xi
〉
+
Li
2
‖xk+1

i −yki ‖2

≤fi(xi) +
〈
∇fi(yki),xk+1

i − xi
〉

+
Li
2
‖xk+1

i − yki ‖2.

Adding the above two inequalities, we can have

F (xk+1)− F (x)

≤
2∑
i=1

[〈
AT
i λ

k+1

i ,xi − xk+1
i

〉
+

(
Li +

β‖Ai‖22
θk

)〈
xk+1
i − yki ,xi − yki

〉
−
(
Li
2

+
β‖Ai‖22
θk

)
‖xk+1

i − yki ‖2
]
.

Letting xi = xki and xi = x∗i respectively, we have

F (xk+1)− F (xk)

≤
2∑
i=1

[〈
AT
i λ

k+1

i ,xki − xk+1
i

〉
+

(
Li +

β‖Ai‖22
θk

)〈
xk+1
i − yki ,x

k
i − yki

〉
−
(
Li
2

+
β‖Ai‖22
θk

)
‖xk+1

i − yki ‖2
]
,

and

F (xk+1)− F (x∗)

≤
2∑
i=1

[〈
AT
i λ

k+1

i ,x∗i − xk+1
i

〉
+

(
Li +

β‖Ai‖22
θk

)〈
xk+1
i − yki ,x

∗
i − yki

〉
−
(
Li
2

+
β‖Ai‖22
θk

)
‖xk+1

i − yki ‖2
]
.

Multiplying the first inequality by 1− θk, multiplying the second by θk and adding them together, we

11

have

F (xk+1)− (1− θk)F (xk)− θkF (x∗)

≤
2∑
i=1

[〈
λ
k+1

i , θkAix
∗
i + (1− θk)Aix

k
i −Aix

k+1
i

〉
+

(
Li +

β‖Ai‖22
θk

)〈
xk+1
i − yki , θ

kx∗i + (1− θk)xki − yki
〉

−
(
Li
2

+
β‖Ai‖22
θk

)
‖xk+1

i − yki ‖2
]
.

Adding term
〈
λ∗,
∑2
i=1 Aix

k+1
i − (1− θk)

∑2
i=1 Aix

k
i − θkb

〉
to both sides, we can have

F (xk+1)−F (x∗)+
〈
λ∗,Axk+1−b

〉
−(1−θk)

(
F (xk)−F (x∗)+

〈
λ∗,Axk−b

〉)
=F (xk+1)− (1− θk)F (xk)− θkF (x∗)

+

〈
λ∗,

2∑
i=1

Aix
k+1
i − (1− θk)

2∑
i=1

Aix
k
i − θkb

〉

≤
2∑
i=1

[〈
λ
k+1

i − λ∗, θkAix
∗
i + (1− θk)Aix

k
i −Aix

k+1
i

〉
+

(
Li +

β‖Ai‖22
θk

)〈
xk+1
i − yki , θ

kx∗i + (1− θk)xki − yki
〉

−
(
Li
2

+
β‖Ai‖22
θk

)
‖xk+1

i − yki ‖2
]

=
〈
λ
k+1

1 − λk+1

2 , θkA1x
∗
1 + (1− θk)A1x

k
1 −A1x

k+1
1

〉
+

2∑
i=1

[〈
λ
k+1

2 − λ∗, θkAix
∗
i + (1− θk)Aix

k
i −Aix

k+1
i

〉
+

(
Li +

β‖Ai‖22
θk

)〈
xk+1
i − yki , θ

kx∗i + (1− θk)xki − yki
〉

−
(
Li
2

+
β‖Ai‖22
θk

)
‖xk+1

i − yki ‖2
]
,

where we use
∑2
i=1 Aix

∗
i = b. Let dk+1

i =
xk+1
i

θk
− 1−θk

θk
xki and dki =

yki
θk
− 1−θk

θk
xki , i = 1, 2. Then we

can have
yki
θk
− 1−θk

θk
xki =

xki
θk−1 − 1−θk−1

θk−1 xk−1i , which leads to

yki = xki +
θk(1− θk−1)

θk−1
(xki − xk−1i).

12

which is (5a). From the definitions of λ
k+1

1 , λ
k+1

2 , dk+1
i and dki , we can have〈

λ
k+1

1 − λk+1

2 , θkA1x
∗
1 + (1− θk)A1x

k
1 −A1x

k+1
1

〉
=
β

θk
〈
A1y

k
1 −A1x

k+1
1 , θkA1x

∗
1 + (1− θk)A1x

k
1 −A1x

k+1
1

〉
=

β

2θk
[
‖θkA1x

∗
1+(1−θk)A1x

k
1−A1x

k+1
1 ‖2−‖θkA1x

∗
1+(1−θk)A1x

k
1−A1y

k
1‖2
]

+
β

2θk
‖A1y

k
1 −A1x

k+1
1 ‖2

≤βθ
k

2

[
‖A1d

k+1
1 −A1x

∗
1‖2 − ‖A1d

k
1 −A1x

∗
1‖2
]

+
β‖A1‖22

2θk
‖yk1 − xk+1

1 ‖2,

and (
Li +

β‖Ai‖22
θk

)〈
xk+1
i − yki , θ

kx∗i + (1− θk)xki − yki
〉

=

(
Li
2

+
β‖Ai‖22

2θk

)[
‖θkx∗i +(1−θk)xki −yki ‖2−‖θkx∗i +(1−θk)xki −xk+1

i ‖2
]

+

(
Li
2

+
β‖Ai‖22

2θk

)
‖xk+1

i − yki ‖2.

=
θkηki

2

[
‖dki − x∗i ‖2 − ‖dk+1

i − x∗i ‖2
]

+

(
Li
2

+
β‖Ai‖22

2θk

)
‖xk+1

i − yki ‖2,

where ηki = Liθ
k + β‖Ai‖22. From Lemma 1 we have

F (xk+1)−F (x∗)+
〈
λ∗,Axk+1−b

〉
−(1−θk)

(
F (xk)−F (x∗)+

〈
λ∗,Axk−b

〉)
≤θ

k

β

〈
λ
k+1

2 − λ∗, λ̂k − λ̂k+1
〉

+
βθk

2

[
‖A1d

k+1
1 −A1x

∗
1‖2 − ‖A1d

k
1 −A1x

∗
1‖2
]

+ θk
2∑
i=1

ηki
2

[
‖dki − x∗i ‖2 − ‖dk+1

i − x∗i ‖2
]
− β‖A2‖22

2θk
‖yk2 − xk+1

2 ‖2

=
θk

2β

(
‖λ̂k − λ∗‖2 − ‖λ̂k+1 − λ∗‖2 − ‖λk+1

2 − λ̂k‖2 + ‖λ̂k+1 − λk+1

2 ‖2
)

+
βθk

2

[
‖A1d

k+1
1 −A1x

∗
1‖2 − ‖A1d

k
1 −A1x

∗
1‖2
]

+ θk
2∑
i=1

ηki
2

[
‖dki − x∗i ‖2 − ‖dk+1

i − x∗i ‖2
]
− β‖A2‖22

2θk
‖yk2 − xk+1

2 ‖2

≤ θ
k

2β

(
‖λ̂k − λ∗‖2 − ‖λ̂k+1 − λ∗‖2 − ‖λk+1

2 − λ̂k‖2
)

+
βθk

2

[
‖A1d

k+1
1 −A1x

∗
1‖2 − ‖A1d

k
1 −A1x

∗
1‖2
]

+ θk
2∑
i=1

ηki
2

[
‖dki − x∗i ‖2 − ‖dk+1

i − x∗i ‖2
]
.

13

Dividing both sides by θk and using 1−θk
θk

= 1
θk−1 − τ , we have

1

θk
(
F (xk+1)−F (x∗)+

〈
λ∗,Axk+1−b

〉)
− 1

θk−1
(
F (xk)−F (x∗)+

〈
λ∗,Axk−b

〉)
+ τ

(
F (xk)− F (x∗) +

〈
λ∗,Axk − b

〉)
≤ 1

2β

(
‖λ̂k − λ∗‖2 − ‖λ̂k+1 − λ∗‖2 − ‖λk+1

2 − λ̂k‖2
)

+

(
ηk1
2
‖dk1−x∗1‖2−

β

2
‖A1d

k
1−A1x

∗
1‖2−

ηk1
2
‖dk+1

1 −x∗1‖2+
β

2
‖A1d

k+1
1 −A1x

∗
1‖2
)

+
ηk2
2

[
‖dk2 − x∗2‖2 − ‖dk+1

2 − x∗2‖2
]

≤ 1

2β

(
‖λ̂k − λ∗‖2 − ‖λ̂k+1 − λ∗‖2 − ‖λk+1

2 − λ̂k‖2
)

+

(
ηk1
2
‖dk1−x∗1‖2−

β

2
‖A1d

k
1−A1x

∗
1‖2−

ηk+1
1

2
‖dk+1

1 −x∗1‖2+
β

2
‖A1d

k+1
1 −A1x

∗
1‖2
)

+
ηk2
2
‖dk2 − x∗2‖2 −

ηk+1
2

2
‖dk+1

2 − x∗2‖2,

where we use θk+1 ≤ θk and ηk+1
i ≤ ηki , which can be derived from 1

θk+1 −1 = 1
θk
−τ and 0 < τ < 1.�

A good property of Proposition 2 is that we can sum the inequality over k = 0, · · · ,K and then
bound 1

θK
(F (xK+1)−F (x∗) + 〈λ∗,AxK+1 −b〉) by a constant, which leads to F (xK+1)−F (x∗) +

〈λ∗,AxK+1−b〉 ≤ O(θK). For the constraint functions, we have a similar result, which is described
in the following proposition.

Proposition 3 If the conditions in Proposition 2 hold, then for Algorithm 1 we have∥∥∥∥∥
K∑
k=0

(
Axk+1 − b

θk
− Axk − b

θk−1
+ τ

(
Axk − b

))∥∥∥∥∥ ≤
√

2βC + ‖λ∗ − λ̂0‖
β

,

where C = 1
2β ‖λ

0 − λ∗‖2 +
L1+β‖A1‖22

2 ‖x0
1 − x∗1‖2 −

β
2 ‖A1x

0
1 −A1x

∗
1‖2 +

L2+β‖A2‖22
2 ‖x0

2 −x∗2‖2.

Proof 4 Summing the inequality in Proposition 2 over k = 0, 1, · · · ,K, we have

1

θK
(
F (xK+1)− F (x∗) +

〈
λ∗,AxK+1 − b

〉)
+

K∑
k=1

τ
(
F (xk)− F (x∗) +

〈
λ∗,Axk − b

〉)
≤ C − 1

2β
‖λ̂K+1 − λ∗‖2,

(33)

where we use θ0 = 1, 0 = 1−θ0
θ0 = 1

θ−1 − τ ,

ηK+1
1

2
‖dK+1

1 − x∗1‖2 −
β

2
‖A1d

K+1
1 −A1x

∗
1‖2 ≥ 0,

and

C ≡ 1

2β
‖λ0 − λ∗‖2 +

(
L1 + β‖A1‖22

2
‖x0

1 − x∗1‖2 −
β

2
‖A1x

0
1 −A1x

∗
1‖2
)

+
L2 + β‖A2‖22

2
‖x0

2 − x∗2‖2

=
1

2β
‖λ̂0 − λ∗‖2 +

(
η01
2
‖d0

1 − x∗1‖2 −
β

2
‖A1d

0
1 −A1x

∗
1‖2
)

+
η02
2
‖d0

2 − x∗2‖2.

14

The last relation comes from d0
i = x0

i , λ̂
0 = λ0 + β(1−θ0)

θ0

(∑2
i=1 Aix

0
i − b

)
= λ0 and η0i = Liθ

0 +

β‖Ai‖22.
Since {x∗, λ∗} is any KKT point, we have

x∗ = argmin
x

F (x) +

〈
λ∗,

2∑
i=1

Aixi − b

〉
.

So

F (x∗)=F (x∗)+

〈
λ∗,

2∑
i=1

Aix
∗
i −b

〉
≤ F (x)+

〈
λ∗,

2∑
i=1

Aixi−b

〉
,∀x. (37)

Thus we have

1

2β
‖λ̂K+1 − λ∗‖2 ≤ C,

which leads to

‖λ̂K+1 − λ̂0‖ ≤ ‖λ̂K+1 − λ∗‖+ ‖λ∗ − λ̂0‖ ≤
√

2βC + ‖λ∗ − λ̂0‖.

From Lemma 1, we have∥∥∥∥∥
K∑
k=0

[∑2
i=1 Aix

k+1
i − b

θk
−
∑2
i=1 Aix

k
i − b

θk−1
+ τ

(
2∑
i=1

Aix
k
i − b

)]∥∥∥∥∥
≤
√

2βC + ‖λ∗ − λ̂0‖
β

.

�

Both Propositions 2 and 3 have a similar form to (13). Thus we have extended Nesterov’s
first acceleration scheme from unconstrained problems to constrained problems. Moreover, from
Proposition 3 we can see that Nesterov’s acceleration scheme is critical to accelerate not only the
decrease of the objective, but also the constraint error.

In Proposition 3, the summation lies inside the norm ‖ · ‖. Thus it is more difficult to bound∥∥∥AxK+1−b
θK

∥∥∥ than bounding 1
θK

(F (xK+1)−F (x∗)+〈λ∗,AxK+1−b〉) from Propositon 2. We discover

the following critical Lemma which can overcome this difficulty.

Lemma 2 Consider a sequence {a1,a2, · · · } of vectors, if {ak} satisfies∥∥∥∥∥(1/τ +K(1/τ − 1))aK+1 +

K∑
k=1

ak

∥∥∥∥∥ ≤ c, ∀K = 0, 1, 2, · · · .

where 1 > τ > 0. Then ‖
∑K
k=1 ak‖ < c for all K = 1, 2, · · · .

Proof 5 For each K ≥ 0, there exists cK+1 with every entry cK+1
i ≥ 0 such that

−cK+1
i ≤ (1/τ +K(1/τ − 1))aK+1

i +

K∑
k=1

aki ≤ cK+1
i ,

and ‖cK+1‖ = c. Let sKi =
∑K
k=1 aki ,∀K ≥ 1 and s0i = 0, then

−cK+1
i − sKi

1/τ +K(1/τ − 1)
≤ aK+1

i ≤ cK+1
i − sKi

1/τ +K(1/τ − 1)
,∀K ≥ 0,

15

where we use 1/τ > 1 and 1/τ +K(1/τ − 1) > 0. Thus, for all K ≥ 0, we have

sK+1
i

=aK+1
i + sKi

≤ cK+1
i − sKi

1/τ +K(1/τ − 1)
+ sKi

=
cK+1
i

1/τ +K(1/τ − 1)
+

(K + 1)(1/τ − 1)

1/τ +K(1/τ − 1)
sKi

≤ cK+1
i

1/τ +K(1/τ − 1)

+
(K+1)(1/τ−1)

1/τ+K(1/τ−1)

(
cKi

1/τ+(K−1)(1/τ−1)
+

K(1/τ−1)

1/τ+(K−1)(1/τ−1)
sK−1i

)
≤ cK+1

i

1/τ +K(1/τ − 1)
+

(K + 1)(1/τ − 1)

1/τ +K(1/τ − 1)

cKi
1/τ + (K − 1)(1/τ − 1)

+
(K + 1)(1/τ − 1)

1/τ +K(1/τ − 1)

K(1/τ − 1)

1/τ + (K − 1)(1/τ − 1)

(
cK−1i

1/τ + (K − 2)(1/τ − 1)

+
(K − 1)(1/τ − 1)

1/τ + (K − 2)(1/τ − 1)
sK−2i

)
≤ cK+1

i

1/τ +K(1/τ − 1)

+
(K + 1)(1/τ − 1)

1/τ +K(1/τ − 1)

cKi
1/τ + (K − 1)(1/τ − 1)

+
(K + 1)(1/τ − 1)

1/τ +K(1/τ − 1)

K(1/τ − 1)

1/τ + (K − 1)(1/τ − 1)

cK−1i

1/τ + (K − 2)(1/τ − 1)

+ · · ·

+

K+1∏
j=2

j(1/τ−1)

1/τ+(j−1)(1/τ−1)

(c1i
1/τ+0(1/τ−1)

+
1/τ−1

1/τ+0(1/τ−1)
s0i

)

=

K+1∑
k=1

 cki
1/τ + (k − 1)(1/τ − 1)

K+1∏
j=k+1

j(1/τ − 1)

1/τ + (j − 1)(1/τ − 1)

 ,

where we set
∏K+1
j=K+2

j(1/τ−1)
1/τ+(j−1)(1/τ−1) = 1. Define

rk =
1

1/τ+(k−1)(1/τ−1)

K+1∏
j=k+1

j(1/τ−1)

1/τ+(j−1)(1/τ−1)
,∀k = 1, 2, · · · ,K + 1.

Then we have rk > 0 and sK+1
i ≤

∑K+1
k=1 r

kcki . Similarly, we also have sK+1
i ≥ −

∑K+1
k=1 r

kcki . Thus

|sK+1
i | ≤

K+1∑
k=1

rkcki .

Define

RK+1 =

K+1∑
k=1

1

1/τ + (k − 1)(1/τ − 1)

K+1∏
j=k+1

j(1/τ − 1)

1/τ + (j − 1)(1/τ − 1)
,

16

RK =

K∑
k=1

1

1/τ + (k − 1)(1/τ − 1)

K∏
j=k+1

j(1/τ − 1)

1/τ + (j − 1)(1/τ − 1)
,

and

R1 =

1∑
k=1

1

1/τ + (k − 1)(1/τ − 1)

1∏
j=k+1

j(1/τ − 1)

1/τ + (j − 1)(1/τ − 1)
= τ.

Then we have

RK+1

=
1

1/τ +K(1/τ − 1)
+

K∑
k=1

1

1/τ + (k − 1)(1/τ − 1)

K+1∏
j=k+1

j(1/τ − 1)

1/τ + (j − 1)(1/τ − 1)

=
1

1/τ +K(1/τ − 1)

+
(K + 1)(1/τ − 1)

1/τ +K(1/τ − 1)

K∑
k=1

1

1/τ + (k − 1)(1/τ − 1)

K∏
j=k+1

j(1/τ − 1)

1/τ + (j − 1)(1/τ − 1)

=
1

1/τ +K(1/τ − 1)
+

(K + 1)(1/τ − 1)

1/τ +K(1/τ − 1)
RK .

Next, we prove RK < 1,∀K ≥ 1 by induction. It can be easily checked that R1 = τ < 1. Assume
that RK < 1 holds, then

RK+1 <
1

1/τ +K(1/τ − 1)
+

(K + 1)(1/τ − 1)

1/τ +K(1/τ − 1)
= 1.

So by induction we can have RK < 1,∀K ≥ 1.
So for any K ≥ 0, we have

(sK+1
i)2 ≤

(
K+1∑
k=1

rk

)2(∑K+1
k=1 r

kcki∑K+1
k=1 r

k

)2

≤

(
K+1∑
k=1

rk

)2 ∑K+1
k=1 r

k(cki)2∑K+1
k=1 r

k
<

K+1∑
k=1

rk(cki)2,

where we use
∑K+1
k=1 r

k = RK+1 < 1 and the Jensen inequality for x2. So we have

‖SK+1‖2 =
∑
i

(sK+1
i)2 <

K+1∑
k=1

rk
∑
i

(cki)2 =

K+1∑
k=1

rkc2 < c2,

where we use ‖ck‖ = c,∀k ≥ 1. So ‖
∑K+1
k=1 ak‖ = ‖SK+1‖ < c,∀K ≥ 0. �

Based on Propositions 2 and 3, we can have the O(1/K) nonergodic convergence rate in Theorem
1.

Theorem 1 If the conditions in Proposition 2 hold, then for Algorithm 1 we have

− 2τC1‖λ∗‖
1 +K(1− τ)

≤ F (xK+1)− F (x∗) ≤ C + 2τC1‖λ∗‖
1 +K(1− τ)

,

and ∥∥AxK+1 − b
∥∥ ≤ 2τC1

1 +K(1− τ)
,

where C1 =
√
2βC+‖λ∗−λ0‖

τβ and C is defined in Proposition 3.

17

Proof 6 From (33), (37) and Proposition 3, we can have

F (xK+1)− F (x∗) +

〈
λ∗,

2∑
i=1

Aix
K+1
i − b

〉
≤ CθK ,

and

√
2βC + ‖λ∗ − λ̂0‖

β

≥

∥∥∥∥∥
K∑
k=0

{∑2
i=1 Aix

k+1
i − b

θk
−
∑2
i=1 Aix

k
i − b

θk−1
+ τ

(
2∑
i=1

Aix
k
i − b

)}∥∥∥∥∥
=

∥∥∥∥∥
∑2
i=1 Aix

K+1
i − b

θK
−
∑2
i=1 Aix

0
i − b

θ−1
+

K∑
k=0

τ

(
2∑
i=1

Aix
k
i − b

)∥∥∥∥∥
=

∥∥∥∥∥
∑2
i=1 Aix

K+1
i − b

θK
+

K∑
k=1

τ

(
2∑
i=1

Aix
k
i − b

)∥∥∥∥∥ ,∀K = 0, 1, 2, · · · .

where we use 1
θ−1 −τ = 1−θ0

θ0 = 0. Since 1
θk

= 1
θk−1 +1−τ = 1

θ0 +k(1−τ), we have θk = 1
1
θ0

+k(1−τ) =

1
1+k(1−τ) . For simplicity, let ak =

∑2
i=1 Aix

k
i − b. Then we can have∥∥∥∥∥(1/τ+K(1/τ−1))aK+1+

K∑
k=1

ak

∥∥∥∥∥≤
√

2βC+‖λ∗−λ̂0‖
τβ

≡ C1,∀K = 0, 1, · · · .

From Lemma 2 we have ‖
∑K
k=1 ak‖ ≤ C1,∀K = 1, 2, · · · . So ‖aK+1‖ ≤ 2C1

1/τ+K(1/τ−1) , ∀K =

1, 2, · · · . Moreover, ‖a1‖ ≤ τC1 ≤ 2C1

1/τ+0(1/τ−1) . So∥∥∥∥∥
2∑
i=1

Aix
K+1
i − b

∥∥∥∥∥ ≤ 2τC1

1 +K(1− τ)
,∀K = 0, 1, · · · ,

Thus we can have

F (xK+1)− F (x∗) ≤CθK + ‖λ∗‖

∥∥∥∥∥
2∑
i=1

Aix
K+1
i − b

∥∥∥∥∥
≤ C

1 +K(1− τ)
+

2τC1‖λ∗‖
1 +K(1− τ)

,

and

F (xK+1)− F (x∗) ≥ −‖λ∗‖

∥∥∥∥∥
2∑
i=1

Aix
K+1
i − b

∥∥∥∥∥ ≥ − 2τC1‖λ∗‖
1 +K(1− τ)

,

which is derived from (37). �

From Theorem 1 we can see that the O(1/K) nonergodic convergence rate exists only if τ < 1.
In fact, only when τ < 1, θk = 1

1+k(1−τ) is in the order of O(1/k) and Nesterov’s acceleration scheme

is effective. As discussed in Section 3.1, ALADMM-NE reduces to the traditional LADMM when
τ = 1.

18

Algorithm 2 Accelerated LADMM with NonErgodic convergence rate and Restart(ALADMM-
NER)

Initialize λ0, x0
i = x−1i , i = 1, 2, 1 > τ > 0.5, β > 0, θ0 = 1, 1 > ε > 0, θ−1 = 1/τ .

for k = 0, 1, 2, · · · do
Update yki , i = 1, 2 using (5a),
Update xk+1

1 and xk+1
2 serially using (11a) and (11b),

Update λ̂k+1 using (5d),
θk+1 = 1

1−τ+ 1

θk
.

if ‖
∑2
i=1 Aix

k+1
i − b‖ ≥ ‖

∑2
i=1 Aix

k
i − b‖ and θk+1 < ε then

θk+1 = 1, θk = 1
end if

end for

3.4 Tips on the Choice of the Algorithms

In applications where the practical performance of (L)ADMM coincides with its theoretical conver-
gence rate, it is guaranteed that ALADMM-NE practically outperforms (L)ADMM. However, in
the cases where (L)ADMM converges much faster than its theoretical rate, e.g., in applications of
Robust PCA [29] that (L)ADMM almost linearly converges, we empirically observe that the superi-
ority of ALADMM-NE and the accelerated ADMM in [18] is not obvious. In fact, due to the special
setting of θk which dependents on k, ALADMM-NE and the method in [18] have exactly the O(1/K)
convergence rate measured at {xK1 ,xK2 } even for the strongly convex problems. So in practice, we
suggest that when the problem is complex and does not satisfy the linear convergence conditions
[20, 21, 22, 23, 24], ALADMM-NE and the accelerated ADMM in [18] are better choices than the
traditional (L)ADMM. When sparseness or low-rankness is required, ALADMM-NE is better than
the accelerated ADMM in [18].

Donoghue and Candès [30] proposed a restart strategy for Nesterov’s first acceleration scheme
when minimizing the unconstrained problems, in which the algorithm is restarted after some itera-
tions by setting θk+1 = 1 and yk+1 = xk+1. Then the linear convergence is guaranteed even for the
sublinear setting of θk [31]. A similar technique is discussed for Nesterov’s second scheme in [32]. So
we can apply the restart scheme for the accelerated ADMM in [18] and ALADMM-NE. The latter
is described in Algorithm 2. We restart ALADMM-NE as long as ‖Axk+1 − b‖ increases. We set
θk+1 = θk = 1 in the if-clause to make yk+1 = xk+1 when the algorithm is restarted. We use the
criterion θk+1 < ε to prevent frequent restart and only restart when θk becomes small.

4 Tightness of the o(1/
√
K) Nonergodic Rate for the Tradi-

tional ADMM

In this section we show that the o
(

1√
K

)
rate is tight for ADMM, at least for the constraint,.

We study a special problem [33, 9], on which the Alternating Projection Method (APM) and DR
splitting perform slowly. They converge arbitrarily slowly on the measure of ‖xk−x∗‖ and converge

with the tight o
(

1√
k

)
rate on the measure of f(xk)−f(x∗). The discussion in this section also suits

for LADMM and the accelerated ADMM in [18] (measured at (zk1 , z
k
2)) since they are equivalent to

ADMM on this special problem.

Let ϑi be a sequence of angles in (0, π/2) with cos(ϑi) =
√

i
i+1 . Let e0 = (1, 0), eπ/2 = (0, 1)

and eϑi = cos(ϑi)e0 + sin(ϑi)eπ/2. Define two lines U = span{e0} and Vi = span{eϑi}, then

19

Table 2: Theoretical complexity comparisons among ALADMM-NE, ADMM, DR and APM on
problem (62). a is any constant satisfying a > 0.5.

Theoretical complexity bound

APM f(xk)− f(x∗) ≥ Ω
(

1
ka

)
DR f(xk)− f(x∗) ≥ Ω

(
1
ka

)
ADMM f(xk)− f(x∗) ≥ Ω

(
1
ka

)
, ‖zk − xk‖ ≥ Ω

(
1
ka

)
ALADMM-NE f(xk)− f(x∗) ≤ O(1/k), ‖zk − xk‖ ≤ O(1/k)

U
⋂
Vi = {0}. Consider the Hilbert space H = R2

⊕
R2
⊕
· · · and define

U = R · e0 ×R · e0 × · · · ,
V = R · eϑ0

×R · eϑ1
× · · · .

We consider problem
min
x
f(x) = h(x) + g(x), (62)

where h(x) = IU(x) is the indicator function of U, g(x) = β√
2a−1dV(x), dV(x) = minv∈V ‖x−v‖ and

a can be any constant satisfying a > 0.5. This problem can be solved by ADMM and ALADMM-NE
by transforming it to

min
x,z

h(x) + g(z) s.t. z− x = 0. (63)

Proposition 4 says that the o
(

1√
K

)
rate is tight for ADMM. This means that the slow o

(
1√
K

)
nonergodic convergence rate of ADMM is not due to the weakness of the proof, but that of ADMM
itself. It is difficult to establish the lower complexity bound of |h(xk) + g(zk)−h(x∗)− g(z∗)|, so we
only measure f(xk)−f(x∗) for simplicity. It should be noted that Proposition 4 is ADMM specified
and it does not suit for ALADMM-NE. As comparison, we can establish ‖zk+1 − xk+1‖ ≤ O(1/k)
and f(xk)− f(x∗) ≤ O(1/k) for ALADMM-NE, which establishes the superiority of ALADMM-NE
with theoretical guarantee2. We list the comparisons in Table 2.

Proposition 4 Let x0 =

([1
(i+1)a

0

])
i≥1

, λ0 = 0, a > 0.5, then for ADMM with iterations

(2a)-(2c) we have ‖zk+1 − xk+1‖ ≥ Ω
(

1
(k+2)a

)
and f(xk)− f(x∗) ≥ Ω

(
β√

2a−1(k+1)a

)
.

In Proposition 4 we specialize the initialization of x0 and λ0, where ‖x0 − x∗‖ is bounded and
independent on k. This is a standard trick in the analysis of lower bound. Proposition 4 can be
proved using the same proof framework in [9], so we omit the details.

One may think that the increasing penalty β
θk

in ALADMM-NE is the deciding factor of the
improved convergence rate. However, this is incorrect. Empirically, large penalty speeds up the
decrease of the constraint error in ADMM [28]. But this is not guaranteed in theory. In fact,
From Proposition 4 we can see that the constraint error is independent of β, which means that the

decrease of the constraint error cannot be faster than o
(

1√
K

)
no matter how large β is. There are

two reasons for this result: 1. It is equivalent to minimizing the sum of two indicator functions when
using ADMM to solve problem (63) and β has no influence on the projection operation; 2. x and
z are updated serially, not parallel. Thus although the gradually increasing penalty in ALADMM-
NE plays an important role to cooperate with Nesterov’s acceleration scheme, Nesterov’s scheme is

2ALADMM-NE can be applied to Hilbert spaces. Since g(z) is continuous [9], we have f(xk)− f(x∗) ≤ |h(xk) +
g(zk)− h(x∗)− g(z∗)|+ |g(zk)− g(xk)| ≤ O(1/k) +O(L/k) = O(1/k).

20

indeed the critical factor to improve the convergence rate in theory. Large penalty cannot improve
the convergence rate of ADMM even for the constraint.

5 Lower Complexity Bound

Recently, Woodworth and Srebro [34] established the O(1/K) lower complexity bound of the stochas-
tic gradient methods for optimizing the finite sum problem: minx

1
m

∑m
i=1 fi(x), where each fi is

nonsmooth and non-strongly convex. In this section we use Woodworth and Srebro’s result to an-
alyze the general splitting scheme, and then extend it to the general ADMM type methods, which
deal with the additional linear constraint.

5.1 Splitting Scheme

We consider the following problem:

min
x∈X

F1(x) + F2(x).

We call a method belonging to the general splitting scheme if it has the form of

Generate zt1 based on {x1:t
1 ,x1:t

2 , z1:t−11 , z1:t2 , F1(z1:t−11), F2(z1:t2)},
xt+1
1 = ProxF1/βt(z

t
1),

Generate zt+1
2 based on {x1:t+1

1 ,x1:t
2 , z1:t1 , z1:t2 , F1(z1:t1), F2(z1:t2)},

xt+1
2 = ProxF2/βt(z

t+1
2),

(65)

at the t-th iteration and βt is arbitrary. We denote x1:t = {x1, · · · ,xt} and F (x1:t) = {F (x1), · · · , F (xt)}
for simplicity. In this general scheme, two proximal subproblems are solved alternatively and
{zk1 , zk+1

2 } can be generated in any way, e.g., zt1 ∈ Span{x1:t
1 ,x1:t

2 , z1:t−11 , z1:t2 } and zt+1
2 ∈ Span{x1:t+1

1 ,x1:t
2 , z1:t1 , z1:t2 }.

The algorithm belonging to this scheme accesses the objectives F1 and F2 only through the oracle
of (ProxFi/βt(x), Fi(x), i = 1, 2). It generates the next iterates of {zt+1

1 , zt+2
2 } based on the previous

responses of the oracle. This general splitting scheme includes many famous splitting algorithms,
such as DR splitting, which consists of the following steps:

xt+1
1 = ProxF1/β(zt),

xt+1
2 = ProxF2/β(2xt+1

1 − zt1),

zt+1 = zt − xt+1
1 + xt+1

2 .

For this general splitting scheme, we can have the O (1/K) lower bound, which is described in
the following proposition. Note that we do not aim to construct a counterexample such that for all
algorithms satisfying (65), they converge slowly. Instead, for any algorithm satisfying (65), we want
to construct a counterexample such that it converges slowly. The counterexample is not algorithm
independent.

Proposition 5 For any algorithm belonging to the general splitting scheme (65), there exist convex
and L-Lipschitz continuous functions F1 and F2 defined over X = {x ∈ R6k+2 : ‖x‖ ≤ B}, such that

F1(x̂k) + F2(x̂k) ≥ LB

8(k + 1)
,

where x̂k =
∑k
i=1 α

i
1x
i
1 +

∑k
i=1 α

i
2x
i
2, ∀αi1 and ∀αi2, i = 1, · · · , k.

21

Proposition 5 can be proved using the same analysis framework in [34]. We give the proof sketch
for the reader’s convenience. For the detailed analysis, please see [34].
Proof Sketch: For any algorithm belonging to the splitting scheme (65), we want to construct a
hard function for witch the algorithm converges slowly. For simplicity, we let L = 1 and B = 1.
Initialize z12, x1

1, x1
2, v1, v0 and F 1

1 = 1√
2
|b−

〈
x,v0

〉
|+ 1

4
√
k
|
〈
x,v0

〉
−
〈
x,v1

〉
| such that ‖v1‖ = 1,

‖v0‖ = 1 and v1⊥v0. We use an adversary strategy to construct the hard function, i.e., at the
t-th iteration the algorithm quires the oracle with (zt1, z

t+1
2 , βt) and an adversary responses with an

answer of (ProxF t1/βt(z
t
1),ProxF t2/βt(z

t+1
2), F t1(zt1), F t2(zt+1

2)). The algorithm accesses the problem
only through the oracle and it makes the decisions based on the previous responses of the oracle.
The adversary constructs the hard function gradually based on the previous queries of the algorithm.
Specifically, at the t-th iteration with t = 1, · · · , k, we perform the following steps:

Algorithm:

Generate zt1 based on {x1:t
1 ,x1:t

2 , z1:t−11 , z1:t2 , F1(z1:t−11), F2(z1:t2)},
xt+1
1 = ProxF t1/βt(z

t
1), F1(zt1) = F t1(zt1),

Adversary:

Construct v2t⊥{v0:2t−1, z1:t1 , z1:t2 ,x1:t
1 ,x1:t

2 } such that ‖v2t‖ = 1,

Construct F t2 =
1√
2
|b−

〈
x,v0

〉
|+ 1

4
√
k

t∑
r=1

|
〈
x,v2r−1〉− 〈x,v2r

〉
|,

Algorithm:

Generate zt+1
2 based on {x1:t+1

1 ,x1:t
2 , z1:t1 , z1:t2 , F1(z1:t1), F2(z1:t2)},

xt+1
2 = ProxF t2/βt(z

t+1
2), F2(zt+1

2) = F t2(zt+1
2),

Adversary:

Construct v2t+1⊥{v0:2t, z1:t1 , z1:t+1
2 } such that ‖v2t+1‖=1,

Construct F t+1
1 =

1√
2
|b−

〈
x,v0

〉
|+ 1

4
√
k

t+1∑
r=1

|
〈
x,v2r−2〉−〈x,v2r−1〉|,

(68)

where F t1 and F t2 are adaptive of the history iterates, i.e., we construct F t1 and F t2 based on the
history iterates and they are different from each other at different iterations. However, due to the
orthogonality between v and z, we can prove the following relations

ProxF t1/βt(z
t
1) = ProxFk1 /βt(z

t
1), F t1(zt1) = F k1 (zt1), ∀t ≤ k,

ProxF t2/βt(z
t+1
2) = ProxFk2 /βt(z

t+1
2), F t2(zt+1

2) = F k2 (zt+1
2), ∀t ≤ k.

Thus we can replace F t1 and F t2 with F k1 and F k2 in (68), based on which the adversary responses
with the same answers of the queries with (zt1, z

t+1
2 , βt). In other words, this replacement does not

influence the behavior of the algorithm and (68) produces the same sequence of {xk1 ,xk2} with the
following algorithm scheme, which performs

Generate zt1 in the same way with (68),

xt+1
1 = ProxFk1 /βt(z

t
1), F1(zt1) = F k1 (zt1),

Generate zt+1
2 in the same way with (68),

xt+1
2 = ProxFk2 /βt(z

t+1
2), F2(zt+1

2) = F k2 (zt+1
2),

(69)

at the t-th iteration. In scheme (69), we use F k1 and F k2 , rather than F t1 and F t2 .

22

We can prove that F ki is convex and 1-Lipschitz continuous. F k(x) ≡ F k1 (x) + F2(x) achieves

the minimum at x∗ = b
∑2k
r=0 vr. If we let b = 1√

2k+1
, then ‖x∗‖ = 1. Due to the special form of

F k(x), we can prove F k(x̂k)− F k(x∗) ≥ 1
8(k+1) .

�

5.2 General ADMM Type Methods

Now we use Proposition 5 to establish the lower complexity bound of ADMM type methods. Consider
the following special case of problem (1):

min
x1,x2∈X

F1(x1) + F2(x2), s.t. x1 − x2 = 0. (70)

We consider the general ADMM type methods with the property of alternatingly minimizing the
augmented Lagrangian function. Specifically, define the general ADMM type methods as

Generate λt2 based on {x1:t
1 ,x1:t

2 , λ1:t1 , λ1:t−12 } and yt2 based on {x1:t
1 ,x1:t

2 },

xt+1
1 = argmin

z
L(x1,y

t
2, λ

t
2, β

t) = ProxF1/βt

(
yt2 −

λt2
βt

)
,

Generate λt+1
1 based on {x1:t+1

1 ,x1:t
2 ,λ

1:t
1 ,λ

1:t
2 } and yt+1

1 based on {x1:t+1
1 ,x1:t

2 },

xt+1
2 = argmin

x
L(yt+1

1 ,x2, λ
t+1
1 , βt) = ProxF2/βt

(
yt+1
1 − λt+1

1

βt

)
,

(71)

at the t-th iteration and βt can be any value. It can be checked that the traditional ADMM and
ALADMM-NE (with fi = 0 and Ai = I) belong to this general scheme.

We can see that procedure (71) belongs to (65) by letting zt1 = yt2 −
λt2
βt and zt+1

2 = yt+1
1 +

λt+1
1

βt .

Letting x̂k1 =
∑k
i=1 α

i
1x
i
1 and x̂k2 =

∑k
i=1 α

i
2x
i
2, then from Proposition 5 we know that there exists

convex and L-continuous F1 and F2 such that F1(x̂k2) + F2(x̂k2) − F1(x∗) − F2(x∗) ≥ LB
8(k+1) . Since

F1 is L-continuous: |F1(x̂k2) − F1(x̂k1)| ≤ L‖x̂k2 − x̂k1‖, we can have F1(x̂k2) ≤ F1(x̂k1) + L‖x̂k2 − x̂k1‖
and

LB

8(k + 1)
≤F1(x̂k2) + F2(x̂k2)− F1(x∗)− F2(x∗)

≤L‖x̂k2 − x̂k1‖+ F1(x̂k1) + F2(x̂k2)− F1(x∗)− F2(x∗)

≤L‖x̂k2 − x̂k1‖+ |F1(x̂k1) + F2(x̂k2)− F1(x∗1)− F2(x∗2)|

where x∗ = x∗1 = x∗2. Thus we have the following lower complexity bound proposition for the general
ADMM type methods for both the ergodic and nonergodic case, where the nonergodic bound can
be obtained by letting αi1 = αi2 = 0, i = 1, · · · , k − 1, and αk1 = αk2 = 1.

Proposition 6 For any algorithm belonging to the general splitting scheme (71), there exists convex
and L-continuous functions F1 and F2 defined over X = {x ∈ R6k+2 : ‖x‖ ≤ B}, such that

L‖x̂k2 − x̂k1‖+ |F1(x̂k1) + F2(x̂k2)− F1(x∗1)− F2(x∗2)| ≥ LB

8(k + 1)
.

where x̂k1 =
∑k
i=1 α

i
1x
i
1 and x̂k2 =

∑k
i=1 α

i
2x
i
2, ∀αi1 and ∀αi2, i = 1, · · · , k.

Since problem (70) is a special case of problem (1), we can have that O(1/K) is the optimal
convergence rate of the general ADMM type methods (71) for problem (1). There is no better
ADMM type algorithm which converges faster than the O(1/K) rate if it belongs to the framework

23

of (71). Moreover, (71) is general enough for the separable problem (1) while still keeping the
property of ADMM that alternately minimizes the augmented Lagrangian function. Thus our result
is general enough. Since we can easily construct some algorithms (which may diverge) such that
they can easily make one of ‖Ax − b‖ and |F (x) − F (x∗)| small but difficult to keep both small,
this is why we use the summation in Proposition 6.

6 Experiments on the Group Sparse Logistic Regression with
Overlap

In this section we test the performance of ALADMM-NE and ALADMM-NER on the Group Sparse
Logistic Regression with Overlap. This problem can be deemed as a combination of the Group
Sparse Logistic Regression [35] and the Group LASSO with Overlap [36]. Its mathematical model
is as follows:

min
w,b

1

s

s∑
i=1

log(1 + exp(−yi(w
Txi + b))) + ν

t∑
j=1

‖Sjw‖,

where xi and yi are the training samples and labels. w and b are the parameters for the classifier.
s is the sample size and t is the group size. Sj , j = 1, · · · , t are the selection matrices with only one
1 at each row and 0 for the rest entries. We consider the case that the groups of entries may overlap
each other. We can transform the problem to a linearly constrained one by introducing Sj = (Sj ; 0),

S =

 S1

...
St

, w =

(
w
b

)
, xi =

(
x
1

)
, zj = Sjw and z =

 z1
...
zt

:

min
w,z

1

s

s∑
i=1

log(1 + exp(−yi(w
Txi))) + ν

t∑
j=1

‖zj‖, s.t. z = Sw. (75)

We carry out the experiment on the breast cancer gene expression data set [37]. 3510 genes in
295 breast cancer tumors are considered in our experiment, which appear in 637 gene groups. Gene
selection is a key purpose in this problem. The group sparsity regularization helps to decide which
groups of Genes play a central role in the cancer prediction. Thus the group sparsity is strongly
required.

We compare ALADMM-NE and ALADMM-NER with LADMM and the accelerated LADMM
(ALADMM) [18]. We set the initializer at 0 and run all the methods for 2000 iterations. We set
τ = 0.8 for ALADMM-NE and ALADMM-NER and ε = 0.02 for ALADMM-NER. For ALADMM,
we set the parameters following the assumptions in Theorem 2.6 of [18]. We set β = 0.3 for
LADMM, β = 0.06 for erg-ALADMM, β = 0.4 for nerg-ALADMM, β = 0.08 for ALADMM-NE
and ALADMM-NER for the best performance of each algorithm, respectively, where erg-ALADMM
(erg-LADMM) means that we use the ergodic solution xK for ALADMM (

∑K
k=1 xk/K for LADMM)

and nerg-ALADMM (nerg-LADMM) means that we use the nonergodic solution zK for ALADMM
(xK for LADMM).Ouyang et al. [18] proposed a backtracking scheme to estimate ‖S‖2 and the
Lipschitz constant L. Since ‖S‖2 and L can be exactly computed in our problem, we do not use the
backtracking scheme for simplicity.

Figure 1 draws the plots of the objective function value, the constraint error, the sparsity and
the group sparsity vs. time. We run LADMM for 100000 iterations and use its nonergodic output
as the optimal (w∗, z∗), which is used to plot

∣∣F (wk, zk)− F (w∗, z∗)
∣∣. We can see that both erg-

LADMM and erg-ALADMM have a less favorable sparsity and group sparsity than their nonergodic
counterparts, this verifies that the nonergodic measurement is required. However, Nerg-ALADMM

24

0 50 100 150 200
−8

−7

−6

−5

−4

−3

−2

−1

0

Time

F
un

ct
io

n
V

al
ue

erg−LADMM
nerg−LADMM
nerg−ALADMM
erg−ALADMM
ALADMM−NE(ours)
ALADMM−NER(ours)

0 50 100 150 200
−7

−6

−5

−4

−3

−2

−1

0

Time

C
on

st
ra

in
t

erg−LADMM
erg−ALADMM
nerg−LADMM
nerg−ALADMM
ALADMM−NE(ours)
ALADMM−NER(ours)

(a) log10
∣∣F (wk, zk)− F (w∗, z∗)

∣∣ (b) log10
∥∥zk − Swk

∥∥

0 50 100 150 200
0

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Time

S
pa

rs
ity

erg−LADMM
erg−ALADMM
nerg−LADMM
nerg−ALADMM
ALADMM−NE(ours)
ALADMM−NER(ours)

0 50 100 150 200
0

5

10

15

20

25

30

Time

G
ro

up
 S

pa
rs

ity

erg−LADMM
erg−ALADMM
nerg−LADMM
nerg−ALADMM
ALADMM−NE(ours)
ALADMM−NER(ours)

(c) Sparsity (d) Group Sparsity

Figure 1: Compare ALADMM-NE and ALADMM-NER with LADMM and ALADMM on the Group
Sparse Logistic Regression problem. We present the function value, constraint error, sparsity (per-
cent of selected Genes) and Group sparsity (number of non-empty groups).

25

decreases the objective function slower than erg-ALADMM. In some practical applications, ADMM
can perform better than the theoretical bound. Thus it is not strange that nerg-LADMM converges
faster than erg-LADMM. As comparison, ALADNM-NE and ALADMM-NER not only run faster
than the compared methods but also have the sparsity and group sparsity as well as nerg-LADMM
and nerg-ALADMM. In ADMM type methods, the monotonicity of the objective function and the
constraint error cannot be guaranteed in theory. This leads to the oscillation in Figure 1.

7 Conclusions

In this paper, we modify the accelerated ADMM proposed in [18] and give an O(1/K) nonergodic
analysis in the sense of |F (xK)−F (x∗)| ≤ O(1/K) and ‖AxK−b‖ ≤ O(1/K), where the nonergodic
result has a more favorable sparseness and low-rankness than the ergodic one. This is the first
O(1/K) nonergodic convergent ADMM type method and surpasses the o(1/

√
K) nonergodic rate

of the traditional ADMM. Moreover, we show that the lower complexity bound of ADMM type
methods is O(1/K) when each Fi is nonsmooth and non-strongly convex, which means that our
method is optimal.

8 Acknowledgement

Zhouchen Lin is supported by National Basic Research Program of China (973 Program) (grant no.
2015CB352502), National Natural Science Foundation (NSF) of China (grant nos. 61625301 and
61731018), Qualcomm and Microsoft Research Asia.

References

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. In Foundations and Trends in Machine
Learning, 2010.

[2] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications
to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

[3] E. Esser, X. Zhang, and T. Chan. A general framework for a class of first order primal-dual algorithms
for convex optimization in imaging science. SIAM J. on Imaging Science, 3(4):1015–1046, 2010.

[4] B. He, L. Liao, D. Han, and H. Yang. A new inexact alternating directions method for monotone
variational inequalities. Mathematical Programming, 92(1):103–118, 2002.

[5] R. Shefi and M. Teboulle. Rate of convergence analysis of decomposition methods based on the proximal
method of multipliers for convex minimization. SIAM J. on Optimization, 24(1):269–297, 2014.

[6] X. Wang and X. Yuan. The linearized alternating direction method for Dantzig selector. SIAM J. on
Scientific Computing, 34(5):A2792–A2811, 2012.

[7] B. He and X. Yuan. On the O(1/t) convergence rate of the Douglas-Rachford alternating direction
method. SIAM J. on Numerical Analysis, 50:700–709, 2012.

[8] B. He and X. Yuan. On non-ergodic convergence rate of Douglas-Rachford alternating directions method
of multipliers. Numerische Mathematik, 130:567–577, 2015.

[9] D. Davis and W. Yin. Convergence rate analysis of several splitting schemes. Technical report, UCLA
CAM Report, 2014.

[10] J. Douglas and H. Rachford. On the numerical solution of heat conduction problems in two and three
space variables. Transactions of the American mathematical Society, pages 421–439, 1956.

[11] D. Gabay. Applications of the method of multipliers to variational inequalities. Studies in Mathematics
and its applications, 15:299–331, 1983.

26

[12] A. Beck and M. Teboulle. A fast iterative shrinkage thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sciences, 2(1):183–202, 2009.

[13] Yu. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[14] Yu. Nesterov. On an approach to the construction of optimal methods of minimization of smooth convex
functions. Èkonom. i. Mat. Metody, pages 509–517, 1988.

[15] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. Technical report,
University of Washington, Seattle, 2008.

[16] C. Chen, R. Chan, S. Ma, and J. Yang. Inertial proximal ADMM for linearly constrained separable
convex optimization. SIAM J. on Imaging Sciences, 8(4):2239–2267, 2015.

[17] D. Lorenz and T. Pock. An inertial forward-backward algorithm for monotone inclusions. Journal of
Mathematical Imaging and Vision, 51(2):311–325, 2015.

[18] Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao. An accelerated linearized alternating direction method
of multipliers. SIAM J. on Imaging Sciences, 7(3):1588–1623, 2015.

[19] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk. Fast alternating direction optimization
methods. SIAM J. on Imaging Sciences, 7(3):1588–1623, 2014.

[20] W. Deng and W. Yin. On the global and linear convergence of the generalized alternating direction
method of multipliers. Journal of Scientific Computing, pages 889–916, 2016.

[21] M. Hong and Z. Luo. On the linear convergence of the alternating direction method of multipliers.
Mathematical Programming, 162(1-2):165–199, 2017.

[22] P. Giselsson and S. Boyd. Linear convergence and metric selection in douglas rachford splitting and
ADMM. IEEE Transactions of Automatic Control, 62(2):532–544, 2017.

[23] W. Yang and D. Han. Linear convergence of the alternating direction method of multipliers for a class
of convex optimization problems. SIAM J. on Numerical Analysis, 54(2):625–640, 2016.

[24] D. Boley. Local linear convergence of the alternating direction methodof multipliers on quadratic or
linear programs. SIAM J. on Optimization, 23(4):2183–2207, 2013.

[25] Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods for a class of saddle point problems.
SIAM J. on Optimization, 24(4):1779–1814, 2014.

[26] D. Donoho. De-noising by soft-thresholding. IEEE transactions on information theory, 41(3):613–627,
1995.

[27] J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM
J. on Optimization, 20(4):1956–1982, 2010.

[28] Z. Lin, R. Liu, and H. Li. Linearized alternating direction method with parallel splitting and adaptive
penalty for separable convex programs in machine learning. Machine Learning, 99(2):287–325, 2015.

[29] Y. Ma Z. Lin, M. Chen. The augmented lagrange multiplier method for exact recovery of corrupted
low-rank matrices. arXiv:1009.5055, 2010.

[30] B. O’Donoghue and E. Candès. Adaptive restart for accelerated gradient schemes. Foundations of
Computational Mathematics, 15(3):715–732, 2015.

[31] I. Necoara, Yu. Nesterov, and F. Glineur. Linear convergence of first order methods for non-strongly
convex optimization. arxiv:1504.06298, 2016.

[32] H. Li and Z. Lin. Provable accelerated gradient method for nonconvex low rank optimization.
arxiv:1702.04959, 2017.

[33] H. Bauschke, J. Bello Cruz, T. Nghia, H. Phan, and X. Wang. The rate of linear convergence of the
Douglas Rachford algorithm for subspaces is the cosine of the Friedrichs angle. Journal of Approximation
Theory, 185(0):63–79, 2014.

[34] B. Woodworth and N. Srebro. Tight complexity bounds for optimizing composite objectives. In NIPS,
2016.

27

[35] L. Meier, S. van de Geer, and P. Bühlmann. The group LASSO for logistic regression. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–71, 2008.

[36] L. Jacob, G. Obozinski, and J. Vert. Group LASSO with overlap and graph LASSO. In ICML, 2009.

[37] M. van de Vijver, Y. He, L. van’t Veer, Dai H, and et al. A gene-expression signature as a predictor of
survival in breast cancer. The New England Journal of Medicine, 347(25):1999–2009, 2002.

28

