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Abstract Common smoothness indicators used in Weighted Essentially Non-Os-
cillatory (WENO) reconstructions [Jiang, G.S., Shu, C.W.: Efficient implemen-
tation of Weighted ENO schemes, J. Comput. Phys. 126, 202–228 (1996)] have
quadratic cost with respect to the order. A set of novel smoothness indicators with
linear cost of computation with respect to the order is presented. These smoothness
indicators can be used in the context of schemes of the type introduced by Ya-
maleev and Carpenter [Yamaleev, N.K., Carpenter, M.H.: A systematic method-
ology to for constructing high-order energy stable WENO schemes. J. Comput.
Phys. 228(11), 4248–4272 (2009)]. The accuracy properties of the resulting non-
linear weights are the same as those arising from using the traditional Jiang-Shu
smoothness indicators in Yamaleev-Carpenter-type reconstructions. The increase
of the efficiency and ease of implementation are shown.
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Universitat de València
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1 Introduction

1.1 Scope

Weighted Essentially Non-Oscillatory (WENO) schemes are a very useful and pow-
erful tool to reconstruct functions from discrete data. They avoid an oscillatory
behaviour in presence of a discontinuity and attain the optimal interpolation or-
der whenever possible when the data is smooth. The most common contexts in
which these schemes are used are finite-difference or finite-volume schemes dis-
cretizing hyperbolic conservation laws, whose solutions are typically non-smooth
(weak solutions) and usually present strong shocks. WENO reconstructions are
building blocks of numerical schemes that properly handle discontinuous solu-
tions, and represent a popular way to construct high-order methods. However, it
is well known that despite the recognized efficiency of these schemes, the most
expensive part of the algorithm is the computation of local smoothness indicators,
whose computational cost is quadratic with respect to the order of the scheme.

It is the purpose of this work to advance a novel design of smoothness indicators
so that they are cheaper to compute (namely, at linear cost in terms of the order of
accuracy) than the Jiang-Shu smoothness indicators [4] in the context of Yamaleev-
Carpenter reconstructions [13], while both properties of optimal accuracy in case
of smoothness and robust capture of discontinuities are ensured. To do so, we
first advance theoretical considerations that are needed for their foundation, and
that allow us to ultimately define the new smoothness indicators along with the
associated weight design. The resulting WENO schemes are addressed as “Fast
WENO” (FWENO) schemes.

1.2 Related work

The classical WENO schemes were proposed by Jiang and Shu [4,10] as an im-
provement of the original proposal of Liu et al. [6]. The idea is to build a weighted
combination of interpolators, with the weights depending on smoothness indica-
tors that tune the weight according to the data. The smoothness indicators defined
by Jiang and Shu are designed in a way such that they take small values if the
data used to construct the indicator is smooth and large values otherwise, with
the additional property that the values of indicators constructed with smooth data
are close to each other. This property is important as the order of accuracy of the
final reconstruction is strongly dependent on it.

Several years later, Yamaleev and Carpenter [12] proposed a new third-order
WENO scheme, which was later on extended to arbitrary order in [13] (hence-
forth, YC-WENO scheme). In this case, the non-linear weights are based instead
on a ratio between a high-order undivided difference, which is very small when
the data is smooth and large if a discontinuity crosses the data stencil, and the
original Jiang-Shu smoothness indicators. In this latter case the accuracy of the
scheme is based on the asymptotic convergence of the undivided difference and
the smoothness indicators, rather than the closeness between the latter ones. This
allows one to simplify the smoothness indicators, which is presented in this paper.
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1.3 Outline of this paper

The remainder of the paper is organized as follows. In Section 2, we provide the
theoretical background for the novel smoothness indicators. Section 3 is devoted to
the definition of the smoothness indicators, the construction of the corresponding
numerical scheme and the analysis of its accuracy. Section 4 contains several nu-
merical experiments in which the new algorithm is compared against the previous
ones in terms of accuracy and efficiency. Finally, in Section 5 some conclusions are
drawn.

2 Preliminaries

2.1 Asymptotic properties of functions

We recall that for α ∈ Z,

f(h) = O(hα) ⇔ lim sup
h→0

∣∣∣∣f(h)hα

∣∣∣∣ < ∞,

and define the more restrictive property

f(h) = Ō(hα) :⇔ lim sup
h→0

∣∣∣∣f(h)hα

∣∣∣∣ < ∞∧ lim inf
h→0

∣∣∣∣f(h)hα

∣∣∣∣ > 0.

For positive functions f and g, the properties

lim sup
h→0

f(h)g(h) ≤ lim sup
h→0

f(h) lim sup
h→0

g(h),

lim inf
h→0

f(h)g(h) ≥ lim inf
h→0

f(h) lim inf
h→0

g(h)

imply that for α, β ∈ Z, O(hα)O(hβ) = O(hα+β) and Ō(hα)Ō(hβ) = Ō(hα+β).
Here and in what follows it is always understood that expressions of the form
O(hα), Ō(hα) correspond to h → 0. Similarly, taking into account that for Ai ⊆
(0,∞), supi inf Ai = infi supA−1

i where we define A−1
i := {1/x : x ∈ Ai}, it follows

that for a positive function f ,

lim inf
h→0

f(h) = lim sup
h→0

f(h)−1,

therefore, if f is positive, then f(h) = Ō(hα) implies f(h)−1 = Ō(h−α).

2.2 Point values and cell averages of smooth functions

Finite-difference and finite-volume schemes for hyperbolic conservation laws are
based on discretizations of the solution by means of point values and cell averages,
respectively. The following lemmas state the same result for both cases so that we
can analyze them in a unified way.

Lemma 1 Assume that a function φ ∈ Cn+2 satisfies φ(k)(0) = 0 for k = 1, . . . , n
and φ(n+1)(0) ̸= 0. Then φ(h) = Ō(hn+1).
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Proof The (n+ 1)-th order Taylor expansion of φ yields

φ(h) =
φ(n+1)(0)

(n+ 1)!
hn+1 +O(hn+2),

which implies that

lim
h→0

φ(h)

hn+1
=

φ(n+1)(0)

(n+ 1)!
̸= 0,

which in turn means that φ(h) = Ō(hn+1).

Lemma 2 Let c, d, z ∈ R. Assume that{
f (k)(z) = 0 for k = 1, . . . , n, f (n+1)(z) ̸= 0, and f ∈ Cn+2 if c+ d ̸= 0,

f (2k−1)(z) = 0 for k = 1, . . . ,m, f (2m+1)(z) ̸= 0, and f ∈ C2m+2 if c+ d = 0.

Then

f(z + dh)− f(z + ch) = Ō(hν), (2.1)

1

h

(∫ z+(d+1/2)h

z+(d−1/2)h

f(x) dx−
∫ z+(c+1/2)h

z+(c−1/2)h

f(x) dx

)
= Ō(hν), (2.2)

where

ν =

{
n+ 1 if c+ d ̸= 0,

2m+ 1 if c+ d = 0.

Proof Our purpose is to apply Lemma 1 to the difference

φ(h) = f(z + dh)− f(z + ch)

to obtain (2.1) and alternatively, to the expression

φ(h) =
1

h

(∫ z+(d+1/2)h

z+(d−1/2)h

f(x) dx−
∫ z+(c+1/2)h

z+(c−1/2)h

f(x) dx

)
(2.3)

to obtain (2.2). For (2.1), it follows directly that

φ(k)(0) = µ(k, c, d)f (k)(z), where µ(k, c, d) = dk − ck.

Since c ̸= d there clearly holds that µ(k, c, d) = 0 if and only if k is even and
c+ d = 0.

For (2.2), we obtain from (2.3) multiplied by h(
hφ(h)

)′
(h) =−

(
d− 1

2

)
f

(
z +

(
d− 1

2

)
h

)
+
(
d+

1

2

)
f

(
z +

(
d+

1

2

)
h

)
+
(
c− 1

2

)
f

(
z +

(
c− 1

2

)
h

)
−
(
c+

1

2

)
f

(
z +

(
c+

1

2

)
h

)
and for k ≥ 1,(

hφ(h)
)(k+1)

(0)
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=

(
−
(
d− 1

2

)k+1

+
(
d+

1

2

)k+1

+
(
c− 1

2

)k+1

−
(
c+

1

2

)k+1
)
f (k)(z).

On the other hand, the Leibniz formula for higher derivatives yields(
hφ(h)

)(k+1)
(0) = (k + 1)φ(k)(0).

Therefore, for k ≥ 1 we get φ(k)(0) = µ(k, c, d)f (k)(z), where

µ(k, c, d) =
1

k + 1

(
−
(
d− 1

2

)k+1

+
(
d+

1

2

)k+1

+
(
c− 1

2

)k+1

−
(
c+

1

2

)k+1
)
.

Since

(
d+

1

2

)k+1

−
(
d− 1

2

)k+1

=
k+1∑
l=0

(
k + 1

l

)
dk+1−l

(
1

2l
− (−1)l

2l

)

=

⌊k/2⌋∑
s=0

(
k + 1

2s+ 1

)
dk−2s 1

22s
,

we obtain

µ(k, c, d) =
1

k + 1

⌊k/2⌋∑
s=0

(
k + 1

2s+ 1

)
1

22s
(dk−2s − ck−2s). (2.4)

Now, if c = −d, then µ(k, c, d) = 0 if k is even and

µ(k,−d, d) =
1

k + 1

⌊k/2⌋∑
s=0

(
k + 1

2s+ 1

)
1

22s−1
dk−2s ̸= 0

if k is odd, since the sign of all summands is the sign of d. On the other hand, if
c+ d ̸= 0, since c ̸= d, then |c| ≠ |d|, so all summands in (2.4) have the same sign,
which yields µ(k, c, d) ̸= 0 for any k ≥ 1. Therefore µ(k, c, d) = 0 if and only if k is
odd and c+ d = 0. In both cases it follows from the definition of n and m in the
assumptions that{

φ(k)(0) = 0 for k = 1, . . . , n, φ(n+1)(0) ̸= 0, and φ ∈ Cn+2 if c+ d ̸= 0,

φ(k)(0) = 0 for k = 1, . . . , 2m, φ(2m+1)(0) ̸= 0, and φ ∈ C2m+2 if c+ d = 0,

so Lemma 1 yields the final result.

3 Modified smoothness indicators and new weight design

In this section the modified WENO schemes with the new smoothness indicators
are considered for YC-WENO-type schemes [13]. Schemes of order 2r−1 are based
on a stencil

S = {f−r+1, . . . , fr−1}, (3.1)
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where fi results either from a point-value or a cell-average discretization of a
function f :

fi = L[f ](xi) :=


f(xi) for point values,

1

h

∫ xi+h/2

xi−h/2

f(ξ) dξ for cell averages

for constant h := xi+1−xi, where we wish to reconstruct f at x1/2. In the following
sections we introduce the “Fast WENO” (FWENO) schemes.

3.1 Fast WENO (FWENO) schemes of order 2r − 1, r ≥ 2

The traditional Jiang-Shu smoothness indicators [4] are defined by

IJSr,i :=
r−1∑
k=1

∫ x1/2

x−1/2

h2k−1(p(k)r,i (x)
)2
dx, 0 ≤ i ≤ r − 1, (3.2)

where pr,i are the corresponding interpolating polynomials associated to the sub-
stencils Sr,i = {f−r+1+i, . . . , fi}, 0 ≤ i ≤ r − 1. These smoothness indicators have
been typically used in the literature involving WENO schemes, although their
evaluation is computationally expensive (quadratic with respect to the order, as
becomes evident from the identity deduced from [1, Proposition 5] (see subsection
3.3 for a more efficient computation, but still quadratic in r):

IJSr,i =
r−1∑
j=0

j∑
k=0

ej,kf−r+1+i+jf−r+1+i+k.

We propose new smoothness indicators for both (point-value and cell-average)
reconstructions that have linear cost with respect to the order (namely, they involve
r − 2 additions and r − 1 multiplications), and that are defined by

Ir,i :=
r−1∑
j=1

(f−r+i+j+1 − f−r+i+j)
2, 0 ≤ i ≤ r − 1. (3.3)

A detailed analysis on the computational cost of the smoothness indicators in both
cases is included in Section 3.3. The remaining parts of the algorithm are the same
as those defined in [13] for the YC-WENO schemes. For the sake of exposition, we
briefly describe it:

Input: S = {f−r+1, . . . , fr−1}, with fi = L[f ](xi), and ε > 0.

1. Compute interpolating polynomials

pr,i(x) = Im(x−r+1+i, . . . , xi; f−r+1+i, . . . , fi;x), 0 ≤ i ≤ r − 1,

where Im computes approximate point values from either point values or cell
averages, according to the discretization.

2. Compute the new smoothness indicators (3.3).
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3. Obtain the corresponding squared undivided differences of order 2r − 2:

dr =

(
r−1∑

j=−r+1

(−1)j+r−1

(
2r − 2

j + r − 1

)
fj

)2

. (3.4)

4. Compute the terms

αr,i = cr,i

(
1 +

ds1r
Is1r,i + ε

)s2

, 0 ≤ i ≤ r − 1, (3.5)

where cr,i are the ideal linear weights, for some s1, s2 chosen by the user such
that s1 ≥ 1 and s2 ≥ r

2s1
.

5. Generate the WENO weights:

ωr,i =
αr,i

αr,0 + · · ·+ αr,r−1
, i = 0, . . . , r − 1. (3.6)

6. Obtain the reconstruction at x1/2:

qr(x1/2) =
r−1∑
i=0

ωr,ipr,i(x1/2). (3.7)

Output: qr(x1/2).

Remark 1 As stated above, the difference between our proposed WENO method
and YC-WENO is the usage of the new smoothness indicators Ir,i as defined in
(3.3) in the former case and the usage of the classical smoothness indicators IJSr,i as
defined in (3.2) in the latter case. In turn, the difference between JS-WENO and
YC-WENO schemes is that in the former case the coefficients αr,i are defined by

αr,i =
cr,i

(IJSr,i + ε)s
, s ≥ r/2, (3.8)

instead of (3.5).

3.2 Accuracy properties of FWENO schemes

We next analyze the accuracy properties of the novel smoothness indicators.

Lemma 3 Let r ≥ 3, and a grid be defined by xi = z+(c+ i)h for −r+1 ≤ i ≤ r−1.
Assume that S given by (3.1) is a stencil such that fi = L[f ](xi), with f (k)(z) = 0 for

1 ≤ k ≤ n and f (n+1)(z) ̸= 0, f ∈ Cn+1, n ∈ N ∪ {0}, and assume that there exists

m ∈ N ∪ {0} such that f (2m+1)(z) ̸= 0. Furthermore, assume that the quantities Ir,i
are given by (3.3). Then Ir,i = Ō(h2n+2).

On the other hand, if r ≥ 2 and f has a unique discontinuity located in (x−r+1, xr−1),
then there exist indices i0, i1 with −r + 1 ≤ i0, i1 ≤ r − 1 such that Ir,i0 = Ō(1) and

Ir,i1 = O(h2).
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Proof If c ̸∈ {1/2 + j | −r + 1 ≤ j ≤ r − 2}, then by Lemma 2 there holds

fj+1 − fj = Ō(hn+1) ⇔ (fj+1 − fj)
2 = Ō(h2n+2) for all j = −r + 1, . . . , r − 2.

Therefore, in particular, one has

Ir,i =
r−1∑
j=1

Ō(h2n+2) = Ō(h2n+2) for all i = −r + 1, . . . , r − 1.

Let us now assume that c = 1/2+ j0 for some j0, −r+1 ≤ j0 ≤ r− 2. Then, again
by Lemma 2:

fj0+1 − fj0 = Ō(h2m+1);

fj+1 − fj = Ō(hn+1) for all j = −r + 1, . . . , r − 2, j ̸= j0.

Thus, we have the following: If j0 ̸∈ {−r + i+ 1, . . . , i− 1}, then

Ir,i =
r−1∑
j=1

Ō(h2n+2) = Ō(h2n+2)

Otherwise, that is if j0 ∈ {−r + i+ 1, . . . , i− 1}, we get

Ir,i = (fj0+1 − fj0)
2 +

r−1∑
j=1,j ̸=j0+r−i

(f−r+i+j+1 − f−r+i+j)
2

= Ō(h4m+2) +
r−1∑

j=1,j ̸=j0+r−i

Ō(h2n+2) = Ō(h4m+2) + Ō(h2n+2) = Ō(h2n+2),

since clearly by definition 2m+ 1 ≥ n+ 1.

Finally, if f has a unique discontinuity at (x−r+1, xr−1), then there exists
j1 ∈ {−r+1, . . . , r− 2} such that fj1+1 − fj1 = Ō(1), whereas fj+1 − fj = O(h) for
j1 ̸= j ∈ {−r+1, . . . , r− 2}. Hence, if we select for instance i0 = 0 and i1 = r− 1 if
j1 ≥ 0, or i0 = r−1 and i1 = 0 if j1 < 0, then clearly Ir,i0 = Ō(1) and Ir,i1 = O(h2).

Remark 2 The case r = 2 for the FWENO method is the same as in the original
YC-WENO method, since in this case the proposed smoothness indicators are the
same. In this case, the statement of Lemma 3 does not hold in general, since one
can have I2,i = O(h4m+2) if c = 1/2 + i− 1.

Theorem 1 Under the same conditions and notation as in Lemma 3, with r ≥ 3 and

dropping the role of ε, there holds

qr(x1/2) =


f(x1/2) +O(h2r−1) if n < 2r − 3,

f(x1/2) +O(hn+1) if n ≥ 2r − 3,

f(x1/2) +O(hr) if a discontinuity crosses the data.
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Proof We first assume smoothness with a critical point of order n. Then, by
Lemma 3, the new smoothness indicators satisfy Ir,i = Ō(h2n+2). We consider
in first place the case n < 2r − 3. Then there holds for αr,i:

αr,i = cr,i

(
1 +

ds1r
Is1r,i

)s2

= cr,i

(
1 +

O(h(4r−4)s1)

Ō(h(2n+2)s1)

)s2

= cr,i
(
1 +O(h2(2r−3−n)s1)

)s2 = cr,i +O(h2(2r−3−n)s1).

Hence, the non-linear weights satisfy

ωr,i =
αr,i∑r−1

j=0 αr,j

=
cr,i +O(h2(2r−3−n)s1)∑r−1

j=0

(
cr,i +O(h2(2r−3−n)s1)

) =
cr,i +O(h2(2r−3−n)s1)∑r−1
j=0 cr,i +O(h2(2r−3−n)s1)

=
cr,i +O(h2(2r−3−n)s1)

1 +O(h2(2r−3−n)s1)
= cr,i +O(h2(2r−3−n)s1).

On the other hand, pr,i(x1/2) = f(x1/2) +O(hM ) with M := max{r, n+1}. There-
fore, denoting by

pr(x1/2) :=
r−1∑
i=0

cr,ipr,i(x1/2)

the value at x1/2 of the optimal (2r − 1)-th order polynomial, we have

qr(x1/2)− f(x1/2) = qr(x1/2)− pr(x1/2) + pr(x1/2)− f(x1/2)

=
r−1∑
i=0

ωr,ipr,i(x1/2)−
r−1∑
i=0

cr,ipr,i(x1/2) +
(
pr(x1/2)− f(x1/2)

)
=

r−1∑
i=0

(ωr,i − cr,i)pr,i(x1/2) +O(h2r−1)

=
r−1∑
i=0

(ωr,i − cr,i)
(
pr,i(x1/2)− f(x1/2)

)
+O(h2r−1)

=
r−1∑
i=0

O(h2(2r−3−n)s1)O(hM ) +O(h2r−1)

= O(h2(2r−3−n)s1+M ) +O(h2r−1).

Taking into account that s1 ≥ 1, we have

qr(x1/2)− f(x1/2) = O(h2(2r−3−n)+M ) +O(h2r−1).

We next analyze the exponent of the left summand, splitting the discussion into
two cases. On one hand, if n ≤ r − 1, then M = r and there holds

2(2r−3−n)+M = 2(2r−3−n)+r = 5r−6−2n ≥ 5r−6−2(r−1) = 3r−4 ≥ 2r−1,

where the last inequality holds since by assumption r ≥ 3.
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On the other hand, if n ≥ r−1, then M = n+1 and then, since by assumption
n ≤ 2r − 4,

2(2r−3−n)+M = 2(2r−3−n)+(n+1) = 4r−5−n ≥ 4r−5− (2r−4) = 2r−1.

Thus, for the case n < 2r − 3 there holds qr(x1/2)− f(x1/2) = O(h2r−1).

In second place, we assume now n ≥ 2r − 3, then, using that
∑r−1

i=0 ωr,i = 1,
there holds

qr(x1/2) =
r−1∑
i=0

ωr,ipr,i(x1/2) =
r−1∑
i=0

ωr,i

(
f(x1/2) +O(hn+1)

)
=

r−1∑
i=0

ωr,if(x1/2) +O(hn+1) = f(x1/2) +O(hn+1).

Finally, if a discontinuity crosses the data, assume that J0 is the set of indices
associated to the substencils Sr,i, i ∈ J0, in which the discontinuity is not crossed
(J0 ̸= ∅ by the second part of Lemma 3), and J1 the set of the remaining whose
corresponding substencils Sr,i, i ∈ J1, are crossed by the discontinuity. Then if
i ∈ J0,

αi = cr,i

(
1 +

ds1r
Is1r,i

)s2

= cr,i

(
1 +

Ō(1)

Ō(h2s1(n+1))

)s2

= Ō(h−2s1s2(n+1)),

and if i ∈ J1,

αi = cr,i

(
1 +

ds1r
Is1r,i

)s2

= cr,i

(
1 +

Ō(1)

Ō(1)

)s2

= Ō(1).

Therefore, if i ∈ J0,

ωi =
αi∑r−1

j=0 αj

=
αi∑

j∈J0
αj +

∑
j∈J1

αj

=
Ō(h−2s1s2(n+1))∑

j∈J0
Ō(h−2s1s2(n+1)) +

∑
j∈J1

Ō(1)
=

Ō(h−2s1s2(n+1))

Ō(h−2s1s2(n+1))
= O(1),

and if i ∈ J1,

ωi =
αi∑r−1

j=0 αj

=
αi∑

j∈J0
αj +

∑
j∈J1

αj

=
Ō(1)∑

j∈J0
Ō(h−2s1s2(n+1)) +

∑
j∈J1

Ō(1)
=

Ō(1)

Ō(h−2s1s2(n+1))
= O(h2s1s2(n+1)).

Thus, we conclude that

qr(x1/2)− f(x1/2) =
r−1∑
i=0

ωr,ipr,i(x1/2)−
r−1∑
i=0

ωr,if(x1/2)

=
r−1∑
i=0

ωr,i

(
pr,i(x1/2)− f(x1/2)

)
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=
∑
i∈J0

ωr,i

(
pr,i(x1/2)− f(x1/2)

)
+
∑
i∈J1

ωr,i

(
pr,i(x1/2)− f(x1/2)

)
=
∑
i∈J0

O(1)O(hr) +
∑
i∈J1

O(h2s1s2(n+1))O(1)

= O(hr) +O(h2s1s2(n+1)).

Now using that n ≥ 0 and s2 ≥ r
2s1

, we have

2s1s2(n+ 1) ≥ 2s1
r

2s1
= r.

Therefore qr(x1/2)− f(x1/2) = O(hr), which completes the proof.

Remark 3 According to this result, the only case in which our method loses accu-
racy with respect to the reconstruction with ideal linear weights is when n = 2r−3,
in which the accuracy order decays to 2r−2, namely, one unit less than the optimal
accuracy order, 2r − 1.

3.3 Efficiency properties of FWENO schemes

We conclude this section with a comparison involving the number of operations
of an FWENO interpolator with respect to the traditional JS-WENO and YC-
WENO interpolators. In order to do so, we invoke [1, Propositions 1 and 5] to
conclude that the evaluation of the reconstruction polynomials at the reconstruc-
tion point and the classical Jiang-Shu smoothness indicators can be respectively
written as

pr,i(x1/2) =
r−1∑
j=0

di,jf−r+1+i+j ,

IJSr,i =
r−1∑
j=0

j∑
k=0

ei,j,kf−r+1+i+jf−r+1+i+k, 0 ≤ i ≤ r − 1,

where di,j , ei,j,k ∈ R are constants with respect to the data from the stencil.
This expression can be further simplified by taking into account that IJSr,i is a

positive semi-definite quadratic form defined on (f−r+1+i, . . . , fi) with rank r− 1,
therefore it can be expressed in a more convenient and numerically stable manner
as a sum of squares of linear combinations of f−r+1+i, . . . , fi. Specifically, for each
i = 0, . . . , r − 1, let Ai be the matrix associated to IJSr,i , i.e.

IJSr,i = (f−r+1+i, . . . , fi)Ai

f−r+1+i

...
fi

 .

The r×r matrix Ai is semi-positively-definite with rank r−1 and therefore admits a
decomposition as Ai = PT

i LiDiL
T
i Pi, where Pi is a permutation matrix associated

to the permutation σi of (1, . . . , r), Li is lower triangular with unit entries in the
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diagonal and Di = diag(βi,1, . . . , βi,r−1, 0), with βi,j > 0, j = 1, . . . , r − 1. This
yields the following simplified expression:

IJSr,i = (f−r+1+i, . . . , fi)P
T
i LiDiL

T
i Pi

f−r+1+i

...
fi


=

r−1∑
j=1

βi,j

(
j∑

k=0

γi,j,kfi−r+σi(1+k)

)2

, γi,j,k = (Li)j,k, γi,j,j = 1.

The cost associated to each reconstruction of lower order is thus r−1 additions
and r multiplications, while the cost associated to each classical smoothness indi-
cators is (r2+r−4)/2 additions and (r2+3r−4)/2 multiplications. Hence, the cost
associated to the computation of the whole set of r reconstructions of lower order
is (r − 1)r additions and r2 multiplications, whereas the cost associated to the
computation of the whole set of r classical smoothness indicators is r(r2+ r−4)/2
additions and r(r2 + 3r − 4)/2 multiplications.

Now let us analyze the cost associated with the FWENO smoothness indica-
tors (3.3). In this case, we also can reduce the number of operations by taking into
consideration that the novel smoothness indicators satisfy a simple recurrence rela-
tion, in a way that their computation can be simplified in the following algorithm,
involving a linear cost both in terms of additions and in terms of multiplications:

1. Compute
θj := (f−r+j+1 − f−r+j)

2, 1 ≤ j ≤ 2r − 2.

Operations: 2r − 2 additions and 2r − 2 multiplications.
2. Compute

I0 =
r−1∑
j=1

θj .

Operations: r − 2 additions.
3. Compute

Ii = Ii−1 − θi + θi+r−1, 1 ≤ i ≤ r − 1.

Operations: 2r − 2 additions.

Therefore, the cost associated to the whole set of smoothness indicators involves
5r − 6 additions and 2r − 2 multiplications.

Now, YC-WENO and FWENO schemes also involve the computation of (3.4),
which involves 2r − 2 additions and 2r multiplications.

As for the terms αr,i, we have two cases: for JS-WENO schemes, the expres-
sion for them is (3.8), and therefore the number of operations for each one is one
addition, s − 1 multiplications and one division; therefore, the total cost for all
them is r additions, (s − 1)r multiplications and r divisions. As for YC-WENO
and FWENO schemes, the expression to be computed is (3.5), and the number of
operations associated to each one of them is two additions, 2s1 + s2 − 2 multipli-
cations and one division, being thus the total cost 2r additions, (2s1 + s2 − 2)r
multiplications and r divisions.

The non-linear weights ωr,i have the same expression (3.6) in all cases. The
denominator is the same for all the weights, and therefore one can previously
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Order 2r − 1 JS-WENO
Operations Additions Multiplications Divisions
pr(x 1

2
) (r − 1)r r2 0

Ir (r3 + r2 − 4r)/2 (r3 + 3r2 − 4r)/2 0
αr r (s− 1)r r
ωr r − 1 r 1

qr(x1/2) r − 1 r 0

SUM (r3 + 3r2 − 4)/2 (r3 + 5r2 + (2s− 2)r)/2 r + 1
TOTAL r3 + 4r2 + (s− 1)r − 2

Table 1: Theoretical cost for JS-WENO interpolator.

Order 2r − 1 YC-WENO
Operations Additions Multiplications Divisions
pr(x 1

2
) (r − 1)r r2 0

Ir (r3 + r2 − 4r)/2 (r3 + 3r2 − 4r)/2 0
dr 2r − 2 2r 0
αr 2r (2s1 + s2 − 2)r r
ωr r − 1 r 1

qr(x1/2) r − 1 r 0

SUM (r3 + 3r2 + 6r − 8)/2 (r3 + 5r2 + (4s1 + 2s2)r)/2 r + 1
TOTAL r3 + 4r2 + (2s1 + s2 + 3)r − 4

Table 2: Theoretical cost for YC-WENO interpolator.

store the value of ᾱi := 1/(
∑r−1

j=0 αi,j) and then compute ωr,i = αr,iᾱi, converting
thus r divisions, much more expensive than multiplications, in to one division and
r multiplications. Therefore, the total cost corresponds now to r−1 additions and
one division associated with the computation of ᾱi and r multiplications (one mul-
tiplication per weight). Finally, the reconstruction expression (3.7) is also common
in the three schemes, and corresponds to r − 1 additions and r multiplications.

The number of operations associated to each term and the grand total of oper-
ations for each method is summarized in Tables 1 to 3, where it can be drawn as
a conclusion that the number of operations of JS-WENO and YC-WENO is cubic
with respect to the order, whereas the number of operations associated to FWENO
increases quadratically with respect to the order. Therefore, the complexity of the
smoothness indicators is indeed a crucial factor in terms of the impact on the com-
putational cost, and using simplified alternatives can indeed reduce significantly
the overall computational cost of the WENO interpolator.

A graphical comparison between the cost associated to each scheme is also
shown in Figure 1, with s = r/2, s1 = r/2 and s2 = 1.

4 Numerical experiments

We now present some numerical experiments for schemes based on finite differ-
ences, as introduced in [8,9], combined with high-order WENO reconstructions
to discretize hyperbolic conservation laws. Results obtained by the new FWENO
scheme are compared with those generated by the JS-WENO and YC-WENO
schemes. The exponent s for JS-WENO method is chosen as s = ⌈r/2⌉, while the
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Order 2r − 1 FWENO
Operations Additions Multiplications Divisions
pr(x 1

2
) (r − 1)r r2 0

Ir 5r − 6 2r − 2 0
dr 2r − 2 2r 0
αr 2r (2s1 + s2 − 2)r r
ωr r − 1 r 1

qr(x1/2) r − 1 r 0

SUM r2 + 10r − 10 r2 + (2s1 + s2 + 4)r − 2 r + 1
TOTAL 2r2 + (2s1 + s2 + 14)r − 12

Table 3: Theoretical cost for FWENO interpolator.

3 5 7 9
Order

50

100

150

200

250

O
pe

ra
tio

ns

JS-WENO
YC-WENO
FWENO

Fig. 1: Theoretical cost comparison between WENO interpolators.

exponents s1 and s2 for both YC-WENO and FWENO methods are chosen as
s1 = ⌈r/2⌉ and s2 = 1. Finally, we set in all the numerical experiments ε = 10−100,
so that this parameter has the sole role of avoiding divisions by zero.

4.1 1D conservation law experiments

Example 1: Linear advection equation

We first apply the fifth-order accurate YC-WENO5 and FWENO schemes to the
initial-boundary value problem for the linear advection equation

ut + ux = 0, Ω = (−1, 1), u(−1, t) = u(1, t),

u0(x) = 0.25 + 0.5 sin(πx),

which has the solution u(x, t) = 0.25+0.5 sin(π(x− t)). We run several simulations
with final time T = 1 and grid spacings h = 2/N and measure the resulting errors
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∥ · ∥1 ∥ · ∥∞ ∥ · ∥1 ∥ · ∥∞
YC-WENO5 FWENO5

N Err. O Err. O Err. O Err. O
10 1.02e-03 — 1.55e-03 — 1.01e-03 — 1.66e-03 —
20 3.27e-05 4.96 5.16e-05 4.91 3.27e-05 4.95 5.16e-05 5.01
40 1.01e-06 5.01 1.60e-06 5.01 1.01e-06 5.01 1.60e-06 5.01
80 3.15e-08 5.01 4.94e-08 5.01 3.15e-08 5.01 4.94e-08 5.01
160 9.79e-10 5.01 1.54e-09 5.01 9.79e-10 5.01 1.54e-09 5.01
320 3.05e-11 5.00 4.79e-11 5.00 3.05e-11 5.00 4.79e-11 5.00
640 9.52e-13 5.00 1.50e-12 5.00 9.53e-13 5.00 1.50e-12 5.00

Table 4: Example 1 (linear advection equation): fifth-order schemes with the new
smoothness indicators.

∥ · ∥1 ∥ · ∥∞ ∥ · ∥1 ∥ · ∥∞
YC-WENO5 FWENO5

N Err. O Err. O Err. O Err. O
40 2.44e-05 4.95 2.52e-04 4.70 2.73e-05 5.11 2.50e-04 4.69
80 7.89e-07 5.08 9.70e-06 5.05 7.89e-07 5.08 9.70e-06 5.05
160 2.32e-08 5.05 2.94e-07 5.03 2.32e-08 5.05 2.94e-07 5.03
320 7.01e-10 5.04 8.96e-09 5.03 7.01e-10 5.04 8.96e-09 5.03
640 2.14e-11 5.02 2.73e-10 5.02 2.14e-11 5.02 2.73e-10 5.02
1280 6.59e-13 5.02 8.41e-12 5.00 6.59e-13 5.02 8.41e-12 5.00

Table 5: Example 2 (Burgers equation): fifth-order schemes with the new smooth-
ness indicators.

both in the L1 and L∞ norms. From the numerical results, which are shown in
Table 4, one can conclude that both schemes converge numerically at approximate
fifth-order rate, which is consistent with our theoretical analysis. In fact, the results
for the YC-WENO and FWENO schemes are nearly identical.

Example 2: Burgers equation

We now solve numerically the following initial-boundary value problem for the
inviscid Burgers equation:

ut + (u2/2)x = 0, Ω = (−1, 1), u(−1, t) = u(1, t),

u0(x) = 0.25 + 0.5 sin(πx).

A first simulation is run until T = 0.3, in which the solution remains smooth.
We compare both YC-WENO and FWENO schemes in the results shown in Table
5, where it can be observed that both methods attain again fifth order accuracy,
producing an almost identical error.

The simulation is now run until T = 12. At t = 1, the wave breaks and a shock
is generated. Therefore, we use the Donat-Marquina flux-splitting algorithm [3].
The results shown in Figure 2 correspond to the fifth-order schemes, with a reso-
lution of N = 80 cells, and are compared with a reference solution computed with
N = 16000 cells. The results obtained for all three methods are very similar, and
therefore one can conclude that in this case using the new smoothness indicators
does not appreciably affect the quality of the solution.
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Fig. 2: Example 2 (inviscid Burgers equation): numerical solution for N = 80 (top)
and enlarged views (bottom left and right) at T = 12 produced by fifth-order
schemes with conventional (JS-WENO5 and YC-WENO5) and new (FWENO5)
smoothness indicators. The reference solution with N = 16000 cells is also shown.

Example 3: Shu-Osher problem, 1D Euler equations of gas dynamics

The 1D Euler equations for gas dynamics are given by u = (ρ, ρv, E)T and f(u) =
f1(u) = (ρv, p+ ρv2, v(E + p))T, where ρ is the density, v is the velocity and E is
the specific energy of the system. The variable p stands for the pressure and is
given by the equation of state

p = (γ − 1)

(
E − 1

2
ρv2
)
,

where γ is the adiabatic constant that will be taken as γ = 1.4. The spatial domain
is Ω := (−5, 5), and the initial condition

(ρ, v, p)(x, 0) =


(
27

7
,
4
√
35

9
,
31

3

)
if x ≤ −4,(

1 +
1

5
sin(5x), 0, 1

)
if x > −4,
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Fig. 3: Example 3 (Shu-Osher problem, 1D Euler equations of gas dynamics):
numerical solution for N = 200 (top left) and enlarged views (top right, bottom left
and bottom right) at T = 1.8 produced by fifth-order schemes with conventional
(JS-WENO5 and YC-WENO5) and new (FWENO5) smoothness indicators. The
reference solution with N = 16000 cells is also shown.

stipulates the interaction of a Mach 3 shock with a sine wave and is complemented
with left inflow and right outflow boundary conditions. We run the simulation until
T = 1.8 and compare the schemes against a reference solution computed with a
resolution of N = 16000. Figures 3 and 4 display the results obtained by fifth-order
schemes with resolutions of N = 200 and N = 400 cells, respectively. The results
are similar for the YC-WENO and FWENO schemes and are slightly less sharply
resolved for the JS-WENO scheme. In order to highlight the superior performance
of the FWENO scheme, we also plot the numerical error against the CPU time
for schemes of order 2r − 1, with 3 ≤ r ≤ 5, which is shown in Figures 5–7. These
results clearly indicate that the scheme with the new smoothness indicators is
more efficient (in terms of error reduction versus CPU time) than the schemes
that employ the traditional Jiang-Shu smoothness indicators.
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Fig. 4: Example 3 (Shu-Osher problem, 1D Euler equations of gas dynamics):
numerical solution for N = 400 (top left) and enlarged views (top right, bottom left
and bottom right) at T = 1.8 produced by fifth-order schemes with conventional
(JS-WENO5 and YC-WENO5) and new (FWENO5) smoothness indicators. The
reference solution with N = 16000 cells is also shown.

Example 4 (Sod shock tube problem, 1D Euler equations of gas dynamics)

We now apply WENO schemes to the 1D Euler equations of gas dynamics on
Ω = (0, 1) with the initial condition

(ρ, v, p)(x, 0) =

{
(1, 0, 1) if x ≤ 0.5,

(0.125, 0, 0.1) if x > 0.5

and left and right Dirichlet boundary conditions corresponding to the shock tube
problem proposed by Sod [11]. This problem has been tackled in many other
papers afterwards, such as in [2]. The numerical result is produced by ninth-order
schemes with a resolution of N = 200 cells compared against a reference solution
which has been computed with a resolution of N = 100000 by the classical JS-
WENO scheme. The simulation is run until T = 0.1 and the results are depicted
in Figure 8. It turns our that the schemes produce very similar results. In fact,
the most remarkable differences are favorable to our proposed FWENO scheme,
since the behavior is slightly less oscillatory near the contact discontinuity and
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Fig. 5: Example 3 (Shu-Osher problem, 1D Euler equations of gas dynamics):
efficiency plot for fifth-order schemes, corresponding to the numerical solution at
T = 1.8.
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Fig. 6: Example 3: (Shu-Osher problem, 1D Euler equations of gas dynamics):
efficiency plot for seventh-order schemes, corresponding to the numerical solution
at T = 1.8.

the shock. Finally, an efficiency comparison is presented in Figure 9, where it can
be concluded that our FWENO scheme turns out to be again more efficient than
their classical JS-WENO and YC-WENO counterparts.
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Fig. 7: Example 3: (Shu-Osher problem, 1D Euler equations of gas dynamics):
efficiency plot for ninth-order schemes, corresponding to the numerical solution at
T = 1.8.

4.2 2D conservation law experiments

Example 5 (double Mach reflection, 2D Euler equations of gas dynamics)

The two-dimensional Euler equations for inviscid gas dynamics are given by

ut + f1(u)x + f2(u)y = 0,

with

u =


ρ

ρvx

ρvy

E

 , f1(u) =


ρvx

p+ ρ(vx)2

ρvxvy

vx(E + p)

 , f2(u) =


ρvy

ρvxvy

p+ ρ(vy)2

vy(E + p)

 .

Here ρ is the density, (vx, vy) is the velocity, E is the specific energy, and p is the
pressure that is given by the equation of state

p = (γ − 1)

(
E − 1

2
ρ((vx)2 + (vy)2)

)
,

where the adiabatic constant is again chosen as γ = 1.4. This experiment uses
these equations to model a vertical right-going Mach 10 shock colliding with an
equilateral triangle. By symmetry, this is equivalent to a collision with a ramp
with a slope of 30◦ with respect to the horizontal line.

For sake of simplicity, we consider the equivalent problem in a rectangle, con-
sisting in a rotated shock, whose vertical angle is 30◦. The domain is the rectangle
Ω = [0, 4]× [0, 1], whose initial conditions are

(ρ, vx, vy, E)(x, y, 0) =

{
c1 = (ρ1, v

x
1 , v

y
1 , E1) if y ≤ 1/4 + tan(π/6)x,

c2 = (ρ2, v
x
2 , v

y
2 , E2) if y > 1/4 + tan(π/6)x,
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Fig. 8: Example 4 (Sod shock tube problem, 1D Euler equations of gas dynamics):
numerical solution for N = 200 (top left) and enlarged views (top right, bottom left
and bottom right) at T = 0.1 produced by ninth-order schemes with conventional
(JS-WENO9 and YC-WENO9) and new (FWENO9) smoothness indicators. The
reference solution with N = 100000 cells is also shown.

c1 =
(
8, 8.25 cos(π/6),−8.25 sin(π/6), 563.5

)
, c2 = (1.4, 0, 0, 2.5).

We impose inflow boundary conditions, with value c1, at the left side, {0}× [0, 1],
outflow boundary conditions both at [0, 1/4]×{0} and {4}×[0, 1], reflecting bound-
ary conditions at (1/4, 4]× {0} and inflow boundary conditions at the upper side,
[0, 4]× {1}, which mimics the shock at its actual traveling speed:

(ρ, vx, vy, E)(x, 1, t) =

{
c1 if x ≤ 1/4 + (1 + 20t)/

√
3,

c2 if x > 1/4 + (1 + 20t)/
√
3.

We run different simulations until T = 0.2 both at a resolution of 2048 × 512
points and a resolution of 2560 × 640 points, shown in Figure 10, in both cases
with CFL = 0.4 and involving the JS-WENO scheme, the YC-WENO method
and our FWENO scheme for the case of fifth-order accuracy. The results show
that both YC-WENO and FWENO schemes produce sharper resolution than JS-
WENO, and in turn they have similar resolution between then.
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Fig. 9: Example 4 (Sod shock tube problem, 1D Euler equations of gas dynamics):
efficiency plot for ninth-order schemes, corresponding to the numerical solution at
T = 0.1.

Example 6: Riemann problem

Finally, we solve numerically a Riemann problem for the 2D Euler equations on
the domain (0, 1) × (0, 1). Riemann problems for 2D Euler equations were first
studied in [7]. The initial data is taken from [5, Sect. 3, Config. 3]:

u(x, y, 0) = (ρ(x, y, 0), ρ(x, y, 0)vx(x, y, 0), ρ(x, y, 0)vy(x, y, 0), E(x, y, 0))

and


ρ(x, y, 0)
vx(x, y, 0)
vy(x, y, 0)
p(x, y, 0)


T

=


(1.5, 0, 0, 1.5) for x > 0.5, y > 0.5,

(0.5323, 1.206, 0, 0.3) for x ≤ 0.5, y > 0.5,

(0.138, 1.206, 1.206, 0.029) for x ≤ 0.5, y ≤ 0.5,

(0.5323, 0, 1.206, 0.3) for x > 0.5, y ≤ 0.5,

with the same equation of state as in the previous test. The simulation is performed
taking s2 = 2, with the final time T = 0.3, CFL = 0.4, resolutions 2048 × 2048
and 2560 × 2560 and comparing the same schemes with the same parameters as
in Example 5. The results are shown in Figure 11. The same conclusions as in
Example 5 are drawn.

We now use the solutions computed with the grid of 2560 × 2560 points as
reference solutions to perform efficiency tests by comparing error versus CPU
time involving numerical solutions with grid sizes 16 · 2n × 16 · 2n, 0 ≤ n ≤ 4, for
the corresponding fifth, seventh and ninth order schemes. The results are shown
in Figure 12 and again indicate a higher performance for the FWENO scheme.
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(a) JS-WENO5, 2048× 512 (b) YC-WENO5, 2048× 512

(c) FWENO5, 2048× 512 (d) JS-WENO5, 2560× 640

(e) YC-WENO5, 2560× 640 (f) FWENO5, 2560× 640

Fig. 10: Example 5 (double Mach reflection, 2D Euler equations of gas dynamics):
enlarged views of turbulent zone of numerical solutions at T = 0.2 (Schlieren plot).

5 Conclusions

In this paper a set of alternative smoothness indicators, cheaper than the classical
Jiang-Shu ones, has been presented. The theoretical results show that when used
in Yamaleev-Carpenter type weight constructions they attain the same accuracy
properties than the ones obtained with the original smoothness indicators. The
numerical experiments confirm all these theoretical considerations. Also, the nu-
merical evidence obtained in the problems from hyperbolic conservation laws with
weak solutions also shows that the quality of the approximation is similar in both
cases, being the schemes with the modified smoothness indicators (FWENO) more
efficient than their traditional counterparts (JS-WENO and YC-WENO).

As for future work, we encompass extrapolating the benefits of this new weight
design with the simplified smoothness indicators in the context of WENO extrap-
olation for numerical boundary conditions and even generalized WENO interpo-
lations/extrapolations in the context of non-uniform grids, in which the compu-
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(a) JS-WENO5, 2048× 2048 (b) YC-WENO5, 2048× 2048

(c) FWENO5, 2048× 2048 (d) JS-WENO5, 2560× 2560

(e) YC-WENO5, 2560× 2560 (f) FWENO5, 2560× 2560

Fig. 11: Example 6 (Riemann problem, 2D Euler equations of gas dynamics):
enlarged views of turbulent zone of numerical solutions at T = 0.3 (Schlieren
plot).

tational benefits of using these new smoothness indicators with respect to the
traditional ones are expected to be much higher than in uniform grids.
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Fig. 12: Example 6 (2D Riemann problem, 2D Euler equations of gas dynamics):
efficiency plot for fifth, seventh and ninth-order schemes, corresponding to the
numerical solution at T = 0.3.
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