
Compact Approximate Taylor methods for systems of conservation laws.

H. Carrillo1, C. Parés1

University of Málaga

Abstract

A new family of high order methods for systems of conservation laws are introduced: the
Compact Approximate Taylor (CAT) methods. These methods are based on centered (2p+ 1)-
point stencils where p is an arbitrary integer. We prove that the order of accuracy is 2p and
that CAT methods are an extension of high-order Lax-Wendroff methods for linear problems.
Due to this, they are linearly L2-stable under a CFL − 1 condition. In order to prevent the
spurious oscillations that appear close to discontinuities two shock-capturing techniques have
been considered: a flux-limiter technique (FL-CAT methods) and WENO reconstruction for
the first time derivative (WENO-CAT methods). We follow [14] in the second approach. A
number of test cases are considered to compare these methods with other WENO-based schemes:
the linear transport equation, Burgers equation, and the 1D compressible Euler system are
considered. Although CAT methods present an extra computational cost due to the local
character, this extra cost is compensated by the fact that they still give good solutions with
CFL values close to 1.

1. Introduction

Lax-Wendroff methods for linear systems of conservation laws are based on Taylor expan-
sions in time in which the time derivatives are transformed into spatial derivatives using the
equations [5], [6],[12], [15]. The spatial derivatives are then discretized by means of centered
high-order differentiation formulas. This procedure allows to derive numerical methods of order
2p, where p is an arbitrary integer, using a centered (2p+ 1)-point stencil that are L2-stable (a
review on these methods will be presented in Section 2).
This paper focuses on the extension of Lax-Wendroff methods to nonlinear systems of conserva-
tion laws. This problem is closely related to the design of numerical schemes based on the meth-
ods of lines in which the time discretization is performed by means of Taylor or Approximate
Taylor methods. Many authors have focused on the design of this type of methods that can be
an alternative to time discretizations based on SSP Runge-Kutta methods [9] that lead to some
stability restrictions for orders bigger than three. The main difficulty to extend Lax-Wendroff
methods to nonlinear problems come from the transformation of time derivatives into spatial
derivatives using the equations. A first strategy to do this is given by the Cauchy-Kovalevskaya
(CK) procedure. In [9] this procedure has been used together with WENO reconstructions for
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the spatial discretization. The main benefit compared to RK time discretizations is that only
one WENO reconstruction is needed at each spatial cell per time step. On the other hand, the
main drawback comes from the fact that the CK procedure leads to expressions whose number
of terms grow exponentially what implies high computational costs and difficult implementa-
tions. In [14] an alternative has been presented based on an Approximate Taylor (AT) method
in which the time derivatives are approximated using high-order centered differentiation formu-
las combined with Taylor approximations in time that are computed in a recursive way. The
resulting method is easy to implement and shows a good performance. Nevertheless AT schemes
are not proper generalizations of Lax-Wendroff methods: they have (4p+ 1)-point stencils and
worse linear stability properties than the original Lax-Wendroff methods. Nevertheless, they
can be stabilized by using one WENO reconstruction per spatial cell and time step, like in [9]
the resulting methods give good results under a CFL− 0.5 condition typically.
In order to design numerical methods that are proper generalization of Lax-Wendroff methods,
a compact variant of the AT procedure is introduced here: first, the conservative expression
of the high-order Lax-Wendoff methods is considered; then, the derivatives appearing in the
expression of the numerical flux are computed using 2p-point differentiation formulas. This
strategy lead to Compact Approximate Taylor (CAT) methods that have 2p + 1-point stencil
and order of accuracy 2p. They reduce to the Lax-Wendroff method when applied to a linear
systems and thus they are linearly L2-stable under a CFL − 1 condition. Nevertheless, the
number of operations to perform a step is bigger than the original AT methods: this is due to
the fact that the approximation of the time derivatives is local in the sense that they depend
both on the point and on the stencil. However, this extra cost is compensated by better stability
properties. As it happens with its linear counterpart, CAT methods lead to spurious oscillations
near discontinuities. In order to cure them, two shock-capturing techniques are considered here:
a flux-limiter technique and the use of a WENO reconstruction per cell and time step, as in
[14] and [9].
This paper is organized as follows: in Section 2 a review of high order Lax-Wendroff methods
for the linear transport equation is presented, including the study of the order and the L2-
stability as well as the computation and properties of the coefficients. Section 3 is devoted to
their extension to nonlinear problems: first the AT technique is recalled and then CAT methods
are presented. We show that they reduce to Lax-Wendroff methods when applied to a linear
problem and we analyze the order of accuracy. In Section 4 the techniques considered to cure
the spurious oscillations near the discontinuities are presented. In Section 5 CAT methods are
compared in a number of test cases with WENO-RK methods and AT methods. The linear
transport equation, Burgers equation, and the 1D compressible Euler system are considered.
Future developments and conclusions are drawn in Section 6.

2. The high-order Lax-Wendroff method for linear problems

Let us first consider the linear scalar equation:

ut + aux = 0. (1)
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We consider the numerical method:

un+1
i = uni +

m∑
k=1

(−1)kck

k!

p∑
j=−p

δkp,j u
n
i+j , (2)

where {xi} are the nodes of a uniform mesh of step ∆x; uni is an approximation of the point
value of the solution at xi at the time n∆t, where ∆t is the time step; p ≥ 1 is a natural number;
c = a∆t/∆x; and δkp,j are the coefficients of the centered interpolatory formula of numerical
differentiation based on a (2p+ 1)-point stencil:

f (k)(xi) ' Dk
p,i(f,∆x) =

1

∆xk

p∑
j=−p

δkp,jf(xi+j), (3)

where f (k) represents the k-th derivative of a one-variable function f and f (0) = f . The
expression of the numerical method is obtained by applying a Taylor expansion in time, and
replacing time derivatives by space derivatives through the identities

∂kt u = (−1)kak∂kxu, k = 1, 2 . . . (4)

2.1. Formulas of numerical differentiation
Besides (3) the following family of interpolatory formulas based on a 2p-point stencil will

be used in this work:

f (k)(xi + q∆x) ' Ak,qp,i (f,∆x) =
1

∆xk

p∑
j=−p+1

γk,qp,j f(xi+j), (5)

i.e. Ak,qp,i (f,∆x) is the numerical differentiation formula that approximates the k-th derivative
at the point xi+q∆x using the values of the function at the 2p points xi−p+1, . . . , xi+p. Observe
that the coefficients, like in (3), do not depend on i.

Given a variable w, the following notation will be used:

Dk
p,i(w∗,∆x) =

1

∆xk

p∑
j=−p

δkp,jwi+j ,

Ak,qp,i (w∗,∆x) =
1

∆xk

p∑
j=−p+1

γk,qp,jwi+j ,

to indicate that the formulas are applied to the approximations of w, wi, and not to its exact
point values w(xi). In cases where there are two or more indexes, the symbol ∗ will be used to
indicate with respect to which the differentiation is applied. For instance:

∂kxu(xi + q∆x, tn) ' Ak,qp,i (u
n
∗ ,∆x) =

1

∆xk

p∑
j=−p+1

γk,qp,j u
n
i+j ,

∂kt u(xi, tn + q∆t) ' Ak,qp,n(u∗i ,∆t) =
1

∆tk

p∑
r=−p+1

γk,qp,ru
n+r
i .
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Using this notation, the algorithm (2) writes as follows:

un+1
i = uni +

m∑
k=1

(−1)kak∆tk

k!
Dk
p,i(u

n
∗ ,∆x). (6)

Let us discuss some properties of the coefficients of the numerical differentiation formulas (3)
and (5) and some relations between them that will be used in that follows. Since the coefficients
are independent of ∆x and i, we can consider, without loss of generality, the case i = 0, x0 = 0,
∆x = 1:

f (k)(0) ' Dk
p,0(f, 1) =

p∑
j=−p

δkp,jf(j), (7)

f (k)(q) ' Ak,qp,0(f, 1) =

p∑
j=−p+1

γk,qp,j f(j). (8)

Since (7) is exact for polynomials of degree ≤ 2p, by applying the formula to xs, s = 0, . . . , 2p
at x = 0, we get that the coefficients have to satisfy the equalities

p∑
j=−p

jkδkp,j = k!,

p∑
j=−p

jsδkp,j = 0, s 6= k , 0 ≤ s, k ≤ 2p. (9)

Analogously:

p∑
j=−p+1

jkγk,0p,j = k!,

p∑
j=−p+1

jsγk,0p,j = 0, s 6= k , 0 ≤ s, k ≤ 2p− 1. (10)

p∑
j=−p+1

γk,qp,j =

{
1 if k = 1,
0 otherwise. (11)

As it is well known, the coefficients δkp,j are related to the Lagrange basis polynomials

Fp,j(x) =

p∏
r=−p,r 6=j

(x− r)
(j − r)

, −p ≤ j ≤ p, (12)

through the equalities:
δkp,j = F

(k)
p,j (0), (13)

which allow us to write the Taylor expansion of Fp,j centered at x = 0 as follows:

Fp,j(x) =

2p∑
k=0

δkp,j
k!
xk. (14)
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Proposition 1 The coefficients δkp,j of the formula (7), satisfy:

δkp,j = (−1)kδkp,−j ; (15)

δkp,0 = 0 if k is odd; (16)
p∑

j=−p
δkp,j j

(2p+1) = 0 if k is even; (17)

p∑
j=−p

δkp,j j
(2p+2) = 0 if k is odd. (18)

Proof. (15) is deduced from the equality

Fp,−j(x) = Fp,j(−x);

. Using (15) we get (16). (17) and (18) are deduced from (15) and (16).

�

Proposition 2 For k ≥ 1 the following relations hold:

δkp,p = γk−1,1/2
p,p ; (19)

δkp,j = γ
k−1,1/2
p,j − γk−1,1/2

p,j+1 , j = −p+ 1, . . . , p− 1; (20)

δkp,−p = −γk−1,1/2
p,−p+1 . (21)

Proof. Let us consider the formulas

f (k−1)(1/2) ' Ak−1,1/2
p,0 (f, 1) =

p∑
j=−p+1

γk−1
p,j f(j), (22)

f (k−1)(−1/2) ' Ak−1,1/2
p,−1 (f, 1) =

p∑
j=−p+1

γk−1
p,j f(j − 1), (23)

that are exact for polynomials of degree ≤ 2p− 1. Let us consider now the formula

f (k)(0) ' Ak−1,1/2
p,0 (f, 1)−Ak−1,1/2

p,−1 (f, 1). (24)

If f is a polynomial of degree 2p, then (22) and (23) are exact for f , furthermore

A
k−1,1/2
p,0 (f, 1)−Ak−1,1/2

p,−1 (f, 1) = f (k−1)(1/2)− f (k−1)(−1/2) = f (k)(0),

where we have used that the formula

g′(0) ' g(1/2)− g(−1/2),
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is exact for polynomials of degree 1. Therefore, (24) coincide with (7). The proof is finished by
writing (24) in the form

f (k)(0) 'γk−1,1/2
p,p f(p) + (γ

k−1,1/2
p,p−1 − γk−1,1/2

p,p )f(p− 1) + . . .

+ (γ
k−1,1/2
p,−p+1 − γ

k−1,1/2
p,−p+2 )f(−p+ 1)− γk−1,1/2

p,−p+1 f(−p),

and matching the weights.

�

Proposition 3 Given 1 ≤ k ≤ 2p− 1, 0 ≤ s ≤ k:
p∑

j=−p+1

γs,qp,jγ
k−s,j
p,l = γk,qp,l , l = −p+ 1, . . . , p. (25)

Proof. The proof is similar to the one of the preceding in Proposition 2: consider the formula

f (k)(q) '
p∑

j=−p+1

γs,qp,jf
(k−s)
j ,

with

f
(k−s)
j =

p∑
l=−p+1

γk−s,jp,l f(l);

check that it is exact for polynomials of degree 2p− 1; write it in the form:

f (k)(q) '
p∑

l=−p+1

 p∑
j=−p+1

γs,qp,jγ
k−s,j
p,l

 f(l);

and match its weights with those of (8).

�

2.2. Conservative form of (2)
From the proof of Proposition 2 we deduce an alternative form for (3):

f (k)(xi) '
1

∆x

(
A
k−1,1/2
p,i (f,∆x)−Ak−1,1/2

p,i−1 (f,∆x)
)
. (26)

Using this form in (6), the numerical method (2) can be written as:

un+1
i = uni +

∆t

∆x

(
F pi−1/2 − F

p
i+1/2

)
, (27)

with

F pi+1/2 =

2p∑
k=1

(−1)k−1a
k∆tk−1

k!
A
k−1,1/2
p,i (un∗ ,∆x). (28)

Using (11) it is straightforward to verify that F pi+1/2 is a consistent numerical flux, what proves
that (2) is a conservative method.

6



2.3. Computation of the coefficients: an iterative algorithm
Notice that (9) constitutes a (2p+1)×(2p+1) linear system with a Vandermonde matrix that

can be used to compute δkp,i . Nevertheless, as it is well-known, this system is ill-conditioned,
so that it is recommendable to compute them by using an alternative algorithm: we adapt the
recursive algorithm proposed in [3]. The following notation is adopted:

δkp,j = 0 if k > 2p or k < 0.

Let us derive some recurrence formulas to compute the coefficients:

1. δkp,j for j = 0, .., p− 1.
From (12), we obtain

Fp,j(x) =
x2 − p2

j2 − p2
Fp−1,j(x). (29)

Using then the Taylor expansions (14) in (29) we get

δkp,j =
1

p2 − k2

[
p2δkp−1,j − k(k − 1)δk−2

p−1,j

]
, (30)

2. δkp,j with j = p.
Substituting j=p in (12), we get

Fp,p(x) =
1

(2p)(2p− 1)
(x2 + x− p(p− 1))Fp−1,p−1(x), (31)

and, using (14), we obtain:

δkp,p =
1

2p(2p− 1)

[
k(k − 1)δk−2

p−1,p−1 + kδk−1
p−1,p−1 − p(p− 1)δkp−1,p−1

]
. (32)

3. δkp,j for j = −p, . . . ,−1. (15) is used.

The algorithm is computed only once in increasing order of p. The coefficients γk,qp,j are computed

using the algorithms described in [3],[2] and γk,1/2p,j is obtained from δk+1
p,j .

2.4. Order of accuracy
Proposition 4 The formula of numerical differentiation (3) has order of accuracy αk−k, with,

αk =

{
2p+ 1 if k is odd,
2p+ 2 if k is even.

Proof. Let f be a function of class Cαk+1. Applying Taylor expansions and properties (9) and
(17), we obtain:

1

∆xk

p∑
j=−p

δkp,jf(xi+j) = f (k)(xi) + ϕk
∆xαk−k

αk!
f (αk)(xi) +O(∆xαk−k+1), (33)
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HH
HHHHk

p 1 2 3 4

1 2 4 6 8
2 2 4 6 8
3 2 4 6
4 2 4 6
5 2 4
6 2 4
7 2
8 2

Table 1: Order of the formula (3).

where

ϕk =

p∑
j=−p

δkp,j j
αk . (34)

�

Table 1 shows the order of (3) for different values of p and k.

Proposition 5 The discretization error of the numerical method (2) is of order O(∆tm+1 +
∆x2p+1).

Proof. Let u be a smooth enough solution of (1). Using Proposition 4 we obtain

u(xi, tn+1)− u(xi, tn)−
m∑
k=1

(−1)kck

k!

p∑
j=−p

δkp,j u(xi+j , tn)

= u(xi, tn+1)− u(xi, tn)

−
m∑
k=1

(−1)kak∆tk

k!

(
∂kxu(xi, tn) + ϕk

∆xαk−k

αk!
∂αk
x u(xi, tn) +O(∆xαk−k+1)

)
= u(xi, tn+1)− u(xi, tn)−

m∑
k=1

∆tk

k!
∂kt u(xi, tn)

−
m∑
k=1

ϕk
(−1)kck

k!αk!
∆xαk ∂αk

x u(xi, tn) +O(∆xαk+1)

=
1

(m+ 1)!
∂m+1
t u(xi, tn)∆tm+1

+

(
p−1∑
k=0

ϕ2k+1c
2k+1

(2p+ 1)!(2k + 1)!

)
∂2p+1
x u(xi, tn)∆x2p+1 +O(∆tm+2 + ∆x2p+2),

where (4) has been used.
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�
As a consequence, the order of accuracy of (2) is min(m, 2p). Therefore, the optimal com-

bination of these parameters is m = 2p. From now on, we shall assume that this relation
holds.

2.5. Modified equation and stability
Taking into account that m = 2p and (18), the local discretization error is as follows:

u(xi, tn+1)− u(xi, tn)−
m∑
k=1

(−1)kck

k!

p∑
j=−p

δkp,j u(xi+j , tn)

=
1

(2p+ 1)!
∂2p+1
t u(xi, tn)∆t2p+1 +

1

(2p+ 2)!
∂2p+2
t u(xi, tn)∆t2p+2

+

(
p−1∑
k=0

ϕ2k+1c
2k+1

(2p+ 1)!(2k + 1)!

)
∂2p+1
x u(xi, tn)∆x2p+1

−

(
p∑

k=1

ϕ2kc
2k

(2p+ 2)!(2k)!

)
∂2p+2
x u(xi, tn)∆x2p+2 +O(∆x2p+3).

Using (34) and (14) we get:

p−1∑
k=0

ϕ2k+1c
2k+1

(2k + 1)!
=

p∑
j=−p

(
p−1∑
k=0

δ2k+1
p,j c2k+1

(2k + 1)!

)
j2p+1

=
1

2

p∑
j=−p

(
2p∑
l=1

(
δlp,j
l!
−
δlp,−j
l!

)
cl

)
j2p+1

=
1

2

p∑
j=−p

(Fp,j(c)− Fp,−j(c)) j2p+1

=
1

2

 p∑
j=−p

Fp,j(c)j
2p+1 −

p∑
j=−p

Fp,j(−c)j2p+1


=

1

2
[q(c)− q(−c)] ,

where q(c) is the polynomial of degree ≤ 2p that interpolates the points

{(−p, (−p)2p+1), . . . , (0, 0), . . . , (p, p2p+1)}.

Since q is clearly an odd function, we finally obtain:

p−1∑
k=0

ϕ2k+1c
2k+1

(2k + 1)!
= q(c). (35)
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Reasoning in a similar way, we get:
p∑

k=1

ϕ2kc
2k

(2k)!
= r(c), (36)

where r is the polynomial of degree ≤ 2p that interpolates the points

{(−p, (−p)2p+2), ..., (0, 0), ..., (p, p2p+2)}.

Using now (4), (35), and (36), the local discretization error can be written as follows:

u(xi, tn+1)− u(xi, tn)−
m∑
k=1

(−1)kck

k!

p∑
j=−p

δkp,j u(xi+j , tn)

=
h1(c)

(2p+ 1)!
∂2p+1
x u(xi, tn)∆x2p+1 − h2(c)

(2p+ 2)!
∂2p+2
x u(xi, tn)∆x2p+2 +O(∆2p+3),

with

h1(c) = q(c)− c2p+1, (37)

h2(c) = r(c)− c2p+2. (38)

Therefore, the numerical method solves with orderO(∆2p+2) the following modified equation

ut + aux = µ1∂
2p+1
x u− µ2∂

2p+2
x u, (39)

where
µ1 =

h1(c)

(2p+ 1)!∆t
∆x2p+1, µ2 =

h2(c)

(2p+ 2)!∆t
∆x2p+2. (40)

In order to study the stability, let us look for an elementary solution u(x, t) of (40) of the
form

u(x, t) = eαt · eikx,

where α is complex number. The following equality has to be satisfied:

αu+ ikau = µ1(−1)pik2p+1u+ µ2(−1)pk2p+2u.

Therefore:
α = −µ2(−1)p+1k2p+2 − (ka− µ1(−1)p+1k2p+1)i.

The numerical method is thus expected to be stable if the real part is negative, i.e.

µ2(−1)p ≤ 0,

or, equivalently
h2(c)(−1)p ≤ 0. (41)

h2 is a pair polynomial of degree 2p+ 2 such that

lim
c→±∞

h2(c) = −∞.

10



Moreover, 0 is a double root of h2 and ±1, . . . ,±p are single roots. Analyzing the change of
signs of h2, it can be easily checked that

h2(c) ≤ 0, ∀c ∈ [0, 1] if p even,
h2(c) ≥ 0, ∀c ∈ [0, 1] if p odd,

and thus (41) is satisfied if c ∈ [0, 1] (see Figure 1). This argument shows that the stability
of the method under the standard CFL condition c ≤ 1 can be formalized: extended details
and a formal proof can be found in [8]. A study of the modified equation for the Lax Wendroff
method can also be found in [13].
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Figure 1: Function h2(c) for p = 1, .., 4.

3. Extension to nonlinear problems

3.1. Approximate Taylor method
Following [14], instead of using the Cauchy-Kovaleskaya process to extend (27)-(28) to non-

linear problems
ut + f(u)x = 0, (42)

we use the equalities
∂kt u = −∂x∂k−1

t f(u). (43)

To derive the expression of the numerical method, let us suppose that approximations

f̃
(k−1)
i

∼= ∂k−1
t f(u)(xi, tn),

are available. Then,

∂kt u(xi, tn) ∼= ũ
(k)
i = −D1

pk−1,i
(f̃

(k−1)
∗ ,∆x) = − 1

∆x

pk−1∑
j=−pk−1

δ1
pk−1,j

f̃
(k−1)
i+j ,

11



being

pk = d(p− k/2)e, (44)

where, d·e denotes the ceiling function.
Using these approximations to approximate the Taylor expansion, we obtain the method

un+1
i = uni +

2p∑
k=0

∆tk

k!
ũ

(k)
i . (45)

Equivalently, using (26), the numerical method can be written in conservative form (27) with
numerical flux

F pi+1/2 =

2p∑
k=1

∆tk−1

k!
A

0,1/2
pk−1,i

(f̃
(k−1)
∗ ,∆x), (46)

being

A
0,1/2
pk−1,i

(f̃
(k−1)
∗ ,∆x) =

pk−1∑
j=−pk−1+1

γ
0,1/2
pk−1,j

f̃
(k−1)
i+j . (47)

Now, to compute the approximations f̃ (k−1)
i , new Taylor expansions in time are used recur-

sively as follows:

• Compute f̃ (0)
i = f(uni ).

– For k = 1 . . . 2p:
∗ Compute

ũ
(k)
i = −D1

pk−1,i
(f̃

(k−1)
∗ ,∆x).

∗ Compute

f̃k,n+r
i = f

(
uni +

k∑
l=1

(r∆t)l

l!
ũ

(l)
i

)
, r = −p, . . . , p.

∗ Compute
f̃

(k)
i = Dk

p,n(f̃k,∗i ,∆t),

where

Dk
p,n(f̃k,∗i ,∆t) =

1

∆tk

p∑
r=−p

δkp,rf̃
k,n+r
i .

Observe that Taylor expansions are used to approximate f(u(xi, tn + r∆t)) and once these
approximations have been computed, the centered formula of numerical differentiation (3) is
used to approximate the temporal derivatives.

This method is order 2p, but it is not a generalization of (2) in the sense that this latter
method is not recovered if f(u) = au. To see this, consider p = 1 and f(u) = au: it can be
easily checked that (45) writes as follows

un+1
i = uni −

c

2
(uni+1 − uni−1)− c2

8
(uni+2 − 2uni + uni−2), (48)
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which is different from the standard Lax-Wendroff method: (45) is a (4p + 1)-point method
whose stability properties are worse than those of the standard Lax-Wendroff method. (see [6]).

3.2. Compact Approximate Taylor method
In order to prevent the increase of the stencil observed for Approximate Taylor methods,

we consider a modification based on the conservative form of the method. The numerical flux
F pi+1/2 will be computed using only the approximations

uni−p+1, . . . , u
n
i+p, (49)

so that the values used to update un+1
i are only those of the centered (2p+ 1)-point stencil, like

in the linear case. In fact, we will show that this modification is a proper generalization of the
Lax-Wendroff method for linear problems.

In order to be able to compute the numerical fluxes using only (49), for every i we will
compute local approximations of

∂k−1
t f(u(xi−p+1, t

n), . . . , ∂k−1
t f(u(xi+p, t

n),

that will be represented by

f̃
(k−1)
i,j

∼= ∂k−1
t f(u)(xi+j , tn), j = −p+ 1, . . . , p.

These approximations are local in the sense that i1 + j1 = i2 + j2, does not imply that f̃ (k−1)
i1,j1

=

f̃
(k−1)
i2,j2

. Once these approximations have been computed, the numerical flux is given by

F pi+1/2 =

2p∑
k=1

∆tk−1

k!
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x), (50)

with

A
0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x) =

p∑
j=−p+1

γ
0,1/2
p,j f̃

(k−1)
i,j . (51)

Now, given i, to compute the approximations f̃ (k−1)
i,j , new Taylor expansions in time are

used recursively as follows:

• Compute f̃ (0)
i,j = f(uni+j), j = −p+ 1, . . . , p.

– For k = 1 . . . 2p:

∗ Compute
ũ

(k)
i,j = −A1,j

p,0(f̃
(k−1)
i,∗ ,∆x),

where

A1,j
p,0(f̃

(k−1)
i,∗ ,∆x) =

1

∆x

p∑
r=−p+1

γ1,j
p,r f̃

(k−1)
i,r .

13



∗ Compute

f̃k,n+r
i,j = f

(
uni+j +

k∑
l=1

(r∆t)l

l!
ũ

(l)
i,j

)
, j, r = −p+ 1, . . . , p.

∗ Compute
f̃

(k)
i,j = Ak,0p,n(f̃k,∗i,j ,∆t), j = −p+ 1, . . . , p.

with

Ak,0p,n(f̃k,∗i,j ,∆t) =
1

∆tk

p∑
r=−p+1

γk,0p,r f̃
k,n+r
i,j .

Notice that, unlike the Approximate Taylor methods (in which all the derivatives were
approximated using the centered (2p + 1)-point formula), in this algorithm the stencil
xi−p+1, . . . , xi+p is used for the space derivatives and the stencil tn−p+1, . . . , tn+p for the
time derivative.

Theorem 1 The compact approximate Taylor method reduces to (2) when f(u) = au.

Proof. For k > 1 we have:

f̃
(k−1)
i,j =

1

∆tk−1

p∑
r=−p+1

γk−1,0
p,r f̃k−1,n+r

i,j

=
a

∆tk−1

p∑
r=−p+1

γk−1,0
p,r

(
uni+j +

k−1∑
l=1

(r∆t)l

l!
ũ

(l)
i,j

)

=
a

∆tk−1

 p∑
r=−p+1

γk−1,0
p,r

uni+j +
k−1∑
l=1

∆tl

l!

 p∑
r=−p+1

γk−1,0
p,r rl

 ũ
(l)
i,j


= aũ

(k−1)
i,j ,

where (10) has been used. On the other hand:

ũ
(k)
i,j = − 1

∆x

p∑
r=−p+1

γ1,j
p,r f̃

(k−1)
i,r

= − a

∆x

p∑
r=−p+1

γ1,j
p,r ũ

(k−1)
i,r

=
a2

∆x2

p∑
r=−p+1

γ1,j
p,r

p∑
s=−p+1

γ1,r
p,s ũ

(k−2)
i,s

=
a2

∆x2

p∑
s=−p+1

 p∑
r=−p+1

γ1,j
p,rγ

1,r
p,s

 ũ
(k−2)
i,s

=
a2

∆x2

p∑
s=−p+1

γ2,j
p,s ũ

(k−2)
i,s ,

14



where (25) has been used. By recurrence:

ũ
(k)
i,j =

(−1)kak

∆xk

p∑
r=−p+1

γk,jp,ru
n
i+r. (52)

Next,

A
0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x) =

1

∆x

p∑
j=−p+1

γ
0,1/2
p,j f̃

(k−1)
i,j

=
a

∆x

p∑
j=−p+1

γ
0,1/2
p,j ũ

(k−1)
i,j

= (−1)k−1 ak

∆xk

p∑
j=−p+1

γ
0,1/2
p,j

p∑
r=−p+1

γk−1,j
p,r uni+r

= (−1)k−1 ak

∆xk

p∑
r=−p+1

 p∑
j=−p+1

γ
0,1/2
p,j γk−1,j

p,r

uni+r

= (−1)k−1 ak

∆xk

p∑
r=−p+1

γ
k−1,1/2
p,j uni+r

= (−1)k−1akA
k−1,1/2
p,i (un∗ ,∆x),

where (25) has been used. Finally,

F pi+1/2 =

2p∑
k=1

∆tk−1

k!
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x)

=

2p∑
k=1

(−1)k−1a
k∆tk−1

k!
A
k−1,1/2
p,i (un∗ ,∆x),

what is the numerical flux (28) corresponding to (2), as we wanted to prove.

�
As a consequence, we obtain that the compact approximate Taylor method is linearly stable

(in the L2 sense) under the usual CFL condition

max
i

(|f ′(ui)|)
∆t

∆x
≤ 1. (53)

Theorem 2 The compact approximate Taylor method is order 2p.

Proof. Let us perform a step of the method starting from the point values at time tn, u(xi, tn),
of a smooth enough exact solution. We assume that ∆t/∆x remains constant.

First we have:

ũ
(1)
i,j = −A1,j

p,0(f̃
(0)
i,∗ ,∆x) = −∂xf(u)(xi+j , tn) +O(∆x2p−1) = ∂tu(xi+j , tn) +O(∆x2p−1).

15



Next:
f̃1,n+r
i,j = f(u(xi+j , tn) + ũ

(1)
i,j r∆t) = f(P 1

i,j(r∆t)) +O(∆x2p),

where
P 1
i,j(s) = u(xi+j , tn) + s∂tu(xi+j , tn),

is the first order Taylor polynomial in time of u in (xi+j , tn). Then

f̃
(1)
i,j = A1,0

p,n(f̃k,∗i,j ,∆t)

=
1

∆t

p∑
r=−p+1

γ1,0
p,j f̃

1,n+r
i,j

=
1

∆t

p∑
r=−p+1

γ1,0
p,j f(P 1

i,j(r∆t)) +O(∆x2p)

=
1

∆t

p∑
r=−p+1

γ1,0
p,j

2p−1∑
k=0

1

k!
dk(f ◦ P 1

i,j)(tn)rk∆tk +O(∆x2p−1)

=
1

∆t

2p−1∑
k=0

1

k!
dk(f ◦ P 1

i,j)(tn)∆tk
p∑

r=−p+1

γ1,0
p,j r

k +O(∆x2p−1)

= d1(f ◦ P 1
i,j)(tn) +O(∆x2p−1)

= ∂tf(u)(xi+j , tn) +O(∆x2p−1),

where (10) has been used. This result can be extended by induction to every k between 1 and
2p− 1 as follows:

f̃
(k)
i,j = ∂kt f(u)(xi+j , tn) +O(∆t2p−k), k = 1, . . . , 2p− 1. (54)
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Using this equality we get:

u(xi, tn+1)− u(xi, tn) +
∆t

∆x

(
F pi+1/2 − F

p
i−1/2

)
= u(xi, tn+1)− u(xi, tn) +

1

∆x

2p∑
k=1

∆tk

k!

(
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x)−A0,1/2

p,0 (f̃
(k−1)
i−1,∗ ,∆x)

)

= u(xi, tn+1)− u(xi, tn) +
1

∆x

2p∑
k=1

∆tk

k!

(
A

0,1/2
p,i (∂k−1

t f(u),∆x)−A0,1/2
p,i−1(∂k−1

t f(u),∆x)
)

+O(∆x2p+1)

= u(xi, tn+1)− u(xi, tn) +
1

∆x

2p∑
k=1

∆tk

k!
D1
p,i(∂

k−1
t f(u),∆x) +O(∆x2p+1)

= u(xi, tn+1)− u(xi, tn) +
1

∆x

2p∑
k=1

∆tk

k!
∂k−1
t f(u)(xi, tn) +O(∆x2p+1)

= u(xi, tn+1)− u(xi, tn)− 1

∆x

2p∑
k=1

∆tk

k!
∂kt u(xi, tn) +O(∆x2p+1)

= O(∆x2p+1).

�

Remark: In the Approximate Taylor method proposed in [14] the derivatives ũ(k+1)
i are

computed by applying the 2pk + 1-point centered differentiation formula for first derivatives to
f̃

(k)
i , where pk is given by (44): notice that pk decreases as k increases. The same reduction
of the stencil used to compute ũ(k)

i,j could be applied here, what would allow us to reduce
the number of computations while preserving the overall order of accuracy. Nevertheless, the
resulting method will not be an extension of the linear Lax-Wendroff method. On the other
hand, the CPU reduction will be not significant.

3.3. Example: Fourth order compact approximate Taylor method
Since the method is conservative, we will only show in detail how to compute the numerical

flux (50) and, to do this, it is enough to specify how to compute

κki+1/2 = A
0,1/2
2,0 (f̃

(k−1)
i,∗ ,∆x), k = 1, 2, 3, 4. (55)

The procedure is as follows:

• κ1
i+1/2: First the assignment

f̃
(0)
i,j = f(uni+j), j = −1, ..., 2

is done and then:

κ1
i+1/2 = A

0,1/2
2,0 (f̃

(0)
i,∗ ,∆x) =

−f̃ (0)
i,−1 + 7f̃

(0)
i,0 + 7f̃

(0)
i,1 − f̃

(0)
i,2

12
.

17



• κ2
i+1/2: The first order time derivatives of u at the nodes i−1, . . . , i+ 2 are approximated

by applying the corresponding differentiation numerical formula to f̃ (0)
i,j :

ũ
(1)
i,−1 = −A1,−1

2,0 (f̃
(0)
i,∗ ,∆x) = −

11/6f̃
(0)
i,−1 − 3f̃

(0)
i,0 + 3/2f̃

(0)
i,1 − 1/3f̃

(0)
i,2

∆x
,

ũ
(1)
i,0 = −A1,0

2,0(f̃
(0)
i,∗ ,∆x) = −

1/3f̃
(0)
i,−1 + 1/2f̃

(0)
i,0 − f̃

(0)
i,1 + 1/6f̃

(0)
i,2

∆x
,

ũ
(1)
i,1 = −A1,1

2,0(f̃
(0)
i,∗ ,∆x) = −

−1/6f̃
(0)
i,−1 + f̃

(0)
i,0 − 1/2f̃

(0)
i,1 − 1/3f̃

(0)
i,2

∆x
,

ũ
(1)
i,2 = −A1,2

2,0(f̃
(0)
i,∗ ,∆x) = −

1/3f̃
(0)
i,−1 − 3/2f̃

(0)
i,0 + 3f̃

(0)
i,1 − 11/6f̃

(0)
i,2

∆x
.

Next first order Taylor expansions are used to approximate the values of the flux sixteen
space-time local nodes: for r = −1, . . . , 2

f̃1,r
i,−1 = f(uni−1 + r∆t ũ

(1)
i,−1),

f̃1,r
i,0 = f(uni,0 + r∆t ũ

(1)
i,0 ),

f̃1,r
i,1 = f(uni+1 + r∆t ũ

(1)
i,+1),

f̃1,r
i,2 = f(uni+2 + r∆t ũ

(1)
i,+2).

Then, the first order time derivates of the flux at the nodes i−1, . . . , i+2 are approximated
by applying the corresponding differentiation numerical formula to f̃1,r

i,j :

f̃
(1)
i,−1 = A1,0

2,n(f̃1,∗
i,−1,∆t) =

−1/3f̃1,n−1
i,−1 − 1/2f̃1,n

i,−1 + f̃1,n+1
i,−1 − 1/6f̃1,n+2

i,−1

∆t
,

f̃
(1)
i,0 = A1,0

2,n(f̃1,∗
i,0 ,∆t) =

−1/3f̃1,n−1
i,0 − 1/2f̃1,n

i,0 + f̃1,n+1
i,0 − 1/6f̃1,n+2

i,0

∆t
,

f̃
(1)
i,1 = A1,0

2,n(f̃1,∗
i,1 ,∆t) =

−1/3f̃1,n−1
i,1 − 1/2f̃1,n

i,1 + f̃1,n+1
i,1 − 1/6f̃1,n+2

i,1

∆t
,

f̃
(1)
i,2 = A1,0

2,n(f̃1,∗
i,2 ,∆t) =

−1/3f̃1,n−1
i,2 − 1/2f̃1,n

i,2 + f̃1,n+1
i,2 − 1/6f̃1,n+2

i,2

∆t
.

Finally;

κ2
i+1/2 = A

0,1/2
2,0 (f̃

(1)
i,∗ ,∆x) =

−f̃ (1)
i,−1 + 7f̃

(1)
i,0 + 7f̃

(1)
i,1 − f̃

(1)
i,2

12
.
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• κ3
i+1/2: the second order time derivatives at the nodes are approximated by

ũ
(2)
i,−1 = −A1,−1

2,0 (f̃
(1)
i,∗ ,∆x) = −

11/6f̃
(1)
i,−1 − 3f̃

(1)
i,0 + 3/2f̃

(1)
i,1 − 1/3f̃

(1)
i,2

∆x
,

ũ
(2)
i,0 = −A1,0

2,0(f̃
(1)
i,∗ ,∆x) = −

1/3f̃
(1)
i,−1 + 1/2f̃

(1)
i,0 − f̃

(1)
i,1 + 1/6f̃

(1)
i,2

∆x
,

ũ
(2)
i,1 = −A1,1

2,0(f̃
(1)
i,∗ ,∆x) = −

−1/6f̃
(1)
i,−1 + f̃

(1)
i,0 − 1/2f̃

(1)
i,1 − 1/3f̃

(1)
i,2

∆x
,

ũ
(2)
i,2 = −A1,2

2,0(f̃
(1)
i,∗ ,∆x) = −

1/3f̃
(1)
i,−1 − 3/2f̃

(1)
i,0 + 3f̃

(1)
i,1 − 11/6f̃

(1)
i,2

∆x
.

Second order Taylor expansions are used to compute the fluxes at the sixteen nodes in
the space-time mesh: for r = −1, . . . 2

f̃2,r
i,−1 = f

(
uni−1 + r∆t ũ

(1)
i,−1 + r2∆t2

2 ũ
(2)
i,−1

)
,

f̃2,r
i,0 = f

(
uni + r∆t ũ

(1)
i,0 + r2∆t2

2 ũ
(2)
i,0 ]
)
,

f̃2,r
i,1 = f

(
uni+1 + r∆t ũ

(1)
i,1 + r2∆t2

2 ũ
(2)
i,1

)
,

f̃2,r
i,2 = f

(
uni+2 + r∆t ũ

(1)
i,2 + r2∆t2

2 ũ
(2)
i,2

)
.

Next, compute

f̃
(2)
i,−1 = A2,0

2,n(f̃2,∗
i,−1,∆t) =

f̃2,n−1
i,−1 − 2f̃2,n

i,−1 + f̃2,n+1
i,−1

∆t2
,

f̃
(2)
i,0 = A2,0

2,n(f̃2,∗
i,0 ,∆t) =

f̃2,n−1
i,0 − 2f̃2,n

i,0 + f̃2,n+1
i,0

∆t2
,

f̃
(2)
i,1 = A2,0

2,n(f̃2,∗
i,1 ,∆t) =

f̃2,n−1
i,1 − 2f̃2,n

i,1 + f̃2,n+1
i,1

∆t2
,

f̃
(2)
i,2 = A2,0

2,n(f̃2,∗
i,2 ,∆t) =

f̃2,n−1
i,2 − 2f̃2,n

i,2 + f̃2,n+1
i,2

∆t2
.

And finally;

κ3
i+1/2 = A

0,1/2
2,0 (f̃

(2)
i,∗ ,∆x) =

−f̃ (2)
i,−1 + 7f̃

(2)
i,0 + 7f̃

(2)
i,1 − f̃

(2)
i,2

12
.
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• κ4
i+1/2: the third order time derivatives at the nodes are approximated by

ũ
(3)
i,−1 = −A1,−1

2,0 (f̃
(2)
i,∗ ,∆x) = −

11/6f̃
(2)
i,−1 − 3f̃

(2)
i,0 + 3/2f̃

(2)
i,1 − 1/3f̃

(2)
i,2

∆x
,

ũ
(3)
i,0 = −A1,0

2,0(f̃
(2)
i,∗ ,∆x) = −

1/3f̃
(2)
i,−1 + 1/2f̃

(2)
i,0 − f̃

(2)
i,1 + 1/6f̃

(2)
i,2

∆x
,

ũ
(3)
i,1 = −A1,1

2,0(f̃
(2)
i,∗ ,∆x) = −

−1/6f̃
(2)
i,−1 + f̃

(2)
i,0 − 1/2f̃

(2)
i,1 − 1/3f̃

(2)
i,2

∆x
,

ũ
(3)
i,2 = −A1,2

2,0(f̃
(2)
i,∗ ,∆x) = −

1/3f̃
(2)
i,−1 − 3/2f̃

(2)
i,0 + 3f̃

(2)
i,1 − 11/6f̃

(2)
i,2

∆x
.

Compute the approximations of the fluxes: for r = −1, . . . , 2

f̃3,r
i,−1 = f

(
uni−1 + r∆t ũ

(1)
i,−1 + r2∆t2

2 ũ
(2)
i,−1 + r3∆t3

6 ũ
(3)
i,−1

)
,

f̃3,r
i,0 = f

(
uni + r∆t ũ

(1)
i,0 + r2∆t2

2 ũ
(2)
i,0 + r3∆t3

6 ũ
(3)
i,0

)
,

f̃3,r
i,1 = f

(
uni+1 + r∆t ũ

(1)
i,1 + r2∆t2

2 ũ
(2)
i,1 + r3∆t3

6 ũ
(3)
i,1

)
,

f̃3,r
i,2 = f

(
uni+2 + r∆t ũ

(1)
i,2 + r2∆t2

2 ũ
(2)
i,2 + r3∆t3

6 ũ
(3)
i,2

)
.

Next, compute:

f̃
(3)
i,−1 = A3,0

2,n(f̃3,∗
i,−1,∆t) =

−f̃3,n−1
i,−1 + 3f̃3,n

i,−1 − 3f̃3,n+1
i,−1 + f̃3,n+2

i,−1

∆t3
,

f̃
(3)
i,0 = A3,0

2,n(f̃3,∗
i,0 ,∆t) =

−f̃1,n−1
i,0 + 3f̃3,n

i,0 − 3f̃3,n+1
i,0 + f̃3,n+2

i,0

∆t3
,

f̃
(3)
i,1 = A3,0

2,n(f̃3,∗
i,1 ,∆t) =

−f̃3,n−1
i,1 + 3f̃3,n

i,1 − 3f̃3,n+1
i,1 + f̃3,n+2

i,1

∆t3
,

f̃
(3)
i,2 = A3,0

2,n(f̃3,∗
i,2 ,∆t) =

−f̃3,n−1
i,2 + 3f̃3,n

i,2 − 3f̃3,n+1
i,2 + f̃3,n+2

i,2

∆t3
.

Finally;

κ4
i+1/2 = A

0,1/2
2,0 (f̃

(2)
i,∗ ,∆x) =

−f̃ (2)
i,−1 + 7f̃

(2)
i,0 + 7f̃

(2)
i,1 − f̃

(2)
i,2

12
.

If f(u) = au, then:

F 2
i+1/2 =

a

12
(−uni−1 + 7uni + 7uni+1 − uni+2) +

a2∆t

24∆x
(−uni−1 + 15uni − 15uni+1 + uni+2) (56)

+
a3∆t2

12∆x2
(uni−1 − uni − uni+1 + uni+2) +

a4∆t3

24∆x3
(uni−1 − 3uni + 3uni+1 − uni+2), (57)

which coincides with the numerical flux of the fourth order Lax-Wendroff in conservative form.
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4. Shock-capturing techniques

Although the Compact Approximate Taylor methods are linearly stable in the L2 sense
under the usual CFL-1 condition, they may produce strong oscillations close to a discontinuity
of the solution. The goal of this section is to modify the numerical method to avoid these
oscillations. Two different techniques are considered here:

4.1. FLUX LIMITER-CAT methods
We consider the numerical method (27) with

Fi+1/2 = (1− ϕi+1/2)FLi+1/2 + ϕi+1/2F
p
i+1/2, (58)

where FLi+1/2 is a first order robust numerical flux, F pi+1/2 is given by (50), and ϕi+1/2 is the
flux limiter function, see [4] [7], [12]. We consider here

ϕi+1/2 = ϕ(ri+1/2), (59)

where ϕ is the van Albada second version flux limiter:

ϕ(r) = max

(
0,

2r

1 + r2

)
, (60)

and

ri+1/2 =
∆upw

∆loc
=


uni − uni−1

uni+1 − uni
if ai+1/2 > 0,

uni+2 − uni+1

uni+1 − uni
if ai+1/2 < 0,

where, ai+1/2 is an estimate of the wave speed.

4.2. WENO-CAT methods
Following [9] WENO reconstructions of the flux are used to stabilize the method. The only

differences with the algorithm described in Section 3.2 are the computation of ũ(1)
i,j , that is now

performed as follows:

ũ
(1)
i,j = −

f̂i+j+1/2 − f̂i+j−1/2

∆x
,

where f̂i+1/2 denotes the WENO flux splitting, reconstructions at xi+1/2 of the flux function
described in [10]. The expression of the numerical flux is then given by:

F pi+1/2 = f̂i+1/2 +

2p∑
k=2

∆tk−1

k!
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x). (61)

4.3. Systems of conservation laws
Although the methods have been described in the scalar case for simplicity, they can be

easily applied to systems using vector notation.
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5. Numerical Experiments

In this section we apply to some scalar conservation laws and to the 1D Euler equation the
following numerical methods:

• LW-CATq: Compact Approximate Taylor method of order q (space and time).

• FL-CATq: Compact Approximate Taylor method of order q with flux limiter technique.
The first order methods considered are Lax-Friedrich for scalar problems and HLL for
systems.

• WENOs-CATq: Compact Approximate Taylor method of order q with WENO recon-
structions of order s to compute ũ(1)

t,i .

• WENOs-RKq: WENO method of order s for the space discretization and TVD-RKq for
the time discretization, see [10].

• WENOs-LWAq: Approximate Taylor method of order q with WENO reconstructions of
order s to compute ũ(1)

t,i , see [14].

5.1. Linear transport equation
We consider first (1) with a = 1, in the space interval [0, 1], with initial condition

u(x, 0) =

{
1 0 ≤ x < 1/2,
2 1/2 ≤ x < 1,

(62)

and periodic boundary conditions. A uniform mesh with N = 80 points is considered and the
LW-CAT method (that, in this case, coincides with the Lax-Wendroff method) is applied for
p = 1, . . . , 5.
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Figure 2: Transport equation with initial condition (62), CFL = 0.9 and t = 1s: numerical results obtained
with LW-CATq, q = 2, 4, 6, 8, 10.
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Numerical simulations are shown in Figure 2: the L2 stability of the scheme and the ap-
pearance of oscillations near the discontinuities can be observed. Next, we apply to the same
problem LW-CAT4, FL-CAT4, WENO5-CAT4, WENO5-RK3, and WENO5-LWA5 methods.
A general view is shown in Figure 3 together with a zoom of the area of interest. As it can be
observed, the results given by WENO5-CAT4, WENO5-RK3 and WENO5-LWA5 are almost
identical. Nevertheless, as it will be seen in the next test problem, WENO5-CAT4 still gives
good results for CFL close to one, what is not the case for WENO5-RK3 or WENO5-LWA5.
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Figure 3: Transport equation with initial condition (62), CFL = 0.5 and t = 1s. Left-up: general viewt. a,b,c
and d: enlarged view of interest areas.

Using the algorithm in Section 3.2 CAT methods are easily extended to any 2p order,
nevertheless, this involves a significant increase of the CPU time simulation and flops (number
of operations required), that should be considered, see Table 2.

PPPPPPPPPRate
Order LW-CAT2 LW-CAT4 LW-CAT6 LW-CAT8 LW-CAT10

time 1 2.98 7.72 18.87 42.66
flops 1 1.61 2.51 3.69 5.16

Table 2: Average rate time and flops to increase from LW-CAT2 to LW-CAT2p, with p = 2, 3, 4, 5 for the scalar
transport equation with initial conditions (62) and t = 1s.

Finally, we consider (1) in the space interval [0, 2] with initial condition,

u(x, 0) = 0.25 sin(πx), (63)
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and periodic boundary conditions. Table 3 shows the error and the empirical order for LW-
CAT2, LW-CAT4, LW-CAT6, and Table 4 for WENO5-RK3 and WENO5-LWA5 which coin-
cides in all cases with the theoretical one. For smooth solutions WENO-CATq and FL-CATq
reduce to the corresponding LW-CATq, so that the accuracy test is not necessary.

LW-CAT2 LW-CAT4 LW-CAT6
∆x Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖1 Order ‖ · ‖1
0.1053 3.68e-02 1.40e-02 7.88e-03
0.0526 6.84e-03 2.43 3.50e-05 8.64 4.25e-08 7.50
0.0263 1.70e-03 2.00 2.19e-06 4.00 6.49e-10 6.03
0.0132 4.27e-04 2.00 1.36e-07 4.00 9.89e-12 6.04
0.0066 1.06e-04 2.00 8.55e-09 4.00 1.53e-13 6.01
0.0033 2.66e-05 2.00 5.34e-10 4.00 2.64e-15 5.96

Table 3: Linear transport equation with initial condition (63), CFL = 0.5 and t = 1s: L1 errors and accuracy
order for LW-CAT2p, p = 1, 2, 3.

WENO5-RK3 WENO-LWA5
∆x Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖1 Order ‖ · ‖1
0.1053 2.03e-03 5.44e-05
0.0526 6.06e-05 5.06 1.65e-06 5.04
0.0263 1.87e-06 5.02 5.04e-08 5.04
0.0132 5.83e-08 5.00 1.51e-09 5.05
0.0066 1.82e-09 5.00 4.41e-11 5.10
0.0033 5.65e-11 5.01 1.15e-12 5.25

Table 4: Linear transport equation with initial condition (63), CFL = 0.5 and t = 1s: L1 errors and accuracy
order for WENO5-RK3 and WENO5-LWA5.

5.2. Burgers equation
We consider Burgers equation, i.e. (42) with

f(u) =
u2

2
.

When CAT methods are applied to approximate a discontinuous solution of this nonlinear
problem, the oscillations appearing close to the shocks tend to grow and to spoil the numerical
solution. Nevertheless, it is still possible to apply these methods by reducing the CFL parameter
(the reduction increases with p): for instance, Figure 4 shows the results obtained with CAT-
LW2p, p = 1, 2, 3, 4 and CFL = 0.8, 0.4, 0.2, 0.1, respectively, with initial conditions (62).

Next, the same test problem is solved using LW-CAT4, FL-CAT4, WENO5-RK3 and
WENO5-LWA5 methods. Using CFL = 0.5 we obtain numerical solutions without spuri-
ous oscillations for all the methods. Figure 5 shows a general view of solutions and the van
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Figure 4: Burgers equation with initial condition (62), CFL = 0.5 and t = 2s: numerical results obtained with
LW-CATq, q = 2, 4, 6, 8. Left: general view. Right: enlarged view.

Albada flux limiter function on every inter cell. In Figure 6 the results are compared with those
obtained with CFl = 0.9. From Figures 5, 6 we can conclude:
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Figure 5: Burgers equation with initial condition (62), CFL = 0.5 and t = 2s. Up: general view. Down: flux
limiter function ϕi+1/2 for FL-CAT4.

• CFL ≤ 0.5

– LW-CAT4 show oscillations near the discontinuities, but it is stable.

– FL-CAT4 is very diffusive near to the discontinuities, due to the selected first order
accurate flux limiter function.
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– WENO5-CAT4, WENO5-LWA4 and WENO5-RK3 show good results, stable and
essentially the same values.

• CFL > 0.5

– LW-CAT4: the amplitude of oscillations increases near the discontinuities. However,
they remain stable.

– FL-CAT4: conversely to the previous CFL condition, it shows acceptable solutions
near the discontinuities.

– WENO5-CAT4 ,WENO5-LWA5 and WENO5-RK3 : slight oscillations appear near
the discontinuities at the beginning of the simulations. Nevertheless, as the time
increases, these oscillations tend to dismiss and the result remains acceptable and
stable for WENO5-CAT4 while the solutions given byWENO5-LWA5 is very diffusive
and the one given by WENO5-RK3 is overdamped.
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Figure 6: Burgers equation with initial condition (62), CFL = 0.5 and CFL = 0.9, t = 2s and t = 20s: zooms
of the numerical results. Left-up: CFL = 0.5 and t = 2s. Left-down: CFL = 0.5 and t = 20s. Right-up:
CFL = 0.9 and t = 2s. Right-down: CFL = 0.9 and t = 20s.

Although FL-CAT4 shows better results for bigger CFL, it fails in smooth regions close to
critical points and for systems (as it will be seen in Euler 1D equation). For CFL ≤ 1/2,
WENO5-LWA5 is faster than CAT methods (in the computational cost sense): a comparsion is
shown in Table 5. However, we can obtain good solutions for CAT methods using CFL > 0.5
and obtain similar CPU time computation, see Table 6.

In order to study the order of convergence, we consider again initial condition (63) and
periodic boundary conditions. A reference solution at time t = 0.5s (when the solution is still
smooth) is obtained with WENO5-RK3 using a fine grid of 1400 nodes. The errors and the
empirical order are shown in Table 7: the numerical results verify the theoretical analysis.

26



Nodes LW-CAT4 FL-CAT4 WENO5-CAT4 WENO5-LWA5
80 0.469 0.4702 0.5508 0.1998
160 0.8090 0.9668 0.9700 0.4616
320 1.9838 1.9908 2.0064 1.0346

Table 5: Burgers equation with initial condition (62), CFL = 0.5 and t = 2s: computational time in seconds

Nodes FL-CAT4 WENO5-CAT4
80 0.2003 0.2078
160 0.4024 0.5001
320 1.0494 1.045

Table 6: Burgers equation with initial condition (62), CFL = 0.9 and t = 2s: computational time in seconds

LW-CAT2 LW-CAT4 LW-CAT6
∆x Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖1 Order ‖ · ‖1
0.1053 7.94e-03 9.01e-04 2.09e-04
0.0526 2.08e-03 1.93 6.13e-05 3.88 4.27e-06 5.62
0.0263 5.22e-04 1.99 3.89e-06 3.98 7.49e-08 5.83
0.0132 1.29e-04 2.01 2.44e-07 4.00 1.20e-09 5.96
0.0066 3.08e-05 2.00 1.51e-08 4.00 1.87e-11 6.00
0.0033 6.16e-06 2.00 8.76e-10 4.00 2.84e-13 6.00

Table 7: Burgers equation with initial condition (63), CFL = 0.5 and t = 0.5s: L1 errors and accuracy order
for LW-CAT2p, p = 1, 2, 3.
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5.3. 1D Euler Equation
We solve the 1D Euler equation for gas dynamics

ut + f(u)x = 0, (64)

with

u =

 ρ
ρu
E

 , f(u) =

 ρu
p+ ρu2

u(E + p)

 , (65)

where ρ is the density, u the velocity, E the total energy per unit volume, and p the pressure.
We assume an ideal gas with the equation of state,

p(ρ, e) = (γ − 1)ρe, (66)

being γ the ratio of specific heat capacities of the gas taken as 1.4 and e is the internal energy
per unit mass given by:

E = ρ(e+ 0.5u2). (67)

We consider the space interval [0, 2] with the initial condition:

ρ(x, 0) = 0.75 + 0.5 sin(πx),
ρu(x, 0) = 0.25 + 0.5 sin(πx),
E(x, 0) = 0.75 + 0.5 sin(πx),

(68)

and periodic boundary conditions. For this test we take CFL = 0.5 and t = 0.5s. We use a fine
grid with 1400-point mesh to compute LW-CAT8 as a reference solution. The results in Table
8 support the theoretically obtained accuracy.

LW-CAT2 LW-CAT4 LW-CAT6
∆x Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖1 Order ‖ · ‖1
0.1053 3.34e-03 8.57e-04 5.49e-04
0.0526 8.82e-03 1.92 9.93e-05 3.11 3.53e-05 4.96
0.0263 2.28e-04 1.95 7.31e-06 3.76 1.01e-06 5.12
0.0132 5.69e-05 2.01 4.81e-07 3.93 1.94e-08 5.71
0.0066 1.35e-05 2.07 3.02e-08 3.99 3.21e-10 5.92
0.0033 2.71e-06 2.30 1.78e-09 4.08 4.99e-12 6.01

Table 8: 1D Euler equations with initial condition (68), CFL = 0.5 and t = 0.5s: L1 errors and accuracy order
for LW-CAT2p, p = 1, 2, 3.

Finally, two tests involving discontinuities are considered:

• The Sod Shock tube problem. The initial condition is given by:

(ρ, ρu, p) =

{
(1, 0, 1) if x < 0,

(0.125, 0, 0.1) if x > 0.
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Here, x ∈ [−5, 5], CFL = 0.5, t = 1s, and outflow boundary conditions are considered at
both sides. For details of this problem see [11]. We compare FL-CAT4, WENO5-CAT4,
WENO5-LWA5 and WENO5-RK3 using 450 points. A reference solution is computed
with WENO5-RK3 using a 1400-point mesh. The flux limiter function is computed for
every variable.
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Figure 7: Sod shock tube problem, CFL = 0.5 and t = 0.5s. Left-up: general view of numerical solutions for ρ.
Left-down: flux limiter function for ρ. Right-up: general view of numerical solutions for ρu. Right-down: flux
limiter function for ρu.

While all numerical solutions show stable and similar values over smooth regions (see
Figure 7), the quality is different in the interest regions (a,b,c,..,f): an enlarged view of
them can be seen in Figure 8. In the figure we can observe that the solution given by
FL-CAT4 is the most diffusive one (due to the condition CFL = 0.5) and that WENO5-
LWA5 and WENO5-RK3 give essentially the same results. WENO5-CAT4 achieves some
improvements, specially in a,c and d.

• The Shu-Osher problem. The initial condition is given by:

(ρ, ρu, p) =

{
(3.8571, 2.6293, 10.3333) if x < −4,

(1 + 0.2 sin(5x), 0, 1) if x > −4.

We consider the space interval x ∈ [−5, 5], CFL = 0.5 and time t = 1s. For details see [10]
test 8. We compare FL-CAT4, WENO5-CAT4, WENO5-LWA5 and WENO5-RK3 using
450- point mesh and a reference solution computed with WENO5-RK3 using a 1400-point
mesh.

Again, all solutions are closely similar and near to the reference solution with exception
of FL-CAT4.
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Figure 8: Sod shock tube problem, CFL = 0.5 and t = 0.5s: zooms of the numerical results for ρ close to regions
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6. Conclusions

In this work, first a review of high order Lax-Wendroff methods for the linear transport
equation has been presented, including the study of the order and the L2-stability as well as
the computation and properties of the coefficients. Next, an extension to nonlinear conserva-
tion laws has been introduced with arbitrary even order 2p of accuracy, the so-called Compact
Approximate Taylor (CAT) methods. Unlike previous applications of Taylor methods to con-
servation laws, CAT methods have 2p + 1-point centered stencils, like Lax-Wendroff methods
for linear problems. Moreover, since they inherit the stability properties of Lax-Wendroff meth-
ods, they are linearly L2-stable under a CFL-1 condition. In order to prevent the spurious
oscillations that appear close to discontinuities two shock-capturing techniques have been con-
sidered: a flux-limiter technique (FL-CAT methods) and WENO reconstruction for the first
time derivative (WENO-CAT methods). We follow [14] in the second approach.

These new methods have been compared in a number of test cases with WENO-RK methods
(Finite Differences WENO reconstructions in space, TVD-RK in time) and with the WENO-LW
methods introduced in [14] (Finite Differences WENO reconstruction for the first time deriva-
tive, Approximate Taylor in time). The linear transport equation, Burgers equation, and the
1D compressible Euler system have been considered.For CFL ≤ 0.5 all the numerical methods
work correctly, and the results obtained with all the methods using WENO reconstructions are
similar, while the FL-CAT method is more diffusive as expected. Nevertheless, CAT methods
are more expensive in computational time and number of operations due to its local character
(FL-CAT is less expensive than WENO-CAT as reconstructions are avoided). However, the
extra computational cost of CAT methods is compensated by the fact that they still give good
solutions with CFL values close to 1.

Future developments include:

• Parallel implementation.

• Use of fast WENO reconstructions: see [1]

• Order adaptive CAT methods based on smooth indicators.

• Application to systems of balance laws.

• Extension to multidimensional problems.
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