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Abstract

We present well-posedness and an a priori error analysis of the hybridized discontinuous Galerkin

method for the stationary form of the Navier—Stokes problem proposed in (J Sci Comput, 76(3):1484—
1501, 2018). This scheme was shown to result in an approximate velocity field that is pointwise

divergence-free and divergence-conforming. As a consequence we show that the velocity error es-

timate is independent of the pressure. Furthermore, we show that estimates for both the velocity

and pressure are optimal. Numerical examples demonstrate pressure-robustness and optimality of

the scheme.
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1. Introduction

In recent years pressure-robust numerical methods for incompressible flows have gained much
popularity. These methods have the appealing property that the error in the approximate velocity is
independent of the pressure. This is in contrast to non-pressure-robust methods for incompressible
flows, such as the Taylor-Hood finite element [16], Crouzeix—Raviart [11], MINI elements [1], and
certain discontinuous Galerkin methods [6, 7, 12], where the velocity error estimates depend on the
best approximation error of the pressure scaled by the inverse of the viscosity. It was shown in [24]
that the underlying mechanism behind pressure-robustness is a fundamental invariance property of
incompressible flows; namely, the fact that perturbing the external force by a gradient field affects
only the pressure, and not the velocity. Failure by a numerical scheme to reproduce this invariance
property at the discrete level gives rise to a lack of pressure-robustness. As discussed in [19], a
numerical scheme resulting in point-wise solenoidal, divergence-conforming approximate velocity
field satisfies this invariance property at the discrete level.

For H'-conforming elements, balancing the velocity and pressure spaces such that the ap-
proximate velocity field is point-wise solenoidal while satisfying the discrete inf-sup condition is
a formidable challenge [19]. A possible solution is the use of discontinuous Galerkin methods in
the construction of pressure-robust schemes. The relaxation of H!'-conformity allows the use of
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divergence-conforming velocity spaces for which the approximate velocity field is trivially point-wise
divergence-free. This was demonstrated in [8, 37] where pressure-robust discontinuous Galerkin
methods for Stokes and Navier—Stokes flows were introduced.

Unfortunately, discontinuous Galerkin methods are known to be expensive compared to stan-
dard finite element methods. This led to the creation of hybridized discontinuous Galerkin (HDG)
methods in [9]. HDG methods are constructed such that globally coupled unknowns are defined on
cell boundaries only as opposed to the interior cell based unknowns of the discontinuous Galerkin
method. As a result, HDG methods have significantly smaller systems of algebraic equations. In
combination with preconditioning techniques [10, 34] the HDG method is computationally com-
petitive with traditional continuous Galerkin approaches [20, 39]. Many HDG methods have been
proposed for incompressible flow problems. Examples include [2, 5, 13, 27, 31, 33| for Stokes
and Oseen flows, [3, 17, 21, 22, 26, 28, 30] for Navier—Stokes flows, and more recently [29] for
incompressible magneto-hydrodynamics.

The work of Lehrenfeld and Schéberl [23] presents the first pressure-robust HDG method of
the Navier—Stokes equation without post-processing. Like [8] they suggest the use of a divergence-
conforming velocity space. Conversely, the divergence-conformity of the HDG method for incom-
pressible flows by Rhebergen and Wells [31, 32| is a consequence of the construction of the HDG
discretization. This HDG method uses ‘standard’ cell and facet discontinuous Galerkin spaces and
does not involve a divergence-conforming finite element space for the velocity. Numerical results
in [32] suggest the method is pressure-robust for the Navier-Stokes problem, but without support-
ing analysis. The analysis of the method by Rhebergen and Wells for the Stokes problem was
presented in [31]. The purpose of this paper is to provide stability and error analysis of the method
in [32] for the Navier—Stokes problem.

The outline of this paper is as follows. We present the Navier—Stokes problem in section 2
and the HDG method is introduced in section 3. Notation and properties of the multilinear
forms involved are discussed in section 4. Existence and uniqueness of the discrete solution are
shown in section 5. We derive optimal pressure-robust error estimates for the velocity in a mesh
dependent energy norm, the pressure in the L?-norm and optimal L2-error estimates for the velocity
in section 6. Numerical examples in section 7 demonstrate pressure-robustness of the scheme and
we draw conclusions in section 8.

2. The Navier—Stokes equations

Let Q € R? be a polygonal (d = 2) or polyhedral (d = 3) domain with boundary I'. We consider
the Navier-Stokes equations: given a body force f : @ — R? and kinematic viscosity v € RY, find
the velocity v : Q — R% and pressure p : Q — R such that

—wWVu4 V- (u®u)+Vp=f in Q, (1a)
Vou=0 in Q, (1b)
u=0 on I (1c)

It is well known, e.g., [36], that given a body force f € [LQ(Q)]d, the variational formulation



of the Navier—Stokes problem eq. (1): find (u,p) € [H&(Q)]d x L3(£2) such that

/QVVU:Vvdx—l—/Q(U-Vu)~vda:—/QpV~vda::/Qf'vdx Y € [H&(Q)}d (2a)

/qV~udx—0 Vg € L3(9), (2b)
Q
admits a unique solution provided

11l < ’/Q(Cocp)ila (3)
where, |-|| is the L?(£2)-norm, C,, is the Poincaré constant and C, is a constant depending only on

Q and d. In addition, the velocity satisfies the stability estimate
lully < G111 (4)

where [|-||; is the H'(2)-norm.

3. The hybridizable discontinuous Galerkin method

Let T = {K} denote the triangulation of the domain € into simplices K. Furthermore let F
denote the set of all facets and let I'Y denote the mesh skeleton, i.e., the union of all facets. We
denote the characteristic length of a cell K by hx and we denote the outward unit normal vector
on the boundary of a cell, 0K, by n.

We introduce discontinuous finite element approximation spaces for the velocity and pressure:

Vi, = {vh e [L2(Q)]", vy € [P(K)]? VK € T}, (5a)
Qui={an € @), gn € Pua(K) VK € T} (5b)

In addition, we introduce also discontinuous finite element approximation spaces for the approxi-
mate traces of the velocity and pressure:

Vi, = {@h e [L2(F)], o e [P(F)]" VFEF, 5 =0on r}, (6a)
Qn = {an € LX(F). @ € Pu(F) VF € F} (6b)

where P;(D) denotes the space of polynomials of degree [ > 0 on a domain D. For notational
purposes, we introduce the spaces V;* = Vj, x Vj,, Q7 = Qp x Q, and X} = V¥ x Q5. For notational
convenience, we denote function pairs in V;* and Qj by boldface, e.g., v, = (vy,0,) € V} and

an = (qn: an) € Qj,-
The HDG formulation for the Navier—Stokes problem eq. (1) is given by [32]: given f €

[£2(2)]%, find (wp, pp) € X} such that

ah(uh,’vh) + Oh(uh; Uup, ’Uh) + bh(phavh) = Z f-updx Yoy, € V,:, (7a)

by (qp,un) = Vq, € Qr, (7b)
3



where

ap(u,v) :—Z/KVVu:Vvdw—i—Z/a ay(u—ﬁ)-(v—ﬁ)ds, (8a)

KeT icerJoK T
- Z/ [v(u— 1) Opv + vOhu - (v — )] ds,
KeT /K
op(w;u,v) = — Z/u@w:Vvd:L‘+ Z/ tw-n(u+1a)- (v—2o)ds (8b)
KeT 7K KeT 79K
—i—Z/ $lw-n|(u—1)- (v—10)ds,
KeT /K
bn(p,v) :=— Z / pV -vdzr + Z/ v-npds. (8¢)
KeT 7K KeT VK

To ensure stability, the penalty parameter o > 0 needs to be chosen sufficiently large [31, 38].

It was shown in [31] for the Stokes problem and [32] for the Navier-Stokes problem that the
approximate velocity up € V3 obtained from the hybridized discontinuous Galerkin discretiza-
tion eq. (7) possesses two appealing properties, namely, V - u, = 0 pointwise and uy, € H(div; ().
These properties are key to proving a pressure-robust error estimate for the velocity field in sec-
tion 6.

4. Preliminaries

In this section we present some stability and boundedness results of the hybridizable discon-
tinuous Galerkin method eq. (7) and some other preliminaries. To set notation, let

V(h) == Vi + [HYQ)]" N [H2(©)], Q(h) == Qp + L2(Q) N HY(Q), (9a)
V(h) =T+ [T Q(h) = Qu + HY(T0), (9b)

and V*(h) := V (k) x V(h), Q*(h) := Q(h) x Q(h) and X*(h) := V*(h) x Q*(h). Frequent use will
also be made of functions in the following space:

Vit = {op € Vit bu(gy, vn) = 0 Vay, € Qf} - 10)

We denote the trace operator by v : H*(Q) — H*1/2(I'0) to restrict functions in H*(Q) to V.

The trace operator is applied component-wise for functions in [H s (Q)]d.

Given D an open subset of R? we denote for scalar-valued functions p,q € L?(D) the standard
inner-product by (p,q)p := [, pgdz and its corresponding norm ||p||, := /(p,p)p. Furthermore,
we define (p, q)7 := > g7 (P, )k and denote the usual L2-norm on Q by ||p|| :== +/(p,p)7. For a
scalar-valued function p € H¥(Q), we denote by ||p||, the usual H*(Q)-norm.

For scalar-valued functions p,q € L?(F), where F C R?!  we define the inner-product
(p,q)r = [ pqds with norm||p||z = \/(p,p)r. Similar definitions hold for vector-valued functions.



We introduce the following mesh-dependent inner-product and norms:

(u,v), = (Vu, Vv)r + Z ah[}l(a — U,V — V)yK u,v € V*(h), (11a)
KeT

lolls = > IVolli + Y ahitllo —vll5 v e V*(h), (11b)
KeT KeT

hK .
lwllZ = Il + Z v e V*(h), (11c)
KeT oK
llalls == llali* + D hrllallzx q € Q*(h), (11d)
KeT

where we note that [|-||, and [|-||,, are equivalent on V}*, see [31]. We define also

(v, Qh)|H2 = vllwnlll + v gl (vn, qy) € X, (12a)
vh
liC = lw.all;,+ > aK (12b)
KeT
=vllollZ +v gl (v,q) € X*(h).

The standard discrete H'-norm for v € V/(h) is defined as [vlly = | (vn, {{Uh})mv, where {v} =

%(v+ +v7) is the average operator and v* denote the trace of v from the interior of K*. Further-
more, use will be made of the following discrete Poincaré inequality:

lonll < epllvnllyp < epllvnll,  Yon € Vg, (13)

where ¢, is a constant independent of hg [12, Theorem 5.3].

Previously it was shown [31, Lemmas 4.2 and 4.3] that for sufficiently large «, the bilinear form
ap(-,-) is coercive and bounded, i.e., there exist constants ¢ > 0 and 2 > 0, independent of h,
such that for all v, € V}* and u,v € V*(h)

an(vn,vn) = velloally  and Jap(u,v)] < veglull, ol - (14)

The boundedness of by(-,-) was shown in the proof of [31, Lemma 4.8], i.e., there exists a
constant cz > 0, independent of h, such that for all v € V*(h) and q € Q*(h),

|bn(a, )] < vl gl (15)

while the stability of by (-, ) was proven in [34, Lemma 1]: there exists a constant /3, > 0, indepen-
dent of h, such that for all q;, € QF

bh(Qh7Uh,)
Bpllanll, < sup —="—

(16)
vnevy llonll,

Discrete inf-sup stability follows from coercivity of a (-, -) eq. (14) and the stability of b (-, -) eq. (16),

e.g. [12, Lemma 6.13]: there exists a constant ¢ > 0, independent of h and v, such that for all
(’Uh, qh) € X;;

oll(vn,an)l|,, < sup an(n, Wn) & bn(qn, wn) = b, vn) (17)
(wh,'r‘h)EX; ”’(wh’rh)mfu,p



For the trilinear form o (-, -) it was shown [3, Proposition 3.6] that for wy, € V3V

1
on(wn; vp, v) = 5 > / lwp, - nl|op, — Tp|*ds >0 Vo, € Vi (18)
KeT /9K

It was also shown [3, Proposition 3.4] that for wy,ws € V(h), u € V*(h) and v € V*(h) that

|on (w13, v) — on(was u, v)| < collwr —wallyy, lull, o], (19)

Finally, we note that if (u,p) € ([H&(Q)]dﬂ [HQ(Q)]d) x (LF(Q)NHY(Q)), letting u =
(u;7(w)) and p = (p,7(p)), then

ap(w, vy) + op(u; w,vy) + bp(p,vp) + bu(qy, u) = /Qf ~vpdx V(vn, qp) € X (20)

This consistency result follows immediately from [31, Lemma 4.1] and noting that, after integration
by parts, using that u and vy, are single-valued on cell boundaries, and that v, =0 on T,

op(u;w,vp) = Z V- (u®u)-vpde. (21)
KeT /K

5. Existence and uniqueness

The hybridizable discontinuous Galerkin method for the Navier—Stokes problem eq. (7) results
in a system of nonlinear algebraic equations. To show existence and uniqueness of this nonlinear
system, we use the classic Brouwer’s fixed point theorem, e.g., [14].

Lemma 5.1 (Existence and uniqueness). Assuming

VCS 2
15 < e (22)

CoCp

where ¢, is the constant from eq. (13), c; is the constant from eq. (14), and c, is the constant

from eq. (19), there exists a unique solution (up,pp) € Xj to the hybridizable discontinuous
Galerkin method for the Navier—Stokes problem eq. (7). Furthermore,

2
CoCp

27112, (23)

lunll, < co(ca) AN and - o (un, py)|

where o is the discrete inf-sup constant eq. (17).

Proof. We prove first existence of a solution u; € V,;ii" x Vi to eq. (7). We start by defining a
mapping W : Vhfi“’ XV, — V,f“’ x Vi, by

Vwy, v, € VY x Vi, (U(wy), vn), = an(wn, v1) + op(wp; wy, v,) — (f, 05) 7 (24)

Taking v;, = wy, in eq. (24) we find by coercivity of ay(-,-) eq. (14), positivity of op(-;-,-) eq. (18),
Cauchy—Schwarz and eq. (13),

(®(wn),wn), > (vegllwall, = cpll F11) llwnll, (25)
6



For all wy, € VAV x V, that satisfy [|wyl], = cp(civ) 7| f|| we therefore find that (¥ (wy,), wy), > 0.
Brouwer’s fixed point theorem implies the existence of uj, € By, := {vy, € VI x V;, : |Jop|l, <
cp(csv) 71| f|I} such that ¥(up) = 0. Equivalently, there exists up, € V;V x V}, satisfying the first
estimate in eq. (23) and

an(wn, vn) + o (un; un, v) = (f,on) T Vo € Vi x Vi, (26)
proving the existence of a solution uy to eq. (7) restricted to Vfiv x Vi,.

Next we prove uniqueness of uy € V,fiv x Vj, to eq. (7). For this, assume two solutions up1 €

V}{hv x Vi, and up 2 € V}?i" x V}, that both solve eq. (7). We will show that w1 = wp 2 under the
smallness assumption eq. (22). We first note that coercivity of ap(-,-) eq. (14) implies

ves Jwny — wna||? < an(ung —wno, w1 — upz). (27)
Furthermore, note that for any v, € V}?i" X Vi,
ap(wn,1 — wp2,Vh) + o (Up,1; k1, Vh) — O (Un2; Uk 2, VR) = 0. (28)
Combining eq. (27) and eq. (28),
VCZH‘Uh,l - uhQH‘i §0h(uh,2;uh,1auh,1 - Uh,z) - Oh(uh71§ Up,1, Up,1 — uh,2)

—op(up2;Up1 — Up2, Up1 — Up2) (29)

<op(un2 — U1 Uh,1, Wh1 — UR2),s

since op, (up2; Un,1 — Up 2, Up,1 — Up2) > 0 by eq. (18). Next, by eq. (19) and eq. (23)

veylluns —unall, < o lunz —unally g [lunal], Jluns —wnsl],
< cof unall, luns —wnal, (30)
< cocp () I Jwnn — un2 Hi,
implying
((wea)? = cocpll 1) lfuans = wnzll <. (31)

By eq. (22) it follows that w1 = wp2, proving uniqueness of uy, € Vfi" X V3.
We next prove the existence and uniqueness of p;. Given the solution wj, € V}?i" X Vp, the

pressure p;, € (0} is the solution to

br(pn,vn) = (f,vn)7 — an(un, vp) — op(up; up,vy) Yo, € Vi (32)

Since ap(up,-) and op(up;up, ) are bounded linear functionals on V}* by, respectively eq. (14)
and eq. (19), the right hand side itself is a bounded linear functional on V}*. Existence of a unique
solution p;, € Q7 to eq. (32) is now guaranteed by the inf-sup condition eq. (16).

Lastly, we prove the second estimate of eq. (23). By eq. (7) ap(un,wpn) + bn(py, wn) —
bu(rn,un) = (f,wn)r — on(up; up, wy). Discrete inf-sup stability eq. (17), and boundedness of
on(+;+,+) eq. (19) therefore result in

(f,wn) 7 — on(up; wp, wp)

Up, < < + cof w2 33
ol olog < oo Gl S el G
The result follows from the first estimate in eq. (23). O

7



6. Error analysis

In this section we prove that the HDG method eq. (7) for the Navier—Stokes problem is

pressure-robust, i.e., the velocity error is pressure-independent. Let Ilgpy : [H 1(Q)] ‘¢, V3, be the
usual Brezzi-Douglas—Marini (BDM) interpolation operator as given in the following lemma [15,
Lemma 7].

Lemma 6.1. If the mesh consists of triangles in two dimensions or tetrahedra in three dimensions
there is an interpolation operator Hpgpy : [HY(Q)]? — Vi, with the following properties for all
= [Hk'H(K)]d:

(i) [n-Tgpmu] = 0, where [a] = a* + a~ and [a] = a on, respectively, interior and boundary
faces is the usual jump operator.
(i) lu — Hppmull,, x < chlgmHuHLK withm =0,1,2 and m <1 <k+1.
(173) HV (u— HBDMU)Hm,K < chl™|V - ull, g withm =0,1 and m <1 <k.
(w) [ a(V-u—V - Tgpmu)dz =0 for all ¢ € Pp_1(K).
(v) [pd(n-u—mn-Tpyu)ds =0 for all ¢ € Py(F), where F is a face on OK.
Furthermore, let IIy, IIg and I:IQ be the standard L2-projection operators onto V4, @ and Qp,
respectively. We then introduce the approximation and interpolation errors
§u = u — Tlgpmu, Cu = up — llgpmu, €u = 7(u) = Tlyu, Cu = up — My,
fp =p— Hva Cp =DPh— HQP) ép = '7(17) - HQP» Cp =Ph — HQpa

and7 for notational convenience, Su = (guvgu)v Cu = (Cu7§u)7 Ep = (gpagp) and Cp = (vagp)'
Subtracting now the HDG method eq. (7) from the consistency result eq. (20) and splitting the

errors, we obtain the following error equation:

an(Cus Vn) + b (Cps vn) + bn(Qp, Cu) =an(&ys vn) + bn(&p, vn) + brlap, §u)
— on(u; Cy, V1) — 0n(Cus un, vp) (34)
+op(u; &y, vn) + on(&us up, vp).

In the following lemma we will find an energy estimate for the velocity error.

Theorem 6.1 (Pressure robust velocity error estimate). Let C), and C, be the constants in eq. (3).
Furthermore let ¢, be the discrete Poincaré constant of eq. (13), ¢, the constant in eq. (19) and

¢S the constant in eq. (14). Let u € [Hk+1(9)]d be the wvelocity solution to the Navier—Stokes

problem eq. (1), w = (u,y(u)), and wy, € V}* the velocity solution of the HDG discretization eq. (7).
Then assuming the smallness condition

AT RS A (3))

where ¢, = max {Cyp,cp}, ¢, = max{C,,co} and ¢, = min{1,c5} we obtain the pressure-robust
velocity error estimate
llw = wnll, < ch* ullypy . (36)

where ¢ > 0 a constant independent of h and v.



Proof. In the error equation eq. (34) take (vp, q;,) = (¢, —C,,)- Then, by coercivity of ax(-, ) eq. (14)

Vc;|||<u”|12) < ah(Cu7 Cu) :ah(guv Cu) + bh(£p7 CU) - bh(va gu)
— on(u; Cys Cu) — 0n(Cus wn, €y) (37)
+ Oh(u; £u7 Cu) + Oh(fu; Up, Cu)

By properties of the BDM interpolation operator and using that wu; is pointwise divergence-
free and divergence-conforming, we note that b;(&,,¢u) = 0 and b4(¢,, &) = 0. Furthermore,
on(u; €,y €,) > 0 so that

VCZ|||Cu|”12) < a’h(sua Cu) - Oh(C’u; Up, Cu) + Oh(u; Euv Cu) + Oh(é.u; Uh, Cu) (38)

We next bound each term on the right hand side separately.
By boundedness of ay(-,-) eq. (14),

an(€u,Cu) < veall€ulluliCull,r < veqli€ull o ICull,, (39)

where the second inequality is by equivalence of ||-||,, and |||, on V;*.
From eq. (4) and eq. (35) it follows that [|u||, < 3c,c;'v. Furthermore, from eq. (23) and eq. (35)

2%a‘o
it follows that [|up||, < 3¢,c, 'v. Then, by eq. (19),
on(u; €u: Cu) < Collully 1€, NICuM, < scavll€nll, IS, (40a)
0n(€us uh, Cu) < Colléullyp llunlllICull, < scarll€ullulCull,, (40b)
on(Gus uny ) < CollCully llunll lICull, < 5eavlICu Il (40¢c)
Combining eq. (38)-eq. (40) and dividing by ||, |,
scavllCull, < (veh = 5 ICull, < vch + cca)ll€ull,- (41)

The result follows by a triangle inequality and the interpolation estimates of the BDM interpolation
operator defined in lemma 6.1 and the L?-projection operator. O

Given the velocity error estimate of the previous theorem we can now state an error estimate
for the pressure in the L?-norm.

Lemma 6.2 (Pressure error estimate in the L?-norm). Let (u,p) € [H*"1(Q) ¢ x H*(Q) be the

solution to the Navier—Stokes problem eq. (1) and w = (u,y(u)) and p = (p,v(p)). Let (un,py,) €
X} solve eq. (7), then

Ip = pall < ¢ (A8l + B¥ e ) (42)

with ¢ > 0 a constant independent of h and v.
Proof. By the triangle inequality and the inf-sup condition eq. (16),

lp = pnll < llp—anll, + llPn — anll,

bn(p — Py, bu(p — gy, 43
< |||p_ qhmp +/Bgl sup h(p Dy, Uh) +,B;1 sup h(p dp vh)' ( )
vEV} lonll, eV} llvnll,

9



Bounding the third term on the right hand side using the boundedness of by (-, -) eq. (15),

_ _ bn(P — Pps Vh)
Ip—pall < (1+5,7ch) llp — aull, + 5, sup 22—t (44)
vevy  lwnll,
Proceeding as in the velocity error estimate,
br(P — Pp,vn) = an(u — up, vp) + op(u — up; w, vp) — op(Un; w — Up, Vp)
b / (45)
< (e + ) vllw = wnll, lloal,
Combining eq. (44) and eq. (45), and since g, € Q} is arbitrary,
Ip—pall < (14 8,7ch) inf llp = anll, + 8, (ch + ca) vllu =, (46)
QhEQh
Standard interpolation estimates for the L2-projection can be used to show that
: k
inf lp — qpll, < ch”lplly , (47)

9,€Q},

where ¢ is a constant independent of h. To bound the second term on the right hand side of eq. (46),
note that

lle =l < N€ulllor + N1€ulllr < N€ullr + clli€ull, < ell€ulls (48)

where the last inequality is by eq. (41). The result follows from eq. (46), eq. (47), eq. (48) and
the interpolation estimates of the BDM interpolation operator defined in lemma 6.1 and the L*-
projection operator. ]

We end this section by showing the velocity error estimate in the L?-norm. For this we require
the solution (¢, ) to the following dual problem [18, Chapter 6]:

V-V -(u®¢)—Vip— (Vo) lu=yg in Q, (49a)
V-¢=0 in Q, (49h)
$»=0 on I (49¢)

We assume the following regularity estimate:

1elly +l1lly < erllgll (50)

with ¢, > 0 a constant independent of h. This regularity estimate holds for convex polyhedron 2

assuming u € [L“(Q)]d [3]. It will be convenient to introduce the interpolation errors
£ = ¢ — DM O, €y =(0) — v g,
Sy =¥ —1Ilgy, y = () —Ilgy.

and £¢ = (5(1)75(25)7 Ew = (&llvgw)'

Lemma 6.3 (Velocity error estimate in the L?norm). Let u € [Hk“(Q)]d N [LOO(Q)]d be the
velocity solution to the Navier—Stokes problem eq. (1), w = (u,y(u)), and u, € V;* the velocity
solution of the HDG discretization eq. (7). Subject to the regularity condition eq. (50), there exists
a constant ¢ > 0, independent of h, such that
s — wnll < RFF Ul (51)
10



Proof. By definition of ay(+,-) eq. (8a), integration by parts, using the single-valuedness of u, 9,¢
and iy, across cell boundaries, and that v = 4, = 0 on I', we note that

on(u = (690 == Y [ =) Voda. (52)

KeTy

Furthermore, by definition of eq. (8b), using that ¢ = v(¢) on cell boundaries and the identity
(a®b): C =b-CTa for vectors a,b € R™ and tensor C € R™*"

on(u —up; (u,(w), (6,7(9))) = = > / (u—up) - (V) udz. (53)
KeT, 'K
Similarly, using again the identity (a ® b) : C =b-C7a,
on(uiw = wn, (0:7(@) == 3 [ (=) V- (we 9)da, (54)
KeT, 'K

where we used also that (V¢)u = (u - V)¢ and, for divergence-free u, V- (u ® ¢) = (u - V)¢.
Next, by definition of by, eq. (8c), integration by parts, using that u, uj,-n and 1 are single-valued
across cell boundaries, and that v = up, =0 on I,

b)) == 3 [ Vo () de, (55)

KeT

Once again from the definition of by, eq. (8¢),

bu(p — s ®) ——/Q<p—ph>v<z>dx—0. (56)

since V - ¢ = 0.
Adding eq. (52)—eq. (56),

an (e (6,1(9))) + 0 — uns (0, 7(w), (6, (6)
+ on(usu — up, (0,7(9))) + bu(p — Pp, &) — bu((,7(¥)), u — up)
=¥ [ w—w) (0¥ - V- @ ) = Ve - (Vo)) d. (57)

KeT

Taking g = u — uyp, in eq. (49) we therefore find that

Ju — up|® = an(w — up, (6,7(0))) + bu(p — Pp, 8) + on(u — up; (u,y(w)), (6, 7(6)))
+ on(u; u — up, (6,7(9))) — bn (¥, 7(¥)), u — up). (58)

Next, from the consistency of the scheme eq. (20),

ah(u — up, 'vh) + bh(p — Pps Uh) — oh(uh; up, Uh) + oh(u; u, ’Uh) — bh(qm U — uh) =0. (59)

11



Subtract now eq. (59) from eq. (58) and choose v, = (ppme, Iy ¢) and q, = (Hgy, Hgv).
Algebraic manipulation then results in
lu — up||* =an(u — wp, €,) + b (P — Ppy o) + on(u — up; (u, ¥(w)), €,)
—op(u — up;u — up, £y) + op(u;u — up, §y)
+ on(u — up;u — up, (6,7(9))) — bn(&y,u — upn)
=T+ 1o +T15+Ty+ 15+ 16 + 17.
Note first that

Th = bp(p — Pp: &p) = Z/p pr)V - (¢ — Ilgpme) dz

KeTy

+ Z/ gb HBDMQb) nppds = 0, (61)

KeTy,

by properties of the BDM interpolation operator and the L2?-projection operator IIg, see [4].
We next bound the remaining terms in eq. (60). By boundedness of a(+,-) eq. (14),

Ty < vllu— |, (62)

Next, the interpolation property (i7) of the BDM projection in lemma 6.1 and the interpolation
properties of the L?-projection IIy followed by assumption eq. (50), yield

lea], = nlglly < hlu = unll, (63)

so that

Ty < cvhl|uw — wp|][lu — upl]- (64)
From boundedness of the trilinear form op(-;-,-) eq. (19), the smallness assumption eq. (35),
and eq. (63)

Ts < geav|lu—ull, S cevhllu =]l lu —uall, (65)

and, similarly,
Ty + T5 < evh||lu — up ||, ||uw — unl| - (66)

For T, using the boundedness of the trilinear form op(-;-,-) eq. (19), the fact that ||¢[|; <||¢ll5,
and eq. (36),
2
Ts < Collu —unllyllolly, < chllw —wnll,llulllloll,
< chlw — wpll,/[lullyllv — unll. - (67)

To bound T7, we use the boundedness of br(+,-) eq. (15), standard interpolation estimates for the
L%-projections Il and I, and the regularity assumption eq. (50) to find

b
77 < €| s —unlly < chl[oly = wnll,s < chlfa =l — ] (68)

The result follows after collecting eq. (64)—eq. (68), dividing both sides by ||u — up|| and applying
the interpolation estimates of the BDM interpolation operator defined in lemma 6.1 and the L?-
projection operator. ]
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7. Numerical examples

In this section we present numerical examples that demonstrate optimality and pressure-
robustness of the scheme. All numerical examples have been implemented with the penalty pa-
rameter a = 10k? using the high order finite element library NGSolve [35].

In all test cases below, we compare the HDG method analyzed in this paper to the HDG method
proposed in [21]. The method proposed in [21] considers a smaller pressure trace function space in
that Q, eq. (6b) is replaced by

Q= {a € I*(F), @ € Pea(F) VF € F}.

The velocity and pressure estimates of this scheme are optimal, see [31] for the analysis of the
Stokes problem. Despite the velocity field obtained by the discretization in [21] being pointwise
divergence free, the method is not pressure robust. This can be attributed to the fact that the
approximate velocity field is not divergence-conforming.

7.1. No flow problem

In this first example we consider the no flow problem from [19, Example 1.1] adapted to the
stationary Navier—Stokes problem. For this we take Q = (0,1)2, set v = 1, and apply homogeneous
Dirichlet boundary conditions. The source term is taken to be f = (0,7(1 —y + 3y?)), where r > 0
is a parameter. The exact solution to this problem is v = 0 and p = r(y> — %yQ +y— 1—72) Changing
the parameter r should affect only the pressure solution. This example tests whether the numerical
scheme mimics this property.

In fig. 1 we plot the velocity and pressure errors using a polynomial approximation with k = 2
for r = 1 and r = 10%. We observe in fig. 1a that the velocity error using the HDG method that
is not divergence-conforming is, as expected, not pressure-robust. Although the velocity converges
optimally, increasing the parameter r increases the error in the velocity. Conversely, the error in
the velocity of the divergence-conforming method is of machine-precision, no matter the grid size.
Although the error in the velocity increases as r increases, this can be attributed to an increase in
the condition number of the matrix that needs to be inverted at each Picard iteration.

The pressure-errors are identical for both HDG methods, see fig. 1b. The errors in the pressure
converge optimally and increase as r increases.

7.2. Potential flow problem

We next consider the potential flow problem from [25, Example 4]. Setting f = 0, this test
case was constructed such that pressure is balanced by the nonlinear convection terms, and serves
to show that nonlinear convection terms can also induce a lack of pressure-robustness [19].

On the domain 2 = (—%, %)2, we consider the problem where the exact solution is given by
u=Ve¢and p= —%]u\z, with the harmonic function ¢ = y° + 5zty — 1022y3.

In fig. 2 we plot the velocity and pressure errors using a polynomial approximation with k = 2
for v = 10° and v = 10~°. We observe optimal rates of convergence for both methods for velocity
and pressure.

For the HDG method that is not divergence-conforming, however, the errors in the velocity and
pressure increase significantly as the viscosity is decreased. Furthermore, there is no convergence
of the non-linear solvers for large h for the case that v = 107°. This was observed also in [19, 25]

for schemes that are not pressure-robust.
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(b) Pressure error.

Figure 1: Results for the no flow problem section 7.1 using polynomial degree k = 2.
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For the divergence-conforming method, the errors in velocity and pressure are unaffected by the
decrease in viscosity and there are no problems associated with the convergence of the non-linear
solver.

8. Conclusions

In this paper we have proven optimal error estimates of a hybridizable discontinuous Galerkin
method for the stationary Navier—Stokes problem. Furthermore, due to the scheme resulting in
an approximate velocity field that is divergence-conforming and pointwise divergence free, the
error estimates obtained for the velocity field do not depend on the pressure. The pressure-
robust error estimates were confirmed by numerical examples. In addition, the numerical examples
demonstrated that if a solenoidal velocity field is not divergence-conforming, the HDG method will
fail to be pressure-robust.
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Figure 2: Results for the potential flow problem section 7.2 using polynomial degree k = 2.
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