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Abstract

In our earlier work [8], we approximated solutions of a general class of scalar parabolic
semilinear PDEs by an interpolatory hybridizable discontinuous Galerkin (Interpolatory HDG)
method. This method reduces the computational cost compared to standard HDG since the
HDG matrices are assembled once before the time integration. Interpolatory HDG also achieves
optimal convergence rates; however, we did not observe superconvergence after an element-by-
element postprocessing. In this work, we revisit the Interpolatory HDG method for reaction
diffusion problems, and use the postprocessed approximate solution to evaluate the nonlinear
term. We prove this simple change restores the superconvergence and keeps the computational
advantages of the Interpolatory HDG method. We present numerical results to illustrate the
convergence theory and the performance of the method.

Keywords Interpolatory hybridizable discontinuous Galerkin method, superconvergence

1 Introduction

In our earlier work [8], we introduced an interpolatory hybridizable discontinuous Galerkin (In-
terpolatory HDG) method to approximate the solution of semilinear parabolic PDEs. In contrast
to standard HDG, the Interpolatory HDG method uses an elementwise interpolation procedure to
approximate the nonlinear term; therefore, all quadrature for the nonlinear term can be performed
once before the time integration, which yields a significant computational cost reduction. The
Interpolatory HDG method still converged at optimal rates, but superconvergence using element-
by-element postprocessing was lost.

The superconvergence is an excellent feature of HDG methods, and therefore in this work we
modify the Interpolatory HDG method from [8] and restore the superconvergence for reaction
diffusion PDEs.

Specifically, we consider the following class of scalar reaction diffusion PDEs on a Lipschitz
polyhedral domain Ω ⊂ Rd, d = 2, 3, with boundary ∂Ω:

∂tu−∆u+ F (u) = f in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u(·, 0) = u0 in Ω.

(1.1)
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In Section 2, we provide background on HDG methods and describe the new Interpolatory HDG
approach in detail. We use the HDGk method to approximate the linear terms in the equation;
i.e., kth order discontinuous polynomials are used to approximate the flux q = −∇u, the scalar
variable u, and its trace, and the stabilization function is chosen as O(1) piecewise constant. For
the nonlinear term, we again use an elementwise Lagrange interpolation operator, as in [8], but now
we also approximate u using a postprocessing approach. This modified approximate nonlinearity
restores the superconvergence and, as in [8], we have a simple explicit expressions for the nonlinear
term and Jacobian matrix, which leads to an efficient and unified implementation.

We analyze the semidiscrete Interpolatory HDGk method in Section 3. We first assume the non-
linearity satisfies a global Lipschitz condition and prove the superconvergence. Next, we establish
the superconvergence under a local Lipschitz condition, assuming the mesh is quasi-uniform.

In Section 4, we illustrate the convergence theory with numerical experiments and also demon-
strate the performance of the Interpolatory HDGk method on a reaction diffusion PDE system.

We note that interpolatory finite element methods for nonlinear PDEs are well-known to have
computational advantages and have a long history. The approach has been given many different
names, including finite element methods with interpolated coefficients, product approximation, and
the group finite element method. For more information, see [4, 6, 7, 17–20, 22–24, 32, 34–36, 38–41]
and the references therein.

2 Interpolatory HDGk formulation and implementation

Hybridizable discontinuous Galerkin (HDG) methods were proposed by Cockburn et al. in [13].
HDG methods work with the mixed formulation of the PDE, and on each element the approximate
solution and flux are expressed in terms of the approximate solution trace on the element boundary.
The approximate trace is uniquely determined by requiring the normal component of the numerical
trace of the flux to be continuous across element boundaries. This allows the approximate solution
and approximate flux variables to be eliminated locally on each element; the result is a global
system of equations for the approximate solution trace only. Therefore, the number of globally
coupled degrees of freedom for HDG methods is significantly lower than for standard DG methods.
HDG methods have been successfully applied to linear PDEs [13–15,27] and nonlinear PDEs [2,16,
21,25,26,28–31].

To describe the Interpolatory HDGk method, we introduce notation below. We mostly follow
the notation used in [13], where HDG methods were considered for linear, steady-state diffusion.

Let Th be a collection of disjoint simplexes K that partition Ω. Let ∂Th denote the set {∂K :
K ∈ Th}. For an element K in the collection Th, let e = ∂K ∩ Γ denote the boundary face of K if
the d− 1 Lebesgue measure of e is nonzero. For two elements K+ and K− of the collection Th, let
e = ∂K+ ∩ ∂K− denote the interior face between K+ and K− if the d− 1 Lebesgue measure of e
is nonzero. Let εoh and ε∂h denote the sets of interior and boundary faces, respectively, and let εh
denote the union of εoh and ε∂h. We use the mesh-dependent inner products

(w, v)Th :=
∑
K∈Th

(w, v)K , 〈ζ, ρ〉∂Th :=
∑
K∈Th

〈ζ, ρ〉∂K ,

where (·, ·)D denotes the L2(D) inner product for a set D ⊂ Rd and 〈·, ·〉Γ denotes the L2(Γ) inner
product for a set Γ ⊂ Rd−1.

Let Pk(D) denote the set of polynomials of degree at most k on a domain D. We consider the
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discontinuous finite element spaces

Vh := {v ∈ [L2(Ω)]d : v|K ∈ [Pk(K)]d,∀K ∈ Th}, (2.1)

Wh := {w ∈ L2(Ω) : w|K ∈ Pk(K), ∀K ∈ Th}, (2.2)

Zh := {z ∈ L2(Ω) : z|K ∈ Pk+1(K),∀K ∈ Th}, (2.3)

Mh := {µ ∈ L2(εh) : µ|e ∈ Pk(e),∀e ∈ εh, µ|ε∂h = 0}. (2.4)

All spatial derivatives of functions in these spaces should be understood piecewise on each element
K ∈ Th.

We consider the HDG method that approximates the scalar variable u, flux q = −∇u, and
boundary trace û using the spaces Wh, Vh, and Mh, respectively; i.e., polynomials of degree k are
used for all variables. We call this specific method HDGk to distinguish it from the wide variety of
other available HDG methods, see, e.g., [9–12]. The space Zh is used for postprocessing.

For the Interpolatory HDGk method, we use an elementwise interpolatory procedure along
with postprocessing to approximate the nonlinear term. Let Ih be the elementwise interpolation
operator with respect to the finite element nodes for the postprocessing space Zh. Therefore, for
any function g that is continuous on each element we have Ihg ∈ Zh.

The Interpolatory HDGk formulation reads: find (qh, uh, ûh) ∈ Vh×Wh×Mh such that, for all
(rh, vh, v̂h) ∈ Vh ×Wh ×Mh, we have

(qh, rh)Th − (uh,∇ · rh)Th + 〈ûh, rh · n〉∂Th = 0, (2.5a)

(∂tuh, vh)Th − (qh,∇vh)Th + 〈q̂h · n, vh〉∂Th + (IhF (u?h), vh)Th = (f, vh)Th , (2.5b)

〈q̂h · n, v̂h〉∂Th\ε∂h = 0, (2.5c)

uh(0) = Πu0, (2.5d)

where Π is a projection mapping into Wh and the numerical trace for the flux is defined by

q̂h · n = qh · n+ τ(uh − ûh). (2.6)

Here, the stabilization function τ is nonnegative, constant on each element, and O(1). Furthermore,
the postprocessed scalar variable u?h = qk+1

h (qh, uh) ∈ Zh is determined on each element K by

(∇qk+1
h (qh, uh),∇zh)K = −(qh,∇zh)K , (2.7a)

(qk+1
h (qh, uh), wh)K = (uh, wh)K , (2.7b)

for all (zh, wh) ∈ [Pk+1(K)]⊥ × P0(K), where

[Pk+1(K)]⊥ = {z ∈ Pk+1(K) : (z, w0)K = 0 for all w0 ∈ P0(K)}. (2.8)

Remark 2.1. In our original Interpolatory HDG work [8], we used IkhF (uh) to approximate the
nonlinear term, where Ikh is the elementwise interpolation operator mapping into Wh. We proved
optimal convergence rates for all variables, but we did not observe superconvergence after an
element-by-element postprocessing. In this work, we approximate the nonlinearity using Ih and
postprocessing, i.e., IhF (u?h). Note that this approximate nonlinearity is in Zh instead of Wh as
in our first work. This simple change yields the superconvergence and keeps all the advantages of
the original Interpolatory HDGk method proposed in [8]. We provide details on the computational
advantages of this approach in Section 2.1.
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2.1 Implementation

In our original work [8] on Interpolatory HDG, we provided details of the implementation for the
method. Since we changed the discretization of the nonlinear term in this work, the implementation
is different; therefore, we provide details for the implementation of this new formulation and show
how all matrices need only be assembled once before the time integration. As in our earlier work [8],
we describe the implementation using a simple time discretization approach: backward Euler with
a Newton iteration to solve the nonlinear system at each time step. Using Interpolatory HDG with
other time discretization approaches is also possible.

Let N be a positive integer and define the time step ∆t = T/N . We denote the approximation
of (qh(t), uh(t), ûh(t)) by (qnh , u

n
h, û

n
h) at the discrete time tn = n∆t, for n = 0, 1, 2, . . . , N . We

replace the time derivative ∂tuh in (2.5) by the backward Euler difference quotient

∂+
t u

n
h =

unh − u
n−1
h

∆t
. (2.9)

This gives the following fully discrete method: find (qnh , u
n
h, û

n
h) ∈ Vh ×Wh ×Mh satisfying

(qnh , r)Th − (unh,∇ · r)Th + 〈ûnh, r · n〉∂Th = 0, (2.10a)

(∂+
t u

n
h, w)Th − (qnh ,∇w)Th + 〈q̂nh · n, w〉∂Th + (IhF (un?h ), w)Th = (fn, w)Th , (2.10b)

〈q̂nh · n, µ〉∂Th\ε∂h = 0, (2.10c)

u0
h = Πu0, (2.10d)

for all (r, w, µ) ∈ Vh ×Wh ×Mh and n = 1, 2, . . . , N . In (2.10), fn = f(tn, ·), the numerical trace
for the flux on ∂Th is defined by

q̂nh · n = qnh · n+ τ(unh − ûnh), (2.11)

and the postprocessed approximate solution un?h is determined on each element K by solving

(∇un?h ,∇zh)K = −(qnh ,∇zh)K , (2.12a)

(un?h , wh)K = (unh, wh)K , (2.12b)

for all (zh, wh) ∈ [Pk+1(K)]⊥ × P0(K).

As is discussed below, the Interpolatory HDGk method takes great advantage of nodal basis
functions; however, the postprocessing (2.12) uses an orthogonal complement space, which compli-
cates the implementation. To avoid this, on each element K, we introduce a Lagrange multiplier
ηnh ∈ P0(K) such that

(∇un?h ,∇zh)K + (ηnh , zh)K = −(qnh ,∇zh)K , (2.13a)

(un?h , wh)K = (unh, wh)K , (2.13b)

holds for all (zh, wh) ∈ Pk+1(K)× P0(K).

Remark 2.2. In this work, we used wh ∈ P`(K) with ` = 0 in (2.13). Actually, ` = 0, 1, . . . , k − 1
works both in the analysis and the numerical experiments. In Part II of this work, we use the same
postprocessing (2.13) with ` = k.
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Assume Vh = span{ϕi}N1
i=1, Wh = span{φi}N2

i=1, Zh = span{χi}N3
i=1, and Mh = span{ψi}N4

i=1.
Then

qnh =

N1∑
j=1

αn
jϕj , unh =

N2∑
j=1

βnj φj ,

un?h =

N3∑
j=1

γnj χj , ûnh =

N4∑
j=1

ζnj ψj .

(2.14)

Also, define the following matrices

A1 = [(∇χj ,∇χi)Th ], A2 = [(ϕj ,∇χi)Th ], A3 = [(ϕj ,ϕi)Th ],

A4 = [(φj ,∇ ·ϕi)Th ], A5 = [〈ψj ,ϕi · n〉∂Th ], A6 = [〈τφj , φi〉∂Th ],

A7 = [〈τψj , ϕi〉∂Th ], A8 = [〈τψj , ψi〉∂Th ], A9 = [(χj , φi)Th ],

M = [(φj , φi)Th ],

and vectors

b1 = [(χj , 1)Th ], b2 = [(φj , 1)Th ], bn3 = [(fn, φi)Th ].

Since Vh, Wh, and Zh are discontinuous finite element spaces, many of the matrices are block
diagonal with small blocks.

Substitute (2.14) into the postprocessing equation (2.13) and use the corresponding test func-
tions to test (2.13) on each element K ∈ Th. This gives the following local postprocessing equation[

Ak
1 (bk1)T

bk1 0

][
γn
k

ηnk

]
=

[
−Ak

2 0
0 bk2

][
αn

k

βn
k

]
,

were Ak
1 is the kth block of the matrix A1, and Ak

2, b
k
1, and bk2 are defined similarly. That is,[

γn
k

ηnk

]
=

[
Ak

1 (bk1)T

bk1 0

]−1[−Ak
2 0

0 bk2

][
αn

k

βn
k

]
=

[
Bk

11 Bk
12

Bk
21 Bk

22

][
αn

k

βn
k

]
, (2.15)

i.e.,

γn
k = Bk

11α
n
k +Bk

12β
n
k .

Let B11 and B12 be the block diagonal matrices with kth blocks Bk
11 and Bk

12, respectively.
As in [8], once we test (2.10b) using w = φi we can express the Interpolatory HDGk nonlinear

term by the matrix-vector product

[(IhF (un?h ), φi)Th ] = A9F(γn)

= A9F(B11α
n +B12β

n),

where F is defined by

F(γn) = [F (γn1 ), F (γn2 ), . . . , F (γnN3
)]T . (2.16)
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Then the system (2.10) can be rewritten asA3 −A4 A5

AT
4 ∆t−1M +A6 −A7

AT
5 AT

7 −A8


︸ ︷︷ ︸

K

 αn

βn

ζn


︸ ︷︷ ︸

xn

+

 0
A9F(B11α

n +B12β
n)

0


︸ ︷︷ ︸

F(xn)

=

 0
bn3 + ∆t−1Mβn−1

0


︸ ︷︷ ︸

bn

,

(2.17)

i.e.,

Kxn + F(xn) = bn. (2.18)

To apply Newton’s method to solve the nonlinear equations (2.18), define G : RN1+N2+N4 →
RN1+N2+N4 by

G(xn) = Kxn + F(xn)− bn. (2.19)

At each time step tn for 1 ≤ n ≤ N , given an initial guess x
(0)
n , Newton’s method yields

x(m)
n = x(m−1)

n −
[
G′(x(m−1)

n )
]−1

G(x(m−1)
n ), m = 1, 2, 3, . . . (2.20)

where the Jacobian matrix G′(x
(m−1)
n ) is given by

G′(x(m−1)
n ) = K + F′(x(m−1)

n ). (2.21)

Similar to our earlier work [8] on Interpolatory HDG, the term F′(x
(m−1)
n ) is easily computed by

F′(x(m−1)
n ) =

 0 0 0

A
n,(m)
10 A

n,(m)
11 0

0 0 0

 ,
where A

n,(m)
10 and A

n,(m)
11 can be efficiently computed using sparse matrix operations by

A
n,(m)
10 = A9 diag(F ′(B11α

n,(m−1) +B12β
n,(m−1)))B11,

A
n,(m)
11 = A9 diag(F ′(B11α

n,(m−1) +B12β
n,(m−1)))B12.

Therefore, equation (2.20) can be rewritten as A3 −A4 A5

AT
4 +A

n,(m)
10 ∆t−1M +A6 +A

n,(m)
11 −A7

AT
5 AT

7 −A8

 αn,(m)

βn,(m)

ζn,(m)

 = b̃, (2.22)

where

b̃ = G′(x(m−1)
n )x(m−1)

n −G(x(m−1)
n ). (2.23)

This equation can be solved by locally eliminating the unknowns αn,(m) and βn,(m); see [8] for
details.

Remark 2.3. In this new Interpolatory HDGk formulation, we only need to assemble the HDG
matrices and the HDG postprocessing matrices B11 and B12 once before the time integration.
Hence, we keep all the advantages from our earlier work [8]: the new approach eliminates the
computational cost of matrix reassembly and gives simple explicit expressions for the nonlinear
term and Jacobian matrix, which leads to a simple unified implementation for a variety of nonlinear
PDEs.
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3 Error analysis

In this section, we give a rigorous error analysis for the semidiscrete Interpolatory HDGk method.
Below, we state our assumptions and briefly outline the main results. Then we provide an overview
of the projections required for the analysis in Section 3.1. The proofs of the main results follow. We
first assume in Section 3.2 that the nonlinearity satisfies a global Lipschitz condition. Finally, in
Section 3.3 we extend the results to locally Lipschitz nonlinearities; however, we assume the mesh
is quasi-uniform and h is sufficiently small for this case.

We use the standard notation Wm,p(Ω) for Sobolev spaces on Ω with norm ‖ · ‖m,p,Ω and
seminorm | · |m,p,Ω. We also write Hm(Ω) instead of Wm,2(Ω), and we omit the index p in the
corresponding norms and seminorms.

Throughout, we assume the solution of the PDE (1.1) exists and is unique for t ∈ [0, T ], the
function F , the problem data, and the solution of the PDE are smooth enough, and the semidiscrete
Interpolatory HDGk equations (2.5) have a unique solution on [0, T ]. Furthermore, we assume the
mesh is uniformly shape regular, h ≤ 1, and the projection Π used for the initial condition in (2.5d)
is Π = ΠW , where ΠW is defined below in Section 3.1.

We also make the following regularity assumption on the dual problem: there exists a constant
C such that for any Θ ∈ L2(Ω), the solution (Φ,Ψ) of the dual problem

Φ +∇Ψ = 0 in Ω,

∇ ·Φ = Θ in Ω,

Ψ = 0 on ∂Ω,

(3.1)

satisfies (Φ,Ψ) ∈ [H1(Ω)]d ×H2(Ω) and

‖Φ‖H1(Ω) + ‖Ψ‖H2(Ω) ≤ C‖Θ‖L2(Ω). (3.2)

This assumption is satisfied if Ω is convex.
We show for all 0 ≤ t ≤ T the solution (qh, uh, u

?
h) of the semidiscrete Interpolatory HDGk

equations (2.5) satisfies

‖q(t)− qh(t)‖Th ≤ Ch
k+1, ‖u(t)− uh(t)‖Th ≤ Ch

k+1, ‖u(t)− u?h(t)‖Th ≤ Ch
k+1+min{k,1}.

In our error estimates, the constants C can vary from line to line and may depend on the exact
solution and the final time T . As in the linear case [3], superconvergence is only obtained for k ≥ 1.

Remark 3.1. In [3], the L∞(L2) error for u− u∗h superconverges at a rate of
√

log κ hk+2, where κ
depends on the mesh and the term

√
log κ grows very slowly as h tends to zero. The term

√
log κ

results from the parabolic duality argument used in [3]. It appears this parabolic duality argument
is not applicable to Interpolatory HDG. Therefore, in this work we use a duality argument based
on Wheeler’s work [37] and avoid the term

√
log κ in our error estimates; however, we require the

solution has higher regularity than the regularity needed in [3] for the linear case.

3.1 Projections and basic estimates

We first introduce the HDGk projection operator Πh(q, u) := (ΠV q,ΠWu) defined in [15], where
ΠV q and ΠWu denote components of the projection of q and u into Vh and Wh, respectively. For
each element K ∈ Th, the projection is determined by the equations

(ΠV q, r)K = (q, r)K , ∀r ∈ [Pk−1(K)]d, (3.3a)

(ΠWu,w)K = (u,w)K , ∀w ∈ Pk−1(K), (3.3b)

〈ΠV q · n+ τΠWu, µ〉e = 〈q · n+ τu, µ〉e, ∀µ ∈ Pk(e), (3.3c)

7
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for all faces e of the simplex K. The approximation properties of the HDGk projection (3.3) are
given in the following result from [15]:

Lemma 3.2. Suppose k ≥ 0, τ |∂K is nonnegative and τmax
K := max τ |∂K > 0. Then the system

(3.3) is uniquely solvable for ΠV q and ΠWu. Furthermore, there is a constant C independent of
K and τ such that

‖ΠV q − q‖K ≤ Ch
`q+1
K |q|`q+1,K + Ch`u+1

K τ∗K |u|`u+1,K , (3.4a)

‖ΠWu− u‖K ≤ Ch`u+1
K |u|`u+1,K + C

h
`q+1
K

τmax
K

|∇ · q|`q ,K (3.4b)

for `q, `u in [0, k]. Here τ∗K := max τ |∂K\e∗, where e∗ is a face of K at which τ |∂K is maximum.

Next, for each simplex K in Th and each boundary face e of K, let Π` (for any ` ≥ 0) and PM

denote the standard L2 orthogonal projection operators Π` : L2(K) → P`(K) and PM : L2(e) →
Pk(e) satisfying

(Π`u, vh)K = (u, vh)K , ∀vh ∈ P`(K), (3.5a)

〈PMu, v̂h〉e = 〈u, v̂h〉e, ∀v̂h ∈ Pk(e). (3.5b)

The following error estimates for the L2 projections and the elementwise interpolation operator Ih
from Section 2 are standard and can be found in [1]:

Lemma 3.3. Suppose k, ` ≥ 0. There exists a constant C independent of K ∈ Th such that

‖w − Ihw‖K + hK‖∇(w − Ihw)‖K ≤ Chk+2‖w‖k+2,K , ∀w ∈ C(K̄) ∩Hk+2(K), (3.6a)

‖w −Π`w‖K ≤ Ch`+1‖w‖`+1,K , ∀w ∈ H`+1(K), (3.6b)

‖w − PMw‖∂K ≤ Chk+1/2‖w‖k+1,K ∀w ∈ Hk+1(K). (3.6c)

3.2 Error analysis under a global Lipschitz condition

In this section, we assume the nonlinearity F is globally Lipschitz:

Assumption 3.4. There is a constant L > 0 such that

|F (u)− F (v)|R ≤ L|u− v|R

for all u, v ∈ R.

We remove this restriction in the next section. Our proof relies on techniques used in [3,8]. We
split the proof of the main result into several steps.

To begin, we first rewrite the semidiscrete interpolatory HDG equations (2.5). First, subtract
(2.5c) from (2.5b) and integrate by parts to give the following formulation:

Lemma 3.5. The Interpolatory HDGk method finds (qh, uh, ûh) ∈ Vh ×Wh ×Mh satisfying

(qh, rh)Th − (uh,∇ · rh)Th + 〈ûh, rh · n〉∂Th = 0, (3.7a)

(∂tuh, vh)Th + (IhF (u?h), vh)Th + (∇ · qh, vh)Th − 〈qh · n, v̂h〉∂Th
+ 〈τ(uh − ûh), vh − v̂h)〉∂Th = (f, vh)Th , (3.7b)

uh(0) = ΠWu0, (3.7c)

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh.

8
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We also define the HDGk operator B:

B(qh, uh, ûh; rh, vh, v̂h)

= (qh, rh)Th − (uh,∇ · rh)Th + 〈ûh, rh · n〉∂Th
+ (∇ · qh, vh)Th − 〈qh · n, v̂h〉∂Th + 〈τ(uh − ûh), vh − v̂h)〉∂Th .

(3.8)

This allows us to rewrite the semidiscrete Interpolatory HDGk formulation (3.7) as follows: find
(qh, uh, ûh) ∈ Vh ×Wh ×Mh such that

(∂tuh, vh)Th + B(qh, uh, ûh; rh, vh, v̂h) + (IhF (u?h), vh)Th = (f, vh), (3.9a)

uh(0) = ΠWu0. (3.9b)

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh.

3.2.1 Step 1: Equations for the projection of the errors

Lemma 3.6. For εqh = ΠV q − qh, εuh = ΠWu− uh, and εûh = PMu− ûh, we have

(∂tε
u
h, vh)Th + B(εqh, ε

u
h, ε

û
h; rh, wh, v̂h) + (F (u)− IhF (u?h), vh)Th

= (ΠV q − q, rh)Th + (ΠWut − ut, vh)Th , (3.10a)

εuh|t=0 = 0, (3.10b)

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh.

Proof. By the definition of the operator B in (3.8), we have

B(ΠV q,ΠWu, PMu, rh, vh, v̂h)

= (ΠV q, rh)Th − (ΠWu,∇ · rh)Th + 〈PMu, rh · n〉∂Th + (∇ ·ΠV q, vh)Th

− 〈ΠV q · n, v̂h〉∂Th + 〈τ(ΠWu− u), vh − v̂h〉∂Th
= (ΠV q − q, rh)Th + (q, rh)Th − (u,∇ · rh)Th + 〈u, rh · n〉∂Th

+ (∇ · q, vh)Th + (∇ · (ΠV q − q), vh)Th − 〈(ΠV q − q) · n, v̂h〉∂Th
+ 〈τ(ΠWu− u), vh − v̂h〉∂Th

= (ΠV q − q, rh)Th + (f − F (u) + ∂tu, vh)Th ,

where we used the HDGk projection (3.3) and the L2 projection PM (3.5b). Use (3.9) and subtract
to obtain the result.

3.2.2 Step 2: Estimate of εuh in L∞(L2) by an energy argument

Lemma 3.7. For any t ∈ [0, T ], we have

‖Πk+1u− u?h‖Th ≤ C(‖εuh‖Th + ‖u− Ihu‖K + δk0‖ΠWu− u‖Th)

+ Ch(‖εqh‖Th + ‖q −ΠV q‖Th + ‖∇(u− Ihu)‖Th),

where δk0 denotes the Kronecker delta symbol so that δk0 = 1 for k = 0 and δk0 = 0 for k ≥ 1.

9
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Proof. We begin the proof with the case k ≥ 1. The proof is very similar to a proof in [33], but we
include it for completeness. By the properties of ΠW and Πk+1, we obtain

(ΠWu,w0)K = (u,w0)K , for all w0 ∈ P0(K),

(Πk+1u,w0)K = (u,w0)K , for all w0 ∈ P0(K).

Hence, for all w0 ∈ P0(K), we have

(ΠWu−Πk+1u,w0)K = 0.

Let eh = u?h − uh + ΠWu − Πk+1u. Using the postprocessing equation (2.7), q = −∇u, and an
inverse inequality gives

‖∇eh‖2K = (∇(u?h − uh),∇eh)K + (∇(ΠWu−Πk+1u),∇eh)K

= (−∇uh − qh,∇eh)K + (∇(ΠWu−Πk+1u),∇eh)K

= (∇(ΠWu− uh)− (qh −ΠV q) + (q −ΠV q) +∇(u−Πk+1u),∇eh)K

≤ C(h−1
K ‖ΠWu− uh‖K + ‖εqh‖K + ‖q −ΠV q‖K + ‖∇(u−Πk+1u)‖K)‖∇eh‖K . (3.11)

Since (eh, 1)K = 0, apply the Poincaré inequality and the above estimate (3.11) to give

‖eh‖K ≤ ChK‖∇eh‖K ≤ C‖εuh‖K + ChK(‖εqh‖K + ‖q −ΠV q‖K + ‖∇(u−Πk+1u)‖K).

Next, estimate the last term using an inverse inequality:

hK‖∇(u−Πk+1u)‖K ≤ hK‖∇(u− Ihu)‖K + hK‖∇(Ihu−Πk+1u)‖K
≤ h‖∇(u− Ihu)‖K + ‖Ihu−Πk+1u‖K
≤ h‖∇(u− Ihu)‖K + ‖u− Ihu‖K .

This implies

‖eh‖Th ≤ C(‖εuh‖Th + ‖u− Ihu‖Th) + Ch(‖εqh‖Th + ‖q −ΠV q‖Th + ‖∇(u− Ihu)‖Th).

Hence, we have

‖Πk+1u− u?h‖Th ≤ ‖Πk+1u−ΠWu− u?h + uh‖Th + ‖ΠWu− uh‖Th
≤ C(‖εuh‖Th + ‖u− Ihu‖Th) + Ch(‖εqh‖Th + ‖q −ΠV q‖Th + ‖∇(u− Ihu)‖Th).

This completes the proof for the case k ≥ 1.
For the case k = 0, we follow the above steps in the proof of the k ≥ 1 case but we replace the

projection ΠW with Πk to obtain

‖Πk+1u− u?h‖Th ≤ ‖Πk+1u−Πku− u?h + uh‖Th + ‖Πku− uh‖Th
≤ C(‖Πku− uh‖Th + ‖u− Ihu‖Th)

+ Ch(‖εqh‖Th + ‖q −ΠV q‖Th + ‖∇(u− Ihu)‖Th)

≤ C(‖εuh‖Th + ‖Πku− u‖Th + ‖ΠWu− u‖Th + ‖u− Ihu‖Th)

+ Ch(‖εqh‖Th + ‖q −ΠV q‖Th + ‖∇(u− Ihu)‖Th).

The optimality of the L2 projection gives ‖Πku − u‖Th ≤ ‖ΠWu − u‖Th , and this completes the
proof.

10
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To bound the error in the nonlinear term, we split F (u)− IhF (u?h) as

F (u)− IhF (u?h) = F (u)− IhF (u) + IhF (u)− IhF (Πk+1u) + IhF (Πk+1u)− IhF (u?h)

=: R1 +R2 +R3.

A bound for the first term R1 follows directly from the standard FE interpolation error estimate
(3.6a) in Lemma 3.3 due to the smoothness assumption for the function F . Error bounds for R2

and R3 are given in the following result:

Lemma 3.8. We have

‖IhF (u)− IhF (Πk+1u)‖Th ≤ C‖u− Ihu‖Th ,
‖IhF (Πk+1u)− IhF (u?h)‖Th ≤ C‖Πk+1u− u?h‖Th .

The proofs of the estimates in Lemma 3.8 are similar to proofs in [8] and also use ‖Πk+1u−u‖Th ≤
‖u− Ihu‖Th . We omit the details.

Lemma 3.9. We have the estimate

‖εuh(t)‖2Th +

∫ t

0

[
‖εqh‖

2
Th + 〈τ(εuh − εûh), εuh − εûh〉∂Th

]
dt ≤ C

∫ t

0
H2,

where

H = ‖ΠV q − q‖Th + ‖ΠWut − ut‖Th + δk0‖ΠWu− u‖Th
+ ‖F (u)− IhF (u)‖Th + ‖u− Ihu‖Th + h‖∇(u− Ihu)‖Th .

(3.12)

Proof. Take (rh, vh, v̂h) = (εqh, ε
u
h, ε

û
h) in the error equation (3.10) to give

1

2

d

dt
‖εuh‖2Th + ‖εqh‖

2
Th + 〈τ(εuh − εûh), εuh − εûh〉∂Th

= (ΠV q − q, εqh)Th + (ΠWut − ut, εuh)Th − (F (u)− IhF (u?h), εuh)Th .
(3.13)

Apply the Cauchy-Schwarz inequality to each term of the right-hand side of the above identity and
use h ≤ 1, Lemma 3.7, and Lemma 3.8 to get

d

dt
‖εuh‖2Th + ‖εqh‖

2
Th + 〈τ(εuh − εûh), εuh − εûh〉∂Th ≤ CH

2 + C‖εuh‖2Th .

Gronwall’s inequality, εuh(0) = 0, and eCt ≤ eCT give the result.

3.2.3 Step 3: Estimate of εqh in L∞(L2) by an energy argument

Lemma 3.10. We have

‖εqh(t)‖2Th + ‖
√
τ(εuh(t)− εûh(t))‖2∂Th ≤ C

(
‖(ΠV q − q)(0)‖2Th +

∫ t

0
G2

)
,

where

G = ‖ΠV q − q‖Th + ‖ΠWut − ut‖Th + ‖ΠV qt − qt‖Th + δk0‖ΠWu− u‖Th
+ ‖F (u)− IhF (u)‖Th + ‖u− Ihu‖Th + h‖∇(u− Ihu)‖Th .

(3.14)

11
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Proof. Take (rh, vh, v̂h) = (rh, 0, 0) in the error equation (3.10) and differentiate the result with
respect to time. Also take (rh, vh, v̂h) = (0, vh, v̂h) in (3.10) to get

(∂tε
q
h, rh)Th − (∂tε

u
h,∇ · rh)Th + 〈∂tεûh, rh · n〉∂Th = (ΠV qt − qt, rh)Th , (3.15a)

(∂tε
u
h, vh)Th + (∇ · εqh, vh)Th − 〈ε

q
h · n, v̂h〉∂Th

+〈τ(εuh − εûh), vh − v̂h〉∂Th + (F (u)− IhF (u?h), vh)Th = (ΠWut − ut, vh)Th , (3.15b)

εuh|t=0 = 0, (3.15c)

for all (rh, wh, v̂h) ∈ Vh ×Wh ×Mh.

Next, take rh = εqh in (3.15a), vh = ∂tε
u
h in (3.15b), and v̂h = ∂tε

û
h in (3.15b) to obtain

‖∂tεuh‖2Th + (∂tε
q
h, ε

q
h)Th + 〈τ(εuh − εûh), ∂tε

u
h − ∂tεûh〉∂Th

= (ΠV qt − qt, εqh)Th + (ΠWut − ut, ∂tεuh)Th − (F (u)− IhF (u?h), ∂tε
u
h)Th .

Integrating in time gives

1

2
[‖εqh(t)‖2Th + ‖

√
τ(εuh(t)− εûh(t))‖2∂Th ] +

∫ t

0
‖∂tεuh‖2Th

=
1

2
[‖εqh(0)‖2Th + ‖

√
τ(εuh(0)− εûh(0))‖2∂Th ] +

∫ t

0
(ΠV qt − qt, εqh)Th

+

∫ t

0
(ΠWut − ut, ∂tεuh)Th −

∫ t

0
(F (u)− IhF (u?h), ∂tε

u
h)Th .

Use the Cauchy-Schwarz inequality, h ≤ 1, Lemma 3.7, and Lemma 3.8 to get

‖εqh(t)‖2Th + ‖
√
τ(εuh(t)− εûh(t))‖2∂Th

≤ ‖εqh(0)‖2Th + ‖
√
τ(εuh(0)− εûh(0))‖2∂Th + C

∫ t

0

(
G2 + ‖εuh‖2Th + ‖εqh‖

2
Th
)
.

Apply the integral Gronwall’s inequality to obtain

‖εqh(t)‖2Th + ‖
√
τ(εuh(t)− εûh(t))‖2∂Th

≤ C
(
‖εqh(0)‖2Th + ‖

√
τ(εuh(0)− εûh(0))‖2∂Th +

∫ t

0
G2 +

∫ t

0
‖εuh‖2Th

)
.

Next, let t = 0 in (3.13) and use εuh(0) = 0 to get

‖εqh(0)‖2Th + ‖
√
τ(εuh − εûh)(0)‖2∂Th = ((ΠV q − q)(0), εqh(0))Th .

Therefore,

‖εqh(0)‖2Th + ‖
√
τ(εuh − εûh)(0)‖2∂Th ≤ ‖(ΠV q − q)(0)‖2Th ,

and the estimate for ‖εuh‖2Th in Lemma 3.9 completes the proof.
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3.2.4 Step 4: Superconvergent estimate for εuh in L∞(L2) by a duality argument

To get a superconvergent rate for ‖εuh‖Th , we adopt a duality argument from Wheeler [37]. In that
work, an elliptic projection is used and it commutes with the time derivative. It is easy to check
that the operator ΠW defined in (3.3) commutes with the time derivative, i.e, ∂tΠWu = ΠWut.

For any t ∈ [0, T ], let (qh, uh, ûh) ∈ Vh×Wh×Mh be the solution of the following steady state
problem

B(qh, uh, ûh, rh, vh, v̂h) = (f −ΠWut − F (u), vh)Th , (3.16)

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh.
The following estimates are proved in Section 6.

Lemma 3.11. For any t ∈ [0, T ], we have

‖ΠV q − qh‖Th ≤ C(‖q −ΠV q‖Th + ‖ut −ΠWut‖Th), (3.17a)

‖ΠWu− uh‖Th ≤ Ch
min{k,1}(‖q −ΠV q‖Th + ‖ut −ΠWut‖Th), (3.17b)

‖∂t(ΠWu− uh)‖Th ≤ Ch
min{k,1}(‖qt −ΠV qt‖Th + ‖utt −ΠWutt‖Th). (3.17c)

Lemma 3.12. Let eqh = qh− qh, euh = uh− uh, and eûh = ûh− ûh. Then for any t ∈ [0, T ] we have

‖euh(t)‖2Th ≤ ‖ΠWu0 − uh(0)‖2Th + C

∫ t

0

(
‖∂t(ΠWu− uh)‖2Th + h2‖(ΠV q − q)(0)‖2Th + K2

)
,

where

K = h(‖ΠV q − q‖Th + ‖ΠWut − ut‖Th + ‖ΠV qt − qt‖Th)

+ ‖F (u)− IhF (u)‖Th + ‖u− Ihu‖Th + h‖∇(u− Ihu)‖Th + δk0‖ΠWu− u‖Th .
(3.18)

Proof. By the definition of the operator B in (3.8), we have

(∂te
u
h, vh)Th + B(eqh, e

u
h, e

û
h, rh, vh, v̂h)

= (∂tuh, vh)Th + B(qh, uh, ûh, rh, vh, v̂h)− (∂tuh, vh)Th −B(qh, uh, ûh, rh, vh, v̂h)

= (f, vh)Th − (IhF (u?h), vh)Th − (∂tuh, vh)Th − (f −ΠWut − F (u), vh)Th
= (∂t(ΠWu− uh), vh)Th + (F (u)− IhF (u?h), vh)Th .

Take (rh, vh, v̂h) = (eqh, e
u
h, e

û
h) and use Lemma 3.7, Lemma 3.8, Lemma 3.10, the bound

‖εuh‖ = ‖ΠWu− uh − euh‖ ≤ ‖ΠWu− uh‖+ ‖euh‖,

and also Lemma 3.11 to give

1

2

d

dt
‖euh‖2Th + ‖eqh‖

2
Th + 〈τ(euh − eûh), euh − eûh〉∂Th

≤ C
(
K2 + ‖∂t(ΠWu− uh)‖2Th + h2‖(ΠV q − q)(0)‖2Th + C‖euh‖2Th

)
.

Integration from 0 to t gives

‖euh(t)‖2Th +

∫ t

0

[
‖eqh‖

2
Th + 〈τ(euh − eûh), euh − eûh〉∂Th

]
≤ ‖euh(0)‖2Th + C

∫ t

0
(‖∂t(ΠWu− uh)‖2Th + h2‖(ΠV q − q)(0)‖2Th + K2) + C

∫ t

0
‖euh‖2Th .

13
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By Gronwall’s inequality and euh(0) = uh(0)− uh(0) = ΠWu0 − uh(0), we have

‖euh(t)‖2Th ≤ ‖ΠWu0 − uh(0)‖2Th + C

∫ t

0
(‖∂t(ΠWu− uh)‖2Th + h2‖(ΠV q − q)(0)‖2Th + K2).

A combination of Lemma 3.11 and Lemma 3.12 gives the following lemma:

Lemma 3.13. For any t ∈ [0, T ], we have

‖εuh(t)‖Th ≤ Ch
min{k,1}(‖q(0)−ΠV q(0)‖Th + ‖ut(0)−ΠWut(0)‖Th) + C

∫ t

0
L,

where

L = h(‖ΠV q − q‖Th + ‖ΠWut − ut‖Th) + hmin{k,1}(‖utt −ΠWutt‖Th + ‖ΠV qt − qt‖Th)

+ ‖F (u)− IhF (u)‖Th + ‖u− Ihu‖Th + h‖∇(u−Πk+1u)‖Th + δk0‖ΠWu− u‖Th .
(3.19)

Using u−uh = (u−ΠWu) + εuh, q−qh = (q−ΠV q) + εqh, u−u?h = (u−Πk+1u) + (Πk+1u−u?h),
and the triangle inequality gives the main result:

Theorem 3.14. If the nonlinearity F satisfies the global Lipschitz condition in Assumption 3.4 and
the assumptions at the beginning of Section 3 hold, then for all 0 ≤ t ≤ T the solution (qh, uh, u

?
h)

of the semidiscrete Interpolatory HDGk equations satisfy

‖q(t)− qh(t)‖Th ≤ ‖q(t)−ΠV q(t)‖Th + C‖(ΠV q − q)(0)‖Th + C

∫ t

0
G,

‖u(t)− uh(t)‖Th ≤ ‖u(t)−ΠWu(t)‖Th + C

∫ t

0
H,

‖u(t)− u?h(t)‖Th ≤ Ch
min{k,1}(‖q(0)−ΠV q(0)‖Th + ‖ut(0)−ΠWut(0)‖Th)

+ ‖u(t)−Πk+1u(t)‖Th + C

∫ t

0
L,

where G, H and L are defined in (3.14), (3.12) and (3.19), respectively.

By Lemma 3.2, Lemma 3.3, and Theorem 3.14, we obtain convergence rates for smooth solutions.

Corollary 3.15. If, in addition, u, q, and F (u) are sufficiently smooth for t ∈ [0, T ], then for all
0 ≤ t ≤ T the solution (qh, uh, u

?
h) of the semidiscrete Interpolatory HDGk equations satisfy

‖q(t)− qh(t)‖Th ≤ Ch
k+1, ‖u(t)− uh(t)‖Th ≤ Ch

k+1, ‖u(t)− u?h(t)‖Th ≤ Ch
k+1+min{k,1}.

3.3 Error analysis under a local Lipschitz condition

In applications, the nonlinearity F might not satisfy the global Lipschitz condition, see Assump-
tion 3.4. Instead, let

M = max{|u(t, x)|, x ∈ Ω, t ∈ [0, T ]}+ 1. (3.20)

In this section, we assume the mesh is quasi-uniform, the polynomial degree satisfies k ≥ 1, and
the nonlinearity F satisfies the following local Lipschitz condition:
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Assumption 3.16. There is a constant L(M) > 0 such that

|F (u)− F (v)|R ≤ L(M)|u− v|R

for all u, v ∈ [−M,M ].

Our proof relies on techniques used in [36]. Below, we use the notation ρu
?

h = Πk+1u− u?h.

Lemma 3.17. If h is small enough and k ≥ 1, then there exists t∗h ∈ (0, T ] such that Lemma 3.10
and Lemma 3.13 hold for all t ∈ [0, t∗h].

Proof. Take (rh, vh, v̂h) = (εqh, ε
u
h, ε

û
h) in (3.10) to give

1

2

d

dt
‖εuh‖2Th + ‖εqh‖

2
Th + 〈τ(εuh − εûh), εuh − εûh〉∂Th

= (ΠV q − q, εqh)Th − (F (u)− IhF (u?h), εuh)Th .
(3.21)

Take t = 0 and use the fact εuh(0) = 0 to obtain

‖εqh(0)‖Th ≤ C‖ΠV q(0)− q(0)‖Th .

By Lemma 3.7, we have

‖ρu?

h (0)‖Th ≤ C‖u(0)− Ihu(0)‖Th + Ch(‖ΠV q(0)− q(0)‖Th + ‖∇(u(0)− Ihu(0))‖Th).

The inverse inequality gives

‖ρu?

h (0)‖L∞(Ω) ≤ Ch−
d
2 ‖u(0)− Ihu(0)‖Th

+ Ch1− d
2 (‖ΠV q(0)− q(0)‖Th + ‖∇(u(0)− Ihu(0))‖Th).

Since the exact solution is smooth at t = 0, we can choose h small enough so that ‖ρu?

h (0)‖L∞(Ω) <
1/2. Also, since the error equation (3.10) is continuous with respect to the time t, again using an
inverse inequality shows that there exists t∗h ∈ (0, T ] such that for all h small enough,

‖ρu?

h (t)‖L∞(Ω) ≤ 1/2 for all t ∈ [0, t∗h]. (3.22)

For all h sufficiently small we have

‖u(t)−Πk+1u(t)‖L∞(Ω) ≤ 1/2 for all t ∈ [0, t∗h]. (3.23)

This implies for all h small enough and all t ∈ [0, t∗h],

‖Πk+1u‖L∞ ≤ ‖u‖L∞ + ‖u−Πk+1u‖L∞ ≤ ‖u‖L∞ + 1/2 ≤M,

‖u?h‖L∞ ≤ ‖Πk+1u‖L∞ + ‖Πk+1u− u?h‖L∞ ≤ (‖u‖L∞ + 1/2) + 1/2 = M.

Therefore, u, Πk+1u, and u?h are located in the interval [−M,M ], where M is defined in (3.20).
This allows us to take advantage of the local Lipschitz condition of F (u) for all t ∈ [0, t∗h]. Hence,
Lemma 3.10 and Lemma 3.13 hold for all t ∈ [0, t∗h].

Lemma 3.18. For h small enough and k ≥ 1, the conclusions of Lemma 3.10 and Lemma 3.13
are true on the whole time interval [0, T ].
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Table 1: History of convergence.
Example 1: Errors for qh, uh and u?h of Interpolatory HDGk

Degree h√
2

‖q − qh‖0,Ω ‖u− uh‖0,Ω ‖u− u?h‖0,Ω
Error Rate Error Rate Error Rate

k = 0

2−1 1.2889 5.0344E-01 4.5836E-01
2−2 7.0471E-01 0.87 2.8491E-01 0.82 2.5673E-01 0.84
2−3 3.5473E-01 0.99 1.5511E-01 0.88 1.4105E-01 0.86
2−4 1.7648E-01 1.00 8.0617E-02 0.94 7.3725E-02 0.94
2−5 8.7855E-02 1.00 4.1025E-02 0.97 3.7627E-02 0.97

k = 1

2−1 3.7304E-01 1.7028E-01 3.0236E-02
2−2 9.9820E-02 1.90 4.8288E-02 1.82 3.9074E-03 2.95
2−3 2.5307E-02 1.98 1.2561E-02 1.94 4.7940E-04 3.02
2−4 6.3422E-03 2.00 3.1825E-03 1.98 5.9047E-05 3.02
2−5 1.5858E-03 2.00 7.9966E-04 2.00 7.3168E-06 3.01

Proof. Fix h∗ > 0 so that (3.22), (3.23), and Lemma 3.17 are true for all h ≤ h∗, and assume t∗h is
the largest value for which (3.22) is true for all h ≤ h∗. Define the set A = {h ∈ [0, h∗] : t∗h 6= T}.
If the result is not true, then A is nonempty, inf{h : h ∈ A} = 0, and also

‖ρu?

h (t∗h)‖L∞(Ω) = 1/2 for all h ∈ A. (3.24)

However, by the inverse inequality, k ≥ 1, and since Lemma 3.17 is true, we have

‖ρu?

h (t∗h)‖L∞(Ω) ≤ Ch−
d
2 ‖ρu?

h (t∗h)‖Th ≤ Ch
3−d/2 for all h ∈ A.

Since C does not depend on h, there exists h∗1 ≤ h∗ such that ‖ρu?

h (t∗h)‖L∞(Ω) < 1/2 for all h ∈ A
such that h ≤ h∗1. This contradicts (3.24), and therefore t∗h = T for all h small enough.

Theorem 3.19. If the nonlinearity F satisfies the local Lipschitz condition in Assumption 3.16,
the mesh is quasi-uniform, k ≥ 1, and the assumptions at the beginning of Section 3 hold, then for
all h small enough the conclusions of Theorem 3.14 and Corollary 3.15 are true for all 0 ≤ t ≤ T .

4 Numerical Results

In this section, we present two examples to demonstrate the performance of the Interpolatory HDGk

method.

Example 4.1 (The Allen-Cahn or Chaffee-Infante equation). We begin with an example with
an exact solution in order to illustrate the convergence theory. The domain is the unit square
Ω = [0, 1] × [0, 1] ⊂ R2, the nonlinear term is F (u) = u3 − u, and the source term f is chosen
so that the exact solution is u = sin(t) sin(πx) sin(πy). Backward Euler and Crank-Nicolson are
applied for the time discretization when k = 0 and k = 1, respectively, where k is the degree of the
polynomial. The time step is chosen as ∆t = h when k = 0 and ∆t = h2 when k = 1. We report
the errors at the final time T = 1 for polynomial degrees k = 0 and k = 1 in Table 1. The observed
convergence rates match the theory.

Example 4.2 (The Schnakenberg model). Next, we consider a more complicated example of a
reaction diffusion PDE system with zero Neumann boundary conditions that does not satisfy the
assumptions for the convergence theory established here. We consider such an example to demon-
strate the applicability of the Interpolatory HDGk method to more general problems.
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Specifically, we consider the Schnakenberg model, which has been used to model the spatial
distribution of a morphogen; see [42] for more details. The Schnakenberg system has the form

∂Ca

∂t
= D1∇2Ca + κ(a− Ca + C2

aCi),

∂Ci

∂t
= D2∇2Ci + κ(b− C2

aCi),

with initial conditions

Ca(·, 0) = a+ b+ 10−3 exp
(
− 100((x− 1/3)2 + (y − 1/2)2)

)
,

Ci(·, 0) =
b

(a+ b)2
,

and homogeneous Neumann boundary conditions. The parameter values are κ = 100, a = 0.1305,
b = 0.7695, D1 = 0.05, and D2 = 1. We choose polynomial degree k = 1 and apply Crank-Nicolson
for the time discretization with time step ∆t = 0.001.

We vary the spatial domain, but keep all of parameters in the model unchanged. The first
domain is the unit square Ω = [0, 1]× [0, 1], and the domain is partitioned into 2048 elements. The
second domain is the circle Ω = {(x, y) : (x− 0.5)2 + (y − 0.5)2 < 0.52} and we use 7168 elements.

Numerical results are shown in Figure 1–Figure 2. Spot patterns form on the square and circular
domains. Our numerical results are very similar to results reported in [42].

5 Conclusion

In our earlier work [8], we considered an Interpolatory HDGk methods for semilinear parabolic
PDEs with a general nonlinearity of the form F (∇u, u). The interpolatory approach achieves
optimal convergence rates and reduces the computational cost compared to standard HDG since
all of the HDG matrices are assembled once before the time stepping procedure. However, the
method does not have superconvergence by postprocessing.

In this work, we proposed a new superconvergent Interpolatory HDGk method for approximating
the solution of reaction diffusion PDEs. Unlike our earlier Interpolatory HDGk work [8], the
new method uses a postprocessing u?h to evaluate the nonlinear term. This change provides the
superconvergence, and the new method also keeps all of the computational advantages of using an
interpolatory approach for the nonlinear term. We proved the superconvergence under a global
Lipschitz condition for the nonlinearity, and then extended the superconvergence results to a local
Lipschitz condition assuming the mesh is quasi-uniform.

In the second part of this work [5], we again consider reaction diffusion equations and extend
the ideas here to derive other superconvergent interpolatory HDG methods inspired by hybrid high-
order methods [9]. However, it is currently not clear whether the present approach can be used
to obtain the superconvergence for semilinear PDEs with a general nonlinearity F (∇u, u). We are
currently exploring this issue.

6 Appendix A

Recall the steady state problem (3.16) from Section 3.2.4, which we repeat here for convenience:
let (qh, uh, ûh) ∈ Vh ×Wh ×Mh be the solution of

B(qh, uh, ûh, rh, vh, v̂h) = (f −ΠWut − F (u), vh)Th , (6.1)
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Figure 1: Contour plots of the time evolution of the concentration of the activator Ca on the unit
square.
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Figure 2: Contour plots of the time evolution of the concentration of the activator Ca on the
circular domain.
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for all (rh, vh, v̂h) ∈ Vh×Wh×Mh. Since ΠW commutes with the time derivative, taking the partial
derivative of (6.1) with respect to t shows (∂tqh, ∂tuh, ∂tûh) ∈ Vh ×Wh ×Mh is the solution of

B(∂tqh, ∂tuh, ∂tûh, rh, vh, v̂h) = (ft −ΠWutt − F ′(u)ut, vh)Th , (6.2)

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh.
The proof of the following lemma is very similar to a proof in [15], hence we omit it here.

Lemma 6.1. For εqh = ΠV q − qh, εuh = ΠWu− uh, and εûh = PMu− ûh, we have

B(εqh, ε
u
h, ε

û
h; rh, wh, v̂h) = (ΠV q − q, rh)Th + (ΠWut − ut, vh)Th , (6.3)

for all (rh, vh, v̂h) ∈ Vh ×Wh ×Mh.

The next step is the consideration of the dual problem (3.1), which we again repeat for conve-
nience: Let

Φ +∇Ψ = 0 in Ω,

∇ ·Φ = Θ in Ω,

Ψ = 0 on ∂Ω.

(6.4)

By the assumption at the beginning of Section 3, this boundary value problem admits the regularity
estimate

‖Φ‖H1(Ω) + ‖Ψ‖H2(Ω) ≤ C‖Θ‖L2(Ω), (6.5)

for all Θ ∈ L2(Ω).

Lemma 6.2. We have

‖εuh‖Th ≤ Ch
min{k,1}(‖q −ΠV q‖Th + ‖ut −ΠWut‖Th)

‖εqh‖Th ≤ C(‖q −ΠV q‖Th + ‖ut −ΠWut‖Th).

Proof. Let Θ = εuh in the dual problem (6.4), and take (rh, vh, v̂h) = (−ΠV Φ,ΠWΨ, PMΨ) in the
definition of B (3.8) to get

B(εqh, ε
u
h, ε

û
h;−ΠV Φ,ΠWΨ, PMΨ)

= −(εqh,ΠV Φ)Th + (εuh,∇ ·ΠV Φ)Th − 〈ε
û
h,ΠV Φ · n〉∂Th + (∇ · εqh,ΠWΨ)Th

− 〈εqh · n, PMΨ〉∂Th +
〈
τ(εuh − εûh),ΠWΨ− PMΨ

〉
∂Th

= −(εqh,Φ)Th + (εqh,Φ−ΠV Φ)Th + (εuh,∇ ·Φ)Th − (εuh,∇ · (Φ−ΠV Φ))Th

+ 〈εûh, (Φ−ΠV Φ) · n〉∂Th + (∇ · εqh,Ψ)Th + (∇ · εqh,ΠWΨ−Ψ)Th

− 〈εqh · n,Ψ〉∂Th +
〈
τ(εuh − εûh),ΠWΨ− PMΨ

〉
∂Th

= (εqh,Φ−ΠV Φ)Th + ‖εuh‖2Th .

On the other hand, take (rh, vh, v̂h) = (−ΠV Φ,ΠWΨ, PMΨ) in (6.3) to get

B(εqh, ε
u
h, ε

û
h;−ΠV Φ,ΠWΨ, PMΨ) = (q −ΠV q,ΠV Φ)Th + (ΠWut − ut,ΠWΨ)Th . (6.6)

20



Superconvergent interpolatory HDG methods for reaction diffusion I

Comparing the above two equalities gives

‖εuh‖2Th = −(εqh,Φ−ΠV Φ)Th + (q −ΠV q,ΠV Φ)Th + (ΠWut − ut,ΠWΨ)Th

= −(εqh,Φ−ΠV Φ)Th + (q −ΠV q,ΠV Φ−Φ)Th
+ (q −ΠV q,Φ)Th + (ΠWut − ut,ΠWΨ)Th

= −(εqh,Φ−ΠV Φ)Th + (q −ΠV q,ΠV Φ−Φ)Th
− (q −ΠV q,∇Ψ)Th + (ΠWut − ut,ΠWΨ)Th

= −(εqh,Φ−ΠV Φ)Th + (q −ΠV q,ΠV Φ−Φ)Th
− (q −ΠV q,∇(Ψ−ΠWΨ))Th + (ΠWut − ut,ΠWΨ−min{k, 1}Π0Ψ)Th .

Hence, by the regularity of the dual PDE (6.5), we have

‖εuh‖2Th ≤ Ch
2‖εqh‖

2
Th + Chmin{2k,2}‖q −ΠV q‖2Th + Chmin{2k,2}‖ut −ΠWut‖2Th . (6.7)

Next, take (rh, vh, v̂h) = (εqh, ε
u
h, ε

û
h) in (6.3) to obtain

‖εqh‖
2
Th + 〈τ(εuh − εûh), εuh − εûh〉∂Th

= (ΠV q − q, εqh)Th + (ΠWut − ut, εuh)Th

≤ C‖ΠV q − q‖2Th +
1

2
‖εqh‖

2
Th + 4C‖ΠWut − ut‖2Th +

1

4C
‖εuh‖2Th .

This implies

‖εqh‖
2
Th + 〈τ(εuh − εûh), εuh − εûh〉∂Th ≤ 2C‖ΠV q − q‖2Th + 8C‖ΠWut − ut‖2Th +

1

2C
‖εuh‖2Th . (6.8)

Next, use h ≤ 1 and substitute (6.8) into (6.7) to yield the result.

Following the same steps, we obtain the following result:

Lemma 6.3. We have

‖∂t(ΠWu− uh)‖Th ≤ Ch
min{k,1}(‖qt −ΠV qt‖Th + ‖utt −ΠWutt‖Th).
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