
arXiv manuscript No.
(will be inserted by the editor)

A Finite Element Nonoverlapping Domain
Decomposition Method with Lagrange Multipliers for
the Dual Total Variation Minimizations

Chang-Ock Lee · Jongho Park

Received: date / Accepted: date

Abstract In this paper, we consider a primal-dual domain decomposition method
for total variation regularized problems appearing in mathematical image process-
ing. The model problem is transformed into an equivalent constrained minimiza-
tion problem by tearing-and-interconnecting domain decomposition. Then, the
continuity constraints on the subdomain interfaces are treated by introducing La-
grange multipliers. The resulting saddle point problem is solved by the first order
primal-dual algorithm. We apply the proposed method to image denoising, inpaint-
ing, and segmentation problems with either L2-fidelity or L1-fidelity. Numerical
results show that the proposed method outperforms the existing state-of-the-art
methods.
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1 Introduction

After a pioneering work of Rudin et al. [24], total variation minimization has
been widely used in image processing. In their work, authors proposed an image

The first author’s work was supported by NRF grant funded by MSIT (NRF-
2017R1A2B4011627) and the second author’s work was supported by NRF grant funded by
the Korean Government (NRF-2015-Global Ph.D. Fellowship Program).

Chang-Ock Lee
Department of Mathematical Sciences, KAIST, Daejeon 34141, Korea
E-mail: colee@kaist.edu

Jongho Park
Department of Mathematical Sciences, KAIST, Daejeon 34141, Korea
Tel.: +82-42-350-2790
E-mail: jongho.park@kaist.ac.kr

ar
X

iv
:1

90
1.

00
68

2v
2 

 [
m

at
h.

N
A

] 
 2

8 
O

ct
 2

01
9



2 C.-O. Lee and J. Park

denoising model with the total variation regularizer, which is called Rudin–Osher–
Fatemi (ROF) model, as follows:

min
u∈BV (Ω)

{
α

2

∫
Ω

(u− f)2 dx+ TV (u)

}
, (1.1)

where Ω is an image domain, f is a corrupted image, α > 0 is a positive denoising
parameter, and TV (u) is the total variation of u defined as

TV (u) = sup

{∫
Ω

u div q dx : q ∈ (C1
0 (Ω))2, |q(x)| ≤ 1 ∀x ∈ Ω

}
,

where | · | denotes the Euclidean norm in R2. The solution space BV (Ω) is the
collection of L1 functions with finite total variation. Thanks to the anisotropic
diffusion property of the total variation term, the model (1.1) effectively removes
Gaussian noise and preserves edges and discontinuities of the image [26].

Total variation minimization can be applied to not only image denoising, but
also other interesting problems in image processing. In [25], an image inpainting
model with the total variation regularizer was proposed. The model in [25] is a sim-
ple modification of (1.1), which excludes the inpainting domain from the domain
of integration of the fidelity term in (1.1). In addition, (1.1) can be generalized to
the image deconvolution problem by replacing u in the fidelity term by Au, where
A is either a specific convolution operator [7,29]. In order to treat impulse noise,
the TV -L1 model, which uses L1 fidelity instead of L2 fidelity, was introduced
in [5,22]. It is well-known that the TV -L1 model preserves contrast of the image,
while the conventional ROF model does not. We also note that variational image
segmentation problem can be represented as the total variation minimization by
appropriate change of variables [6]. One can refer [4] for further results of total
variation minimization.

This paper is concerned with domain decomposition methods (DDMs) for such
total variation regularized minimization problems. DDMs are suitable for paral-
lel computation since they solve a large scale problem by dividing it into smaller
problems and treating them in parallel. While DDMs for elliptic partial differen-
tial equations have been successfully developed over past decades, there have been
relatively modest achievements in total variation minimization problems due to
their own difficulties. At first, the total variation term is nonsmooth and nonsep-
arable. Thus, the energy functional cannot be expressed as the sum of the local
energy functionals in the subdomains in general. Even more, the solution space
BV (Ω) allows discontinuities of a solution on the subdomain interfaces, so that
it is difficult to impose appropriate boundary conditions to the local problems in
the subdomains.

There have been several researches to overcome such difficulties and develop
efficient DDMs for the total variation minimization [8,10,12,13,14,16,17,18,19,
20,21]. The Gauss-Seidel and Jacobi type subspace correction methods for the
ROF model were proposed in [12,13,14,18], and they were extended to the case
of mixed L1/L2 fidelity in [16]. However, in [19], a counterexample was provided
for convergence of subspace correction methods. In [10], a convergent overlapping
DDM for the convex Chan–Vese model [6] was proposed. Recently, a domain de-
composition framework for the case of L1 fidelity was introduced in [20]. One of
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the effective ideas in DDMs for the total variation minimization is to consider the
Fenchel–Rockafellar dual formulation of the model:

min
p∈H0(div;Ω)

1

2α

∫
Ω

(div p + αf)2 dx subject to |p(x)| ≤ 1 ∀x ∈ Ω

instead of the original one. Here, H0(div;Ω) denotes the space of vector fields
q: Ω → R2 such that div q ∈ L2(Ω) and q · n = 0 on ∂Ω. Consideration of
the dual formulation resolves some difficulties mentioned above; the dual energy
functional is separable, and the solution space H0(div;Ω) requires some regularity
on the subdomain interfaces. Even if there arises another difficulty of treating the
inequality constraint |p(x)| ≤ 1 ∀x ∈ Ω, several successful researches have been
done [8,17,19,21].

In this paper, we generalize the primal-dual DDM proposed in [21] to a wider
class of the total variation minimizations. We consider a general model problem

min
u∈BV (Ω)

{αF (u) + TV (u)} , (1.2)

where F : BV (Ω) → R̄ is a proper, convex, and lower semicontinuous functional
satisfying additional properties such that F is separable and simple in the sense
that (1.2) can be efficiently solved by the first order primal-dual algorithm [3].
Such a class of total variation minimizations contains the ROF model, the TV -
L1 model, their inpainting variants, and the convex Chan–Vese model for image
segmentation. As we noted above, we treat the Fenchel–Rockafellar dual problem
of (1.2):

min
p∈H0(div;Ω)

1

α
F ∗(div p) subject to |p(x)| ≤ 1 ∀x ∈ Ω, (1.3)

where F ∗ is the Legendre–Fenchel conjugate of F . The image domain is decom-
posed into a number of disjoint subdomains {Ωs}Ns=1, and the continuity along
the subdomain interfaces is enforced. By treating the continuity constraints on
the subdomain interfaces by the method of Lagrange multipliers, we obtain an
equivalent saddle point problem. Application of the Chambolle–Pock primal-dual
algorithm [3] to the resulting saddle point problem yields our proposed method,
that shows good performance for various total variation minimization problems
such as image denoising, inpainting, and segmentation.

The rest of the paper is organized as follows. We present the basic settings
for design of DDM in Sect. 2. In Sect. 3, we state the abstract model problem
which generalizes various problems in image processing such as image denoising,
inpainting, and segmentation. A convergent nonoverlapping DDM for the model
problem is proposed in Sect. 4. We apply the proposed method to several image
processing problems and compare with the existing state-of-the-art methods in
Sect. 5. We conclude the paper with remarks in Sect. 6.

2 Preliminaries

In this section, we present the basic setting for design of DDM. At first, we intro-
duce notations that will be used throughout the paper. Then, the discrete setting
for the dual total variation minimization based on the finite element framework is
provided.
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2.1 Notations

Let H be the generic n-dimensional Hilbert space. For v = [v1, ..., vn]T , w =
[w1, ..., wn]T ∈ H and 1 ≤ p <∞, the p-norm of v is denoted by

‖v‖p,H =

(
n∑
i=1

|vi|p
) 1
p

,

and the Euclidean inner product of v and w is denoted by

〈v, w〉H =
n∑
i=1

viwi.

We may drop the subscript H if there is no ambiguity.
In this paper, we use the symbol ∗ as superscripts with two different meanings.

At first, for a convex functional F : H → R̄, F ∗: H → R̄ denotes the Legendre–
Fenchel conjugate of F , which is defined as

F ∗(v∗) = sup
v∈H

{〈
v, v∗

〉
− F (v)

}
for every v∗ ∈ H. On the other hand, when A: H → H is a linear operator on H,
A∗ denotes the adjoint of A, that is,

〈v,Aw〉 =
〈
A∗v, w

〉
for every v, w ∈ H. It is well-known that the matrix representation of A∗ is the
transpose of the matrix representation of A.

For a convex functional F : H → R̄, the effective domain of F , denoted by
domF , is defined as

domF = {u ∈ H : F (u) <∞} .

Also, for a convex subset C of H, we denote the relative interior of C by riC,
which is defined as the interior of C when C is regarded as a subset of its affine
hull. One may refer Sect. 6 of [23] for detailed topological properties of riC.

For a subset C of H, we define the characteristic functional χC : H → R̄ of C
by

χC(v) =

{
0 if v ∈ C,
∞ if v 6∈ C.

It is clear that the functional χC is convex if and only if C is a convex subset of H.

2.2 Fenchel–Rockafellar duality

Throughout this paper, we use the notion of Fenchel–Rockafellar duality fre-
quently. For the sake of completeness, we provide its key features. For more rigorous
texts, readers may refer [4,23], for instance.

LetH1 andH2 be finite-dimensional Hilbert spaces. Consider the minimization
problem of the form

min
u∈H1

{F (u) +G(Ku)} , (2.1)
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where K: H1 → H2 is a linear operator and F : H1 → R̄, G: H2 → R̄ are proper,
convex, lower semicontinuous functionals. We use the assumptions on F and G
presented in Corollary 31.2.1 of [23].

Assumption 2.1 There exists u ∈ H1 such that u ∈ ri(domF ) andKu ∈ ri(domG).

Under Assumption 2.1, the following relations hold [23]:

min
u∈H1

{F (u) +G(Ku)} = min
u∈H1

max
q∈H2

{
〈Ku, q〉H2

+ F (u)−G∗(q)
}

(2.2a)

= −
[

min
q∈H2

{
F ∗(−K∗q) +G∗(q)

}]
. (2.2b)

The saddle point problem in the right hand side of (2.2a) is called the primal-dual
formulation of (2.1), and the minimization problem in (2.2b) is called the dual
formulation of (2.1). Hence, it is enough to solve (2.2a) or (2.2b) instead of (2.1)
in many cases.

2.3 Discrete setting

Let Ω ⊂ R2 be a rectangular image domain consisting of a number of rows and
columns of pixels. Since each pixel holds a value representing the intensity at a
point, we may regard the image as a pixelwise constant function on Ω. We write
the collection of all pixels in Ω as T and define the space X for an image as

X =
{
u ∈ L2(Ω) : u|T is constant ∀T ∈ T

}
.

We note that X ⊂ BV (Ω). We regard each pixel in T as a square element so that
X becomes a piecewise constant square finite element space whose side length
equals to 1. It is clear that the functions

φT (x) =

{
1 if x ∈ T,
0 if x 6∈ T,

T ∈ T

form a basis for X. For u ∈ X and T ∈ T , let (u)T ∈ R denote the degree of
freedom (dof) of u associated with the basis function φT . Then, u is represented
as

u =
∑
T∈T

(u)TφT .

To obtain a finite element discretization of the dual problem, the space Y for
the dual variables is defined by the lowest order Raviart–Thomas elements:

Y = {q ∈ H0(div;Ω) : q|T ∈ RT 0(T ) ∀T ∈ T } ,

where RT 0(T ) is the collection of the vector functions q: T → R2 of the form

q(x1, x2) =

[
a1 + b1x1

a2 + b2x2

]
.

We notice that the divergence operator in the continuous setting is well-defined
on Y and div Y ⊂ X. Each dof of Y is the value of the normal component on a
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pixel edge. Let I be the set of indices of the basis functions for Y and {ψi}i∈I be
the basis. For p ∈ Y and i ∈ I, we denote the dof of p associated with the basis
function ψi as (p)i ∈ R; we have

p =
∑
i∈I

(p)iψi.

Throughout the paper, the p-norm of p ∈ Y is defined as the p-norm of the vector
of dofs of p for 1 ≤ p < ∞. In this case, one may regard ‖ · ‖2,Y as a lumped
(L2(Ω))2-norm with proper scaling; see Remark 2.2 of [21].

In order to treat the inequality constraints appearing in the dual formula-
tion (1.3), we define the convex subset C of Y by

C = {p ∈ Y : |(p)i| ≤ 1 ∀i ∈ I} . (2.3)

The projection of p ∈ Y onto C can be easily computed by

(projC p)i =
(p)i

max {1, |(p)i|}
∀i ∈ I. (2.4)

2.4 Domain decomposition setting

We decompose the image domain Ω into N = N × N disjoint rectangular sub-
domains {Ωs}Ns=1. For two subdomains Ωs and Ωt (s < t) sharing a subdomain
edge (interface), let Γst = ∂Ωs ∩ ∂Ωt be the shared subdomain edge between
them. Also, we define the union of the subdomain interfaces Γ by Γ =

⋃
s<t Γst.

We assume that Γ does not cut through any elements in T .
Now, we define the local function spaces in the subdomains. For s = 1, ...,N ,

let Ts be the collection of all pixels in Ωs. The local primal function space Xs is
defined by

Xs =
{
u ∈ L2(Ωs) : u|T is constant ∀T ∈ Ts

}
.

Obviously, we have X =
⊕N
s=1Xs. Furthermore, we define the natural restriction

operator Rs: X → Xs by
Rsu = u|Ωs . (2.5)

Then, the adjoint R∗s : Xs → X of Rs becomes the extension-by-zero operator

(R∗sus)T =

{
(us)T if T ⊂ Ωs,
0 if T 6⊂ Ωs,

T ∈ T .

The local dual function spaces are defined in the tearing-and-interconnecting
sense [11]. More precisely, we define the local dual function space Ỹs as

Ỹs = {q̃s ∈ H(div;Ωs) : q̃s · ns = 0 on ∂Ωs \ Γ , q̃s|T ∈ RT 0(T ) ∀T ∈ Ts} .

Note that the boundary condition q̃s · ns = 0 is not imposed on Γ ∩ ∂Ωs for Ỹs.
Thus, Ỹs has dofs on the pixel edges contained in ∂Ωs ∩ Γ . Let Ĩs be the set of
indices of the basis functions for Ỹs. Similarly to (2.3), the inequality-constrained
subset C̃s of Ỹs is defined by

C̃s =
{

p̃s ∈ Ỹs : |(p̃s)i| ≤ 1 ∀i ∈ Ĩs
}
.
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The orthogonal projection onto C̃s is computed as

(projC̃s p̃s)i =
(p̃s)i

max {1, |(p̃s)i|}
∀i ∈ Ĩs.

Let Ỹ and C̃ be the direct sums of the sets Ỹs’s and C̃s’s, respectively. By definition,
functions in Ỹ may have discontinuities on Γ . Let IΓ be the collection of dofs
of Y on Γ . The jump operator B: Ỹ → R|IΓ | measures the magnitude of such
discontinuities, that is, B is defined as

Bp̃|Γst = p̃s · nst − p̃t · nst, s < t,

where p̃s = p̃|Ωs . Clearly, there is a natural isomorphism between Y and kerB ⊂
Ỹ . For later use, we provide an upper bound of the operator norm of B [21].

Proposition 2.2 The operator norm of B: Ỹ → R|IΓ | has a bound ‖B‖22 ≤ 2.

Proposition 2.2 will be used for the estimation of the range of the parameters
in the proposed method.

3 The model problem

The model problem we consider in this paper is the total variation regularized
convex minimization problem defined on the image domain Ω:

min
u∈X
{J (u) := αF (u) + TV (u)} , (3.1)

where F : X → R̄ is a proper, convex, lower semicontinuous functional, TV (u) is
the discrete total variation of u given by

TV (u) = max
p∈C
〈u, div p〉X , (3.2)

and α > 0 is a positive parameter. In addition, we assume that F satisfies the
following three assumptions.

Assumption 3.1 F is separable in the sense that there exist proper, convex, lower
semicontinuous local energy functionals Fs: Xs → R̄ such that

F (u) =
N∑
s=1

Fs(Rsu),

where Rs is the restriction operator defined in (2.5).

Assumption 3.2 For any u ∈ X and σ > 0, the proximity operator proxσF (u)
defined by

proxσF (u) = arg min
v∈X

{
F (v) +

1

2σ
‖v − u‖22,X

}
has a closed-form formula.

Assumption 3.3 ri(domF ) 6= ∅.
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Assumption 3.1 makes (3.1) more suitable for designing DDMs. It will be ex-
plained in Sect. 4. Also, by Assumption 3.2, we are able to adopt the primal-dual
algorithm [3] to solve (3.1). Indeed, if Assumption 3.2 holds, we can solve an
equivalent primal-dual form of (3.1),

min
u∈X

max
p∈Y

{
−〈u, div p〉X + αF (u)− χC(p)

}
, (3.3)

by the primal-dual algorithm. For the model problem (3.1), Assumption 3.3 is
equivalent to Assumption 2.1 when G(Ku) = TV (u) since ri(dom(‖ · ‖1,Y )) = Y .
That is, Assumption 3.3 is essential for the primal-dual equivalence. It is trivial
that all the problems we will deal with in this paper satisfy Assumption 3.3.

Next, we consider the dual formulation of (3.1):

min
p∈Y

{
1

α
F ∗(div p) + χC(p)

}
. (3.4)

From (3.3), it is possible to deduce a relationship between solutions of the primal
problem (3.1) and the dual problem (3.4):

0 ∈ − div p + α∂F (u),

0 ∈ − div∗ u− ∂χC(p).
(3.5)

As the standard discretization for the total variation minimization is the finite
difference method, we provide a relation between the finite difference discretiza-
tion and our finite element discretization. The following proposition means that
a solution of the finite difference discretization of (1.2) can be recovered from a
solution of (3.4).

Proposition 3.4 Assume that the image domain Ω consists of M × N pixels.
Let p∗ ∈ Y be a solution of (3.4). If u∗ ∈ X and p∗ satisfy the primal-dual
relation (3.5), then u∗ is a solution of the minimization problem

min
u∈X

{
αF (u) + ‖|Du|‖1

}
,

where Du is the forward finite difference operator

(Du)1
ij =

{
ui+1,j − uij if i = 1, ...,M − 1,

0 if i = M,

(Du)2
ij =

{
ui,j+1 − uij if j = 1, ..., N − 1,

0 if j = N

(3.6)

and (|Du|)ij = |(Du)1
ij |+ |(Du)2

ij |.

Proof It is straightforward by the same argument as Theorem 2.3 of [21]. ut

Remark 3.5 In Proposition 3.4, TV (u) equals to the finite difference anisotropic
total variation ‖|Du|‖1 due to the structure of the constraint set C in (2.3). On
the other hand, one can make TV (u) equal to the finite difference isotropic total
variation by replacing C by an appropriate convex subset of Y ; see [21] for details.
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Remark 3.6 We give a remark on the relation between the continuous problem (1.2)
and the discrete problem (3.1). For simplicity, we assume that the resolution of
the image is N ×N . We fix the side length of Ω by 1 and introduce a side length
parameter h = 1/N . The space Xh is defined in the same manner as in Sect. 2.3.
Then the question we have is whether a solution uh∗ ∈ Xh of the minimization
problem

min
uh∈Xh

{
αF (uh) + TV (uh)

}
accumulates at a solution u∗ ∈ BV (Ω) of (1.2) in BV (Ω) as h → 0. However,
since TV (uh) does not Γ -converge to the BV -seminorm in BV (Ω) as h→ 0 (see
Example 4.1 of [1]), this is not true in general. It means that the space Xh may
not be considered as a correct space for solving (1.2). To avoid this uncomfortable
situation, one may use higher order Raviart–Thomas elements to discretize the
dual formulation [1,15].

Nevertheless, thanks to Proposition 3.4, one can construct a sequence accumu-
lating at u∗ in the L1(Ω)-topology from {uh∗}h>0. For any uh ∈ Xh, we have

TV (uh) = h2
∥∥∥|Dhdofh(uh)|

∥∥∥
1
, (3.7)

where dofh(uh) ∈ RN×N is the dofs of uh and Dh: RN×N → RN×N × RN×N
is the forward finite difference operator defined similarly to (3.6). As it can be
shown without much difficulty the right hand side of (3.7) Γ -converges to the
BV -seminorm in L1(Ω) as h → 0 [2,27], there exists an interpolation operator
Ih: RN×N → L1(Ω) such that Ihdofh(uh∗) accumulates at u∗ in L1(Ω) as h→ 0.
We note that for uh ∈ Xh, Ihdofh(uh) 6∈ Xh in general.

The model problem (3.1) occurs in various areas of mathematical image pro-
cessing. One of the typical examples is the image denoising problem. In [24], au-
thors proposed the well-known ROF model which consists of the L2-fidelity term
and the total variation regularizer. In the ROF model, F is given by

F (u) =
1

2
‖u− f‖22,X

and Assumptions 3.1 and 3.2 are satisfied with

Fs(us) =
1

2
‖us − f‖22,Xs ,

proxσF (u) =
u+ σf

1 + σ
.

In order to preserve the contrast of an image, the TV -L1 model which uses the
L1-fidelity term was introduced in [5,22]:

F (u) = ‖u− f‖1,X .

The local functionals Fs and the proximity operator proxσF are readily obtained
as follows:

Fs(us) = ‖us − f‖1,Xs ,
proxσF (u) = f + shrΩ(u− f, σ),
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where the elementwise shrinkage operator shrS : X×R>0 → X on S ⊂ Ω is defined
as follows [28]:

(shrS(v, σ))T =

{
max {|(v)T | − σ, 0} (v)T

|(v)T | if T ⊂ S,
(v)T if T 6⊂ S,

, T ∈ T , (3.8)

with the convention 0
|0| = 0. For simplicity, S is assumed to be a union of elements

of T in (3.8).
The models for the image denoising problem are easily extended to the image

inpainting problem [25]. Let D ⊂ Ω be the inpainting domain and f ∈ X be the
known part of an image. We assume that D does not cut through any elements
in T . We set f = 0 on D for simplicity. Also, let A: X → X be the restriction
operator onto Ω \D, that is, Au = 0 on D for all u ∈ X. Then, F is given by

F (u) =
1

2
‖Au− f‖22,X .

Note that Assumptions 3.1 and 3.2 are ensured with

Fs(us) =
1

2
‖Asus − f‖22,Xs ,

(proxσF (u))T =

{
(u)T+σ(f)T

1+σ if T ⊂ Ω \D,
(u)T if T ⊂ D,

, T ∈ T,

where Asus = RsAR
∗
sus for s = 1, ...,N . One can easily check that A =

⊕N
s=1As.

Similarly to the denoising model, we may use the L1 fidelity term instead of the
L2 fidelity term as follows:

F (u) = ‖Au− f‖1,X .

In this case, Fs and proxσF are given by

Fs(us) = ‖Asus − f‖1,Xs ,
proxσF (u) = shrΩ\D(u− f, σ).

Another typical example is the image segmentation problem. In [6], authors
proposed a convex image segmentation model with the total variation regularizer
as follows:

min
u∈X

{
α
(〈

u, (f − c1)2
〉
X

+
〈

1− u, (f − c2)2
〉
X

)
+ χ{0≤u≤1}(u) + TV (u)

}
,

(3.9)
where f is a given image, c1 and c2 are predetermined intensity values. Writing
g = (f − c1)2 − (f − c2)2 in (3.9) yields the following simpler form:

min
u∈X

{
α 〈u, g〉X + χ{0≤u≤1}(u) + TV (u)

}
. (3.10)

Then, (3.10) is of the form (3.1) with

F (u) = 〈u, g〉X + χ{0≤u≤1}(u),
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and satisfies Assumptions 3.1 and 3.2 with

Fs(us) = 〈us, g〉Xs + χ{0≤us≤1}(us)

proxσF (u) = proj{0≤·≤1}(u− σg).

Here, proj{0≤·≤1} can be computed pointwise like (2.4).
We close this section by mentioning that the image deconvolution problem is

not a case of (3.1) in general. For an operator A: X → X defined by the matrix
convolution with some matrix kernel, A 6=

⊕N
s=1RsAR

∗
s since the computation

of RsAu needs values of u in Ωs as well as adjacent subdomains. Consequently,
Assumption 3.1 cannot be satisfied for the deconvolution problem.

4 Proposed method

In this section, we extend the primal-dual DDM for the ROF model introduced
in [21] to the more general model problem (3.1). The continuity of a solution on
the subdomain interfaces is imposed in the dual sense, that is, it is imposed by
the method of Lagrange multipliers. As a result, we obtain an equivalent saddle
point problem, which is solved by the first order primal-dual algorithm [3].

We start the section by stating the following simple proposition, which means
that the Legendre–Fenchel conjugate is separable if the original functional is sep-
arable.

Proposition 4.1 Let F : X → R̄ be a proper, convex, lower semicontinuous func-
tional satisfying Assumption 3.1. Then, its Legendre–Fenchel conjugate F ∗ also
satisfies Assumption 3.1.

Proof For u∗ =
⊕N
s=1 u

∗
s ∈ X, we have

F ∗(u∗) = sup
u∈X

{〈
u, u∗

〉
X
− F (u)

}
=
N∑
s=1

sup
us∈Xs

{〈
us, u

∗
s

〉
Xs
− Fs(us)

}
=
N∑
s=1

F ∗s (u∗s).

Letting (F ∗)s = F ∗s for s = 1, ...,N completes the proof. ut

Thanks to Proposition 4.1, we can transform the dual model problem (3.4) to
an equivalent constrained minimization problem

min
p̃∈Ỹ

N∑
s=1

{
1

α
F ∗s (div p̃s) + χC̃s(p̃s)

}
subject to Bp̃ = 0. (4.1)

In order to treat the continuity constraint Bp̃ = 0, the method of Lagrange mul-
tipliers for (4.1) yields the saddle point formulation

min
p̃∈Ỹ

max
λ∈R|IΓ |

 L(p̃, λ), (4.2)
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where

 L(p̃, λ) =
N∑
s=1

{
1

α
F ∗s (div p̃s) + χC̃s(p̃s)

}
+ 〈Bp̃, λ〉R|IΓ | .

The following proposition summarizes the equivalence between the dual model
problem (3.4) and the resulting saddle point problem (4.2).

Proposition 4.2 If p∗ ∈ C is a solution of (3.4), then p̃∗ =
⊕N
s=1 p∗|Ωs ∈ C̃

is a primal solution of (4.2). Conversely, if p̃∗ is a primal solution of (4.2), then
p̃∗ ∈ kerB. Hence p̃∗ ∈ C and p̃∗ is a solution of (3.4).

Now, we are ready to propose the main algorithm of this paper. In the case
of ROF model, recovering a primal solution u∗ from the computed dual solution
p∗ can be easily done by the primal-dual relation u∗ = f + div p∗/α. However,
in the general case, the primal solution may not be obtained as in the ROF case
since the primal-dual relation (3.5) does not always give an explicit formula for
u∗. Instead, we consider an algorithm to obtain a primal solution u∗ and a dual
solution p∗ simultaneously. We begin with the primal-dual algorithm [3] applied
to (4.2). In each iteration of the primal-dual algorithm, we need to solve the local
problems of the following form:

min
p̃∈Ỹ

N∑
s=1

{
1

α
F ∗s (div p̃s) + χC̃s(p̃s) +

1

2τ
‖p̃s − p̂(n+1)

s ‖22,Ỹs

}
(4.3)

for p̂
(n+1)
s ∈ Ỹs. The term 1

2τ ‖p̃s − p̂
(n+1)
s ‖2

2,Ỹs
appears because we compute

proximal descent/ascent in each step of the primal-dual algorithm. To obtain a
primal solution u(n+1) and a dual solution p̃(n+1) simultaneously, we replace (4.3)
by the following primal-dual formulation of (4.3):

min
u∈X

max
p̃∈Ỹ

N∑
s=1

{
−〈us,div p̃s〉Xs + αFs(us)− χC̃s(p̃s)−

1

2τ
‖p̃s − p̂(n+1)

s ‖22,Ỹs

}
.

(4.4)
There is another advantage to solve (4.4) instead of (4.3). Differently from the
ROF model, it is sometimes cumbersome to get an explicit formula for F ∗s , which
makes the design of a local solver difficult. We note that an explicit formula for
F ∗ in the case of F (u) = ‖Au− f‖1,X with nonsingular AA∗ is given in [9], but it
is somewhat complicated. However, considering (4.4) does not require an explicit
formula for F ∗.

Similarly to the ROF case, the solution pair (u(n+1), p̃(n+1)) can be con-

structed by assembling the local solution pairs (u
(n+1)
s , p̃

(n+1)
s ) in the subdomains,

i.e., u(n+1) =
⊕N
s=1 u

(n+1)
s and p̃(n+1) =

⊕N
s=1 p̃

(n+1)
s . The local solution pair

(u
(n+1)
s , p̃

(n+1)
s ) in the subdomain Ωs is obtained by solving the local problem

min
us∈Xs

max
p̃s∈Ỹs

{
−〈us,div p̃s〉Xs + αFs(us)− χC̃s(p̃s)−

1

2τ
‖p̃s − p̂(n+1)

s ‖22,Ỹs

}
(4.5)

and each local problem can be solved in parallel. We will address how to solve (4.5)
in Sect. 5 in detail.
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Algorithm 1 Primal-dual domain decomposition method for the model prob-
lem (3.1)

Choose L > 2, τ, σ > 0 with τσ = 1
L

. Let p̃(0) = p̃(−1) = 0 and λ(0) = 0.
for n = 0, 1, 2, ...

λ(n+1) = λ(n) + σB
(

2p̃(n) − p̃(n−1)
)

p̂(n+1) = p̃(n) − τB∗λ(n+1)

for s = 1, 2, ...,N in parallel

(u
(n+1)
s , p̃

(n+1)
s ) ∈ arg min

us∈Xs
max
p̃s∈Ỹs

{
− 〈us, div p̃s〉Xs + αFs(us)

−χC̃s (p̃s)−
1

2τ
‖p̃s − p̂(n+1)|Ωs‖

2
2,Ỹs

}
end

u(n+1) =
N⊕
s=1

u
(n+1)
s

p̃(n+1) =

N⊕
s=1

p̃
(n+1)
s

end

In summary, the proposed algorithm is presented in Algorithm 1. As in the
ROF case, the range τσ < 1/2 comes from Proposition 2.2.

Next, we analyze convergence of the proposed method. Since the sequence
{(p̃(n), λ(n))} generated by Algorithm 1 agrees with the one generated by the
standard primal-dual algorithm, O(1/n) ergodic convergence is guaranteed.

Theorem 4.3 Let {(p̃(n), λ(n))} be the sequence generated by Algorithm 1. Then,
(p̃(n), λ(n)) converges to a saddle point (p̃∗, λ∗) of (4.2) and it satisfies

 L(p̃n, λ)−  L(p̃, λn) ≤ 1

n

(
1

τ
‖p̃− p̃(0)‖22,Ỹ +

1

σ
‖λ− λ(0)‖22,R|IΓ |

)
for any p̃ ∈ Ỹ and λ ∈ R|IΓ |, where p̃n = 1

n

∑n
i=1 p̃(i) and λn = 1

n

∑n
i=1 λ

(i).

Proof Since the term

N∑
s=1

{
1

α
F ∗s (div p̃s) + χC̃s(p̃s)

}
in (4.2) is convex, by Theorem 5.1 in [4], we get the desired result. ut

By Theorem 4.3, we ensure the convergence of the sequences {p̃(n)} and {λ(n)}.
On the other hand, since the sequence {u(n)} is a kind of byproduct of the primal-
dual algorithm, the convergence theory for the primal-dual algorithm developed
in [3,4] does not ensure global convergence of {u(n)}. Thus, we will prove that it
tends to a solution of (3.1). For the sake of convenience, we rewrite (4.4) as the
following more compact form:

min
u∈X

max
p̃∈Ỹ

{
−
〈
u, d̃iv p̃

〉
X

+ αF (u)− χC̃(p̃)− 1

2τ
‖p̃− p̂(n+1)‖22,Ỹ

}
, (4.6)

where d̃iv: Ỹ → X is defined as d̃iv p̃ =
⊕N
s=1 div p̃s. Note that if p̃ ∈ kerB,

then p̃ ∈ Y so that d̃iv p̃ = div p̃. Furthermore, since Ỹ has dofs on Γ , we have
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ker d̃iv
∗

= {0}. Then, we readily see that u(n+1) is a solution of the minimization
problem

min
u∈X

{
αF (u) +Gn+1(− d̃iv

∗
u)
}
,

where Gn is defined as

Gn(q̃) = max
p̃∈Ỹ

{
〈p̃, q̃〉Ỹ − χC̃(p̃)− 1

2τ
‖p̃− p̂(n)‖22,Ỹ

}
,

the Legendre–Fenchel conjugate of

χC̃(p̃) +
1

2τ
‖p̃− p̂(n)‖22,Ỹ .

At first, we verify the boundedness of {Gn}.

Lemma 4.4 There exist a finite functional G: Ỹ → R and a coercive functional
G: Ỹ → R such that

G ≤ Gn ≤ G ∀n ∈ Z>0.

Proof We first see that for any q̃ ∈ Ỹ , we have q̃
|q̃| ∈ C̃, where |q̃| is the dof-wise

absolute value of q̃ and the division is done dof-wise with convention 0
|0| = 0. An

upper bound of {Gn} is obtained as follows:

Gn(q̃) = max
p̃∈C̃

{
〈p̃, q̃〉Ỹ −

1

2τ
‖p̃− p̂(n)‖22,Ỹ

}
≤ max

p̃∈C̃
〈p̃, q̃〉Ỹ

=

〈
q̃

|q̃| , q̃
〉
Ỹ

= ‖q̃‖1,Ỹ .

Take G(q̃) = ‖q̃‖1,Ỹ , which is clearly finite.

Now, we find a lower bound of {Gn}. Note that p̂(n) = p̃(n−1) − τB∗λ(n) in
Algorithm 1. Since {p̃(n)} and {λ(n)} are convergent by Theorem 4.3, {p̂(n)} is
also convergent. Hence, {p̂(n)} is bounded, i.e. there exists a constant L > 0 such
that

‖p̂(n)‖22,Ỹ ≤ L ∀n ∈ Z>0.

Then, we have

Gn(q̃) = max
p̃∈C̃

{
〈p̃, q̃〉Ỹ −

1

2τ
‖p̃− p̂(n)‖22,Ỹ

}
≥ max

p̃∈C̃

{
〈p̃, q̃〉Ỹ −

1

τ

(
‖p̃‖22,Ỹ + ‖p̂(n)‖22,Ỹ

)}
≥ max

p̃∈C̃

{
〈p̃, q̃〉Ỹ −

1

τ

(
‖p̃‖22,Ỹ + L

)}
≥
〈

q̃

|q̃| , q̃
〉
Ỹ

− 1

τ

(∥∥∥∥ q̃

|q̃|

∥∥∥∥2

2,Ỹ

+ L

)

≥ ‖q̃‖1,Ỹ −
1

τ

( N∑
s=1

|Ĩs|+ L

)
.
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Note that Ĩs denotes the set of indices of the basis functions for Ỹs and the value
of
∑N
s=1 |Ĩs| depends on the image size and the number of subdomains N . Take

G(q̃) = ‖q̃‖1,Ỹ −
1

τ

( N∑
s=1

|Ĩs|+ L

)
,

which is coercive due to the term ‖q̃‖1,Ỹ . ut

Next lemma provides a criterion for equi-coercivity of a collection of function-
als.

Lemma 4.5 Let {Fi}, i = 1, 2, . . . , be a collection of functionals from X into R̄.
If there exists a coercive functional F0: X → R̄ such that Fi ≥ F0 for all i, then
{Fi} is equi-coercive, that is, for every t ≥ 0, there exists a compact subset Kt of
X such that

{u ∈ X : Fi(u) ≤ t} ⊂ Kt for all i = 1, 2, . . . .

Proof Let t ≥ 0. Since F0 is coercive, there exists a compact subset Kt of X such
that

{u ∈ X : F0(u) ≤ t} ⊂ Kt.

On the other hand, for every i, Fi ≥ F0 implies that

{u ∈ X : Fi(u) ≤ t} ⊂ {u ∈ X : F0(u) ≤ t} .

Therefore, {Fi} is equi-coercive. ut

Now, with the help of the lemmas above, we state the main theorem, which
ensures that the sequence {u(n)} generated by Algorithm 1 approaches to solutions
of (3.1).

Theorem 4.6 Let {u(n)} be the sequence generated by Algorithm 1. Then, {u(n)}
is bounded and every limit point of {u(n)} is a solution of (3.1).

Proof Recall that u(n) is a solution of the minimization problem

min
u∈X

{
αF (u) +Gn(− d̃iv

∗
u)
}
.

Since F is proper, we may choose u0 ∈ X with F (u0) < ∞. By Lemma 4.4, we
have

t = αF (u0) +G(− d̃iv
∗
u0) <∞.

Thanks to the minimization property of u(n), we get

αF (u(n)) +Gn(− d̃iv
∗
u(n)) ≤ αF (u0) +Gn(− d̃iv

∗
u0)

≤ αF (u0) +G(− d̃iv
∗
u0) = t.

By Lemmas 4.4 and 4.5, {Gn} is equi-coercive, that is, there exists a compact
subset Kt of Ỹ independent of n such that{

q̃ ∈ Ỹ : Gn(q) ≤ t
}
⊂ Kt.
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Thus,Gn(− d̃iv
∗
u(n)) ≤ t implies that− d̃iv

∗
u(n) ∈ Kt∩ran d̃iv

∗
. Since ker d̃iv

∗
=

{0}, the map − d̃iv
∗

is a continuous isomorphism between X and ran d̃iv
∗
. There-

fore, we can deduce that

u(n) ∈ (− d̃iv
∗
)−1(Kt ∩ ran d̃iv

∗
),

which is a compact subset of X independent of n. This implies that {u(n)} is
bounded.

Now, we may refine {u(n)} so that it converges to its limit point u∗. Since
(u(n), p̃(n)) is a solution of a saddle point problem (4.6), it satisfies

d̃iv p̃(n)

α
∈ ∂F (u(n)).

By Theorem 4.3, {p̃(n)} converges to p̃∗. As u(n) → u∗ and d̃iv p̃(n)

α → d̃iv p̃∗

α , by
closedness of the graph of ∂F (See Theorem 24.4 in [23]), we get

d̃iv p̃∗

α
∈ ∂F (u∗).

By Proposition 4.2, p̃∗ ∈ kerB, and hence p̃∗ ∈ Y . We obtain the relation

0 ∈ − div p̃∗ + α∂F (u∗).

From the facts that p̃∗ is a solution of (3.4) (See Proposition 4.2) and (u∗, p̃∗)
satisfies the relation (3.5), we conclude that u∗ is a solution of (3.1). ut

As a direct consequence of of Theorem 4.6, we get the following result.

Corollary 4.7 Let {u(n)} be the sequence generated by Algorithm 1. Then, {J (u(n))}
converges to J (u∗), where u∗ is a solution of (3.1).

5 Applications

In this section, we apply our proposed DDM to various total variation based image
processing problems mentioned in Sect. 3. The proposed method was implemented
in ANSI C with OpenMPI and compiled by Intel Parallel Studio XE. All the
computations were done on a cluster composed of seven machines, where each
machine has two Intel Xeon SP-6148 CPUs (2.4GHz, 20C), 192GB memory, and
the operating system CentOS 7.4 64bit.

To emphasize efficiency of the proposed method as a parallel algorithm, we
compare the wall-clock time of the proposed method with the primal-dual algo-
rithm [3] for the full dimension problem (3.4). The wall-clock time measures the
total elapsed time including the communication time.

At each iteration of Algorithm 1, we solve the local saddle point problems of
the form

min
us∈Xs

max
p̃s∈Ỹs

{
−〈us,div p̃s〉Xs + αFs(us)−G∗s(p̃s)

}
, (5.1)

where Fs is given in Assumption 3.1 and

G∗s(p̃s) = χC̃s(p̃s) +
1

2τ
‖p̃s − p̂(n+1)

s ‖22,Ỹs .
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Test image N

ALG1 LNP

PSNR iter
max
inner
iter

wall-clock
time (sec)

PSNR iter
max
inner
iter

wall-clock
time (sec)

Cameraman
2048× 2048

1 47.68 - 546 86.30
2× 2 48.26 39 266 155.85 46.75 33 1761 587.86
4× 4 48.26 45 277 50.40 46.75 61 1679 141.31
8× 8 48.25 49 274 14.79 46.78 134 1796 42.37

16× 16 48.24 54 279 2.19 46.79 175 1200 7.82

Boat
2048× 3072

1 33.82 - 2093 476.02
2× 2 33.92 61 283 531.97 33.60 43 1815 970.12
4× 4 33.92 63 276 165.45 33.62 71 1823 255.70
8× 8 33.92 66 258 53.68 33.62 114 1413 87.23

16× 16 33.92 71 246 8.18 33.63 161 844 14.07

Table 1 Performance of the proposed method for the image denoising problem with the L1

fidelity term (5.2)

The primal-dual algorithm for (5.1) consists of computation of the proximity
operators of αFs(us) and G∗s(p̃s), that is,

us = proxσ0αFs
(ūs),

p̃s = proxτ0G∗s (p̄s),

for some σ0, τ0 > 0. For more details, we refer readers to see [3]. The proximity
operator of G∗s(p̃s) is computed easily as follows:

proxτ0G∗s (p̄s) = arg min
p̃s∈Ỹs

{
χC̃s(p̃s) +

1

2τ
‖p̃s − p̂(n+1)

s ‖22,Ỹs +
1

2τ0
‖p̃s − p̄s‖22,Ỹs

}

= projC̃s

(
τ p̄s + τ0p̂

(n+1)
s

τ + τ0

)
.

Computation of the proximity operator of αFs(us) depends on the problem to
solve. Thus, we will give details in each subsection.

Since G∗s is uniformly convex with parameter 1/τ , we are able to adopt the
O(1/n2) convergent primal-dual algorithm [3, Algorithm 2] for the local problems.
Such acceleration of the local solvers for DDMs was discussed in [20,21].

Next, we provide the setting of the used parameters. We set the parameters for
the outer iterations by τ = 50 and στ = 1/2 for the image denoising and inpainting
problems, and τ = 1, στ = 1/2 for the image segmentation problem. For the
O(1/n2) convergent algorithms for the local problems, we set γ = 1/8τ , τ0 = 10,
and σ0τ0 = 1/8. (The same notations for the parameters are used as in [3]). The
full dimension problems (N = 1) are solved by the primal-dual algorithm with the
same parameters as the corresponding local problems.

Finally, we note that the local solutions (u
(n−1)
s , p̃

(n−1)
s ) from the previous

outer iteration were chosen as initial guesses for the local problems to reduce the
number of inner iterations.

5.1 Image denoising

We present the results of numerical experiments for the TV -L1 model for image
denoising:

min
u∈X
{α‖u− f‖1,X + TV (u)} . (5.2)
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(a) Noisy “Cameraman
2048× 2048” (PSNR: 12.07)

(b) N = 1 (PSNR: 47.68) (c) N = 16 × 16 (PSNR:
48.24)

(d) Noisy “Boat 2048× 3072”
(PSNR: 12.34)

(e) N = 1 (PSNR: 33.82) (f) N = 16 × 16 (PSNR:
33.92)

Fig. 1 Results of the proposed method for the image denoising problem with the L1 fidelity
term (5.2)

(a) Cameraman 2048× 2048 (b) Boat 2048× 3072

Fig. 2 Decay of
J (u(n))−J (u∗)

J (u∗) with respect to the number of iterations n for various algo-

rithms, applied to the image denoising problem with the L1 fidelity term (5.2)

We note that numerical results of the proposed method for ROF model were given
in [21]. In (5.2), αFs(us) is given by

αFs(us) = α‖us − f‖1,Xs

and its proximity operator can be computed as

proxσ0αFs
(ūs) = f + shrs,Ωs(ūs − f, σ0α),
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where the shrinkage operator shrs,S on S ⊂ Ωs is defined by replacing Ω and T
by Ωs and Ts in (3.8), respectively.

We use two test images “Cameraman 2048 × 2048” and “Boat 2048 × 3072”
with 20% salt-and-pepper noise (See Fig. 1). PSNR denotes peak signal-to-noise
ratio. We set α = 1.

Thanks to Proposition 3.4, it is able to compare the proposed method with
the existing methods for (5.2) based on the finite difference discretization. The
following algorithms are used for our performance evaluation:

– ALG1: Proposed method described in Algorithm 1, N = 8× 8.
– LNP: DDM proposed by Lee, Nam, and Park [20] with the anisotropic total

variation, N = 8× 8, τ = 0.05, στ = 1/8.
– CP: Primal-dual algorithm proposed by Chambolle and Pock [3] with the

anisotropic total variation, τ = 10, στ = 1/8.

In the numerical experiments, the following stopping criterion is used for outer
iterations:

J (u(n))− J (u∗)

J (u∗)
< 10−5, (5.3)

and the following ones are used for inner iterations of ALG1 and LNP, respectively:

‖p(n+1)
s − p

(n)
s ‖2

‖p(n+1)
s ‖2

< 10−6, (5.4a)

‖u(n+1)
s − u(n)

s ‖2
‖u(n+1)
s ‖2

< 10−6. (5.4b)

Fig. 1 shows the denoised images obtained by ALG1 with N = 16 × 16 and
CP (N = 1). In order to highlight the efficiency of the proposed method as a
parallel solver, Table 1 shows the performance of the methods with the varying
number of subdomains. In addition, to compare the convergence rate of the pro-
posed method with existing algorithms, we present Fig. 2 which shows decay of
J (u(n))−J (u∗)

J (u∗) for 1000 iterations of three algorithms ALG1, LNP, and CP, where

the minimum primal energy J (u∗) is computed approximately by 106 iterations
of the primal-dual algorithm.

5.2 Image inpainting

We first consider the inpainting model with the L2 fidelity term:

min
u∈X

{α
2
‖Au− f‖22,X + TV (u)

}
. (5.5)

Here, A: X → X is the restriction operator onto Ω \ D, so that its matrix rep-
resentation is a diagonal matrix whose diagonal entries are either 0 or 1. Thus,
computation of the proximity operator of αFs(us) = α

2 ‖Asus − f‖
2
2,Xs is as easy

as the case of the denoising problem. Indeed, we have

(
proxσ0αFs

(ūs)
)
T

=

{
(ūs)T+σ0α(f)T

1+σ0α
if T ⊂ Ωs \D,

(ūs)T if T ⊂ D,
T ∈ Ts.



20 C.-O. Lee and J. Park

(a) Corrupted “Cameraman
2048× 2048” (PSNR: 15.83)

(b) N = 1 (PSNR: 24.96) (c) N = 16 × 16 (PSNR:
25.00)

(d) Corrupted “Boat 2048 ×
3072” (PSNR: 16.66)

(e) N = 1 (PSNR: 24.32) (f) N = 16 × 16 (PSNR:
24.33)

Fig. 3 Results of the proposed method for the image inpainting problem with the L2 fidelity
term (5.5)

(a) Cameraman 2048× 2048 (b) Boat 2048× 3072

Fig. 4 Decay of
J (u(n))−J (u∗)

J (u∗) with respect to the number of iterations n for various algo-

rithms, applied to the image inpainting problem with the L2 fidelity term (5.5)

Two test images “Cameraman 2048×2048” and “Boat 2048×3072” corrupted
by additive Gaussian noise with mean 0 and variance 0.05 and a text mask are
used for numerical experiments (See Fig. 3). The model parameter α is set as
α = 10. Table 2 shows the computation results of the proposed method for the
varying number of subdomains. Stop conditions (5.3) and (5.4a) are used for outer
iterations and inner iterations of ALG1, respectively. Fig. 3 shows the resulting

images of ALG1 with N = 16 × 16 and CP. Fig. 4 shows decay of J (u(n))−J (u∗)
J (u∗)
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Test image N PSNR iter
max
inner
iter

wall-clock
time (sec)

Cameraman
2048× 2048

1 24.96 - 2324 389.88
2× 2 25.00 438 613 805.88
4× 4 25.00 440 713 260.06
8× 8 25.00 445 99 88.96

16× 16 25.00 460 99 13.40

Boat
2048× 3072

1 24.32 - 1861 436.32
2× 2 24.33 285 817 1085.96
4× 4 24.33 286 588 361.04
8× 8 24.33 289 111 132.14

16× 16 24.33 298 117 25.63

Table 2 Performance of the proposed method for the image inpainting problem with the L2

fidelity term (5.5)

(a) Corrupted “Cameraman
2048× 2048” (PSNR: 11.41)

(b) N = 1 (PSNR: 34.70) (c) N = 16 × 16 (PSNR:
35.53)

(d) Corrupted “Boat 2048 ×
3072” (PSNR: 11.92)

(e) N = 1 (PSNR: 30.83) (f) N = 16 × 16 (PSNR:
31.07)

Fig. 5 Results of the proposed method for the image inpainting problem with the L1 fidelity
term (5.6)

for two algorithms ALG1 and CP. Here, J (u∗) is computed by 106 iterations of
the primal-dual algorithm.

Now, we consider the following L1 inpainting model:

min
u∈X
{α‖Au− f‖1,X + TV (u)} . (5.6)

Similarly to the L2 inpainting problem, the proximity operator of αFs(us) =
α‖Asus − f‖1,X is given by

proxσ0αFs
(ūs) = f + shrs,Ωs\D(ūs − f, σ0α).
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(a) Cameraman 2048× 2048 (b) Boat 2048× 3072

Fig. 6 Decay of
J (u(n))−J (u∗)

J (u∗) with respect to the number of iterations n for various algo-

rithms, applied to the image inpainting problem with the L1 fidelity term (5.6)

Test image N

ALG1 LNP

PSNR iter
max
inner
iter

wall-clock
time (sec)

PSNR iter
max
inner
iter

wall-clock
time (sec)

Cameraman
2048× 2048

1 34.70 - 1693 304.05
2× 2 35.56 78 921 615.5 34.18 173 1530 1132.71
4× 4 35.53 86 958 244.21 34.24 190 1672 323.98
8× 8 35.53 90 274 68.44 34.26 205 1796 97.65

16× 16 35.53 101 279 16.10 34.37 239 1200 24.67

Boat
2048× 3072

1 30.83 - 2262 604.34
2× 2 31.08 80 860 1283.93 30.53 368 1703 2134.45
4× 4 31.08 84 765 432.68 30.55 374 1888 635.88
8× 8 31.08 88 258 128.09 30.56 384 1413 217.33

16× 16 31.07 97 246 31.95 30.58 402 844 60.68

Table 3 Performance of the proposed method for the image inpainting problem with the L1

fidelity term (5.6)

Test images are corrupted by 20% salt-and-pepper noise and the same text mask
as the L2 inpainting problem (See Fig. 5). We use α = 1 as the model parameter.
Numerical results of ALG1, LNP, and CP for (5.6) are given in Table 3. Both ALG1
and LNP uses (5.3) as the stopping criterion for outer iterations. Stopping criteria
for local problems are given in (5.4a) and (5.4b) for ALG1 and LNP, respectively.
The recovered images obtained by ALG1 and CP are given in Fig. 5. Fig. 6 shows

decay of the value of J (u(n))−J (u∗)
J (u∗) for three algorithms ALG1, LNP, and CP.

5.3 Image segmentation

As we mentioned in Sect. 3, the convex Chan–Vese model for the image segmen-
tation model is represented as

min
u∈X

{
α 〈u, g〉X + χ{0≤u≤1}(u) + TV (u)

}
, (5.7)

where g = (f − c1)2 − (f − c2)2. The proximity operator of αFs(us) = 〈u, g〉X +
χ{0≤u≤1}(u) is computed as

proxσ0αFs
(ūs) = proj{0≤·≤1}(ūs − σ0αg).
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(a) Cameraman 2048× 2048 (b) N = 1 (c) N = 16× 16

Fig. 7 Results of the proposed method for the image segmentation problem (5.7)

Fig. 8 Decay of
J (u(n))−J (u∗)
|J (u∗)| with respect to the number of iterations n for various algo-

rithms, applied to the image segmentation problem (5.7)

Test image N

ALG1 DCT

iter
max
inner
iter

wall-clock
time (sec)

iter
max
inner
iter

wall-clock
time (sec)

Cameraman
2048× 2048

1 - 1070 172.47
2× 2 16 258 153.72 14 290 85.67
4× 4 16 63 37.58 15 52 18.21
8× 8 16 55 6.65 15 52 5.31

16× 16 16 56 1.10 16 55 1.43

Table 4 Performance of the proposed method for the image segmentation problem (5.7)

As shown in Fig. 7, we use a test image “Cameraman 2048 × 2048.” We set the
model parameters α = 10, c1 = 0.6, and c2 = 0.1 heuristically. Also, to convert the
results to binary functions, we use a threshold parameter 1/2. Numerical results
of ALG1, DCT, and CP for (5.7) are presented in Table 4, where DCT denotes
the following algorithm:

– DCT: DDM proposed by Duan, Chang, and Tai [10] with the anisotropic total
variation, N = 8× 8, τ = 1, στ = 1/8.

Both ALG1 and DCT uses (5.3) as a stop condition for outer iterations. For
stop conditions for local problems, ALG1 uses (5.4a) while DCT uses (5.4b). The
segmentation results obtained by ALG1 and CP are provided in Fig. 7. Fig. 8
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presents the energy decay of several algorithms containing the proposed method
for (5.7). Since the minimum primal energy J (u∗) is negative in this case, we

plot the value of J (u(n))−J (u∗)
|J (u∗)| , where J (u∗) is computed by 106 iterations of the

primal-dual algorithm.

5.4 Discussion

As shown in Figs. 1, 3, 5, and 7, the results of the full dimension problem and the
proposed method are not visually distinguishable. Note that the resulting images
of the proposed method show no trace of the subdomain interfaces. In Tables 1–4,
one can observe that solutions for different values of N have different PSNRs. It
means that the algorithms converge to different solutions. This is because (1.2)
admits nonunique solutions in general. However, as the stopping criterion (5.3)
indicates, their primal energies tend to the minimum.

In Tables 1–4, one can see that the number of outer iterations monotonically
increases as the number of subdomains N increases. We also observe that the
numbers of maximum inner iterations of the proposed method are much smaller
than the numbers of iterations of the full dimension problem. The reason is that
we utilize more accelerated solvers for the local problems than standard ones.
Reduction of the numbers of inner iterations makes the proposed method faster.

For every problem, we see that the wall-clock time is decreasing as the number
of subdomains N grows. In particular, large scale images such as “Cameraman
2048×2048” and “Boat 2048×3072” can be processed in a minute with sufficiently
many subdomains, while it takes quite a long time with a single domain. This shows
efficiency of the proposed method as a parallel solver for image processing.

Finally, as shown in Figs. 2, 4, 6, and 8, the proposed method shows good
performance in terms of the decay rate of the primal energy J (u(n)). To be more
precise, the primal energy of the proposed method decreases much faster than the
one of CP for the full-dimension problem. The proposed method also outperforms
LNP which is a recently developed DDM for TV -L1 problems. Even more, for the
segmentation problem, the convergence rate of the proposed method seems to be
faster than O(1/n). However, a theoretical evidence for such fast convergence is
still missing. It is observed in Figs. 2, 4, 6, and 8 that the primal energy of the
proposed method becomes stagnant when the relative error is sufficiently small.
This is due to that local problems are solved inexactly by iterative methods in
each iteration. Such stagnation of the primal energy is not problematic in practice
because the quality of the recovered image becomes acceptable enough before the
stagnation starts. Meanwhile, in terms of wall-clock time, the proposed method
outperforms LNP for both denoising and inpainting problems while it shows the
similar performance to DCT for the segmentation problem.

6 Conclusion

In this paper, we generalized the primal-dual DDM for the ROF model pro-
posed in [21] to more general total variation minimization problem. The Fenchel–
Rockafellar dual of the model problem was considered. We constructed the con-
strained minimization problem which has domain decomposition structure and is
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equivalent to the dual model problem. The constrained minimization problem was
converted to the equivalent saddle point problem by the method of Lagrange multi-
pliers. The resulting saddle point problem was solved by the first order primal-dual
algorithm and convergence of the dual solution was guaranteed. We also proved
convergence of the primal solution. Numerical results showed that the proposed
method is superior to the existing methods in the sense of convergence rate, and is
much faster with sufficiently many subdomains than the full dimension problem.

Even though the proposed DDM is applicable for various total variation reg-
ularized problems, we point out that the proposed method is not appropriate for
the image deconvolution problem. We will develop a DDM with similar strategy
which is applicable for the image deconvolution problem later.
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