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SUPERCONVERGENCE OF C0 −QK FINITE ELEMENT METHOD

FOR ELLIPTIC EQUATIONS WITH APPROXIMATED

COEFFICIENTS

HAO LI∗ AND XIANGXIONG ZHANG∗

Abstract. We prove that the superconvergence of C0-Qk finite element method at the Gauss
Lobatto quadrature points still holds if variable coefficients in an elliptic problem are replaced by
their piecewise Qk Lagrange interpolants at the Gauss Lobatto points in each rectangular cell. In
particular, a fourth order finite difference type scheme can be constructed using C0-Q2 finite element
method with Q2 approximated coefficients.
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1. Introduction.

1.1. Motivations. Consider solving a variable coefficient Poisson equation

(1.1) −∇ · (a∇u) = f, a(x, y) > 0

with homogeneous Dirichlet boundary conditions on a rectangular domain Ω. As-
sume that the coefficient a(x, y) and the solution u(x, y) are sufficiently smooth. Let
‖u‖k,p,Ω be the norm of Sobolev space W k,p(Ω). For p = 2, let Hk(Ω) = W k,2(Ω) and
‖ · ‖k,Ω = ‖ · ‖k,2,Ω. The subindex Ω will be omitted when there is no confusion, e.g.,
‖u‖0 denotes the L2(Ω)-norm and ‖u‖1 denotes the H1(Ω)-norm. The variational
form is to find u ∈ H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0} satisfying

(1.2) A(u, v) = (f, v), ∀v ∈ H1
0 (Ω),

where A(u, v) =
∫∫

Ω a∇u ·∇vdxdy, (f, v) =
∫∫

Ω fvdxdy. Consider a rectangular mesh

with mesh size h. Let V h
0 ⊆ H1

0 (Ω) be the continuous finite element space consisting
of piecewise Qk polynomials (i.e., tensor product of piecewise polynomials of degree
k), then the C0-Qk finite element solution of (1.2) is defined as uh ∈ V h

0 satisfying

(1.3) A(uh, vh) = (f, vh), ∀vh ∈ V h
0 .

For implementing finite element method (1.3), either some quadrature is used or
the coefficient a(x, y) is approximated by polynomials for computing

∫∫

Ω auhvh dxdy.
In this paper, we consider the implementation to approximate the smooth coefficient
a(x, y) by its Qk Lagrangian interpolation polynomial in each cell. For instance,
consider Q2 element in two dimensions, tensor product of 3-point Lobatto quadrature
form nine uniform points on each cell, see Figure 1. By point values of a(x, y) at
these nine points, we can obtain a Q2 Lagrange interpolation polynomial on each cell.
Let aI(x, y) and fI(x, y) denote the piecewise Qk interpolation of a(x, y) and f(x, y)
respectively. For a smooth functions a ≥ C > 0, the interpolation error on each cell e
is maxx∈e |aI(x) − a(x)| = O(hk+1) thus aI > 0 if h is small enough. So if assuming
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2 H. LI AND X. ZHANG

the mesh is fine enough so that aI(x, y) ≥ C > 0, we consider the following scheme
using the approximated coefficients aI(x, y): find ũh ∈ V h

0 satisfying

(1.4) AI(ũh, vh) :=

∫∫

Ω

aI∇ũ · ∇vdxdy = 〈f, vh〉h, ∀vh ∈ V h
0 ,

where 〈f, vh〉h denotes using tensor product of (k+1)-point Gauss Lobatto quadrature
for the integral (f, vh). One can also simplify the computation of the right hand side
by using fI(x, y), so we also consider the scheme to find ũh satisfying

(1.5) AI(ũh, vh) = (fI , vh), ∀vh ∈ V h
0 .

(a) A nx × ny finite difference grid (b) The corresponding (nx − 1)/2 ×

(ny − 1)/2 mesh Ωh for Q2 element

Fig. 1. An illustration of meshes.

The schemes (1.4) and (1.5) correspond to the equation

(1.6) −∇ · (aI(x, y)∇ũ(x, y)) = f(x, y).

At first glance, one might expect (k + 1)-th order accuracy for a numerical method
applying to (1.6) due to the interpolation error a(x, y) − aI(x, y) = O(hk+1). But
as we will show in Section 4.1, the difference between exact solutions u and ũ to
the two elliptic equations (1.1) and (1.6) is O(hk+2) in L2(Ω)-norm under suitable
assumptions. The main focus of this paper is to show (1.4) and (1.5) are (k + 2)-
th order accurate finite difference type schemes via the superconvergence of finite
element method. Such a result is very interesting from the perspective that a fourth
order accurate scheme can be constructed even if the coefficients in the equation are
approximated by quadratic polynomials, which does not seem to be considered before
in the literature.

Since only grid point values of a(x, y) and f(x, y) are needed in scheme (1.4) or
(1.5), they can be regarded as finite difference type schemes. Consider a uniform
nx × ny grid for a rectangle Ω with grid points (xi, yj) and grid spacing h, where nx

and ny are both odd numbers as shown in Figure 1(a). Then there is a mesh Ωh of
(nx − 1)/2× (ny − 1)/2 Q2 elements so that Gauss-Lobatto points for all cells in Ωh

are exactly the finite difference grid points. By using the scheme (1.4) or (1.5) on the
finite element mesh Ωh shown in Figure 1(b), we obtain a fourth order finite difference
scheme in the sense that ũh is fourth order accurate in the discrete 2-norm at all grid
points.

In practice the most convenient implementation is to use tensor product of (k+1)-
point Gauss Lobatto quadrature for integrals in (1.2), since the standard L2(Ω) and
H1(Ω) error estimates still hold [10, 8] and the LagrangianQk basis are delta functions
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at these quadrature points. Such a quadrature scheme can be denoted as finding
uh ∈ V h

0 satisfying

(1.7) Ah(uh, vh) = 〈f, vh〉h, ∀vh ∈ V h
0 ,

where Ah(uh, vh) and 〈f, vh〉h denote using tensor product of (k + 1)-point Gauss
Lobatto quadrature for integrals A(uh, vh) and (f, vh) respectively. Numerical tests
suggest that the approximated coefficient scheme (1.5) is more accurate and robust
than the quadrature scheme (1.7) in some cases.

1.2. Superconvergence of C0-Qk finite element method. Standard error
estimates of (1.3) are ‖u− uh‖1 ≤ Chk‖u‖k+1 and ‖u− uh‖0 ≤ Chk+1‖u‖k+1 [8]. At
certain quadrature or symmetry points the finite element solution or its derivatives
have higher order accuracy, which is called superconvergence. Douglas and Dupont
first proved that continuous finite element method using piecewise polynomial of de-
gree k has O(h2k) convergence at the knots in an one dimensional mesh [11, 12]. In
[12], O(h2k) was proven to be the best possible convergence rate. For k ≥ 2, O(hk+1)
for the derivatives at Gauss quadrature points and O(hk+2) for functions values at
Gauss-Lobatto quadrature points were proven in [17, 4, 2].

For two dimensional cases, it was first showed in [13] that the (k + 2)-th order
superconvergence for k ≥ 2 at vertices of all rectangular cells in a two dimensional
rectangular mesh. Namely, the convergence rate at the knots is as least one order
higher than the rate globally. Later on, the 2k-th order (for k ≥ 2) convergence rate
at the knots was proven for Qk elements solving −∆u = f , see [7, 15].

For the multi-dimensional variable coefficient case, when discussing the supercon-
vergence of derivatives, it can be reduced to the Laplacian case. Superconvergence
of tensor product elements for the Laplacian case can be established by extending
one-dimensional results [13, 22]. See also [16] for the superconvergence of the gradi-
ent. The superconvergence of function values in rectangular elements for the variable
coefficient case were studied in [6] by Chen with M-type projection polynomials and in
[19] by Lin and Yan with the point-line-plane interpolation polynomials. In particu-
lar, let Z0 denote the set of tensor product of (k+1)-point Gauss-Lobatto quadrature
points for all rectangular cells, then the following superconvergence of function values
for Qk elements was shown in [6]:



h2
∑

(x,y)∈Z0

|u(x, y)− uh(x, y)|2




1/2

≤ Chk+2‖u‖k+2, k ≥ 2,(1.8)

max
(x,y)∈Z0

|u(x, y)− uh(x, y)| ≤ Chk+2| lnh|‖u‖k+2,∞,Ω, k ≥ 2.(1.9)

In general superconvergence of (1.3) has been well studied in the literature. Many
superconvergence results are established for interior points away from the boundary
for various domains. Our major motivation to study superconvergence is to use it for
constructing a finite difference scheme, thus we only consider a rectangular domain
for which all Lobatto points can form a finite difference grid.

We are interested in superconvergence of function values for Qk element when the
computation of integrals is simplified. For one-dimensional problems, it was proven
in [12] that O(h2k) at knots still holds if (k + 1)-point Gauss-Lobatto quadrature
is used for P 2 element. Superconvergence of the gradient for using quadrature was
studied in [17]. For multidimensional problems, even though it is possible to show
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(1.8) holds for (1.3) with accurate enough quadrature, it is nontrivial to extend the
superconvergence proof to (1.7) with only (k + 1)-point Gauss Lobatto quadrature.
Superconvergence analysis of the scheme (1.7) is much more complicated thus will be
discussed in another paper [18].

1.3. Contributions of the paper. The objective and main motivation of this
paper is to construct a fourth order accurate finite difference type scheme based on the
superconvergence of C0-Q2 finite element method using Q2 polynomial coefficients in
elliptic equations and demonstrate the accuracy. The main result can be easily gen-
eralized to higher order cases thus we keep the discussion general to Qk (k ≥ 2) and
prove its (k + 2)-th order superconvergence of function values when using PDE coef-
ficients are replaced by their Qk interpolants: (1.8) still holds for both schemes (1.4)
and (1.5). Moreover, (1.4) and (1.5) have all finite element method advantages such
as the symmetry of the stiffness matrix, which is desired in applications. The scheme
(1.4) or (1.5) is also an efficient implementation of C0-Qk finite element method since
only Qk coefficients are needed to retain the (k + 2)-th order accuracy of function
values at the Lobatto points.

The paper is organized as follows. In Section 2, we introduce the notations and
review standard interpolation and quadrature estimates. In Section 3, we review
the tools to establish superconvergence of function values in C0-Qk finite element
method (1.3) with a complete proof. In Section 4, we prove the main result on the
superconvergence of (1.4) and (1.5) in two dimensions with extensions to a general
elliptic equation. All discussion in this paper can be easily extended to the three
dimensional case. Numerical results are given in Section 5. Section 6 consists of
concluding remarks.

2. Notations and preliminaries.

2.1. Notations. In addition to the notations mentioned in the introduction, the
following notations will be used in the rest of the paper:

• n denotes the dimension of the problem. Even though we discuss everything
explicitly for n = 2, all key discussions can be easily extended to n = 3. The
main purpose of keeping n is for readers to see independence/cancellation of
the dimension n in the proof of some important estimates.

• We only consider a rectangular domain Ω with its boundary ∂Ω.
• Ωh denotes a rectangular mesh with mesh size h. Only for convenience, we
assume Ωh is an uniform mesh and e = [xe−h, xe+h]× [ye−h, ye+h] denotes
any cell in Ωh with cell center (xe, ye). The assumption of an uniform

mesh is not essential to the proof.

• Qk(e) =

{

p(x, y) =
k
∑

i=0

k
∑

j=0

pijx
iyj, (x, y) ∈ e

}

is the set of tensor product of

polynomials of degree k on a cell e.
• V h = {p(x, y) ∈ C0(Ωh) : p|e ∈ Qk(e), ∀e ∈ Ωh} denotes the continuous
piecewise Qk finite element space on Ωh.

• V h
0 = {vh ∈ V h : vh = 0 on ∂Ω}.

• The norm and seminorms for W k,p(Ω) and 1 ≤ p < +∞, with standard
modification for p = +∞:

‖u‖k,p,Ω =





∑

i+j≤k

∫∫

Ω

|∂i
x∂

j
yu(x, y)|pdxdy





1/p

,
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|u|k,p,Ω =





∑

i+j=k

∫∫

Ω

|∂i
x∂

j
yu(x, y)|pdxdy





1/p

,

[u]k,p,Ω =

(∫∫

Ω

|∂k
xu(x, y)|pdxdy +

∫∫

Ω

|∂k
yu(x, y)|pdxdy

)1/p

.

Notice that [u]k+1,p,Ω = 0 if u is a Qk polynomial.
• ‖u‖k,Ω, |u|k,Ω and [u]k,Ω denote norm and seminorms for Hk(Ω) = W k,2(Ω).
• When there is no confusion, Ω may be dropped in the norm and seminorms.
• For any vh ∈ Vh, 1 ≤ p < +∞ and k ≥ 1,

‖vh‖k,p,Ω :=

[

∑

e

‖vh‖pk,p,e

]
1

p

, |vh|k,p,Ω :=

[

∑

e

|vh|pk,p,e

]
1

p

.

• Let Z0,e denote the set of (k + 1)× (k+ 1) Gauss-Lobatto points on a cell e.
• Z0 =

⋃

e Z0,e denotes all Gauss-Lobatto points in the mesh Ωh.
• Let ‖u‖2,Z0

and ‖u‖∞,Z0
denote the discrete 2-norm and the maximum norm

over Z0 respectively:

‖u‖2,Z0
=



h2
∑

(x,y)∈Z0

|u(x, y)|2




1

2

, ‖u‖∞,Z0
= max

(x,y)∈Z0

|u(x, y)|.

• For a smooth function a(x, y), let aI(x, y) denote its piecewise Qk Lagrange
interpolant at Z0,e on each cell e, i.e., aI ∈ V h satisfies:

a(x, y) = aI(x, y), ∀(x, y) ∈ Z0.

• P k(t) denotes the polynomial of degree k of variable t.
• (f, v) denotes the inner product in L2(Ω):

(f, v) =

∫∫

Ω

fv dxdy.

• 〈f, v〉h denotes the approximation to (f, v) by using (k + 1) × (k + 1)-point
Gauss Lobatto quadrature for integration over each cell e.

The following are commonly used tools and facts:
• K̂ = [−1, 1]× [−1, 1] denotes a reference cell.
• For v(x, y) defined on e, consider v̂(s, t) = v(sh+ xe, th+ ye) defined on K̂.
• For n-dimensional problems, the following scaling argument will be used:

(2.1) hk−n/p|v|k,p,e = |v̂|k,p,K̂ , hk−n/p[v]k,p,e = [v̂]k,p,K̂ , 1 ≤ p ≤ ∞.

• Sobolev’s embedding in two and three dimensions: H2(K̂) →֒ C0(K̂).
• The embedding implies

‖f̂‖0,∞,K̂ ≤ C‖f̂‖k,2,K̂ , ∀f̂ ∈ Hk(K̂), k ≥ 2,

‖f̂‖1,∞,K̂ ≤ C‖f̂‖k+1,2,K̂ , ∀f̂ ∈ Hk+1(K̂), k ≥ 2.
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• Cauchy Schwarz inequalities:

∑

e

‖u‖k,e‖v‖k,e ≤
(

∑

e

‖u‖2k,e

)
1

2

(

∑

e

‖v‖2k,e

)
1

2

, ‖u‖k,1,e = O(h
n

2 )‖u‖k,2,e.

• Poincaré inequality: let
¯̂
f be the average of f̂ ∈ H1(K̂) on K̂, then

|f̂ − ¯̂
f |0,p,K̂ ≤ C|∇f̂ |0,p,K̂ , p ≥ 1.

• For k ≥ 2, the (k + 1) × (k + 1) Gauss-Lobatto quadrature is exact for
integration of polynomials of degree 2k − 1 ≥ k + 1 on K̂.

• Any polynomial in Qk(K̂) can be uniquely represented by its point values at
(k + 1) × (k + 1) Gauss Lobatto points on K̂, and it is straightforward to
verify that the discrete 2-norm ‖p‖2,Z0

and L2(Ω)-norm ‖p‖0,Ω are equivalent
for a piecewise Qk polynomial p ∈ V h.

• Define the projection operator Π̂1 : û ∈ L1(K̂) → Π̂1û ∈ Q1(K̂) by

(2.2)

∫∫

K̂

(Π̂1û)wdxdy =

∫∫

K̂

ûwdxdy, ∀w ∈ Q1(K̂).

Notice that Π̂1 is a continuous linear mapping from L2(K̂) to H1(K̂) (or
H2(K̂)) since all degree of freedoms of Π̂1û can be represented as a linear
combination of

∫∫

K̂
û(s, t)p(s, t)dsdt for p(s, t) = 1, s, t, st and by Cauchy

Schwarz inequality |
∫∫

K̂
û(s, t)p(s, t)dsdt| ≤ ‖û‖0,2,K̂‖p̂‖0,2,K̂ ≤ C‖û‖0,2,K̂ .

2.2. The Bramble-Hilbert Lemma. By the abstract Bramble-Hilbert Lemma
in [3], with the result ‖v‖m,p,Ω ≤ C(|v|0,p,Ω + [v]m,p,Ω) for any v ∈ Wm,p(Ω) [21, 1],
the Bramble-Hilbert Lemma for Qk polynomials can be stated as (see Exercise 3.1.1
and Theorem 4.1.3 in [9]):

Theorem 2.1. If a continuous linear mapping Π : Hk+1(K̂) → Hk+1(K̂) satis-
fies Πv = v for any v ∈ Qk(K̂), then

(2.3) ‖u−Πu‖k+1,K̂ ≤ C[u]k+1,K̂ , ∀u ∈ Hk+1(K̂).

Thus if l(·) is a continuous linear form on the space Hk+1(K̂) satisfying l(v) = 0, ∀v ∈
Qk(K̂), then

|l(u)| ≤ C‖l‖′
k+1,K̂

[u]k+1,K̂ , ∀u ∈ Hk+1(K̂),

where ‖l‖′
k+1,K̂

is the norm in the dual space of Hk+1(K̂).

2.3. Interpolation and quadrature errors. For Qk element (k ≥ 2), consider
(k + 1)× (k + 1) Gauss-Lobatto quadrature, which is exact for integration of Q2k−1

polynomials.
It is straightforward to establish the interpolation error:

Theorem 2.2. For a smooth function a, |a− aI |0,∞,Ω = O(hk+1)|a|k+1,∞,Ω.

Let sj , tj and wj (j = 1, · · · , k + 1) be the Gauss-Lobatto quadrature points and

weight for the interval [−1, 1]. Notice f̂ coincides with its Qk interpolant f̂I at the

quadrature points and the quadrature is exact for integration of f̂I , the quadrature
can be expressed on K̂ as

k+1
∑

i=1

k+1
∑

j=1

f̂(si, tj)wiwj =

∫∫

K̂

f̂I(x, y)dxdy,
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thus the quadrature error is related to interpolation error:

∫∫

K̂

f̂(x, y)dxdy −
k+1
∑

i=1

k+1
∑

j=1

f̂(si, tj)wiwj =

∫∫

K̂

f̂(x, y)dxdy −
∫∫

K̂

f̂I(x, y)dxdy.

We have the following estimates on the quadrature error:

Theorem 2.3. For n = 2 and a sufficiently smooth function a(x, y), if k ≥ 2 and
m is an integer satisfying k ≤ m ≤ 2k, we have

∫∫

e

a(x, y)dxdy −
∫∫

e

aI(x, y)dxdy = O(hm+n

2 )[a]m,e = O(hm+n)[a]m,∞,e.

Proof. Let E(a) denote the quadrature error for function a(x, y) on e. Let Ê(â)
denote the quadrature error for the function â(s, t) = a(sh + xe, th + ye) on the

reference cell K̂. Then for any f̂ ∈ Hm(K̂) (m ≥ k ≥ 2), since quadrature are
represented by point values, with the Sobolev’s embedding we have

|Ê(f̂)| ≤ C|f̂ |0,∞,K̂ ≤ C‖f̂‖m,2,K̂ .

Thus Ê(·) is a continuous linear form on Hm(K̂) and Ê(f̂) = 0 if f̂ ∈ Qm−1(K̂).
With (2.1), the Bramble-Hilbert lemma implies

|E(a)| = hn|Ê(â)| ≤ Chn[â]m,2,K̂ = O(hm+n

2 )[a]m,2,e = O(hm+n)[a]m,∞,e.

Theorem 2.4. If k ≥ 2, (f, vh)− 〈f, vh〉h = O(hk+2)‖f‖k+2‖vh‖2, ∀vh ∈ V h.

Proof. This result is a special case of Theorem 5 in [10]. For completeness, we
include a proof. Let Ê(·) denote the quadrature error term on the reference cell
K̂. Consider the projection (2.2). Let Π1 denote the same projection on e. Since Π̂1

leavesQ0(K̂) invariant, by the Bramble-Hilbert lemma on Π̂1, we get [v̂h−Π̂1v̂h]1,K̂ ≤
‖v̂h− Π̂1v̂h‖1,K̂ ≤ C[v̂h]1,K̂ thus [Π̂1v̂h]1,K̂ ≤ [v̂h]1,K̂ +[v̂h− Π̂1v̂h]1,K̂ ≤ C[v̂h]1,K̂ . By

setting w = Π̂1v̂h in (2.2), we get |Π̂1v̂h|0,K̂ ≤ |v̂h|0,K̂ . For k ≥ 2, repeat the proof of
Theorem 2.3, we can get

|Ê(f̂ Π̂1v̂h)| ≤ C[f̂ Π̂1v̂h]k+2,K̂ ≤ C([f̂ ]k+2,K̂ |Π̂1v̂h|0,∞,K̂ + [f̂ ]k+1,K̂ |Π̂1v̂h|1,∞,K̂),

where the fact [Π̂1v̂h]l,∞,K̂ = 0 for l ≥ 2 is used. The equivalence of norms over

Q1(K̂) implies

|Ê(f̂ Π̂1v̂h)| ≤ C([f̂ ]k+2,K̂ |Π̂1v̂h|0,K̂ + [f̂ ]k+1,K̂ |Π̂1v̂h|1,K̂)

≤ C([f̂ ]k+2,K̂ |v̂h|0,K̂ + [f̂ ]k+1,K̂ |v̂h|1,K̂).

Next consider the linear form f̂ ∈ Hk(K̂) → Ê(f̂(v̂h− Π̂1v̂h)). Due to the embedding
Hk(K̂) →֒ C0(K̂), it is continuous with operator norm ≤ C‖v̂h − Π̂1v̂h‖0,K̂ since

|Ê(f̂(v̂h − Π̂1v̂h))| ≤ C|f̂(v̂h − Π̂1v̂h)|0,∞,K̂ ≤ C|f̂ |0,∞,K̂ |v̂h − Π̂1v̂h|0,∞,K̂

≤ C‖f̂‖k,K̂‖v̂h − Π̂1v̂h‖0,K̂ .
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For any f̂ ∈ Qk−1(K̂), Ê(f̂ v̂h) = 0. By the Bramble-Hilbert lemma, we get

|Ê(f̂(v̂h − Π̂1v̂h))| ≤ C[f̂ ]k,K̂‖v̂h − Π̂1v̂h‖0,K̂ ≤ C[f̂ ]k,K̂ [v̂h]2,K̂ .

So on a cell e, with (2.1), we get

E(fvh) = hnÊ(f̂ v̂h) = Chk+2([f ]k+2,e|vh|0,e + [f ]k+1,e|vh|1,e + [f ]k,e[vh]2,e).

Summing over e and use Cauchy Schwarz inequality, we get the desired result.

Theorem 2.5. For k ≥ 2, (f, vh)− (fI , vh) = O(hk+2)‖f‖k+2‖vh‖2, ∀vh ∈ V h.

Proof. Repeat the proof of Theorem 2.4 for the function f − fI on a cell e, with
the fact [fI ]k+1,p,e = [fI ]k+2,p,e = 0, we get

E[(f − fI)vh] = Chk+2([f ]k+2,e|vh|0,e + [f ]k+1,e|vh|1,e + [f − fI ]k,e|vh|2,e).

By (2.3) on the Lagrange interpolation operator and the fact [f−fI ]k,e ≤ ‖f−fI‖k+1,e,
we get [f − fI ]k,e ≤ Ch[f ]k+1,e. Notice that 〈f − fI , vh〉h = 0, with (2.1), we get

(f, vh)− (fI , vh) = (f − fI , vh)− 〈f − fI , vh〉h = O(hk+2)‖f‖k+2‖vh‖2, ∀vh ∈ V h.

3. The M-type Projection. To establish the superconvergence of C0-Qk finite
element method for multi-dimensional variable coefficient equations, it is necessary to
use a special polynomial projection of the exact solution, which has two equivalent
definitions. One is the M-type projection used in [5, 6]. The other one is the point-
line-plane interpolation used in [20, 19].

For the sake of completeness, we review the relevant results regarding M-type pro-
jection, which is a more convenient tool. Most results in this section were considered
and established for more general rectangular elements in [6]. For simplicity, we use
some simplified proof and arguments for Qk element in this section. We only discuss
the two dimensional case and the extension to three dimensions is straightforward.

3.1. One dimensional case. The L2-orthogonal Legendre polynomials on the
reference interval K̂ = [−1, 1] are given as

lk(t) =
1

2kk!

dk

dtk
(t2 − 1)k : l0(t) = 1, l1(t) = t, l2(t) =

1

2
(3t2 − 1), · · ·

Define their antiderivatives as M-type polynomials:

Mk+1(t) =
1

2kk!

dk−1

dtk−1
(t2−1)k : M0(t) = 1,M1(t) = t,M2(t) =

1

2
(t2−1),M3(t) =

1

2
(t3−t), · · ·

which satisfy the following properties:
• Mk(±1) = 0, ∀k ≥ 2.

• If j − i 6= 0,±2, then Mi(t) ⊥ Mj(t), i.e.,
∫ 1

−1 Mi(t)Mj(t)dt = 0.
• Roots of Mk(t) are the k-point Gauss-Lobatto quadrature points for [−1, 1].

Since Legendre polynomials form a complete orthogonal basis for L2([−1, 1]), for any
f(t) ∈ H1([−1, 1]), its derivative f ′(t) can be expressed as Fourier-Legendre series

f ′(t) =

∞
∑

j=0

bj+1lj(t), bj+1 = (j +
1

2
)

∫ 1

−1

f ′(t)lj(t)dt.



SUPERCONVERGENCE OF APPROXIMATED COEFFICIENTS 9

Define the M-type projection

fk(t) =

k
∑

j=0

bjMj(t),

where b0 = f(1)+f(−1)
2 is determined by b1 = f(1)−f(−1)

2 to make fk(±1) = f(±1).
Since the Fourier-Legendre series converges in L2, by Cauchy Schwarz inequality,

lim
k→∞

fk(t)− f(t) = lim
k→∞

∫ t

−1

[f ′
k(x)− f ′(x)] dx ≤ lim

k→∞

√
2‖f ′

k(t)− f ′(t)‖L2([−1,1]) = 0.

We get the M-type expansion of f(t): f(t) = lim
k→∞

fk(t) =
∞
∑

j=0

bjMj(t). The remainder

Rk(t) of M-type projection is

R[f ]k(t) = f(t)− fk(t) =
∞
∑

j=k+1

bjMj(t).

The following properties are straightforward to verify:
• fk(±1) = f(±1) thus Rk(±1) = 0 for k ≥ 1.

• R[f ]k(t) ⊥ v(t) for any v(t) ∈ P k−2(t) on [−1, 1], i.e.,
∫ 1

−1
R[f ]kvdt = 0.

• R[f ]′k(t) ⊥ v(t) for any v(t) ∈ P k−1(t) on [−1, 1].

• For j ≥ 2, bj = (j − 1
2 )[f(t)lj−1(t)|1−1]−

∫ 1

−1
f(t)l′(j − 1)(t)dt.

• For j ≤ k, |bj | ≤ Ck‖f‖0,∞,K̂.

• ‖R[f ]k(t)‖0,∞,K̂ ≤ Ck‖f‖0,∞,K̂ .

3.2. Two dimensional case. Consider a function f̂(s, t) ∈ H2(K̂) on the ref-
erence cell K̂ = [−1, 1]× [−1, 1], it has the expansion

f̂(s, t) =
∞
∑

i=0

∞
∑

j=0

b̂i,jMi(s)Mj(t),

where

b̂0,0 =
1

4
[f̂(−1,−1) + f̂(−1, 1) + f̂(1,−1) + f̂(1, 1)],

b̂0,j, b̂1,j =
2j − 1

4

∫ 1

−1

[f̂t(1, t)± f̂t(−1, t)]lj−1(t)dt, j ≥ 1,

b̂i,0, b̂i,1 =
2i− 1

4

∫ 1

−1

[f̂s(s, 1)± f̂s(s,−1)]li−1(s)ds, i ≥ 1,

b̂i,j =
(2i− 1)(2j − 1)

4

∫∫

K̂

f̂st(s, t)li−1(s)lj−1(t)dsdt, i, j ≥ 1.

Define the Qk M-type projection of f̂ on K̂ and its remainder as

f̂k,k(s, t) =

k
∑

i=0

k
∑

j=0

b̂i,jMi(s)Mj(t), R̂[f̂ ]k,k(s, t) = f̂(s, t)− f̂k,k(s, t).

For f(x, y) on e = [xe − h, xe + h]× [ye − h, ye + h], let f̂(s, t) = f(sh+ xe, th+ ye)
then the Qk M-type projection of f on e and its remainder are defined as

fk,k(x, y) = f̂k,k(
x− xe

h
,
y − ye

h
), R[f ]k,k(x, y) = f(x, y)− fk,k(x, y).
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Theorem 3.1. The Qk M-type projection is equivalent to the Qk point-line-plane
projection Π defined as follows:

1. Πû = û at four corners of K̂ = [−1, 1]× [−1, 1].
2. Πû− û is orthogonal to polynomials of degree k − 2 on each edge of K̂.
3. Πû− û is orthogonal to any v ∈ Qk−2(K̂) on K̂.

Proof. We only need to show that M-type projection f̂k,k(s, t) satisfies the same

three properties. By Mj(±1) = 0 for j ≥ 2, we can derive that f̂k,k = f̂ at (±1,±1).

For instance, f̂k,k(1, 1) = b̂0,0 + b̂1,0 + b̂0,1 + b̂1,1 = f̂(1, 1).
The second property is implied by Mj(±1) = 0 for j ≥ 2 and Mj(t) ⊥ P k−2(t) for

j ≥ k+1. For instance, at s = 1, f̂k,k(1, t)−f̂(1, t) =
∞
∑

j=k+1

(b̂0,j+b̂1,j)Mj(t) ⊥ P k−2(t)

on [−1, 1].
The third property is implied by Mj(t) ⊥ P k−2(t) for j ≥ k + 1.

Lemma 3.1. Assume f̂ ∈ Hk+1(K̂) with k ≥ 2, then

1. |b̂i,j | ≤ Ck‖f̂‖0,∞,K̂ , ∀i, j ≤ k.

2. |b̂i,j | ≤ Ck|f̂ |i+j,2,K̂ , ∀i, j ≥ 1, i+ j ≤ k + 1.

3. |b̂i,k+1| ≤ Ck|f̂ |k+1,2,K̂ , 0 ≤ i ≤ k + 1.

4. If f̂ ∈ Hk+2(K̂), then |b̂i,k+1| ≤ Ck|f̂ |k+2,2,K̂ , 1 ≤ i ≤ k + 1.

Proof. First of all, similar to the one-dimensional case, through integration by
parts, b̂i,j can be represented as integrals of f̂ thus |b̂i,j| ≤ Ck‖f̂‖0,∞,K̂ for i, j ≤ k.

By the fact that the antiderivatives (and higher order ones) of Legendre polyno-
mials vanish at ±1, after integration by parts for both variables, we have

|b̂i,j | ≤ Ck

∫∫

K̂

|∂i
s∂

j
t f̂ |dsdt ≤ Ck|f̂ |i+j,2,K̂ , ∀i, j ≥ 1, i+ j ≤ k + 1.

For the third estimate, by integration by parts only for the variable t, we get

∀i ≥ 1, |b̂i,k+1| ≤ Ck

∫∫

K̂

|∂s∂k
t f̂ |dsdt ≤ Ck|f̂ |k+1,2,K̂ .

For b̂0,k+1, from the first estimate, we have |b̂0,k+1| ≤ Ck‖f̂‖0,∞,K̂ ≤ Ck‖f̂‖k+1,2,K̂

thus b̂0,k+1 can be regarded as a continuous linear form on Hk+1(K̂) and it vanishes

if f̂ ∈ Qk(K̂). So by the Bramble-Hilbert Lemma, |b̂0,k+1| ≤ Ck[f̂ ]k+1,2,K̂ .
Finally, by integration by parts only for the variable t, we get

|b̂i,k+1| ≤ Ck

∫∫

K̂

|∂s∂k+1
t f̂ |dsdt ≤ Ck|f̂ |k+2,2,K̂ , 1 ≤ i ≤ k + 1.

Lemma 3.2. For k ≥ 2, we have
1. |R̂[f̂ ]k,k|0,∞,K̂ ≤ Ck[f̂ ]k+1,K̂ , |R̂[f̂ ]k,k|0,2,K̂ ≤ Ck[f̂ ]k+1,K̂ .

2. |∂sR̂[f̂ ]k,k|0,∞,K̂ ≤ Ck[f̂ ]k+1,K̂ , |∂sR̂[f̂ ]k,k|0,2,K̂ ≤ Ck[f̂ ]k+1,K̂ .

3.
∫∫

K̂
∂sR̂[f̂ ]k,kdsdt = 0

Proof. Lemma 3.1 implies ‖f̂k,k‖0,∞,K̂ ≤ Ck‖f̂‖0,∞,K̂ and ‖∂sf̂k,k‖0,∞,K̂ ≤ Ck‖f̂‖0,∞,K̂ .
Thus

∀(s, t) ∈ K̂, |R̂[f̂ ]k,k(s, t)| ≤ |f̂k,k(s, t)|+ |f̂(s, t)| ≤ Ck‖f̂‖0,∞,K̂ ≤ Ck‖f̂‖k+1,K̂ .
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Notice that here Ck does not depend on (s, t). So R[f̂ ]k,k(s, t) is a continuous linear

form on Hk+1(K̂) and its operator norm is bounded by a constant independent of

(s, t). Since it vanishes for any f̂ ∈ Qk(K̂), by the Bramble-Hilbert Lemma, we get

|R[f̂ ]k,k(s, t)| ≤ Ck[f̂ ]k+1,K̂ where Ck does not depend on (s, t). So the L∞ estimate

holds and it implies the L2 estimate.
The second estimate can be established similarly since we have

|∂sR̂[f̂ ]k,k(s, t)| ≤ |∂sf̂k,k(s, t)|+ |∂sf̂(s, t)| ≤ Ck‖f̂‖1,∞,K̂ ≤ Ck‖f̂‖k+1,K̂ .

The third equation is implied by the fact that Mj(t) ⊥ 1 for j ≥ 3 and M ′
j(t) ⊥ 1

for j ≥ 2. Another way to prove the third equation is to use integration by parts

∫∫

K̂

∂sR̂[f̂ ]k+1,k+1dsdt =

∫ 1

−1

(

R̂[f̂ ]k+1,k+1(1, t)− R̂[f̂ ]k+1,k+1(−1, t)
)

dt,

which is zero the second property in Theorem 3.1.

For the discussion in the next few subsections, it is useful to consider the lower
order part of the remainder of R̂[f̂ ]k,k:

Lemma 3.3. For f̂ ∈ Hk+2(K̂) with k ≥ 2, define R̂[f̂ ]k+1,k+1−R̂[f̂ ]k,k = R̂1+R̂2

with

R̂1 =

k
∑

i=0

b̂i,k+1Mi(s)Mk+1(t),

R̂2 =
k+1
∑

j=0

b̂k+1,jMk+1(s)Mj(t) = Mk+1(s)b̂k+1(t), b̂k+1(t) =
k+1
∑

j=0

b̂k+1,jMj(t).

(3.1)

They have the following properties:
1.
∫∫

K̂
∂sR̂1dsdt = 0.

2. |∂sR̂1|0,∞,K̂ ≤ Ck|f̂ |k+2,2,K̂ , |∂sR̂1|0,2,K̂ ≤ Ck|f̂ |k+2,2,K̂ .

3. |b̂k+1(t)| ≤ Ck|f̂ |k+1,K̂ , |b̂′k+1(t)| ≤ Ck|f̂ |k+2,K̂ , ∀t ∈ [−1, 1].

Proof. The first equation is due to the fact that Mk+1(t) ⊥ 1 since k ≥ 2.
Notice that M ′

0(s) = 0, by Lemma 3.1, we have

|∂sR̂1(s, t)| =
∣

∣

∣

∣

∣

k
∑

i=1

b̂i,k+1M
′
i(s)Mk+1(t)

∣

∣

∣

∣

∣

≤ Ck|f̂ |k+2,K̂ .

So we get the L∞ estimate for |∂sR̂1(s, t)| thus the L2 estimate.

Similar to the estimates in Lemma 3.1, we can show |b̂k+1,j | ≤ Ck|f̂ |k+1,K̂ for

j ≤ k + 1, thus |bk+1(t)| ≤ Ck|f̂ |k+1,K̂ . Since b′k+1(t) =
k+1
∑

j=1

b̂k+1,jM
′
j(t), by the last

estimate in Lemma 3.1, we get |b̂′k+1(t)| ≤ Ck|f̂ |k+2,K̂ .

3.3. The C0-Qk projection. Now consider a function u(x, y) ∈ Hk+2(Ω), let
up(x, y) denote its piecewise Qk M-type projection on each element e in the mesh
Ωh. The first two properties in Theorem 3.1 imply that up(x, y) on each edge is
uniquely determined by u(x, y) along that edge. Thus up(x, y) is continuous on Ωh.
The approximation error u− up is one order higher at all Gauss-Lobatto points Z0:
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Theorem 3.2.

‖u− up‖2,Z0
= O(hk+2)‖u‖k+2, ∀u ∈ Hk+2(Ω).

‖u− up‖∞,Z0
= O(hk+2)‖u‖k+2,∞, ∀u ∈ W k+2,∞(Ω).

Proof. Consider any e with cell center (xe, ye), define û(s, t) = u(xe+sh, ye+ th).
Since the (k + 1) Gauss-Lobatto points are roots of Mk+1(t), R̂k+1,k+1[û] − R̂k,k[û]

vanishes at (k + 1) × (k + 1) Gauss-Lobatto points on K̂. By Lemma 3.2, we have
|R̂k+1,k+1[û](s, t)| ≤ C[û]k+2,K̂ .

Mapping back to the cell e, with (2.1), at the (k + 1) × (k + 1) Gauss-Lobatto
points on e, |u− up| ≤ Chk+2− n

2 [u]k+2,e. Summing over all elements e, we get

‖u− up‖2,Z0
≤ C

[

hn
∑

e

h2k+4−n[u]2k+2,e

]
1

2

= O(hk+2)[u]k+2,Ω.

If further assuming u ∈ W k+2,∞(Ω), then at the (k+1)× (k+ 1) Gauss-Lobatto
points on e, |u−up| ≤ Chk+2− n

2 [u]k+2,e ≤ Chk+2[u]k+2,∞,Ω, which implies the second
estimate.

3.4. Superconvergence of bilinear forms. For convenience, in this subsec-
tion, we drop the subscript h in a test function vh ∈ V h. When there is no confusion,
we may also drop dxdy or dsdt in a double integral.

Lemma 3.4. Assume a(x, y) ∈ W 2,∞(Ω). For k ≥ 2,
∫∫

Ω

a(u− up)xvx dxdy = O(hk+2)‖u‖k+2‖v‖2, ∀v ∈ V h.

Proof. For each cell e, we consider
∫∫

e
a(u − up)xvx dxdy. Let R[u]k,k = u − up

denote the M-type projection remainder on e. Then R[u]k,k can be splitted into lower
order part R[u]k,k −R[u]k+1,k+1 and high order part R[u]k+1,k+1.
∫∫

e

a(u− up)xvx dxdy =

∫∫

e

a(R[u]k+1,k+1)xvx +

∫∫

e

a(R[u]k,k −R[u]k+1,k+1)xvx.

We first consider the high order part. Mapping everything to the reference cell K̂ and
let âv̂s denote the average of âv̂s on K̂. By the last property in Lemma 3.2, we get

h2−n

∣

∣

∣

∣

∫∫

e

a(R[u]k+1,k+1)xvx dxdy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

K̂

∂s(R̂[û]k+1,k+1)âv̂sdsdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

K̂

∂s(R̂[û]k+1,k+1)(âv̂s − âv̂s)dsdt

∣

∣

∣

∣

≤ |∂s(R̂[û]k+1,k+1)|0,2,K̂ |âv̂s − âv̂s|0,2,K̂ .

By Poincaré inequality and Cauchy-Schwarz inequality, we have

|âv̂s − âv̂s|0,2,K̂ ≤ C|∇(âv̂s)|0,2,K̂ ≤ C|â|1,∞,K̂ |v̂|1,2,K̂ + C|â|0,∞,K̂ |v̂|2,2,K̂ .

Mapping back to the cell e, with (2.1), by Lemma 3.2, the higher order part is bounded
by Chk+2[u]k+2,2,e(|a|1,∞,e|v|1,2,e + |a|0,∞,e|v|2,2,e) thus

∑

e

∫∫

e

a(R[u]k+1,k+1)xvx dxdy = O(hk+2)‖a‖1,∞,Ω

∑

e

‖u‖k+2,e‖v‖2,e

= O(hk+2)‖a‖1,∞,Ω‖u‖k+2,Ω‖v‖2,Ω.
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Now we only need to discuss the lower order part of the remainder. Let R[u]k,k−
R[u]k+1,k+1 = R1 +R2 which is defined similarly as in (3.1). For R1, by the first two
results in Lemma 3.3, we have

∫∫

K̂

(∂sR̂1)âv̂s =

∫∫

K̂

(∂sR̂1)(âv̂s − âv̂s) ≤ |∂sR̂1|0,2,K̂ |âv̂s − âv̂s|0,2,K̂

≤ C|û|k+2,2,K̂ |âv̂s − âv̂s|0,2,K̂ .

By similar discussions above, we get

∑

e

∫∫

e

a(R1)xvx dxdy = O(hk+2)‖a‖1,∞,Ω‖u‖k+2,Ω‖v‖2,Ω.

For R2, let N(s) be the antiderivative of Mk+1(s) then N(±1) = 0. Let ¯̂a be the
average of ¯̂a on K̂ then |â− ¯̂a|0,∞,K̂ ≤ C|â|1,∞,K̂ . Since Mk+1(s) ⊥ P k−2(s), we have
∫∫

K̂
b̂k+1(t)Mk+1(s)v̂ss = 0. After integration by parts, by Lemma 3.3 we have

∫∫

K̂

(∂sR̂2)âv̂s = −
∫∫

K̂

b̂k+1(t)Mk+1(s)(âsv̂s + âv̂ss)

=

∫∫

K̂

b̂k+1(t)N(s)(âssv̂s + âsv̂ss)−
∫∫

K̂

b̂k+1(t)Mk+1(s)(â − ¯̂a)v̂ss

≤C|û|k+1,K̂(|â|2,∞,K̂ |v̂|1,2,K̂ + |â|1,∞,K̂ |v̂|2,2,K̂).

Thus we can get

∑

e

∫∫

e

(∂xR2)av̂xdxdy = O(hk+2)‖a‖2,∞,Ω‖u‖k+1,Ω‖v‖2,Ω.

So we have
∫∫

Ω a(u− up)xvx dxdy = O(hk+2)‖a‖2,∞,Ω‖u‖k+2‖v‖2, ∀v ∈ V h.

Lemma 3.5. Assume c(x, y) ∈ W 1,∞(Ω). For k ≥ 2,

∫∫

Ω

c(u − up)v dxdy = O(hk+2)‖u‖k+1‖v‖1, ∀v ∈ V h.

Proof. Let ĉv̂ be the average of ĉv̂ on K̂. Following similar arguments as in the
proof Lemma 3.4,

∣

∣

∣

∣

∫∫

K̂

R̂[û]k,k ĉv̂

∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

K̂

R̂[û]k,k(ĉv̂ − ĉv̂)

∣

∣

∣

∣

≤ |R̂[û]k,k|0,2,K̂ |ĉv̂ − ĉv̂|0,2,K̂
≤ C[u]k+1,2,K̂ [ĉv̂]1,2,K̂ ≤ C[u]k+1,2,K̂(|ĉ|0,∞,K̂ |v̂|1,2,K̂ + |ĉ|1,∞,K̂ |v̂|0,2,K̂).

So with (2.1) we have

∫∫

e

cR[u]k,kvdxdy = hn

∫∫

K̂

(R[û]k,k)ĉv̂dsdt = O(hk+2)‖c‖1,∞,Ω‖u‖k+1,e‖v‖1,e,

which implies the estimate.

Lemma 3.6. Assume b(x, y) ∈ W 2,∞(Ω). For k ≥ 2,

∫∫

Ω

b(u− up)xv dxdy = O(hk+2)‖u‖k+2‖v‖2, ∀v ∈ V h.
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Proof. Let b̂v̂ be the average of b̂v̂ on K̂. Following similar arguments as in the
proof Lemma 3.4, we have

∣

∣

∣

∣

∫∫

K̂

∂s(R̂[û]k+1,k+1)b̂v̂

∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

K̂

∂s(R̂[û]k+1,k+1)(b̂v̂ − b̂v̂)

∣

∣

∣

∣

≤ |∂s(R̂[û]k+1,k+1)|0,2,K̂ |b̂v̂ − b̂v̂|0,2,K̂ ≤ C[û]k+2,2,K̂(|b̂|1,∞,K̂ |v̂|0,2,K̂ + |b̂|0,∞,K̂ |v̂|1,2,K̂).

∫∫

K̂

(∂sR̂1)b̂v̂ =

∫∫

K̂

(∂sR̂1)(b̂v̂ − b̂v̂) ≤ |∂sR̂1|0,2,K̂ |b̂v̂ − b̂v̂|0,2,K̂

≤ C|û|k+2,2,K̂(|b̂|1,∞,K̂ |v̂|0,2,K̂ + |b̂|0,∞,K̂ |v̂|1,2,K̂).

Let N(s) be the antiderivative of Mk+1(s). After integration by parts, we have

∫∫

K̂

(∂sR̂2)b̂v̂ = −
∫∫

K̂

b̂k+1(t)Mk+1(s)(b̂sv̂ + b̂v̂s)

=

∫∫

K̂

b̂k+1(t)N(s)(b̂ssv̂ + b̂sv̂s + b̂v̂ss)

≤C|û|k+1,2,K̂(|b̂|2,∞,K̂ |v̂|0,2,K̂ + |b̂|1,∞,K̂ |v̂|1,2,K̂ + |b̂|0,∞,K̂ |v̂|2,2,K̂).

After combining all the estimates, with (2.1), we have

∫∫

e

b(u− up)xv = hn−1

∫∫

K̂

b̂(R[û]k,k)sv̂ = O(hk+2)‖b‖2,∞,Ω‖u‖k+2,e‖v‖2,e.

Lemma 3.7. Assume a(x, y) ∈ W 2,∞(Ω). For k ≥ 2,

(3.2)

∫∫

Ω

a(u− up)xvy dxdy = O(hk+2− 1

2 )‖u‖k+2‖v‖2, ∀v ∈ V h,

(3.3)

∫∫

Ω

a(u− up)xvy dxdy = O(hk+2)‖u‖k+2‖v‖2, ∀v ∈ V h
0 .

Proof. Similar to the proof of Lemma 3.4, we have

∣

∣

∣

∣

∫∫

e

a(R[u]k+1,k+1)xvy dxdy

∣

∣

∣

∣

= hn−2

∣

∣

∣

∣

∫∫

K̂

∂s(R̂[û]k+1,k+1)âv̂tdsdt

∣

∣

∣

∣

=hn−2

∣

∣

∣

∣

∫∫

K̂

∂s(R̂[û]k+1,k+1)(âv̂t − âv̂t)dsdt

∣

∣

∣

∣

≤ hn−2|∂s(R̂[û]k+1,k+1)|0,2,K̂ |âv̂t − âv̂t|0,2,K̂

≤Chk+2‖a‖1,∞,Ω‖u‖k+2,e‖v‖2,e,

and
∫∫

K̂

(∂sR̂1)âv̂t =

∫∫

K̂

(∂sR̂1)(âv̂t − âv̂t) ≤ |∂sR̂1|0,2,K̂ |âv̂t − âv̂t|0,2,K̂ .

Following the proof of Lemma 3.4, with (2.1), we get

∑

e

∫∫

e

a(R1)xvy dxdy = O(hk+2)‖a‖1,∞,Ω‖u‖k+2,Ω‖v‖2,Ω.
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Let N(s) be the antiderivative of Mk+1(s). After integration by parts, we have

∫∫

K̂

(∂sR̂2)âv̂t = −
∫∫

K̂

b̂k+1(t)Mk+1(s)(âsv̂t + âv̂st)

=

∫∫

K̂

b̂k+1(t)N(s)(âssv̂t + 2âsv̂st) +

∫∫

K̂

b̂k+1(t)N(s)âv̂sst.

After integration by parts on the t-variable,

−
∫∫

K̂

b̂k+1(t)N(s)âv̂sst =

∫∫

K̂

∂t[b̂k+1(t)N(s)â]v̂ss −
∫ 1

−1

b̂k+1(t)N(s)âv̂ssds

∣

∣

∣

∣

t=1

t=−1

,

∫∫

K̂

∂t[b̂k+1(t)N(s)â]v̂ss =

∫∫

K̂

[b̂′k+1(t)N(s)â+ b̂k+1(t)N(s)ât]v̂ss.

By Lemma 3.3, we have the estimate for the two double integral terms

∣

∣

∣

∣

∫∫

K̂

b̂k+1(t)N(s)(âssv̂t + 2âsv̂st)

∣

∣

∣

∣

≤ C|û|k+1,2,K̂(|â|2,∞,K̂ |v̂|1,2,K̂ + |â|1,∞,K̂ |v̂|2,2,K̂),

∣

∣

∣

∣

∫∫

K̂

[b̂′k+1(t)N(s)â+ b̂k+1(t)N(s)ât]v̂ss

∣

∣

∣

∣

≤C(|û|k+2,2,K̂ |â|0,∞,K̂ |v̂|2,2,K̂ + |û|k+1,2,K̂ |â|1,∞,K̂ |v̂|2,2,K̂),

which gives the estimate Chk+2‖a‖2,∞,Ω‖u‖k+2,e‖v‖k+2,e after mapping back to e.
So we only need to discuss the line integral term now. After mapping back to e,

we have

∫ 1

−1

b̂k+1(t)Mk+1(s)âv̂ssds

∣

∣

∣

∣

t=1

t=−1

= h

∫ xe+h

xe−h

bk+1(y)Mk+1(
x− xe

h
)avxxdx

∣

∣

∣

∣

∣

y=ye+h

y=ye−h

.

Notice that we have

bk+1(ye + h) = b̂k+1(1) =

k+1
∑

j=0

b̂k+1,jMj(1) = b̂k+1,0 + b̂k+1,1

= (k +
1

2
)

∫ 1

−1

∂sû(s, 1)lk(s)ds = (k +
1

2
)

∫ xe+h

xe−h

∂xu(x, ye + h)lk(
x− xe

h
)dx,

and similarly we get bk+1(ye−h) = b̂k+1(−1) = (k+ 1
2 )
∫ xe+h

xe−h
∂xu(x, ye−h)lk(

x−xe

h )dx.

Thus the term bk+1(y)Mk+1(
x−xe

h )avxx is continuous across the top/bottom edge of
cells. Therefore, if summing over all elements e, the line integral on the inner edges
are cancelled out. Let L1 and L3 denote the top and bottom boundary of Ω. Then
the line integral after summing over e consists of two line integrals along L1 and L3.
We only need to discuss one of them.

Let l1 and l3 denote the top and bottom edge of e. First, after integration by
parts k times, we get

b̂k+1(1) = (k +
1

2
)

∫ 1

−1

∂sû(s, 1)lk(s)ds = (−1)k(k +
1

2
)

∫ 1

−1

∂k+1

∂sk+1
û(s, 1)

1

2kk!
(s2 − 1)kds,
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thus by Cauchy Schwarz inequality we get

|b̂k+1(1)| ≤ Ck

√

∫ 1

−1

[

∂k+1

∂sk+1
û(s, 1)

]2

ds ≤ Ckh
k+ 1

2 |u|k+1,2,l1 .

Second, since v2xx is a polynomial of degree 2k w.r.t. y variable, by using (k+2)-point
Gauss Lobatto quadrature for integration w.r.t. y-variable in

∫∫

e v
2
xxdxdy, we get

∫ xe+h

xe−h

v2xx(x, ye + h)dx ≤ Ch−1

∫∫

e

v2xx(x, y)dxdy.

So by Cauchy Schwarz inequality, we have

∫ xe+h

xe−h

|vxx(x, ye + h)|dx ≤
√
2h

√

∫ xe+h

xe−h

v2xx(x, ye + h)dx ≤ C|v|2,2,e.

Thus the line integral along L1 can be estimated by considering each e adjacent
to L1 in the reference cell:

∑

e∩L1 6=∅

∣

∣

∣

∣

∫ 1

−1

b̂k+1(1)Mk+1(s)â(s, 1)v̂ss(s, 1)ds

∣

∣

∣

∣

≤
∑

e∩L1 6=∅

C|â|0,∞,K̂ |b̂k+1(1)|
∫ 1

−1

|v̂ss(s, 1)|ds

=O(hk+ 3

2 )
∑

e∩L1 6=∅

|u|k+1,2,l1

∫ xe+h

xe−h

|vxx(x, ye + h)|dx

=O(hk+ 3

2 )
∑

e∩L1 6=∅

|u|k+1,2,l1 |v|2,2,e

=O(hk+ 3

2 )‖u‖k+1,L1
‖v‖2,Ω = O(hk+ 3

2 )‖u‖k+2,Ω‖v‖2,Ω,

where the trace inequality ‖u‖k+1,∂Ω ≤ C‖u‖k+2,Ω is used.
Combine all the estimates above, we get (3.2). Since the 1

2 order loss is only due
to the line integral along L1 and L3, on which vxx = 0 if v ∈ V h

0 , we get (3.3).

4. The main result.

4.1. Superconvergence of bilinear forms with approximated coefficients.

Even though standard interpolation error is a − aI = O(hk+1), as shown in the fol-
lowing discussion, the error in the bilinear forms is related to

∫∫

e
(a−aI) dxdy on each

cell e, which is the quadrature error thus the order is higher. We have the following
estimate on the bilinear forms with approximated coefficients:

Lemma 4.1. Assume a(x, y) ∈ W k+2,∞(Ω) and u(x, y) ∈ H2(Ω), then ∀v ∈ V h
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or ∀v ∈ H2(Ω),
∫∫

Ω

auxvx dxdy −
∫∫

Ω

aIuxvx dxdy = O(hk+2)‖a‖k+2,∞,Ω‖u‖2‖v‖2,
∫∫

Ω

auxvy dxdy −
∫∫

Ω

aIuxvy dxdy = O(hk+2)‖a‖k+2,∞,Ω‖u‖2‖v‖2,
∫∫

Ω

auxv dxdy −
∫∫

Ω

aIuxv dxdy = O(hk+2)‖a‖k+2,∞,Ω‖u‖2‖v‖1,
∫∫

Ω

auv dxdy −
∫∫

Ω

aIuv dxdy = O(hk+2)‖a‖k+2,∞,Ω‖u‖1‖v‖1.

Proof. For every cell e in the mesh Ωh, let uxvx be the cell average of uxvx. By
Theorem 2.2 and Theorem 2.3 , we have

∫∫

e

(aI − a)uxvx

=

∫∫

e

(aI − a)uxvx +

∫∫

e

(aI − a)(uxvx − uxvx)

=
1

4h2

∫∫

e

(aI − a)

∫∫

e

uxvx +

∫∫

e

(aI − a)(uxvx − uxvx)

=O(hk+2)‖a‖k+2,∞,Ω‖u‖1,e‖v‖1,e +O(hk+1)‖a‖k+1,∞,Ω

∫∫

e

|uxvx − uxvx|.

By Poincaré inequality and Cauchy-Schwarz inequality, we have
∫∫

e

|uxvx − uxvx| = O(h)‖∇(uxvx)‖0,1,e = O(h)‖u‖2,e‖v‖2,e

thus
∫∫

e(aI−a)uxvx = O(hk+2)‖a‖k+2,∞,Ω‖u‖2,e‖v‖2,e. Summing over all elements e,

we have
∫∫

Ω(aI − a)uxvx = O(hk+2)‖a‖k+2,∞,Ω‖u‖2‖v‖2. Similarly we can establish
the other three estimates.

Lemma 4.1 implies that the difference in the solutions to (1.6) and (1.1) is O(hk+2)
in the L2(Ω)-norm:

Theorem 4.1. Assume a(x, y) ∈ W k+2,∞(Ω) and aI(x, y) ≥ C > 0. Let u, ũ ∈
H1

0 (Ω) be the solutions to

A(u, v) :=

∫∫

a∇u · ∇v dxdy = (f, v), ∀v ∈ H1
0 (Ω)

and

AI(ũ, v) :=

∫∫

aI∇ũ · ∇v dxdy = (f, v), ∀v ∈ H1
0 (Ω)

respectively, where f ∈ L2(Ω). Then ‖u− ũ‖0 = O(hk+2)‖a‖k+2,∞,Ω‖f‖0.
Proof. By Lemma 4.1, for any v ∈ H2(Ω) we have

AI(u− ũ, v) = AI(u, v)−AI(ũ, v) = [AI(u, v)−A(u, v)] + [A(u, v)−AI(ũ, v)]

= AI(u, v)−A(u, v) = O(hk+2)‖a‖k+2,∞,Ω‖u‖2‖v‖2.

Let w ∈ H1
0 (Ω) be the solution to the dual problem

AI(v, w) = (u − ũ, v) ∀v ∈ H1
0 (Ω).
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Since aI ≥ C > 0 and |aI(x, y)| ≤ C|a(x, y)|, the coercivity and boundedness of the
bilinear form AI hold [8]. Moreover, aI is Lipschitz continuous because a(x, y) ∈
W k+2,∞(Ω). Thus the solution w exists and the elliptic regularity ‖w‖2 ≤ C‖u− ũ‖0
holds on a convex domain, e.g., a rectangular domain Ω, see [14]. Thus,

‖u− ũ‖20 = (u− ũ, u− ũ) = AI(u− ũ, w) = O(hk+2)‖a‖k+2,∞,Ω‖u‖2‖w‖2.

With elliptic regularity ‖w‖2 ≤ C‖u− ũ‖0 and ‖u‖2 ≤ C‖f‖0, we get

‖u− ũ‖0 = O(hk+2)‖a‖k+2,∞,Ω‖f‖0.

Remark 1. For even number k ≥ 4, (k+1)-point Newton-Cotes quadrature rule
has the same error order as the (k + 1)-point Gauss-Lobatto quadrature rule. Thus
Theorem 4.1 still holds if we redefine aI(x, y) as the Qk interpolant of a(x, y) at the
uniform (k + 1)× (k + 1) Newton-Cotes points in each cell if k ≥ 4 is even.

4.2. The variable coefficient Poisson equation. Let u(x, y) ∈ H1
0 (Ω) be the

exact solution to

A(u, v) :=

∫∫

Ω

a∇u · ∇v dxdy = (f, v), ∀v ∈ H1
0 (Ω).

Let ũh ∈ V h
0 (Ω) be the solution to

AI(ũh, vh) :=

∫∫

Ω

aI∇ũh · ∇vh dxdy = 〈f, vh〉h, ∀vh ∈ V h
0 (Ω).

Theorem 4.2. For k ≥ 2, let up be the piecewise Qk M-type projection of u(x, y)
on each cell e in the mesh Ωh. Assume a ∈ W k+2,∞(Ω) and u, f ∈ Hk+2(Ω), then

AI(ũh − up, vh) = O(hk+2)(‖a‖k+2,∞‖u‖k+2 + ‖f‖k+2)‖vh‖2, ∀vh ∈ V h
0 .

Proof. For any vh ∈ V h, we have

AI(ũh, vh)−AI(up, vh)

=(f, vh)−AI(up, vh) + 〈f, vh〉h − (f, vh)

=A(u, vh)−AI(up, vh) + 〈f, vh〉h − (f, vh)

=[A(u, vh)−AI(u, vh)] + [AI(u− up, vh)−A(u − up, vh)] +A(u− up, vh) + 〈f, vh〉h − (f, vh).

Lemma 4.1 implies A(u, vh)−AI(u, vh) = O(hk+2)‖a‖k+2,∞‖u‖2‖vh‖2. Theorem
2.4 gives 〈f, vh〉h − (f, vh) = O(hk+2)‖f‖k+2‖vh‖2. By Lemma 3.4, A(u − up, vh) =
O(hk+2)‖a‖2,∞‖u‖k+2‖vh‖2.

For the second term AI(u− up, vh)−A(u− up, vh) =
∫∫

Ω(a− aI)∇(u− up)∇vh,
by Theorem 2.2 and Lemma 3.2, we have

∣

∣

∣

∣

∫∫

Ω

(a− aI)(u− up)x∂xvh

∣

∣

∣

∣

≤ |a− aI |0,∞,Ω

∑

e

∫∫

e

|(u− up)x∂xvh|

≤ |a− aI |0,∞,Ω

∑

e

|(u− up)x|0,2,e|vh|1,2,e

= O(h2k+1)‖a‖k+1,∞,Ω

∑

e

‖u‖k+1,e‖vh‖1,e

= O(h2k+1)‖a‖k+1,∞,Ω‖u‖k+1‖vh‖1.
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Theorem 4.3. Assume a(x, y) ∈ W k+2,∞(Ω) is positive and u(x, y), f(x, y) ∈
Hk+2(Ω). Assume the mesh is fine enough so that the piecewise Qk interpolant sat-
isfies aI(x, y) ≥ C > 0. Then ũh is a (k+2)-th order accurate approximation to u in
the discrete 2-norm over all the (k + 1)× (k + 1) Gauss-Lobatto points:

‖ũh − u‖2,Z0
= O(hk+2)(‖a‖k+2,∞‖u‖k+2 + ‖f‖k+2).

Proof. Let θh = ũh − up. By the definition of up and Theorem 3.1, it is straight-
forward to show θh = 0 on ∂Ω. By the Aubin-Nitsche duality method, let w ∈ H1

0 (Ω)
be the solution to the dual problem

AI(v, w) = (θh, v) ∀v ∈ H1
0 (Ω).

By the same discussion as in the proof of Theorem 4.1, the solution w exists and the
regularity ‖w‖2 ≤ C‖θh‖0 holds.

Let wh be the finite element projection of w, i.e., wh ∈ V h
0 satisfies

AI(vh, wh) = (θh, vh) ∀vh ∈ V h
0 .

Since wh ∈ V h
0 , by Theorem 4.2, we have

(4.1) ‖θh‖20 = (θh, θh) = AI(θh, wh) = O(h4)(‖a‖k+2,∞‖u‖k+2 + ‖f‖k+2)‖wh‖2.

Let wI = Π1w be the piecewise Q1 projection of w on Ωh as defined in (2.2). By the
Bramble-Hilbert Lemma, we get ‖w − wI‖2,e ≤ C[w]2,e ≤ C‖w‖2,e thus

‖w − wI‖2 ≤ C‖w‖2.

By the inverse estimate on the piecewise polynomial wh − wI , we have

(4.2) ‖wh‖2 ≤ ‖wh − wI‖2 + ‖wI − w‖2 + ‖w‖2 ≤ Ch−1‖wh − wI‖1 + C‖w‖2.

With coercivity, Galerkin orthogonality and Cauchy Schwarz inequality, we get

C‖wh−wI‖21 ≤ AI(wh−wI , wh−wI) = AI(wh−wI , w−wI) ≤ C‖w−wI‖1‖wh−wI‖1,

which implies

(4.3) ‖wh − wI‖1 ≤ C‖w − wI‖1 ≤ Ch‖w‖2.

With (4.2), (4.3) and the elliptic regularity ‖w‖2 ≤ C‖θh‖0, we get

(4.4) ‖wh‖2 ≤ C‖w‖2 ≤ C‖θh‖0.

By (4.1) and (4.4) we have

‖θh‖20 ≤ O(hk+2)(‖a‖k+2,∞‖u‖k+2 + ‖f‖k+2)‖θh‖0,

i.e.,

‖ũh − up‖0 = ‖θh‖0 = O(hk+2)(‖a‖k+2,∞‖u‖k+2 + ‖f‖k+2).

Finally, by the equivalency between the discrete 2-norm on Z0 and the L2(Ω) norm
in the space V h, with Theorem 3.2, we obtain

‖ũh − u‖2,Z0
= O(hk+2)(‖a‖k+2,∞‖u‖k+2 + ‖f‖k+2).
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Remark 2. To extend Theorem 4.3 to homogeneous Neumann boundary condi-
tions or mixed homogeneous Dirichlet and Neumann boundary conditions, dual prob-
lems with the same homogeneous boundary conditions as in primal problems should be
used. Then all the estimates such as Theorem 4.2 hold not only for v ∈ V h

0 but also
for any v in V h.

Remark 3. With Theorem 2.5, all the results hold for the scheme (1.5).

Remark 4. It is straightforward to verify that all results hold in three dimensions.
Notice that the in three dimensions the discrete 2-norm is

‖u‖2,Z0
=

[

h3
∑

x∈Z0

|u(x)|2
]

1

2

.

Remark 5. For discussing superconvergence of the scheme (1.7), we have to con-
sider the dual problem of the bilinear form A instead and the exact Galerkin orthogo-
nality in (1.7) no longer holds. In order for the proof above holds, we need to show the
Galerkin orthogonality in (1.7) holds up to O(hk+2)‖vh‖2 for a test function vh ∈ Vh,
which is very difficult to establish. This is the main difficulty to extend the proof of
Theorem 4.3 to the Gauss Lobatto quadrature scheme (1.7), which will be analyzed in
[18] by different techniques.

4.3. General elliptic problems. In this section, we discuss extensions to more
general elliptic problems. Consider an elliptic variational problem of finding u ∈
H1

0 (Ω) to satisfy

A(u, v) :=

∫∫

Ω

(∇vTa∇u+ b∇uv + cuv) dxdy = (f, v), ∀v ∈ H1
0 (Ω),

where a(x, y) =

(

a11 a12
a21 a22

)

is positive definite and b = [b1 b2]. Assume the coef-

ficients a, b and c are smooth, and A(u, v) satisfies coercivity A(v, v) ≥ C‖v‖1 and
boundedness |A(u, v)| ≤ C‖u‖1‖v‖1 for any u, v ∈ H1

0 (Ω).
By the estimates in Section 3.4, we first have the following estimate on the Qk

M-type projection up:

Lemma 4.2. Assume aij(x, y), bi(x, y) ∈ W 2,∞(Ω) and bi(x, y) ∈ W 2,∞(Ω), then

A(u − up, vh) =

{

O(hk+2)‖u‖k+2‖vh‖2, ∀vh ∈ V h
0 ,

O(hk+1.5)‖u‖k+2‖vh‖2, ∀vh ∈ V h.

If a12 = a21 ≡ 0, then

A(u − up, vh) = O(hk+2)‖u‖k+2‖vh‖2, ∀vh ∈ V h.

Let aI , bI and cI denote the corresponding piecewise Qk Lagrange interpolation
at Gauss-Lobatto points. We are interested in the solution ũh ∈ V h

0 to

AI(ũh, vh) :=

∫∫

Ω

(∇vTh aI∇ũh + bI∇ũhvh + cI ũhvh) dxdy = 〈f, vh〉h, ∀vh ∈ V h
0 .

We need to assume that AI still satisfies coercivity AI(v, v) ≥ C‖v‖1 and bound-
edness |AI(u, v)| ≤ C‖u‖1‖v‖1 for any u, v ∈ H1

0 (Ω), so that the solution u ∈ H1
0 (Ω)

of the following problem exists and is unique:

AI(u, v) = (f, v), ∀v ∈ H1
0 (Ω).
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We also need the elliptic regularity to hold for the dual problem:

AI(v, w) = (f, v), ∀v ∈ H1
0 (Ω).

For instance, if b ≡ 0, it suffices to require that eigenvalues of aI +cI

(

1 0
0 1

)

has

a uniform positive lower bound on Ω, which is achievable on fine enough meshes if

a+c

(

1 0
0 1

)

are positive definite. This implies the coercivity of AI . The boundedness

of AI follows from the smoothness of coefficients. Since aI and cI are Lipschitz
continuous, the elliptic regularity for AI holds on a convex domain [14].

By Lemma 4.1 and Lemma 4.2, it is straightforward to extend Theorem 4.2 to
the general elliptic case:

Theorem 4.4. For k ≥ 2, assume aij , bi, c ∈ W k+2,∞(Ω) and u, f ∈ Hk+2(Ω),
then

AI(ũh − up, vh) =

{

O(hk+2)(‖u‖k+2 + ‖f‖k+2)‖vh‖2, ∀vh ∈ V h
0 ,

O(hk+1.5)(‖u‖k+2 + ‖f‖k+2)‖vh‖2, ∀vh ∈ V h,
.

And if a12 = a21 ≡ 0, then

AI(ũh − up, vh) = O(hk+2)(‖u‖k+2 + ‖f‖k+2)‖vh‖2, ∀vh ∈ V h.

With suitable assumptions, it is straightforward to extend the proof of Theorem
4.3 to the general case:

Theorem 4.5. For k ≥ 2, assume aij , bi, c ∈ W k+2,∞(Ω) and u, f ∈ Hk+2(Ω),
Assume the approximated bilinear form AI satisfies coercivity and boundedness and
the elliptic regularity still holds for the dual problem of AI . Then ũh is a (k + 2)-th
order accurate approximation to u in the discrete 2-norm over all the (k+1)× (k+1)
Gauss-Lobatto points:

‖ũh − u‖2,Z0
= O(hk+2)(‖u‖k+2 + ‖f‖k+2).

Remark 6. With Neumann type boundary conditions, due to Lemma 3.7, we can
only prove (k + 1.5)-th order accuracy

‖ũh − u‖2,Z0
= O(hk+1.5)(‖u‖k+2 + ‖f‖k+2),

unless there are no mixed second order derivatives in the elliptic equation, i.e., a12 =
a21 ≡ 0. We emphasize that even for the full finite element scheme (1.3), only (k+1.5)-
th order accuracy at all Lobatto points can be proven for a general elliptic equation
with Neumann type boundary conditions.

5. Numerical results. In this section we show some numerical tests of C0-Q2

finite element method on an uniform rectangular mesh and verify the order of accuracy
at Z0, i.e., all Gauss-Lobatto points. The following four schemes will be considered:

1. Full Q2 finite element scheme (1.3) where integrals in the bilinear form are ap-
proximated by 5×5 Gauss quadrature rule, which is exact for Q9 polynomials
thus exact for A(uh, vh) if the variable coefficient is a Q5 polynomial.

2. The Gauss Lobatto quadrature scheme (1.7): all integrals are approximated
by 3× 3 Gauss Lobatto quadrature.

3. The schemes (1.4) and (1.5).
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The last three schemes are finite difference type since only grid point values of the co-
efficients are needed. In (1.4) and (1.5), AI(uh, vh) can be exactly computed by 4× 4
Gauss quadrature rule since coefficients are Q2 polynomials. An alternative finite dif-
ference type implementation of (1.4) and (1.5) is to precompute integrals of Lagrange
basis functions and their derivatives to form a sparse tensor, then multiply the tensor
to the vector consisting of point values of the coefficient to form the stiffness ma-
trix. With either implementation, computational cost to assemble stiffness matrices
in schemes (1.4) and (1.5) is higher than the stiffness matrix assembling in the sim-
pler scheme (1.7) since the Lagrangian Qk basis are delta functions at Gauss-Lobatto
points.

5.1. Accuracy. We consider the following example with either purely Dirichlet
or purely Neumann boundary conditions:

∇ · (a∇u) = f on [0, 1]× [0, 2]

where a(x, y) = 1+ 0.1x3y5 +cos(x3y2 +1) and u(x, y) = 0.1(sin(πx)+ x3)(sin(πy)+
y3) + cos(x4 + y3). The nonhomogeneous boundary condition should be computed in
a way consistent with the computation of integrals in the bilinear form. The errors
at Z0 are shown in Table 1 and Table 2. We can see that the four schemes are all
fourth order in the discrete 2-norm on Z0. Even though we did not discuss the max
norm error on Z0 in this paper, we should expect a | lnh| factor in the order of l∞

error over Z0 due to (1.9), which was proven upon the discrete Green’s function.
Next we consider an elliptic equation with purely Dirichlet or purely Neumann

boundary conditions:

∇ · (a∇u) + cu = f on [0, 1]× [0, 2]

where a =

(

a11 a12
a21 a22

)

, a11 = 10+30y5+x cos y+ y, a12 = a21 = 2+0.5(sin(πx)+

x3)(sin(πy)+y3)+cos(x4+y3), a22 = 10+x5, c = 1+x4y3 and u(x, y) = 0.1(sin(πx)+
x3)(sin(πy) + y3) + cos(x4 + y3). The errors at Z0 are listed in Table 3 and Table
4. Recall that only O(h3.5) can be proven due to the mixed second order derivatives
for the Neumann boundary conditions as discussed in Remark 6, we observe around
fourth order accuracy for (1.4) and (1.5) for Neumann boundary conditions in this
particular example.

5.2. Robustness. In Table 1 and Table 2, the errors of approximated coefficient
schemes (1.4), (1.5) and the Gauss Lobatto quadrature scheme (1.7) are close to one
another. We observe that the scheme (1.5) tends to be more accurate than (1.4) and
(1.7) when the coefficient a(x, y) is closer to zero in the Poisson equation. See Table 5
for errors of solving∇·(a∇u) = f on [0, 1]×[0, 2] with Dirichlet boundary conditions,
a(x, y) = 1 + εx3y5 + cos(x3y2 + 1) and u(x, y) = 0.1(sin(πx) + x3)(sin(πy) + y3) +
cos(x4 + y3) where ε = 0.001. Here the smallest value of a(x, y) is around ε = 0.001.
We remark that the difference among three schemes is much smaller for larger ε such
as ε = 0.1 as in Table 1.

6. Concluding remarks. We have shown that the classical superconvergence
of functions values at Gauss Lobatto points in C0-Qk finite element method for an
elliptic problem still holds if replacing the coefficients by their piecewise Qk Lagrange
interpolants at the Gauss Lobatto points. Such a superconvergence result can be used
for constructing a fourth order accurate finite difference type scheme by using Q2
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Table 1

The errors of C0-Q2 for a Poisson equation with Dirichlet boundary conditions at Lobatto points.

FEM with Approximated Coefficients (1.4)
Mesh l2 error order l∞ error order
2× 4 2.22E-1 - 3.96E-1 -
4× 8 4.83E-2 2.20 1.51E-1 1.39
8× 16 2.54E-3 4.25 1.16E-2 3.71
16× 32 1.49E-4 4.09 7.52E-4 3.95
32× 64 9.22E-6 4.01 5.14E-5 3.87

FEM using Gauss Lobatto Quadrature (1.7)
Mesh l2 error order l∞ error order
2× 4 2.24E-1 - 4.30E-1 -
4× 8 4.43E-2 2.34 1.37E-1 1.65
8× 16 2.27E-3 4.29 8.61E-3 4.00
16× 32 1.32E-4 4.11 4.87E-4 4.14
32× 64 8.13E-6 4.02 3.09E-5 3.97

FEM with Approximated Coefficients (1.5)
Mesh l2 error order l∞ error order
2× 4 2.78E-1 - 6.31E-1 -
4× 8 2.76E-2 3.33 8.69E-2 2.86
8× 16 1.28E-3 4.43 3.77E-3 4.53
16× 32 8.96E-5 3.83 3.36E-4 3.49
32× 64 5.79E-6 3.95 2.41E-5 3.80

Full FEM Scheme
Mesh l2 error order l∞ error order
2× 4 1.48E-2 - 3.79E-2 -
4× 8 1.05E-2 0.50 3.76E-2 0.01
8× 16 7.32E-4 3.84 4.04E-3 3.22
16× 32 4.54E-5 4.01 2.83E-4 3.83
32× 64 2.85E-6 3.99 1.75E-5 4.02

approximated variable coefficients. Numerical tests suggest that this is an efficient
and robust implementation of C0-Q2 finite element method without affecting the
superconvergence of function values.

Acknowledgments. Research is supported by the NSF grant DMS-1522593.
The authors are grateful to Prof. Johnny Guzmán for discussions on Theorem 4.1.
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Table 2

The errors of C0-Q2 for a Poisson equation with Neumann boundary conditions at Lobatto points.

FEM with Approximated Coefficients (1.4)
Mesh l2 error order l∞ error order
2× 4 3.44E0 - 5.39E0 -
4× 8 1.83E-1 4.23 3.51E-1 3.93
8× 16 1.38E-2 3.73 3.43E-2 3.36
16× 32 8.37E-4 4.04 2.21E-3 3.96
32× 64 5.13E-5 4.03 1.41E-4 3.96

FEM using Gauss Lobatto Quadrature (1.7)
Mesh l2 error order l∞ error order
2× 4 3.43E0 - 4.95E0 -
4× 8 1.81E-1 4.25 3.11E-1 3.99
8× 16 1.37E-2 3.72 2.81E-2 3.47
16× 32 8.33E-4 4.04 1.76E-3 4.00
32× 64 5.11E-5 4.03 1.12E-4 3.97

FEM with Approximated Coefficients (1.5)
Mesh l2 error order l∞ error order
2× 4 3.64E0 - 5.06E0 -
4× 8 1.60E-1 4.51 2.54E-1 4.32
8× 16 1.26E-2 3.67 2.39E-2 3.41
16× 32 7.67E-4 4.03 1.67E-3 3.84
32× 64 4.71E-5 4.03 1.09E-4 3.94

Full FEM Scheme
Mesh l2 error order l∞ error order
2× 4 8.45E-2 - 2.13E-1 -
4× 8 1.56E-2 2.43 5.66E-2 1.91
8× 16 9.12E-4 4.10 5.14E-3 3.46
16× 32 5.47E-5 4.06 3.24E-4 3.99
32× 64 3.37E-6 4.02 2.22E-5 3.87
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Table 3

An elliptic equation with mixed second order derivatives and Neumann boundary conditions.

FEM with Approximated Coefficients (1.4)
Mesh l2 error order l∞ error order
2× 4 1.92E0 - 3.47E0 -
4× 8 2.16E-1 3.15 6.05E-1 2.52
8× 16 1.45E-2 3.90 6.12E-2 3.30
16× 32 9.08E-4 4.00 4.05E-3 3.92
32× 64 5.66E-5 4.00 2.76E-4 3.88

FEM using Gauss Lobatto Quadrature (1.7)
Mesh l2 error order l∞ error order
2× 4 1.38E0 - 2.27E0 -
4× 8 1.46E-1 3.24 2.52E-1 3.17
8× 16 7.49E-3 4.28 1.64E-2 3.94
16× 32 4.31E-4 4.12 1.02E-3 4.01
32× 64 2.61E-5 4.04 7.47E-5 3.78

FEM with Approximated Coefficients (1.5)
Mesh l2 error order l∞ error order
2× 4 1.89E0 - 2.84E0 -
4× 8 1.04E-1 4.18 1.45E-1 4.30
8× 16 5.62E-3 4.21 1.86E-2 2.96
16× 32 3.24E-4 4.12 1.67E-3 3.48
32× 64 1.95E-5 4.05 1.32E-4 3.66

Full FEM Scheme
Mesh l2 error order l∞ error order
2× 4 1.46E-1 - 4.31E-1 -
4× 8 1.64E-2 3.16 6.55E-2 2.71
8× 16 7.08E-4 4.53 3.42E-3 4.26
16× 32 4.44E-5 4.06 4.84E-4 2.82
32× 64 2.95E-6 3.85 7.96E-5 2.60
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Table 4

An elliptic equation with mixed second order derivatives and Dirichlet boundary conditions.

FEM with Approximated Coefficients (1.4)
Mesh l2 error order l∞ error order
2× 4 2.64E-2 - 7.01E-2 -
4× 8 4.68E-3 2.50 1.92E-2 1.87
8× 16 4.78E-4 3.29 2.70E-3 2.83
16× 32 3.69E-5 3.69 2.43E-4 3.47
32× 64 2.53E-6 3.87 1.82E-5 3.74
64× 128 1.65E-7 3.94 1.25E-6 3.87

FEM using Gauss Lobatto Quadrature (1.7)
Mesh l2 error order l∞ error order
2× 4 3.94E-2 - 7.15E-2 -
4× 8 1.23E-2 1.67 3.28E-2 1.12
8× 16 1.46E-3 3.08 5.42E-3 2.60
16× 32 1.14E-4 3.68 3.96E-4 3.78
32× 64 7.75E-6 3.88 2.62E-5 3.92

FEM with Approximated Coefficients (1.5)
Mesh l2 error order l∞ error order
2× 4 4.08E-2 - 7.67E-2 -
4× 8 1.01E-2 2.02 3.39E-2 1.18
8× 16 5.22E-4 4.27 1.72E-3 4.30
16× 32 3.14E-5 4.05 9.57E-5 4.17
32× 64 1.99E-6 3.98 5.71E-6 4.07

Full FEM Scheme
Mesh l2 error order l∞ error order
2× 4 7.35E-2 - 1.99E-1 -
4× 8 5.94E-3 3.63 2.43E-2 3.03
8× 16 4.31E-4 3.79 2.01E-3 3.60
16× 32 2.83E-5 3.93 1.76E-4 3.93
32× 64 1.68E-6 4.07 8.41E-6 4.07
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Table 5

A Poisson equation with coefficient min
(x,y)

a(x, y) ≈ 0.001.

FEM with Approximated Coefficients (1.4)
Mesh l2 error order l∞ error order
2× 4 2.78E-1 - 4.52E-1 -
4× 8 6.22E-2 2.16 2.08E-1 1.12
8× 16 1.09E-2 2.51 8.44E-2 1.30
16× 32 1.31E-3 3.05 1.81E-2 2.22
32× 64 1.08E-4 3.60 1.75E-3 3.38
64× 128 7.24E-6 3.90 1.52E-4 3.53

FEM using Gauss Lobatto Quadrature (1.7)
Mesh l2 error order l∞ error order
2× 4 2.81E-1 - 4.59E-1 -
4× 8 4.69E-2 2.58 1.37E-1 1.74
8× 16 5.06E-3 3.21 3.75E-2 1.87
16× 32 7.04E-4 2.85 7.86E-3 2.25
32× 64 6.74E-5 3.39 1.21E-3 2.70
64× 128 4.94E-6 3.77 1.17E-4 3.37

FEM with Approximated Coefficients (1.5)
Mesh l2 error order l∞ error order
2× 4 2.68E-1 - 5.48E-1 -
4× 8 2.91E-1 3.21 1.59E-1 1.78
8× 16 3.51E-3 3.05 4.02E-2 1.98
16× 32 2.86E-4 3.62 3.60E-3 3.48
32× 64 1.86E-5 3.94 2.31E-4 3.96
64× 128 1.17E-6 4.00 1.53E-5 3.91
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