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SUPERCONVERGENCE OF HIGH ORDER FINITE DIFFERENCE

SCHEMES BASED ON VARIATIONAL FORMULATION FOR

ELLIPTIC EQUATIONS ∗

HAO LI† AND XIANGXIONG ZHANG †

Abstract. The classical continuous finite element method with Lagrangian Qk basis reduces to
a finite difference scheme when all the integrals are replaced by the (k+ 1)× (k+ 1) Gauss-Lobatto
quadrature. We prove that this finite difference scheme is (k+2)-th order accurate in the discrete 2-
norm for an elliptic equation with Dirichlet boundary conditions, which is a superconvergence result
of function values.
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1. Introduction.

1.1. Motivation. In this paper we consider solving a two-dimensional elliptic
equation with smooth coefficients on a rectangular domain by high order finite dif-
ference schemes, which are constructed via using suitable quadrature in the classical
continuous finite element method on a rectangular mesh. Consider the following
model problem as an example: a variable coefficient Poisson equation −∇(a(x)∇u) =
f, a(x) > 0 on a square domain Ω = (0, 1)× (0, 1) with homogeneous Dirichlet bound-
ary conditions. The variational form is to find u ∈ H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}
satisfying

A(u, v) = (f, v), ∀v ∈ H1
0 (Ω),

where A(u, v) =
∫∫

Ω
a∇u · ∇vdxdy, (f, v) =

∫∫

Ω
fvdxdy. Let h be the mesh size of

an uniform rectangular mesh and V h
0 ⊆ H1

0 (Ω) be the continuous finite element space
consisting of piecewise Qk polynomials (i.e., tensor product of piecewise polynomials
of degree k), then the C0-Qk finite element solution is defined as uh ∈ V h

0 satisfying

(1.1) A(uh, vh) = (f, vh), ∀vh ∈ V h
0 .

Standard error estimates of (1.1) are ‖u − uh‖1 ≤ Chk‖u‖k+1 and ‖u − uh‖0 ≤
Chk+1‖u‖k+1 where ‖ · ‖k denotes Hk(Ω)-norm, see [5]. For k ≥ 2, O(hk+1) su-
perconvergence for the gradient at Gauss quadrature points and O(hk+2) supercon-
vergence for functions values at Gauss-Lobatto quadrature points were proven for
one-dimensional case in [11, 2, 1] and for two-dimensional case in [8, 17, 4, 14].

When implementing the scheme (1.1), integrals are usually approximated by
quadrature. The most convenient implementation is to use (k + 1)× (k + 1) Gauss-
Lobatto quadrature because they not only are superconvergence points but also can
define all the degree of freedoms of Lagrangian Qk basis. See Figure 1 for the case
k = 2. Such a quadrature scheme can be denoted as finding uh ∈ V h

0 satisfying

(1.2) Ah(uh, vh) = 〈f, vh〉h, ∀vh ∈ V h
0 ,

where Ah(uh, vh) and 〈f, vh〉h denote using tensor product of (k + 1)-point Gauss-
Lobatto quadrature for integrals A(uh, vh) and (f, vh) respectively.
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2 H. LI AND X. ZHANG

(a) The quadrature points and a FEM
mesh

(b) The corresponding finite differ-
ence grid

Fig. 1. An illustration of Lagrangian Q2 element and the 3× 3 Gauss-Lobatto quadrature.

It is well known that many classical finite difference schemes are exactly finite
element methods with specific quadrature scheme, see [5]. We will write scheme
(1.2) as an exact finite difference type scheme in Section 7 for k = 2. Such a finite
difference scheme not only provides an efficient way for assembling the stiffness matrix
especially for a variable coefficient problem, but also with has advantages inherited
from the variational formulation, such as symmetry of stiffness matrix and easiness of
handling boundary conditions in high order schemes. This is the variational approach
to construct a high order accurate finite difference scheme .

Classical quadrature error estimates imply that standard finite element error es-
timates still hold for (1.2), see [7, 5]. The focus of this paper is to prove that the
superconvergence of function values at Gauss-Lobatto points still holds. To be more
specific, for Dirichlet type boundary conditions, we will show that (1.2) is a (k+2)-th
order accurate finite difference scheme in the discrete 2-norm under suitable smooth-
ness assumptions on the exact solution and the coefficients.

In this paper, the main motivation to study superconvergence is to use it for
constructing (k + 2)-th order accurate finite difference schemes. For such a task,
superconvergence points should define all degree of freedoms over the whole compu-
tational domain including boundary points. For high order finite element methods,
this seems possible only on quite structured meshes such as rectangular meshes for
a rectangular domain and equilateral triangles for a hexagonal domain, even though
there are numerous superconvergence results for interior cells in unstructured meshes.

1.2. Related work and difficulty in using standard tools. To illustrate
our perspectives and difficulties, we focus on the case k = 2 in the following. For
computing the bilinear form in the scheme (1.1), another convenient implementation
is to replace the smooth coefficient a(x, y) by a piecewise Q2 polynomial aI(x, y) ob-
tained by interpolating a(x, y) at the quadrature points in each cell shown in Figure
1. Then one can compute the integrals in the bilinear form exactly since the inte-
grand is a polynomial. Superconvergence of function values for such an approximated
coefficient scheme was proven in [13] and the proof can be easily extended to higher
order polynomials and three-dimensional cases. This result might seem surprising
since interpolation error a(x, y) − aI(x, y) is of third order. On the other hand, all
the tools used in [13] are standard in the literature.

From a practical point of view, (1.2) is more interesting since it gives a genuine
finite difference scheme. It is straightforward to use standard tools in the literature for
showing superconvergence still holds for accurate enough quadrature. Even though
the 3×3 Gauss-Lobatto quadrature is fourth order accurate, the standard quadrature
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error estimates cannot be used directly to establish the fourth order accuracy of (1.2),
as will be explained in detail in Remark 3.8 in Section 3.2.

We can also rewrite (1.2) for k = 2 as a finite difference scheme but its local
truncation error is only second order as will be shown in Section 7.4. The phenomenon
that truncation errors have lower orders was named supraconvergence in the literature.
The second order truncation error makes it difficult to establish the fourth order
accuracy following any traditional finite difference analysis approaches.

To construct high order finite difference schemes from variational formulation, we
can also consider finite element method with P 2 basis on a regular triangular mesh
(two adjacent triangles form a rectangle) [18]. Superconvergence of function values
in C0-P 2 finite element method at the three vertices and three edge centers can be
proven [4, 17]. See also [10]. Even though the quadrature using only three edge
centers is third order accurate, error cancellations happen on two adjacent triangles
forming a rectangle, thus fourth order accuracy of the corresponding finite difference
scheme is still possible. However, extensions to construct higher order finite difference
schemes are much more difficult.

1.3. Contributions and organization of the paper. The main contribution
is to give the proof of the (k + 2)-th order accuracy of (1.2), which is an easy con-
struction of high order finite difference schemes for variable coefficient problems. An
important step is to obtain desired sharp quadrature estimate for the bilinear form,
for which it is necessary to count in quadrature error cancellations between neigh-
boring cells. Conventional quadrature estimating tools such as the Bramble-Hilbert
Lemma only give the sharp estimate on each cell thus cannot be used directly. A key
technique in this paper is to apply the Bramble-Hilbert Lemma after integration by
parts on proper interpolation polynomials to allow error cancellations.

The paper is organized as follows. In Section 2, we introduce our notations and
assumptions. In Section 3, standard quadrature estimates are reviewed. Supercon-
vergence of bilinear forms with quadrature is shown in Section 4. Then we prove
the main result for homogeneous Dirichlet boundary conditions in Section 5 and for
nonhomogeneous Dirichlet boundary conditions in Section 6. Section 7 provides a
simple finite difference implementation of (1.2). Section 8 contains numerical tests.
Concluding remarks are given in Section 9.

2. Notations and assumptions.

2.1. Notations and basic tools. We will use the same notations as in [13]:
• We only consider a rectangular domain Ω = (0, 1)× (0, 1) with its boundary
denoted as ∂Ω.

• Only for convenience, we assume Ωh is an uniform rectangular mesh for Ω̄
and e = [xe − h, xe + h] × [ye − h, ye + h] denotes any cell in Ωh with cell
center (xe, ye). The assumption of an uniform mesh is not essential

to the discussion of superconvergence.

• Qk(e) =

{

p(x, y) =
k
∑

i=0

k
∑

j=0

pijx
iyj, (x, y) ∈ e

}

is the set of tensor product of

polynomials of degree k on a cell e.
• V h = {p(x, y) ∈ C0(Ωh) : p|e ∈ Qk(e), ∀e ∈ Ωh} denotes the continuous
piecewise Qk finite element space on Ωh.

• V h
0 = {vh ∈ V h : vh = 0 on ∂Ω}.

• The norm and seminorms for W k,p(Ω) and 1 ≤ p < +∞, with standard
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modification for p = +∞:

‖u‖k,p,Ω =





∑

i+j≤k

∫∫

Ω

|∂ix∂
j
yu(x, y)|

pdxdy





1/p

,

|u|k,p,Ω =





∑

i+j=k

∫∫

Ω

|∂ix∂
j
yu(x, y)|

pdxdy





1/p

,

[u]k,p,Ω =

(∫∫

Ω

|∂kxu(x, y)|
pdxdy +

∫∫

Ω

|∂kyu(x, y)|
pdxdy

)1/p

.

Notice that [u]k+1,p,Ω = 0 if u is a Qk polynomial.
• For simplicity, sometimes we may use ‖u‖k,Ω, |u|k,Ω and [u]k,Ω denote norm
and seminorms for Hk(Ω) =W k,2(Ω).

• When there is no confusion, Ω may be dropped in the norm and seminorms,
e.g., ‖u‖k = ‖u‖k,2,Ω.

• For any vh ∈ V h, 1 ≤ p < +∞ and k ≥ 1,

‖vh‖k,p,Ω :=

(

∑

e

‖vh‖
p
k,p,e

)
1

p

, |vh|k,p,Ω :=

(

∑

e

|vh|
p
k,p,e

)
1

p

, [vh]k,p,Ω :=

(

∑

e

[vh]
p
k,p,e

)
1

p

.

• Let Z0,e denote the set of (k + 1)× (k+ 1) Gauss-Lobatto points on a cell e.
• Z0 =

⋃

e Z0,e denotes all Gauss-Lobatto points in the mesh Ωh.
• Let ‖u‖2,Z0

and ‖u‖∞,Z0
denote the discrete 2-norm and the maximum norm

over Z0 respectively:

‖u‖2,Z0
=



h2
∑

(x,y)∈Z0

|u(x, y)|2





1

2

, ‖u‖∞,Z0
= max

(x,y)∈Z0

|u(x, y)|.

• For a continuous function f(x, y), let fI(x, y) denote its piecewise Qk La-
grange interpolant at Z0,e on each cell e, i.e., fI ∈ V h satisfies:

f(x, y) = fI(x, y), ∀(x, y) ∈ Z0.

• P k(t) denotes the polynomial of degree k of variable t.
• (f, v)e denotes the inner product in L

2(e) and (f, v) denotes the inner product
in L2(Ω):

(f, v)e =

∫∫

e

fv dxdy, (f, v) =

∫∫

Ω

fv dxdy =
∑

e

(f, v)e.

• 〈f, v〉e,h denotes the approximation to (f, v)e by using (k+1)× (k+1)-point
Gauss Lobatto quadrature for integration over cell e.

• 〈f, v〉h denotes the approximation to (f, v) by using (k + 1) × (k + 1)-point
Gauss Lobatto quadrature for integration over each cell e.

• K̂ = [−1, 1]× [−1, 1] denotes a reference cell.

• For f(x, y) defined on e, consider f̂(s, t) = f(sh+ xe, th+ ye) defined on K̂.

Let f̂I denote the Qk Lagrange interpolation of f̂ at the (k + 1) × (k + 1)
Gauss Lobatto quadrature points on K̂.
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• (f̂ , v̂)K̂ =
∫∫

K̂
f̂ v̂ dsdt.

• 〈f̂ , v̂〉K̂ denotes the approximation to (f̂ , v̂)K̂ by using (k+1)× (k+1)-point
Gauss-Lobatto quadrature.

• On the reference cell K̂, for convenience we use the superscript h over the
ds or dt to denote we use (k + 1)-point Gauss-Lobatto quadrature on the
corresponding variable. For example,

∫∫

K̂

f̂dhsdt =

∫ 1

−1

[w1f̂(−1, t) + wk+1f̂(1, t) +

k
∑

i=2

wif̂(xi, t)]dt.

Since (f̂ v̂)I coincides with f̂ v̂ at the quadrature points, we have
∫∫

K̂

(f̂ v̂)Idxdy =

∫∫

K̂

(f̂ v̂)Id
hxdhy =

∫∫

K̂

f̂ v̂dhxdhy = 〈f̂ , v̂〉K̂ .

The following are commonly used tools and facts:
• For two-dimensional problems,

hk−2/p|v|k,p,e = |v̂|k,p,K̂ , hk−2/p[v]k,p,e = [v̂]k,p,K̂ , 1 ≤ p ≤ ∞.

• Inverse estimates for polynomials:

(2.1) ‖vh‖k+1,e ≤ Ch−1‖vh‖k,e, ∀vh ∈ V h, k ≥ 0.

• Sobolev’s embedding in two and three dimensions: H2(K̂) →֒ C0(K̂).
• The embedding implies

‖f̂‖0,∞,K̂ ≤ C‖f̂‖k,2,K̂ , ∀f̂ ∈ Hk(K̂), k ≥ 2,

‖f̂‖1,∞,K̂ ≤ C‖f̂‖k+1,2,K̂ , ∀f̂ ∈ Hk+1(K̂), k ≥ 2.

• Cauchy-Schwarz inequalities in two dimensions:

∑

e

‖u‖k,e‖v‖k,e ≤

(

∑

e

‖u‖2k,e

)
1

2

(

∑

e

‖v‖2k,e

)
1

2

, ‖u‖k,1,e = O(h)‖u‖k,2,e.

• Poincaré inequality: let ū be the average of u ∈ H1(Ω) on Ω, then

|u− ū|0,p,Ω ≤ C|∇u|0,p,Ω, p ≥ 1.

If ū is the average of u ∈ H1(e) on a cell e, we have

|u− ū|0,p,e ≤ Ch|∇u|0,p,e, p ≥ 1.

• For k ≥ 2, the (k + 1) × (k + 1) Gauss-Lobatto quadrature is exact for
integration of polynomials of degree 2k − 1 ≥ k + 1 on K̂.

• Define the projection operator Π̂1 : û ∈ L1(K̂) → Π̂1û ∈ Q1(K̂) by

(2.2)

∫∫

K̂

(Π̂1û)wdsdt =

∫∫

K̂

ûwdsdt, ∀w ∈ Q1(K̂).

Notice that all degree of freedoms of Π̂1û can be represented as a linear combi-
nation of

∫∫

K̂
û(s, t)p(s, t)dsdt for p(s, t) = 1, s, t, st, thus Π̂1 is a continuous

linear mapping from L2(K̂) to H1(K̂) (or H2(K̂)) by Cauchy-Schwarz in-
equality |

∫∫

K̂
û(s, t)p̂(s, t)dsdt| ≤ ‖û‖0,2,K̂‖p̂‖0,2,K̂ ≤ C‖û‖0,2,K̂ .
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2.2. Coercivity and elliptic regularity. We consider the elliptic variational
problem of finding u ∈ H1

0 (Ω) to satisfy

(2.3) A(u, v) :=

∫∫

Ω

(∇vTa∇u+ b∇uv + cuv) dxdy = (f, v), ∀v ∈ H1
0 (Ω),

where a =

(

a11 a12

a21 a22

)

is positive definite and b = [b1 b2]. Assume the coefficients

a, b and c are smooth with uniform upper bounds, thus A(u, v) ≤ C‖u‖1‖v‖1 for
any u, v ∈ H1

0 (Ω). We denote λa as the smallest eigenvalues of a. Assume λa has a
positive lower bound and ∇ · b ≤ 2c, so that coercivity of the bilinear form can be
easily achieved. Since

(b · ∇u, v) =

∫

∂Ω

uvb · nds− (∇ · (vb), u) =

∫

∂Ω

uvb · nds− (b · ∇v, u)− (v∇ · b, u),

we have

(2.4) 2(b · ∇v, v) + 2(cv, v) =

∫

∂Ω

v2b · nds+ ((2c−∇ · b)v, v) ≥ 0, ∀v ∈ H1
0 (Ω).

By the equivalence of two norms | · |1 and ‖ · ‖1 for the space H1
0 (Ω) (see [5]), we

conclude that the bilinear form A(u, v) = (a∇u,∇v) + (b · ∇u, v) + (cu, v) satisfies
coercivity A(v, v) ≥ C‖v‖1 for any v ∈ H1

0 (Ω).
The coercivity can also be achieved if we assume |b| < 4λac. By Young’s inequal-

ity

|(b · ∇v, v)| ≤

∫∫

Ω

|b · ∇v|2

4c
+ c|v|2dxdy ≤

(

|b|2

4c
∇v,∇v

)

+ (cv, v),

we have
(2.5)

A(v, v) ≥ (a·∇v,∇v)+(cv, v)−|(b·∇v, v)| ≥

(

(λa −
|b|2

4c
)∇v,∇v

)

> 0, ∀v ∈ H1
0 (Ω).

We need to make an additional assumption for (2.3): the elliptic regularity holds
for the dual problem. Let A∗ be the dual operator of A, i.e., A∗(u, v) = A(v, u).
We assume the elliptic regularity ‖w‖2 ≤ C‖f‖0 holds for the exact dual problem of
finding w ∈ H1

0 (Ω) satisfying A∗(w, v) = (f, v), ∀v ∈ H1
0 (Ω). See [16, 9] for the

elliptic regularity with Lipschitz continuous coefficients on a Lipschitz domain.

3. Quadrature error estimates. In the following, we will use ˆ for a function
to emphasize the function is defined on or transformed to the reference cell K̂ =
[−1, 1]× [−1, 1] from a mesh cell.

3.1. Standard estimates. The Bramble-Hilbert Lemma for Qk polynomials
can be stated as follows, see Exercise 3.1.1 and Theorem 4.1.3 in [6]:

Theorem 3.1. If a continuous linear mapping Π̂ : Hk+1(K̂) → Hk+1(K̂) satis-
fies Π̂v̂ = v̂ for any v̂ ∈ Qk(K̂), then

(3.1) ‖û− Π̂û‖k+1,K̂ ≤ C[û]k+1,K̂ , ∀û ∈ Hk+1(K̂).

Thus if l(·) is a continuous linear form on the space Hk+1(K̂) satisfying l(v̂) = 0, ∀v̂ ∈
Qk(K̂), then

|l(û)| ≤ C‖l‖′
k+1,K̂

[û]k+1,K̂ , ∀û ∈ Hk+1(K̂),

where ‖l‖′
k+1,K̂

is the norm in the dual space of Hk+1(K̂).
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By applying Bramble-Hilbert Lemma, we have the following standard quadrature
estimates. See [13] for the detailed proof.

Theorem 3.2. For a sufficiently smooth function a(x, y), let m is an integer
satisfying k ≤ m ≤ 2k, we have

∫∫

e

a(x, y)dxdy −

∫∫

e

aI(x, y)dxdy = O(hm+1)[a]m,e = O(hm+2)[a]m,∞,e.

Theorem 3.3. If f ∈ Hk+2(Ω), (f, vh)−〈f, vh〉h = O(hk+2)‖f‖k+2‖vh‖2, ∀vh ∈
V h.

Remark 3.4. By the theorems above, on the reference cell K̂, we have

(3.2)

∫∫

K̂

â(s, t)− âI(s, t)dsdt ≤ C[â]k+2,K̂ ≤ C[â]k+2,∞,K̂ ,

and

(3.3) ‖â− âI‖k+1,K̂ ≤ C[â]k+1,K̂ .

The following two results are also standard estimates obtained by applying the
Bramble-Hilbert Lemma.

Lemma 3.5. If f ∈ H2(Ω) or f ∈ V h, we have (f, vh)−〈f, vh〉h = O(h2)|f |2‖vh‖0, ∀vh ∈
V h.

Proof. For simplicity, we ignore the subscript in vh. Let E(f) denote the quadra-

ture error for integrating f(x, y) on e. Let Ê(f̂) denote the quadrature error for

integrating f̂(s, t) = f(xe + sh, ye + th) on the reference cell K̂. Due to the embed-
ding H2(K̂) →֒ C0(K̂), we have

|Ê(f̂ v̂)| ≤ C|f̂ v̂|0,∞,K̂ ≤ C|f̂ |0,∞,K̂ |v̂|0,∞,K̂ ≤ C‖f̂‖2,K̂‖v̂‖0,K̂ .

Thus the mapping f̂ → E(f̂ v̂) is a continuous linear form on H2(K̂) and its norm is

bounded by C‖v̂‖0,K̂ . If f̂ ∈ Q1(K̂), then we have Ê(f̂ v̂) = 0. By the Bramble-Hilbert
Lemma Theorem 3.1 on this continuous linear form, we get

|Ê(f̂ v̂)| ≤ C[f̂ ]2,K̂‖v̂‖0,K̂ .

So on a cell e, we get

(3.4) E(fv) = h2Ê(f̂ v̂) ≤ Ch2[f̂ ]2,K̂‖v̂‖0,K̂ ≤ Ch2|f |2,e‖v‖0,e.

Summing over all elements and use Cauchy-Schwarz inequality, we get the desired
result.

Theorem 3.6. Assume all coefficients of (2.3) are in W 2,∞(Ω). We have

A(zh, vh)−Ah(zh, vh) = O(h)‖vh‖2‖zh‖1, ∀vh, zh ∈ V h.

Proof. By setting f = a11(vh)x in (3.4), we get

|(a11(zh)x, (vh)x)− 〈a11(zh)x, (vh)x〉h| ≤ Ch2‖a11(vh)x‖2‖(zh)x‖0

≤Ch2‖a11‖2,∞‖vh‖3|zh|1 ≤ Ch‖a11‖2,∞‖vh‖2|zh|1,
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where the inverse estimate (2.1) is used in the last inequality. Similarly, we have

(a12(zh)x, (vh)y)− 〈a12(zh)x, (vh)y〉h = Ch‖a12‖2,∞‖vh‖2|zh|1,

(a22(zh)y, (vh)y)− 〈a22(zh)y, (vh)y〉h = Ch‖a22‖2,∞‖vh‖2|zh|1,

(b1(zh)x, vh)− 〈b1(zh)x, vh〉h = Ch‖b1‖2,∞‖vh‖2|zh|0,

(b2(zh)y , vh)− 〈b2(zh)y, vh〉h = Ch‖b2‖2,∞‖vh‖2|zh|0,

(czh, vh)− 〈czh, vh〉h = Ch‖c‖2,∞‖vh‖1|zh|0,

which implies
A(zh, vh)−Ah(zh, vh) = O(h)‖vh‖2‖zh‖1.

3.2. A refined consistency error. In this subsection, we will show how to
establish the desired consistency error estimate for smooth enough coefficients:

A(u, vh)−Ah(u, vh) =

{

O(hk+2)‖u‖k+3‖vh‖2, ∀vh ∈ V h
0

O(hk+
3

2 )‖u‖k+3‖vh‖2, ∀vh ∈ V h
.

Theorem 3.7. Assume a(x, y) ∈W k+2,∞(Ω), u ∈ Hk+3(Ω), then

(a∂xu, ∂xvh)− 〈a∂xu, ∂xvh〉h =

{

O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h
0 ,(3.5a)

O(hk+
3

2 )‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h,(3.5b)

(a∂xu, ∂yvh)− 〈a∂xu, ∂yvh〉h =

{

O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h
0 ,(3.6a)

O(hk+
3

2 )‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h,(3.6b)

(3.7) (a∂xu, vh)− 〈a∂xu, vh〉h = O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h
0 ,

(3.8) (au, vh)− 〈au, vh〉h = O(hk+2)‖a‖k+2,∞‖u‖k+2‖vh‖2, ∀vh ∈ V h
0 .

Remark 3.8. We emphasize that Theorem 3.7 cannot be proven by applying the
Bramble-Hilbert Lemma directly. Consider the constant coefficient case a(x, y) ≡ 1
and k = 2 as an example,

(∂xu, ∂xvh)− 〈∂xu, ∂xvh〉h =
∑

e

(∫∫

e

ux(vh)xdxdy −

∫∫

e

ux(vh)xd
hxdhy

)

.

Since the 3 × 3 Gauss-Lobatto quadrature is exact for integrating Q3 polynomials, by
Theorem 3.1 we have
∣

∣

∣

∣

∫∫

e

ux(vh)xdxdy −

∫∫

e

ux(vh)xd
hxdhy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

K̂

ûs(v̂h)sdsdt−

∫∫

K̂

ûs(v̂h)sd
hsdht

∣

∣

∣

∣

≤ C[ûs(v̂h)s]4,K̂ .

Notice that v̂h is Q2 thus (v̂h)stt does not vanish and [(v̂h)s]4,K̂ ≤ C|v̂h|3,K̂ . So by

Bramble-Hilbert Lemma for Qk polynomials, we can only get
∫∫

e

ux(vh)xdxdy −

∫∫

e

ux(vh)xd
hxdhy = O(h4)‖u‖5,e‖vh‖3,e.

Thus by Cauchy-Schwarz inequality after summing over e, we only have

(∂xu, ∂xvh)− 〈∂xu, ∂xvh〉h = O(h4)‖u‖5‖vh‖3.



SUPERCONVERGENCE OF FD SCHEMES BASED ON VARIATION FORM 9

In order to get the desired estimate involving only the H2-norm of vh, we will
take advantage of error cancellations between neighboring cells through integration
by parts.

Proof. For simplicity, we ignore the subscript h of vh in this proof and all the
following v are in V h which are Qk polynomials in each cell. First, by Theorem 3.3,
we easily obtain (3.7) and (3.8):

(aux, v)− 〈aux, v〉h = O(hk+2)‖aux‖k+2‖v‖2 = O(hk+2)‖a‖k+2,∞‖u‖k+3‖v‖2,

(au, v)− 〈au, v〉h = O(hk+2)‖au‖k+2‖v‖2 = O(hk+2)‖a‖k+2,∞‖u‖k+2‖v‖2.

We will only discuss (aux, vx) − 〈aux, vx〉h and the same discussion also applies to
derive (3.6a) and (3.6b).

Since we have

(aux, vx)− 〈aux, vx〉h =
∑

e

(∫∫

e

auxvxdxdy −

∫∫

e

auxvxd
hxdhy

)

=
∑

e

(
∫∫

K̂

âûsv̂sdsdt−

∫∫

K̂

âûsv̂sd
hsdht

)

=
∑

e

(
∫∫

K̂

âûsv̂sdsdt−

∫∫

K̂

(âûs)I v̂sd
hsdht

)

,

where we use the fact âûsv̂s = (âûs)I v̂s on the Gauss-Lobatto quadrature points. For
fixed t, (âûs)I v̂s is a polynomial of degree 2k−1 w.r.t. variable s, thus the (k+1)-point
Gauss-Lobatto quadrature is exact for its s-integration, i.e.,

∫∫

K̂

(âûs)I v̂sd
hsdht =

∫∫

K̂

(âûs)I v̂sdsd
ht.

To estimate the quadrature error we introduce some intermediate values then do
interpretation by parts,

∫∫

K̂

âûsv̂sdsdt−

∫∫

K̂

(âûs)I v̂sd
hsdht(3.9)

=

∫∫

K̂

âûsv̂sdsdt−

∫∫

K̂

(âûs)I v̂sdsdt+

∫∫

K̂

(âûs)I v̂sdsdt−

∫∫

K̂

(âûs)I v̂sdsd
ht

(3.10)

=

∫∫

K̂

[âûs − (âûs)I ] v̂sdsdt+

(∫∫

K̂

[(âûs)I ]s v̂dsd
ht−

∫∫

K̂

[(âûs)I ]s v̂dsdt

)

(3.11)

+

(

∫ 1

−1

(âûs)I v̂dt

∣

∣

∣

∣

s=1

s=−1

−

∫ 1

−1

(âûs)I v̂d
ht

∣

∣

∣

∣

s=1

s=−1

)

= I + II + III.(3.12)

For the first term in (3.12), let v̂s be the cell average of v̂s on K̂, then

I =

∫∫

K̂

(âûs − (âûs)I) v̂sdsdt+

∫∫

K̂

(âûs − (âûs)I) (v̂s − v̂s)dsdt.

By (3.2) we have
∣

∣

∣

∣

∫∫

K̂

(âûs − (âûs)I) v̂sdsdt

∣

∣

∣

∣

≤ C[âûs]k+2,K̂

∣

∣v̂s
∣

∣ = O(hk+2)‖â‖k+2,∞,e‖û‖k+3,e‖v̂‖1,e.
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By Cauchy-Schwarz inequality, the Bramble-Hilbert Lemma on interpolation error
and Poincaré inequality, we have

∣

∣

∣

∣

∫∫

K̂

(âûs − (âûs)I) (v̂s − v̂s)dsdt

∣

∣

∣

∣

≤ |âûs − (âûs)I |0,K̂ |v̂s − v̂s|0,K̂

≤C[âûs]k+1,K̂ |v̂|2,K̂ = O(hk+2)‖a‖k+1,∞,e‖u‖k+2,e‖v‖2,e.

Thus we have

I = O(hk+2)‖a‖k+2,∞,e‖u‖k+3,e‖v‖2,e.

For the second term in (3.12), we can estimate it the same way as in the proof of
Theorem 2.4. in [13]. For each v̂ ∈ Qk(K̂) we can define a linear form as

Êv̂(f̂) =

∫∫

K̂

(F̂I)sv̂dsdt−

∫∫

K̂

(F̂I)sv̂dsd
ht,

where F̂ is an antiderivative of f̂ w.r.t. variable s. Due to the linearity of interpo-
lation operator and differentiating operation, Êv̂ is well defined. By the embedding
H2(K̂) →֒ C0(K̂), we have

Êv̂(f̂) ≤ C‖F̂‖0,∞,K̂‖v̂‖0,∞,K̂ ≤ C‖f̂‖0,∞,K̂‖v̂‖0,∞,K̂ ≤ C‖f̂‖2,K̂‖v̂‖0,K̂ ≤ C‖f̂‖k,K̂‖v̂‖0,K̂ ,

which implies that the mapping Êv̂ is a continuous linear form on Hk(K̂). With
projection Π1 defined in (2.2), we have

Êv̂(f̂) = Êv̂−Π1v̂(f̂) + ÊΠ1v̂(f̂), ∀v̂ ∈ Qk(K̂).

Since Qk−1(K̂) ⊂ ker Êv̂−Π1v̂, thus by the Bramble-Hilbert Lemma,

Êv̂−Π1v̂(f̂) ≤ C[f ]k,K̂‖v̂ −Π1v̂‖0,K̂ ≤ C[f ]k,K̂ |v̂|2,K̂ ,

and we also have

ÊΠ1v̂(f̂) =

∫∫

K̂

(F̂I)sΠ1v̂dsdt−

∫∫

K̂

(F̂I)sΠ1v̂dsd
ht = 0.

Thus we have
∫∫

K̂

[(âûs)I ]s v̂dsd
ht−

∫∫

K̂

[(âûs)I ]s v̂dsdt = −Êv̂((âûs)s) = −Êv̂−Π1v̂((âûs)s)

≤C[(âûs)s]k,K̂ |v̂h|2,K̂ ≤ C|âûs|k+1,K̂ |v̂|2,K̂ = O(hk+2)‖a‖k+1,∞,e‖u‖k+2,e|v|2,e

Now we only need to discuss the line integral term. Let L2 and L4 denote the left
and right boundary of Ω and let le2 and le4 denote the left and right edge of element

e or lK̂2 and lK̂4 for K̂. Since (âûs)I v̂ mapped back to e will be 1
h (aux)Iv which is

continuous across le2 and le4, after summing over all elements e, the line integrals along
the inner edges are canceled out and only the line integrals on L2 and L4 remain.

For a cell e adjacent to L2, consider its reference cell K̂, and define a linear form

Ê(f̂) =
∫ 1

−1
f̂(−1, t)dt−

∫ 1

−1
f̂(−1, t)dht, then we have

Ê(f̂ v̂) ≤ C|f̂ |
0,∞,lK̂

2

|v̂|
0,∞,lK̂

2

≤ C‖f̂‖
2,lK̂

2

‖v̂‖
0,lK̂

2

,
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which means that the mapping f̂ → Ê(f̂ v̂) is continuous with operator norm less
than C‖v̂‖

0,lK̂
2

for some C. Clearly we have

Ê(f̂ v̂) = Ê(f̂Π1v̂) + Ê(f̂(v̂ −Π1v̂)).

By the Bramble-Hilbert Lemma (3.1) we get

Ê((âûs)I(v̂ −Π1v̂)) ≤ C[(âûs)I ]k,lK̂
2

[v̂]
2,lK̂

2

≤ C(|âûs − (âûs)I |k,lK̂
2

+ |âûs|k,lK̂
2

)[v̂]
2,lK̂

2

≤(|âûs|k+1,lK̂
2

+ |âûs|k,lK̂
2

)[v̂]
2,lK̂

2

= O(hk+2)‖a‖k+1,∞,le
2
‖u‖k+2,le

2
[v]2,le

2
,

and

Ê((âûs)IΠ1v̂) = 0.

For the third term in (3.12), we sum them up over all the elements. Then for the
line integral along L2

∑

e∩L2 6=∅

∫ 1

−1

(âûs)I(−1, t)v̂(−1, t)dt−
∑

e∩L2 6=∅

∫ 1

−1

(âûs)I(−1, t)v̂(−1, t)dht

=
∑

e∩L2 6=∅

Ê((âûs)I v̂) =
∑

e∩L2 6=∅

O(hk+2)‖a‖k+1,∞,le
2
‖u‖k+2,le

2
|v|2,le

2
.

Let sα and ωα (α = 1, 2, · · · , k + 2) denote the quadrature points and weights in
(k+2)-point Gauss-Lobatto quadrature rule for s ∈ [−1, 1]. Since v̂2tt(s, t) ∈ Q2k(K̂),
(k + 2)-point Gauss-Lobatto quadrature is exact for s-integration thus

∫ 1

−1

∫ 1

−1

v̂2tt(s, t)dsdt =

k+2
∑

α=1

ωα

∫ 1

−1

v̂2tt(sα, t)dt,

which implies

(3.13)

∫ 1

−1

v̂2tt(±1, t)dt ≤ C

∫ 1

−1

∫ 1

−1

v̂2tt(s, t)dsdt,

thus

h
1

2 |v|2,le
2
≤ C[v]2,e.

By Cauchy-Schwarz inequality and trace inequality, we have

∑

e∩L2 6=∅

(

∫ 1

−1

(âûs)I v̂dt

∣

∣

∣

∣

s=1

s=−1

−

∫ 1

−1

(âûs)I v̂d
ht

∣

∣

∣

∣

s=1

s=−1

)

=
∑

e∩L2 6=∅

O(hk+2)‖a‖k+1,∞,le
2
‖u‖k+2,le

2
|v|2,le

2

=
∑

e∩L2 6=∅

O(hk+
3

2 )‖a‖k+1,∞,le
2
‖u‖k+2,le

2
|v|2,e = O(hk+

3

2 )‖a‖k+1,∞,Ω‖u‖k+2,L2
|v|2,Ω

=O(hk+
3

2 )‖a‖k+1,∞,Ω‖u‖k+3,Ω|v|2,Ω.

Combine all the estimates above, we get (3.5b). Since the 1
2 order loss is only due

to the line integral along the boundary ∂Ω. If v ∈ V h
0 , vyy = 0 on L2 and L4 so we

have (3.5a).
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4. Superconvergence of bilinear forms. The M-type projection in [3, 4] is
a very convenient tool for discussing the superconvergence of function values. Let
up be the M-type Qk projection of the smooth exact solution u and its definition
will be given in the following subsection. To establish the superconvergence of the
original finite element method (1.1) for a generic elliptic problem (2.3) with smooth
coefficients, one can show the following superconvergence of bilinear forms, see [4, 14]
(see also [13] for a detailed proof):

A(u− up, vh) =

{

O(hk+2)‖u‖k+3‖vh‖2, ∀vh ∈ V h
0 ,

O(hk+
3

2 )‖u‖k+3‖vh‖2, ∀vh ∈ V h.

In this section we will show the superconvergence of the bilinear form Ah:

Ah(u− up, vh) =

{

O(hk+2)‖u‖k+3‖vh‖2, ∀vh ∈ V h
0 ,(4.1a)

O(hk+
3

2 )‖u‖k+3‖vh‖2, ∀vh ∈ V h.(4.1b)

4.1. Definition of M-type projection. We first recall the definition of M-type
projection. More detailed definition can also be found in [13]. Legendre polynomials
on the reference interval [−1, 1] are given as

lk(t) =
1

2kk!

dk

dtk
(t2 − 1)k : l0(t) = 1, l1(t) = t, l2(t) =

1

2
(3t2 − 1), · · · ,

which are L2-orthogonal to one another. Define their antiderivatives as M-type poly-
nomials:

Mk+1(t) =
1

2kk!

dk−1

dtk−1
(t2−1)k :M0(t) = 1,M1(t) = t,M2(t) =

1

2
(t2−1),M3(t) =

1

2
(t3−t), · · · .

which satisfy the following properties:

• If j − i 6= 0,±2, then Mi(t) ⊥Mj(t), i.e.,
∫ 1

−1Mi(t)Mj(t)dt = 0.
• Roots of Mk(t) are the k-point Gauss-Lobatto quadrature points for [−1, 1].

Since Legendre polynomials form a complete orthogonal basis for L2([−1, 1]), for any

f̂(t) ∈ H1([−1, 1]), its derivative f̂ ′(t) can be expressed as Fourier-Legendre series

f̂ ′(t) =

∞
∑

j=0

b̂j+1lj(t), b̂j+1 = (j +
1

2
)

∫ 1

−1

f̂ ′(t)lj(t)dt.

The one-dimensional M-type projection is defined as f̂k(t) =
∑k

j=0 b̂jMj(t), where

b̂0 = f̂(1)+f̂(−1)
2 is determined by b̂1 = f̂(1)−f̂(−1)

2 so that f̂k(±1) = f̂(±1). We have

f̂(t) = lim
k→∞

f̂k(t) =
∞
∑

j=0

b̂jMj(t). The remainder R̂[f̂ ]k(t) of one-dimensional M-type

projection is

R̂[f̂ ]k(t) = f̂(t)− f̂k(t) =

∞
∑

j=k+1

b̂jMj(t).

For a function f̂(s, t) ∈ H2(K̂) on the reference cell K̂ = [−1, 1] × [−1, 1], its
two-dimensional M-type expansion is given as

f̂(s, t) =

∞
∑

i=0

∞
∑

j=0

b̂i,jMi(s)Mj(t),
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where

b̂0,0 =
1

4
[f̂(−1,−1) + f̂(−1, 1) + f̂(1,−1) + f̂(1, 1)],

b̂0,j, b̂1,j =
2j − 1

4

∫ 1

−1

[f̂t(1, t)± f̂t(−1, t)]lj−1(t)dt, j ≥ 1,

b̂i,0, b̂i,1 =
2i− 1

4

∫ 1

−1

[f̂s(s, 1)± f̂s(s,−1)]li−1(s)ds, i ≥ 1,

b̂i,j =
(2i− 1)(2j − 1)

4

∫∫

K̂

f̂st(s, t)li−1(s)lj−1(t)dsdt, i, j ≥ 1.

The M-type Qk projection of f̂ on K̂ and its remainder are defined as

f̂k,k(s, t) =
k
∑

i=0

k
∑

j=0

b̂i,jMi(s)Mj(t), R̂[f̂ ]k,k(s, t) = f̂(s, t)− f̂k,k(s, t).

The M-type Qk projection is equivalent to the point-line-plane interpolation used in
[15, 14]. See [13] for the proof of the following fact:

Theorem 4.1. The M-type Qk projection is equivalent to the Qk point-line-plane
projection Π defined as follows:

1. Πû = û at four corners of K̂ = [−1, 1]× [−1, 1].
2. Πû− û is orthogonal to polynomials of degree k − 2 on each edge of K̂.
3. Πû− û is orthogonal to any v̂ ∈ Qk−2(K̂) on K̂.

For f(x, y) on e = [xe − h, xe + h]× [ye − h, ye + h], let f̂(s, t) = f(sh+ xe, th+ ye)
then the M-type Qk projection of f on e and its remainder are defined as

fk,k(x, y) = f̂k,k(
x− xe
h

,
y − ye
h

), R[f ]k,k(x, y) = f(x, y)− fk,k(x, y).

Now consider a function u(x, y) ∈ Hk+2(Ω), let up(x, y) denote its piecewise M-type
Qk projection on each element e in the mesh Ωh. The first two properties in Theorem
4.1 imply that up(x, y) on each edge of e is uniquely determined by u(x, y) along that
edge. So up(x, y) is a piecewise continuous Qk polynomial on Ωh.

M-type projection has the following properties. See [13] for the proof.

Theorem 4.2.

‖u− up‖2,Z0
= O(hk+2)‖u‖k+2, ∀u ∈ Hk+2(Ω).

‖u− up‖∞,Z0
= O(hk+2)‖u‖k+2,∞, ∀u ∈W k+2,∞(Ω).

Lemma 4.3. For f̂ ∈ Hk+1(K̂), k ≥ 2,

1. |R̂[f̂ ]k,k|0,∞,K̂ ≤ C[f̂ ]k+1,K̂ , |∂sR̂[f̂ ]k,k|0,∞,K̂ ≤ C[f̂ ]k+1,K̂ .

2. R̂[f̂ ]k+1,k+1−R̂[f̂ ]k,k =Mk+1(t)
∑k

i=0 b̂i,k+1Mi(s)+Mk+1(s)
∑k+1

j=0 b̂k+1,jMj(t).

3. |b̂i,k+1| ≤ Ck|f̂ |k+1,2,K̂ , |b̂k+1,i| ≤ Ck|f̂ |k+1,2,K̂ , 0 ≤ i ≤ k + 1.

4. If f̂ ∈ Hk+2(K̂), then |b̂i,k+1| ≤ Ck|f̂ |k+2,2,K̂ , 1 ≤ i ≤ k + 1.

4.2. Estimates of M-type projection with quadrature.

Lemma 4.4. Assume f̂(s, t) ∈ Hk+3(K̂),

〈R̂[f̂ ]k+1,k+1 − R̂[f̂ ]k,k, 1〉K̂ = 0, |〈∂sR̂[f̂ ]k+1,k+1, 1〉K̂ | ≤ C|f̂ |k+3,K̂ .
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Proof. First, we have

〈R̂[f̂ ]k+1,k+1 − R̂[f̂ ]k,k, 1〉K̂ = 〈Mk+1(t)

k
∑

i=0

b̂i,k+1Mi(s) +Mk+1(s)

k+1
∑

j=0

b̂k+1,jMj(t), 1〉K̂ = 0

due to the fact that roots of Mk+1(t) are the (k+1)-point Gauss-Lobatto quadrature
points for [−1, 1].

We have

〈∂sR̂[f̂ ]k+1,k+1, 1〉K̂

=〈∂sR̂[f̂ ]k+2,k+2, 1〉K̂ − 〈∂s(R̂[f̂ ]k+2,k+2 − R̂[f̂ ]k+1,k+1), 1〉K̂

=〈∂sR̂[f̂ ]k+2,k+2, 1〉K̂ − 〈Mk+2(t)

k+1
∑

i=0

b̂i,k+2M
′
i(s) +M ′

k+2(s)

k+2
∑

j=0

b̂k+2,jMj(t), 1〉K̂

=〈∂sR̂[f̂ ]k+2,k+2, 1〉K̂ − 〈Mk+2(t)

k
∑

i=0

b̂i+1,k+2li(s), 1〉K̂ + 〈lk+1(s)

k+2
∑

j=0

b̂k+2,jMj(t), 1〉K̂ .

Then by Lemma 4.3,

|〈∂sR̂[f̂ ]k+2,k+2, 1〉K̂ | ≤ C|f̂ |k+3,K̂ .

Notice that we have 〈lk+1(s)
∑k+2

j=0 b̂k+2,jMj(t), 1〉K̂ = 0 since the (k+1)-point Gauss-
Lobatto quadrature for s-integration is exact and lk+1(s) is orthogonal to 1. Lemma

4.3 implies |b̂i+1,k+2| ≤ C[f̂ ]k+3,K̂ for i ≥ 0, thus we have

|〈Mk+2(t)

k
∑

i=0

b̂i+1,k+2li(s), 1〉K̂ | ≤ C[f̂ ]k+3,K̂ .

Lemma 4.5. Assume a(x, y) ∈ W k,∞(Ω). Then

〈a(u − up)x, (vh)x〉h = O(hk+2)‖a‖2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h.

Proof. As before, we ignore the subscript of vh for simplicity. We have

〈a(u − up)x, vx〉h =
∑

e

〈a(u− up)x, vx〉e,h,

and on each cell e,

〈a(u − up)x, vx〉e,h = 〈(R[u]k,k)x, avx〉e,h = 〈(R̂[û]k,k)s, âv̂s〉K̂

=〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ + 〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂s〉K̂ .(4.2)

For the first term in (4.2), we have

〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ = 〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ + 〈(R̂[û]k+1,k+1)s, â(v̂s − v̂s)〉K̂ .

By Lemma 4.4,

〈(R̂[û]k+1,k+1)s, â v̂s〉K̂ ≤ C|â|0,∞|û|k+3,K̂ |v̂|1,K̂ .
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By Lemma 4.3,

|(R̂[û]k+1,k+1)s|0,∞,K̂ ≤ C[û]k+2,K̂ .

By Bramble-Hilbert Lemma Theorem 3.1 we have

〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ = 〈(R̂[û]k+1,k+1)s, â v̂s〉K̂ + 〈(R̂[û]k+1,k+1)s, (â− â)v̂s〉K̂

≤C(|â|0,∞|û|k+3,K̂ |v̂|1,K̂ + |â− â|0,∞|û|k+2,K̂ |v̂|1,K̂)

≤C(|â|0,∞|û|k+3,K̂ |v̂|1,K̂ + |â|1,∞|û|k+2,K̂ |v̂|1,K̂) = O(hk+2)‖a‖1,∞,e‖u‖k+3,e‖v‖1,e,

and

〈(R̂[û]k+1,k+1)s, â(v̂s − v̂s)〉K̂ ≤ C[û]k+2,2,K̂ |â|0,∞,K̂ |v̂s − v̂s|0,∞,K̂

≤C[û]k+2,2,K̂ |â|0,∞,K̂ |v̂s − v̂s|0,2,K̂ = O(hk+2)[u]k+2,2,e|a|0,∞,e|v|2,2,e.

Thus,

(4.3) 〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ = O(hk+2)‖a‖1,∞,e|u|k+3,2,e‖v‖2,e.

For the second term in (4.2), we have

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂s〉K̂

=− 〈(Mk+1(t)

k
∑

i=0

b̂i,k+1Mi(s) +Mk+1(s)

k+1
∑

j=0

b̂k+1,jMj(t))s, âv̂s〉K̂

=− 〈Mk+1(t)

k−1
∑

i=0

b̂i+1,k+1li(s) + lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), âv̂s〉K̂

=− 〈Mk+1(t)

k−1
∑

i=0

b̂i+1,k+1li(s), âv̂s〉K̂ − 〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), âv̂s〉K̂ .(4.4)

Since Mk+1(t) vanishes at (k + 1) Gauss-Lobatto points, we have

〈Mk+1(t)
k−1
∑

i=0

b̂i+1,3li(s), âv̂s〉K̂ = 0.

For the second term in (4.4),

〈lk(s)
k+1
∑

j=0

b̂k+1,jMj(t), âv̂s〉K̂ = 〈lk(s)
k+1
∑

j=0

b̂k+1,jMj(t), âv̂s〉K̂ + 〈lk(s)
k+1
∑

j=0

b̂k+1,jMj(t), â(v̂s − v̂s)〉K̂

=〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), (â− Π̂1â)v̂s〉K̂ + 〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), (Π̂1â)v̂s〉K̂

+ 〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), (â − â)(v̂s − v̂s)〉K̂ + 〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), â(v̂s − v̂s)〉K̂

=〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), (â− Π̂1â)v̂s〉K̂ + 〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), (â− â)(v̂s − v̂s)〉K̂ ,
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where the last step is due to the facts that (Π̂1â)v̂s and â(v̂s − v̂s) are polynomials
of degree at most k − 1 with respect to variable s, the (k + 1)-point Gauss-Lobatto
quadrature on s-integration is exact for polynomial of degree 2k − 1, and lk(s) is
orthogonal to polynomials of lower degree. With Lemma 4.3, we have

〈lk(s)
k+1
∑

j=0

b̂k+1,jMj(t), âv̂s〉K̂ ≤ C|û|k+1,2,K̂(|â|2,∞|v̂|1,K̂ + |â|1,∞|v̂|2,K̂) = O(hk+2)‖a‖2,∞‖u‖k+1,e‖v‖2,e.

(4.5)

Combined with (4.3), we have proved the estimate.

Lemma 4.6. Assume a(x, y) ∈ W 2,∞(Ω). Then

〈a(u − up), vh〉h = O(hk+2)‖a‖2,∞‖u‖k+2‖vh‖2, ∀vh ∈ V h.

Proof. As before, we ignore the subscript of vh for simplicity and

〈a(u− up), v〉h =
∑

e

〈a(u− up), v〉e,h.

On each cell e we have

〈a(u− up), v〉e,h = 〈R[u]k,k, av〉e,h = h2〈R̂[û]k,k, âv̂〉K̂ = h2〈R̂[û]k,k, âv̂ − âv̂〉K̂ + h2〈R̂[û]k,k, âv̂〉K̂ .

(4.6)

For the first term in (4.6), due to the embedding H2(K̂) →֒ C0(K̂), Bramble-Hilbert
Lemma Theorem 3.1 and Lemma 4.3, we have

h2〈R̂[û]k,k, âv̂ − âv̂〉K̂ ≤ Ch2|R[û]k,k|∞|âv̂ − âv̂|∞ ≤ Ch2|û|k+1,K̂‖âv̂ − âv̂‖2,K̂

≤ Ch2|û|k+1,K̂(‖âv̂ − âv̂‖L2(K̂) + |âv̂|1,K̂ + |âv̂|2,K̂)

≤ Ch2|û|k+1,K̂(|âv̂|1,K̂ + |âv̂|2,K̂) = O(hk+2)‖a‖2,∞,e‖u‖k+1,e‖v‖2,e.

For the second term in (4.6), we have

h2〈R̂[û]k+1,k+1, âv̂〉K̂ = h2〈R̂[û]k+1,k+1, âv̂〉K̂ − h2〈R̂[û]k+1,k+1 − R̂[û]k,k, âv̂〉K̂ .

By Lemma 4.3 and Lemma 4.4 we have

h2〈R̂[û]k+1,k+1, âv̂〉K̂ ≤ Ch2|û|k+2,K̂ |âv̂|0,K̂ = O(hk+2)‖a‖0,∞,e‖u‖k+2,e‖v‖0,e,

and

h2〈R̂[û]k+1,k+1 − R̂[û]k,k, âv̂〉K̂ = 0.

Thus, we have 〈a(u− up), vh〉h = O(hk+2)‖a‖2,∞‖u‖k+2‖vh‖2.

Lemma 4.7. Assume a(x, y) ∈ W 2,∞(Ω). Then

〈a(u− up)x, vh〉h = O(hk+2)‖a‖2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h.

Proof. As before, we ignore the subscript in vh and we have

〈a(u − up)x, v〉h =
∑

e

〈a(u− up)x, v〉e,h.
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On each cell e, we have

〈a(u− up)x, v〉e,h = 〈(R[u]k,k)x, av〉e,h = h〈(R̂[û]k,k)s, âv̂〉K̂

=h〈(R̂[û]k+1,k+1)s, âv̂〉K̂ − h〈(R̂[û]k+1,k+1 − R̂[û]k,k)s, âv̂〉K̂ .(4.7)

For the first term in (4.7), we have

〈(R̂[û]k+1,k+1)s, âv̂〉K̂ ≤ 〈(R̂[û]k+1,k+1)s, âv̂〉K̂ + 〈(R̂[û]k+1,k+1)s, âv̂ − âv̂〉K̂

Due to Lemma 4.4,

h〈(R̂[û]k+1,k+1)s, âv̂〉K̂ ≤ Ch‖a‖0,∞|u|k+3,K̂‖v‖0,K̂ = O(hk+2)‖a‖0,∞‖u‖k+3,e‖v‖0,e,

and by the same arguments as in the proof of Lemma 4.6 we have

h〈(R̂[û]k+1,k+1)s, âv̂ − âv̂〉K̂ ≤ Ch|(R[û]k+1,k+1)s|∞|âv̂ − âv̂|∞ ≤ Ch|û|k+2,K̂‖âv̂ − âv̂‖2,K̂

≤Ch|û|k+2,K̂(‖âv̂ − âv̂‖L2(K̂) + |âv̂|1,K̂ + |âv̂|2,K̂) ≤ Ch|û|k+2,K̂(|âv̂|1,K̂ + |âv̂|2,K̂) = O(hk+2)‖a‖2,∞‖u‖k+2,e‖v‖2,e.

Thus

(4.8) h〈(R̂[û]k+1,k+1)s, âv̂〉K̂ = O(hk+2)‖a‖2,∞‖u‖k+3,e‖v‖2,e.

For the second term in (4.7), we have

〈(R̂[û]k+1,k+1 − R̂[û]k,k)s, âv̂〉K̂

=〈(Mk+1(t)
k
∑

i=0

b̂i,k+1Mi(s) +Mk+1(s)
k+1
∑

j=0

b̂k+1,jMj(t))s, âv̂〉K̂

=〈Mk+1(t)

k−1
∑

i=0

b̂i+1,k+1li(s) + lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), âv̂〉K̂

=〈Mk+1(t)

k−1
∑

i=0

b̂i+1,k+1li(s), âv̂〉K̂ + 〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), âv̂〉K̂

=〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), âv̂〉K̂ ,

where the last step is due to that Mk+1(t) vanishes at (k + 1) Gauss-Lobatto points.
Then

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂〉K̂ = 〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), âv̂〉K̂

=〈lk(s)
k+1
∑

j=0

b̂k+1,jMj(t), âv̂ − Π̂1(âv̂)〉K̂ + 〈lk(s)
k+1
∑

j=0

b̂k+1,jMj(t), Π̂1(âv̂)〉K̂

=〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), âv̂ − Π̂1(âv̂)〉K̂ ,

where the last step is due to the facts that Π̂1(âv̂) is a linear function in s thus the
(k+1)-point Gauss-Lobatto quadrature on s-variable is exact, and lk(s) is orthogonal
to linear functions.
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By Lemma 4.3 and Theorem 3.1, we have

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂〉K̂ = 〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), âv̂ − Π̂1(âv̂)〉K̂

≤C|u|k+1,K̂ |âv̂|2,K̂ ≤ C|u|k+1,K̂(|â|2,∞,K̂ |v̂|0,K̂ + |â|1,∞,K̂ |v̂|1,K̂ + |â|0,∞|v̂|2,K̂)

Thus

(4.9) h〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂〉K̂ = O(hk+2)‖a‖2,∞‖u‖k+1,e‖v‖2,e.

By (4.8) and (4.9) and sum up over all the cells, we get the desired estimate.

Lemma 4.8. Assume a(x, y) ∈ W 4,∞(Ω). Then

〈a(u− up)x, (vh)y〉h =

{

O(hk+
3

2 )‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h,(4.10a)

O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h
0 .(4.10b)

Proof. We ignore the subscript in vh and we have

〈a(u − up)x, vy〉h =
∑

e

〈a(u− up)x, vy〉e,h,

and on each cell e

〈a(u− up)x, vy〉e,h = 〈(R[u]k,k)x, avy〉e,h = 〈(R̂[û]k,k)s, âv̂t〉K̂

=〈(R̂[û]k+1,k+1)s, âv̂t〉K̂ + 〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂t〉K̂ .(4.11)

By the same arguments as in the proof of Lemma 4.5, we have

(4.12) 〈(R̂[û]k+1,k+1)s, âv̂t〉K̂ = O(hk+2)‖a‖1,∞|u|k+3,2,e‖v‖2,e,

and

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂t〉K̂ = −〈lk(s)

k+1
∑

j=0

b̂k+1,jMj(t), âv̂t〉K̂ .

For simplicity, we define

b̂k+1(t) :=

k+1
∑

j=0

b̂k+1,jMj(t).

then by the third and fourth estimates in Lemma 4.3, we have

|b̂k+1(t)| ≤ C
k+1
∑

j=0

|b̂k+1,j | ≤ C|û|k+1,K̂ ,

|b̂
(m)
k+1(t)| ≤ C

k+1
∑

j=m

|b̂k+1,j | ≤ C|û|k+2,K̂ , 1 ≤ m.

We use the same technique in the proof of Theorem 3.7,

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂t〉K̂ = −〈lk(s)b̂k+1(t), âv̂t〉K̂

=−

∫∫

K̂

lk(s)b̂k+1(t)âv̂td
hsdht = −

∫∫

K̂

(lk b̂k+1â)I v̂td
hsdht

=−

∫∫

K̂

(lk b̂k+1â)I v̂td
hsdht+

∫∫

K̂

lkb̂k+1âv̂tdsdt−

∫∫

K̂

lk b̂k+1âv̂tdsdt.
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and

−

∫∫

K̂

(lkb̂k+1â)I v̂td
hsdht+

∫∫

K̂

lkb̂k+1âv̂tdsdt

=

∫∫

K̂

[

lk b̂k+1â− (lk b̂k+1â)I

]

v̂tdsdt+

∫∫

K̂

(lk b̂k+1â)I v̂tdsdt−

∫∫

K̂

(lk b̂k+1â)I v̂td
hsdt

=

∫∫

K̂

[

lk b̂k+1â− (lk b̂k+1â)I

]

v̂tdsdt+

∫∫

K̂

∂t(lk b̂k+1â)I v̂d
hsdt−

∫∫

K̂

∂t(lk b̂k+1â)I v̂dsdt

+

(

∫ 1

−1

(lk b̂k+1â)I v̂ds

∣

∣

∣

∣

t=1

t=−1

−

∫ 1

−1

(lkb̂k+1â)I v̂d
hs

∣

∣

∣

∣

t=1

t=−1

)

= I + II + III.

After integration by parts with respect to the variable s, we have

∫∫

K̂

l2(s)b̂3(t)âv̂tdsdt = −

∫∫

K̂

M3(s)b̂3(t)(âsv̂t + âv̂st)dsdt,

which is exactly the same integral estimated in the proof of Lemma 3.7 in [13]. By
the same proof of Lemma 3.7 in [13], after summing over all elements, we have the

estimate for the term
∫∫

K̂
lk(s)b̂k+1(t)âv̂tdsdt:

∑

e

∫∫

K̂

lk(s)b̂k+1(t)âv̂tdsdt =

{

O(hk+
3

2 )‖a‖k+2,∞‖u‖k+3‖v‖2, ∀v ∈ V h,

O(hk+2)‖a‖k+2,∞‖u‖k+3‖v‖2, ∀v ∈ V h
0 .

Then we can do similar estimation as in Theorem 3.7 for I, II, III separately.
For term I, by Theorem 3.1 and the estimate (3.2), we have

∫∫

K̂

[

lk b̂k+1â− (lk b̂k+1â)I

]

v̂tdsdt

=

∫∫

K̂

[

lk b̂k+1â− (lk b̂k+1â)I

]

v̂tdsdt+

∫∫

K̂

[

lk b̂k+1â− (lk b̂k+1â)I

]

(v̂t − v̂t)dsdt

≤C
[

lk b̂k+1â
]

k+2,K̂
|v̂|1,K̂ + C

[

lk b̂k+1â
]

k+1,K̂
|v̂|2,K̂

≤C

(

k+2
∑

m=2

|â|m,∞,K̂ max
t∈[−1,1]

|b̂k+1(t)|

)

|v̂|1,K̂ + C

(

k+2
∑

m=0

|â|m,∞,K̂ max
t∈[−1,1]

|b̂
(k+2−m)
k+1 (t)|

)

|v̂|1,K̂

+C

(

k+1
∑

m=1

|â|m,∞,K̂ max
t∈[−1,1]

|b̂k+1(t)|

)

|v̂|2,K̂ + C

(

k+1
∑

m=0

|â|m,∞,K̂ max
t∈[−1,1]

|b̂
(k+1−m)
k+1 (t)|

)

|v̂|2,K̂

=O(hk+2)‖a‖k+2,∞‖u‖k+2,e‖v‖2,e.

For term II, as in the proof of Theorem 3.7, we define the linear form as

Êv̂(f̂) =

∫∫

K̂

(F̂I)tv̂dsdt−

∫∫

K̂

(F̂I)tv̂d
hsdt,

for each v̂ ∈ Qk(K̂) and F̂ is an antiderivative of f̂ w.r.t. variable t. We can easily see
that Êv̂ is well defined and Êv̂ is a continuous linear form on Hk(K̂). With projection
Π̂1 defined in (2.2), we have

Êv̂(f̂) = Êv̂−Π̂1v̂
(f̂) + ÊΠ̂1v̂

(f̂), ∀v̂ ∈ Qk(K̂).
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Since Qk−1(K̂) ⊂ ker Êv̂−Π̂1v̂
thus

Êv̂−Π̂1v̂
(f̂) ≤ C[f ]k,K̂‖v̂ − Π̂1v̂‖0,K̂ ≤ C[f ]k,K̂ |v̂|2,K̂

and

ÊΠ̂1v̂
(f̂) =

∫∫

K̂

(F̂I)tΠ̂1v̂dsdt−

∫∫

K̂

(F̂I)tΠ̂1v̂d
hsdt = 0.

Thus we have
∫∫

K̂

∂t(lk b̂k+1â)I v̂d
hsdt−

∫∫

K̂

∂t(lk b̂k+1â)I v̂dsdt = −Êv̂((lk b̂k+1â)t)

=− Êv̂−Π1v̂((lk b̂k+1â)t) ≤ C[(lk b̂k+1â)t]k,K̂ |v̂h|2,K̂ = O(hk+2)‖a‖k+1,∞,e‖u‖k+2,e|v|2,e.

Now we only need to discuss term III. Let L1 and L3 denote the top and bottom

boundaries of Ω and let le1, l
e
3 denote the top and bottom edges of element e (and lK̂1

and lK̂3 for K̂). Notice that after mapping back to the cell e we have

bk+1(ye + h) = b̂k+1(1) =
k+1
∑

j=0

b̂k+1,jMj(1) = b̂k+1,0 + b̂k+1,1

= (k +
1

2
)

∫ 1

−1

∂sû(s, 1)lk(s)ds = (k +
1

2
)

∫ xe+h

xe−h

∂xu(x, ye + h)lk(
x− xe
h

)dx,

and similarly we get bk+1(ye−h) = b̂k+1(−1) = (k+ 1
2 )
∫ xe+h

xe−h ∂xu(x, ye−h)lk(
x−xe

h )dx.

Thus the term l(x−xe

h )bk+1(y)Mk+1av is continuous across the top and bottom edges
of cells. Therefore, if summing over all elements e, the line integral on the inner
edges are cancelled out. So after summing over all elements, the line integral reduces
to two line integrals along L1 and L3. We only need to discuss one of them. For
a cell e adjacent to L1, consider its reference cell K̂ and define linear form Ê(f̂) =
∫ 1

−1
f̂(s, 1)ds−

∫ 1

−1
f̂(s, 1)dhs, then we have

Ê(f̂ v̂) ≤ C|f̂ |
0,∞,lK̂

1

|v̂|
0,∞,lK̂

1

≤ C‖f̂‖
2,lK̂

1

‖v̂‖
0,lK̂

1

,

thus the mapping f̂ → Ê(f̂ v̂) is continuous with operator norm less than C‖v̂‖
0,lK̂

1

for some C. Since Ê((âûs)IΠ̂1v̂) = 0 we have

∑

e∩L1 6=∅

∫ 1

−1

(lk b̂k+1â)I v̂ds−

∫ 1

−1

(lk b̂k+1â)I v̂d
hs

=
∑

e∩L1 6=∅

Ê((lk b̂k+1â)I v̂) =
∑

e∩L1 6=∅

Ê((lk b̂k+1â)I(v̂ − Π̂1v̂)) ≤
∑

e∩L1 6=∅

C[(lk b̂k+1â)I ]k,lK̂
1

[v̂]
2,lK̂

1

≤
∑

e∩L1 6=∅

C(|lk b̂k+1â− (lkb̂k+1â)I |k,lK̂
1

+ |lk b̂k+1â|k,lK̂
1

)[v̂]
2,lK̂

1

≤
∑

e∩L1 6=∅

(|lk b̂k+1â|k+1,lK̂
1

+ |lkb̂k+1â|k,lK̂
1

)[v̂]
2,lK̂

1

≤
∑

e∩L1 6=∅

C‖â‖k,∞,K̂ |b̂k+1(1)|[v̂]2,lK̂
1

.

Since lk(t) =
1

2kk!
dk

dtk
(t2 − 1)k, after integration by parts k times,

b̂k+1(1) = (k +
1

2
)

∫ 1

−1

∂su(s, 1)lk(s)dx = (−1)k(k +
1

2
)

∫ 1

−1

∂k+1
s u(s, 1)L(s)ds,
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where L(s) is a polynomial of degree 2k by taking antiderivatives of lk(s) k times.
Then by Cauchy-Schwarz inequality we have

b̂k+1(1) ≤ C

(∫ 1

−1

|∂k+1
s û(s, 1)|2ds

)

1

2

≤ Chk+
1

2 |u|k+1,le
1
.

By (3.13), we get |v̂|
2,lK̂

1

= h
3

2 |v̂|2,le
1
≤ Ch|v|2,e. Thus we have

∑

e∩L1 6=∅

∫ 1

−1

(lk b̂k+1â)I v̂ds−

∫ 1

−1

(lk b̂k+1â)I v̂d
hs ≤

∑

e∩L1 6=∅

C‖â‖k,∞,K̂ |b̂k+1(1)||v̂|2,lK̂
1

=O(hk+
3

2 )
∑

e∩L1 6=∅

‖a‖k,∞|u|k+1,le
1
|v|2,e = O(hk+

3

2 )‖a‖k,∞|u|k+1,L1
‖v‖2,Ω = O(hk+

3

2 )‖a‖k,∞‖u‖k+2,Ω‖v‖2,Ω,

where the trace inequality ‖u‖k+1,∂Ω ≤ C‖u‖k+2,Ω is used.
Combine all the estimates above, we get (4.10a). Since the 1

2 order loss is only
due to the line integral along L1 and L3, on which vxx = 0 if v ∈ V h

0 , we get (4.10b).

By all the discussions in this subsection, we have proven (4.1a) and (4.1b).

5. Homogeneous Dirichlet Boundary Conditions.

5.1. V h-ellipticity. In order to discuss the scheme (1.2), we need to show Ah

satisfies V h-ellipticity

(5.1) ∀vh ∈ V h
0 , C‖vh‖

2
1 ≤ Ah(vh, vh).

We first consider the Vh-ellipticity for the case b ≡ 0.

Lemma 5.1. Assume the coefficients in (2.3) satisfy that b ≡ 0, both c(x, y) and
the eigenvalues of a(x, y) have a uniform upper bound and a uniform positive lower
bound, then there exist two constants C1, C2 > 0 independent of mesh size h such that

∀vh ∈ V h
0 , C1‖vh‖

2
1 ≤ Ah(vh, vh) ≤ C2‖vh‖

2
1.

Proof. Let Z0,K̂ denote the set of (k + 1)× (k + 1) Gauss-Lobatto points on the

reference cell K̂. First we notice that the set Z0,K̂ is a Qk(K̂)-unisolvent subset. Since
the Gauss-Lobatto quadrature weights are strictly positive, we have

∀p̂ ∈ Qk(K̂),

2
∑

i=1

〈∂ip̂, ∂ip̂〉K̂ = 0 =⇒ ∂ip̂ = 0 at quadrature points,

where i = 1, 2 represents the spatial derivative on variable xi respectively. Since
∂ip̂ ∈ Qk(K̂) and it vanishes on aQk(K̂)-unisolvent subset, we have ∂ip̂ ≡ 0. As a con-
sequence,

√
∑n

i=1〈∂ip̂, ∂ip̂〉h defines a norm over the quotient space Qk(K̂)/Q0(K̂).
Since that | · |1,K̂ is also a norm over the same quotient space, by the equivalence of
norms over a finite dimensional space, we have

∀p̂ ∈ Qk(K̂), C1|p̂|
2
1,K̂

≤
n
∑

i=1

〈∂ip̂, ∂ip̂〉K̂ ≤ C2|p̂|
2
1,K̂

.

On the reference cell K̂, by the assumption on the coefficients, we have

C1|v̂h|
2
1,K̂

≤ C1

n
∑

i

〈∂iv̂h, ∂iv̂h〉K̂ ≤

n
∑

i,j=1

(

〈âij∂iv̂h, ∂j v̂h〉K̂ + 〈ĉv̂h, v̂h〉K̂
)

≤ C2‖v̂h‖
2
1,K̂
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Mapping these back to the original cell e and summing over all elements, by
the equivalence of two norms | · |1 and ‖ · ‖1 for the space H1

0 (Ω) ⊃ V h
0 [5], we get

C1‖vh‖
2
1 ≤ Ah(vh, vh) ≤ C2‖vh‖

2
1.

For discussing Vh-ellipticity when b is nonzero, by Young’s inequality we have

|〈b · ∇vh, vh〉h| ≤
∑

e

∫∫

e

(b · ∇vh)
2

4c
+ c|vh|

2dhxdhy ≤ 〈
|b|2

4c
∇vh,∇vh〉h + 〈cvh, vh〉h.

Thus we have

〈a∇vh,∇vh〉h + 〈b · ∇vh, vh〉h + 〈cvh, vh〉h ≥ 〈λa∇vh,∇vh〉h − 〈
|b|2

4c
∇vh,∇vh〉h,

where λa is smallest eigenvalue of a. Then we have the following Lemma

Lemma 5.2. Assume 4λac > |b|2, then there exists a constant C > 0 independent
of mesh size h such that

∀vh ∈ V h
0 , Ah(vh, vh) ≥ C‖vh‖

2
1.

5.2. Standard estimates for the dual problem. In order to apply the Aubin-
Nitsche duality argument for establishing superconvergence of function values, we need
certain estimates on a proper dual problem. Define θh := uh − up. Then we consider
the dual problem: find w ∈ H1

0 (Ω) satisfying

(5.2) A∗(w, v) = (θh, v), ∀v ∈ H1
0 (Ω),

where A∗(·, ·) is the adjoint bilinear form of A(·, ·) such that

A∗(u, v) = A(v, u) = (a∇v,∇u) + (b · ∇v, u) + (cv, u).

Let wh ∈ V h
0 be the solution to

(5.3) A∗
h(wh, vh) = (θh, vh), ∀vh ∈ V h

0 .

Notice that the right hand side of (5.3) is different from the right hand side of the
scheme (1.2).

We need the following standard estimates on wh for the dual problem.

Theorem 5.3. Assume all coefficients in (2.3) are inW 2,∞(Ω), elliptic regularity
and V h ellipticity holds, we have

‖w − wh‖1 ≤ Ch‖w‖2,

‖wh‖2 ≤ C‖θh‖0.

Proof. By V h ellipticity, we have C1‖wh − vh‖
2
1 ≤ A∗

h(wh − vh, wh − vh). By the
definition of the dual problem, we have

A∗
h(wh, wh − vh) = (θh, wh − vh) = A∗(w,wh − vh), ∀vh ∈ V h

0 .

Thus for any vh ∈ V h
0 , by Theorem 3.6, we have

C1‖wh − vh‖
2
1 ≤ A∗

h(wh − vh, wh − vh)

=A∗(w − vh, wh − vh) + [A∗
h(wh, wh − vh)−A∗(w,wh − vh)] + [A∗(vh, wh − vh)−A∗

h(vh, wh − vh)]

=A∗(w − vh, wh − vh) + [A(wh − vh, vh)−Ah(wh − vh, vh)]

≤C‖w − vh‖1‖wh − vh‖1 + Ch‖vh‖2‖wh − vh‖1.
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Thus

(5.4) ‖w − wh‖1 ≤ ‖w − vh‖1 + ‖wh − vh‖1 ≤ C‖w − vh‖1 + Ch‖vh‖2.

Now consider Π1w ∈ V h
0 where Π1 is the piecewise Q1 projection and its definition

on each cell is defined through (2.2) on the reference cell. By the Bramble Hilbert
Lemma Theorem 3.1 on the projection error, we have

(5.5) ‖w −Π1w‖1 ≤ Ch‖w‖2, ‖w −Π1w‖2 ≤ C‖w‖2,

thus ‖Π1w‖2 ≤ ‖w‖2 + ‖w − Π1w‖2 ≤ C‖w‖2. By setting vh = Π1w, from (5.4) we
have

(5.6) ‖w − wh‖1 ≤ C‖w −Π1w‖1 + Ch‖Π1w‖2 ≤ Ch‖w‖2.

By the inverse estimate on the piecewise polynomial wh −Π1w, we get

(5.7) ‖wh‖2 ≤ ‖wh −Π1w‖2 + ‖Π1w − w‖2 + ‖w‖2 ≤ Ch−1‖wh −Π1w‖1 + C‖w‖2.

By (5.5) and (5.6), we also have

‖wh −Π1w‖1 ≤ ‖w −Π1w‖1 + ‖w − wh‖1 ≤ Ch‖w‖2.(5.8)

With (5.7), (5.8) and the elliptic regularity ‖w‖2 ≤ C‖θh‖0, we get

‖wh‖2 ≤ C‖w‖2 ≤ C‖θh‖0.

5.3. Superconvergence of function values.

Theorem 5.4. Assume aij , bi, c ∈ W k+2,∞(Ω) and u(x, y) ∈ Hk+3(Ω), f(x, y) ∈
Hk+2(Ω). Assume V h ellipticity holds. Then uh is a (k + 2)-th order accurate ap-
proximation to u in the discrete 2-norm over all the (k + 1)× (k + 1) Gauss-Lobatto
points:

‖uh − u‖2,Z0
= O(hk+2)(‖u‖k+3,Ω + ‖f‖k+2,Ω).

Proof. By Theorem 3.7 and Theorem 3.3, for any vh ∈ V h
0 ,

Ah(u − uh, vh) = [A(u, vh)− Ah(uh, vh)] + [Ah(u, vh)−A(u, vh)]
= A(u, vh)−Ah(uh, vh) +O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2
= [(f, vh)− 〈f, vh〉h] +O(hk+2)‖u‖k+3‖vh‖2 = O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖vh‖2.

Let θh = uh − up, then θh ∈ V h
0 due to the properties of the M-type projection. So

by (4.1a) and Theorem 5.3, we get

‖θh‖
2
0 = (θh, θh) = Ah(θh, wh) = Ah(uh − u,wh) +Ah(u− up, wh)

=Ah(u− up, wh) +O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖wh‖2

=O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖wh‖2 = O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖θh‖0,

thus

‖uh − up‖0 = ‖θh‖0 = O(hk+2)(‖u‖k+3 + ‖f‖k+2).

Finally, by the equivalence of the discrete 2-norm on Z0 and the L2(Ω) norm in
finite-dimensional space V h and Theorem 4.2, we obtain

‖uh − u‖2,Z0
≤ ‖uh − up‖2,Z0

+ ‖up − u‖2,Z0
≤ C‖uh − up‖0 + ‖up − u‖2,Z0

= O(hk+2)(‖u‖k+3 + ‖f‖k+2).
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Remark 5.5. To extend the discussions to Neumann type boundary conditions,
due to (4.1b) and Lemma 3.7, one can only prove (k + 3

2 )-th order accuracy:

‖uh − u‖2,Z0
= O(hk+

3

2 )(‖u‖k+3 + ‖f‖k+2).

On the other hand, for solving a general elliptic equation, only O(hk+
3

2 ) superconver-
gence at all Lobatto point can be proven for Neumann boundary conditions even for
the full finite element scheme (1.1), see [4].

Remark 5.6. All key discussions can be extended to three-dimensional cases.

6. Nonhomogeneous Dirichlet Boundary Conditions. We consider a two-
dimensional elliptic problem on Ω = (0, 1)2 with nonhomogeneous Dirichlet boundary
condition,

(6.1)
−∇(a∇u) + b · ∇u+ cu = f on Ω

u = g on ∂Ω.

Assume there is a function ḡ ∈ H1(Ω) as a smooth extension of g so that ḡ|∂Ω = g.
The variational form is to find ũ = u− ḡ ∈ H1

0 (Ω) satisfying

(6.2) A(ũ, v) = (f, v)−A(ḡ, v), ∀v ∈ H1
0 (Ω).

In practice, ḡ is not used explicitly. By abusing notations, the most convenient
implementation is to consider

g(x, y) =

{

0, if (x, y) ∈ (0, 1)× (0, 1),

g(x, y), if (x, y) ∈ ∂Ω,

and gI ∈ V h which is defined as the Qk Lagrange interpolation at (k + 1) × (k + 1)
Gauss-Lobatto points for each cell on Ω of g(x, y). Namely, gI ∈ V h is the piecewise
P k interpolation of g along the boundary grid points and gI = 0 at the interior grid
points. The numerical scheme is to find ũh ∈ V h

0 , s.t.

(6.3) Ah(ũh, vh) = 〈f, vh〉h − Ah(gI , vh), ∀vh ∈ V h
0 .

Then uh = ũh + gI will be our numerical solution for (6.1). Notice that (6.3) is
not a straightforward approximation to (6.2) since ḡ is never used. Assuming elliptic
regularity and V h ellipticity hold, we will show that uh − u is of (k + 2)-th order in
the discrete 2-norm over all (k + 1)× (k + 1) Gauss-Lobatto points.

6.1. An auxiliary scheme. In order to discuss the superconvergence of (6.3),
we need to prove the superconvergence of an auxiliary scheme. Notice that we discuss
the auxiliary scheme only for proving the accuracy of (6.3). In practice one should not
implement the auxiliary scheme since (6.3) is a much more convenient implementation
with the same accuracy.

Let ḡp ∈ V h be the piecewise M-type Qk projection of the smooth extension
function ḡ, and define gp ∈ V h as gp = ḡp on ∂Ω and gp = 0 at all the inner grids.
The auxiliary scheme is to find ũ∗h ∈ V h

0 satisfying

(6.4) Ah(ũ
∗
h, vh) = 〈f, vh〉h −Ah(gp, vh), ∀vh ∈ V h

0 ,

Then u∗h = ũ∗h + gp is the numerical solution of scheme (6.4) for problem (6.2).
Define θh = u∗h − up, then by Theorem 4.1 we have θh ∈ V h

0 . Following Section 5.2,
define the following dual problem: find w ∈ H1

0 (Ω) satisfying

(6.5) A∗(w, v) = (θh, v), ∀v ∈ H1
0 (Ω).
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Let wh ∈ V h
0 be the solution to

(6.6) A∗
h(wh, vh) = (θh, vh), ∀vh ∈ V h

0 .

Notice that the dual problem has homogeneous Dirichlet boundary conditions. By
Theorem 3.7, Theorem 3.3, for any vh ∈ V h

0 ,

Ah(u − u∗h, vh) = [A(u, vh)− Ah(u
∗
h, vh)] + [Ah(u, vh)−A(u, vh)]

= A(u, vh)−Ah(u
∗
h, vh) +O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2

= [(f, vh)− 〈f, vh〉h] +O(hk+2)‖u‖k+3‖vh‖2 = O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖vh‖2.

By (4.1a) and Theorem 5.3, we get

‖θh‖
2
0 = (θh, θh) = Ah(θh, wh) = Ah(u

∗
h − u,wh) +Ah(u− up, wh)

=Ah(u− up, wh) +O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖wh‖2

=O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖wh‖2 = O(hk+2)(‖u‖k+3 + ‖f‖k+2)‖θh‖0,

thus ‖u∗h−up‖0 = ‖θh‖0 = O(hk+2)(‖u‖k+3+ ‖f‖k+2). So Theorem 5.4 still holds for
the auxiliary scheme (6.4):

(6.7) ‖u∗h − u‖2,Z0
= O(hk+2)(‖u‖k+3 + ‖f‖k+2).

6.2. The main result. In order to extend Theorem 5.4 to (6.3), we only need
to prove

‖uh − u∗h‖0 = O(hk+2).

The difference between (6.4) and (6.3) is

(6.8) Ah(ũ
∗
h − ũh, vh) = Ah(gI − gp, vh), ∀vh ∈ V h

0 .

We need the following Lemma.

Lemma 6.1. Assuming u ∈ Hk+4(Ω), then we have

(6.9) Ah(gI − gp, vh) = O(hk+2)‖u‖k+4,Ω‖vh‖2,Ω, ∀vh ∈ V h
0 .

Proof. For simplicity, we ignore the subscript h of vh in this proof and all the
following v are in V h.

Notice that gI − gp ≡ 0 in interior cells. Thus we only consider cells adjacent
to ∂Ω. Let L1, L2, L3 and L4 denote the top, left, bottom and right boundary edges
of Ω̄ = [0, 1] × [0, 1] respectively. Without loss of generality, we consider cell e =
[xe−h, xe+h]× [ye−h, ye+h] adjacent to the left boundary L2, i.e., xe−h = 0. Let
le1, l

e
2, l

e
3 and le4 denote the top, left, bottom and right boundary edges of e respectively.

On l2 ⊂ L2, Let φij(x, y), i, j = 0, 1, . . . , k, be Lagrange basis functions on
edge le2 for the (k + 1) × (k + 1) Gauss-Lobatto points in cell e. Then gI − gp =
∑k

i,j=0 λijφij(x, y) and |λij | ≤ ‖gI − gp‖∞,Z0
. Due to Sobolev’s embedding, we have

u ∈W k+2,∞(Ω). By Theorem 4.2, we have

‖gI − gp‖∞,Z0
≤ ‖u− up‖∞,Z0

= O(hk+2)‖u‖k+2,∞,Ω = O(hk+2)‖u‖k+4,Ω.

Thus we get ∀v ∈ V h
0 ,

〈a(gI − gp)x, vx〉e = 〈a

k
∑

i,j=0

λijφij(x, y)x, vx〉e ≤ C‖a‖∞,Ωmax
i,j

|λij ||〈

k
∑

i,j=0

φij(x, y)x, vx〉e|.
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Since for polynomials on K̂ all the norm are equivalent, we have

|〈

k
∑

i,j=0

φij(x, y)x, vx〉e| = |〈

k
∑

i,j=0

φ̂ij(s, t)s, v̂s〉K̂ | ≤ C|v̂s|∞,K̂ ≤ C|v|1,K̂ = C|v|1,e,

which implies

〈a(gI − gp)x, vx〉h ≤ C‖a‖∞,Ω

∑

e

max
i,j

|λij ||v|1,e = O(hk+2)‖a‖∞,Ω‖u‖k+4,Ω‖v‖2,Ω

Similarly, for any v ∈ V h
0 , we have

〈a(gI − gp)y, vy〉h =O(hk+2)‖a‖∞‖u‖k+4‖v‖2,

〈a(gI − gp)x, vy〉h =O(hk+2)‖a‖∞‖u‖k+4‖v‖2,

〈b · ∇(gI − gp), v〉h =O(hk+2)‖b‖∞‖u‖k+4‖v‖2,

〈c(gI − gp), v〉h =O(hk+2)‖c‖∞‖u‖k+4‖v‖2.

Thus we conclude that

Ah(gI − gp, vh) = O(hk+2)‖u‖k+4‖vh‖2, ∀vh ∈ V h
0 .

By (6.8) and Lemma 6.1, we have

(6.10) Ah(ũ
∗
h − ũh, vh) = O(hk+2)‖u‖k+4‖vh‖2, ∀vh ∈ V h

0 .

Let θh = ũ∗h− ũh ∈ V h
0 . Following Section 5.2, define the following dual problem: find

w ∈ H1
0 (Ω) satisfying

(6.11) A∗(w, v) = (θh, v), ∀v ∈ H1
0 (Ω).

Let wh ∈ V h
0 be the solution to

(6.12) A∗
h(wh, vh) = (θh, vh), ∀vh ∈ V h

0 .

By (6.10) and Theorem 5.3, we get

‖θh‖
2
0 = (θh, θh) = A∗

h(wh, θh) = Ah(ũ
∗
h−ũh, wh) = O(hk+2)‖u‖k+4‖wh‖2 = O(hk+2)‖u‖k+4‖θh‖0,

thus ‖ũ∗h− ũh‖0 = ‖θh‖0 = O(hk+2)‖u‖k+4. By equivalence of norms for polynomials,
we have

(6.13) ‖ũ∗h − ũh‖2,Z0
≤ C‖ũ∗h − ũh‖0 = O(hk+2)‖u‖k+4,Ω.

Notice that both ũh and ũ∗h are constant zero along ∂Ω, and uh|∂Ω = gI is the
Lagrangian interpolation of g along ∂Ω. With (6.7), we have proven the following
main result.

Theorem 6.2. For a nonhomogeneous Dirichlet boundary problem (6.1), with
suitable smoothness assumptions aij , bi, c ∈ W k+2,∞(Ω), u(x, y) ∈ Hk+4(Ω) and
f(x, y) ∈ Hk+2(Ω), the numerical solution uh by scheme (6.3) is a (k + 2)-th or-
der accurate approximation to u in the discrete 2-norm over all the (k + 1)× (k + 1)
Gauss-Lobatto points:

‖uh − u‖2,Z0
= O(hk+2)(‖u‖k+4 + ‖f‖k+2).
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7. Finite difference implementation. In this section we present the finite
difference implementation of the scheme (6.3) for the case k = 2 on a uniform mesh.
The finite difference implementation of the nonhomogeneous Dirichlet boundary value
problem is based on a homogeneous Neumann boundary value problem, which will
be discussed first. We demonstrate how it is derived for the one-dimensional case
then give the two-dimensional implementation. It provides efficient assembling of the
stiffness matrix and one can easily implement it in MATLAB. Implementations for
higher order elements or quasi-uniform meshes can be similarly derived, even though
it will no longer be a conventional finite difference scheme on a uniform grid.

7.1. One-dimensional case. Consider a homogeneous Neumann boundary value
problem −(au′)′ = f on [0, 1], u′(0) = 0, u′(1) = 0, and its variational form is to seek
u ∈ H1([0, 1]) satisfying

(au′, v′) = (f, v), ∀v ∈ H1([0, 1]).(7.1)

Consider a uniform mesh xi = ih, i = 0, 1, . . . , n + 1, h = 1
n+1 . Assume n is odd

and let N = n+1
2 . Define intervals Ik = [x2k, x2k+2] for k = 0, . . . , N − 1 as a finite

element mesh for P 2 basis. Define

V h = {v ∈ C0([0, 1]) : v|Ik ∈ P 2(Ik), k = 0, . . . , N − 1}.

Let {vi}
n+1
i=0 ⊂ V h be a basis of V h such that vi(xj) = δij , i, j = 0, 1, . . . , n+1. With

3-point Gauss-Lobatto quadrature, the C0-P 2 finite element method for (7.1) is to
seek uh ∈ V h satisfying

〈au′h, v
′
i〉h = 〈f, vi〉h, i = 0, 1, . . . , n+ 1.(7.2)

Let uj = uh(xj), aj = a(xj) and fj = f(xj) then uh(x) =
n+1
∑

j=0

ujvj(x). We have

n+1
∑

j=0

uj〈av
′
j , v

′
i〉h = 〈au′h, v

′
j〉h = 〈f, vi〉h =

n+1
∑

j=0

fj〈vj , vi〉h, i = 0, 1, . . . , n+ 1.

The matrix form of this scheme is S̄ū = M̄ f̄ , where

ū =
[

u0, u1, . . . , un, un+1

]T
, f̄ =

[

f0, f1, . . . , fn, fn+1

]T
,

the stiffness matrix S̄ is has size (n + 2) × (n + 2) with (i, j)-th entry as 〈av′i, v
′
j〉h,

and the lumped mass matrix M is a (n+ 2)× (n+ 2) diagonal matrix with diagonal
entries h

(

1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)

.
Next we derive an explicit representation of the matrix S̄. Since basis functions

vi ∈ V h and uh(x) are not C
1 at the knots x2k (k = 1, 2, . . . , N − 1), their derivatives

at the knots are double valued. We will use superscripts + and − to denote derivatives
obtained from the right and from the left respectively, e.g., v′+2k and v′−2k+2 denote the
derivatives of v2k and v2k+2 respectively in the interval Ik = [x2k, x2k+2]. Then in the
interval Ik = [x2k, x2k+2] we have the following representation of derivatives

(7.3)





v′+2k (x)
v′2k+1(x)
v′−2k+2(x)



 =
1

2h





−3 4 −1
−1 0 1
1 −4 3









v2k(x)
v2k+1(x)
v2k+2(x)



 .
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By abusing notations, we use (vi)
′
2k to denote the average of two derivatives of vi

at the knots x2k:

(vi)
′
2k =

1

2
[(v′i)

−
2k + (v′i)

+
2k].

Let [vi] denote the difference between the right derivative and left derivative:

[v′i]0 = [v′i]n+2 = 0, [v′i]2k := (v′i)
+
2k − (v′i)

−
2k, k = 1, 2, . . . , N − 1.

Then at the knots, we have

(7.4) (v′i)
−
2k(v

′
j)

−
2k + (v′i)

+
2k(v

′
j)

+
2k = 2(v′i)2k(v

′
j)2k +

1

2
[vi]2k[vj ]2k.

We also have
(7.5)

〈av′j , v
′
i〉I2k = h

[

1

3
a2k(v

′
j)

+
2k(v

′
i)

+
2k +

4

3
a2k+1(v

′
j)2k+1(v

′
i)2k+1 +

1

3
a2k+2(v

′
j)

−
2k+2(v

′
i)

−
2k+2

]

.

Let vi denote a column vector of size n + 2 consisting of grid point values of vi(x).
Plugging (7.4) into (7.5), with (7.3), we get

〈av′j , v
′
i〉h =

N−1
∑

k=0

〈av′j , v
′
i〉I2k =

1

h
vT
i (D

TWAD + ETWAE)vj ,

where A is a diagonal matrix with diagonal entries a0, a1, . . . , an, an+1, and

W =diag
(

1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)

(n+2)×(n+2)
,

D =
1

2























−3 4 −1
−1 0 1
1

2
−2 0 2 − 1

2

−1 0 1
1

2
−2 0 2 − 1

2

−1 0 1

. . .
. . .

. . .
−1 0 1
1

2
−2 0 2 − 1

2

−1 0 1
1 −4 3























(n+2)×(n+2)

, E =
1

2





















0 0 0
0 0 0

− 1

2
2 −3 2 − 1

2

0 0 0
− 1

2
2 −3 2 − 1

2

0 0 0

. . .
. . .

. . .
0 0 0

− 1

2
2 −3 2 − 1

2

0 0 0
0 0 0





















(n+2)×(n+2)

.

Since {vi}
n
i=0 are the Lagrangian basis for V h, we have

(7.6) S̄ =
1

h
(DTWAD + ETWAE).

Now consider the one-dimensional Dirichlet boundary value problem:

−(au′)′ =f on [0, 1],

u(0) = σ1, u(1) = σ2.

Consider the same mesh as above and define

V h
0 = {v ∈ C0([0, 1]) : v|Ik ∈ P 2(Ik), k = 0, . . . , N − 1; v(0) = v(1) = 0}.

Then {vi}
n
i=1 ⊂ V h is a basis of V h

0 for {vi}
n+1
i=0 defined above. The one-dimensional

version of (6.3) is to seek uh ∈ V h
0 satisfying

〈au′h, v
′
i〉h = 〈f, vi〉h − 〈ag′I , v

′
i〉h, i = 1, 2, . . . , n,

gI(x) = σ0v0(x) + σ1vn+1(x).
(7.7)

Notice that we can obtain (7.7) by simply setting uh(0) = σ0 and uh(1) = σ1 in (7.2).
So the finite difference implementation of (7.7) is given as follows:



SUPERCONVERGENCE OF FD SCHEMES BASED ON VARIATION FORM 29

1. Assemble the (n+2)× (n+2) stiffness matrix S̄ for homogeneous Neumann
problem as in (7.6).

2. Let S denote the n × n submatrix S̄(2 : n + 1, 2 : n + 1), i.e., [S̄ij ] for
i, j = 2, · · · , n+ 1.

3. Let l denote the n × 1 submatrix S̄(2 : n + 1, 1) and r denote the n × 1
submatrix S̄(2 : n+ 1, n+ 2), which correspond to v0(x) and vn+1(x).

4. Let u =
[

u1 u2 · · · un
]T

and f =
[

f1 f2 · · · fn
]T

. Define w =
[

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3

]

as a column vector of size n. The scheme (7.7) can be
implemented as

Su = hwT f − σ0l− σ1r.

7.2. Notations and tools for the two-dimensional case. We will need two
operators:

• Kronecker product of two matrices: if A is m×n and B is p× q, then A⊗B
is mp× nq give by

A⊗B =







a11B · · · a1nB
...

...
...

am1B · · · amnB






.

• For a m× n matrix X , vec(X) denotes the vectorization of the matrix X by
rearranging X into a vector column by column.

The following properties will be used:
1. (A⊗B)(C ⊗D) = AC ⊗ BD.
2. (A⊗B)−1 = A−1 ⊗B−1.
3. (BT ⊗A)vec(X) = vec(AXB).
4. (A⊗B)T = AT ⊗BT .

Consider a uniform grid (xi, yj) for a rectangular domain Ω̄ = [0, 1]× [0, 1] where
xi = ihx, i = 0, 1, . . . , nx+1, hx = 1

nx+1 and yj = jhy, j = 0, 1, . . . , ny+1, hy = 1
ny+1 .

Assume nx and ny are odd and let Nx = nx+1
2 and Ny =

ny+1
2 . We consider rect-

angular cells ekl = [x2k, x2k+2]× [y2l, y2l+2] for k = 0, . . . , Nx−1 and l = 0, . . . , Ny−1
as a finite element mesh for Q2 basis. Define

V h = {v ∈ C0(Ω) : v|ekl
∈ Q2(ekl), k = 0, . . . , Nx − 1, l = 0, . . . , Ny − 1},

V h
0 = {v ∈ C0(Ω) : v|ekl

∈ Q2(ekl), k = 0, . . . , Nx − 1, l = 0, . . . , Ny − 1; v|∂Ω ≡ 0}.

For the coefficients a(x, y) =

(

a11 a12

a21 a22

)

, b = [b1 b2] and c in the elliptic

operator (2.3), consider their grid point values in the following form:

Akl =











a00 a01 . . . a0,nx+1

a10 a11 . . . a1,nx+1

...
...

...
any+1,0 any+1,1 . . . any+1,,nx+1











(ny+2)×(nx+2)

, aij = akl(xj , yi), k, l = 1, 2,

Bm =











b00 b01 . . . b0,nx+1

b10 b11 . . . b1,nx+1

...
...

...
bny+1,0 bny+1,1 . . . bny+1,nx+1











(ny+2)×(nx+2)

, bij = bm(xj , yi), m = 1, 2,
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C =











c00 c01 . . . c0,nx+1

c10 c11 . . . c1,nx+1

...
...

...
cny+1,0 cny+1,1 . . . cny+1,nx+1











(ny+2)×(nx+2)

, cij = c(xj , yi).

Let diag(x) denote a diagonal matrix with the vector x as diagonal entries and
define

W̄x = diag
(

1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)

(nx+2)×(nx+2)
,

W̄y = diag
(

1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)

(ny+2)×(ny+2)
,

Wx = diag
(

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3

)

nx×nx
,Wy = diag

(

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3

)

ny×ny
.

Let s = x or y, we define the D and E matrices with dimension (ns + 2)× (ns + 2)
for each variable:

Ds =
1

2























−3 4 −1
−1 0 1
1

2
−2 0 2 − 1

2

−1 0 1
1

2
−2 0 2 − 1

2

−1 0 1

. . .
. . .

. . .
−1 0 1
1

2
−2 0 2 − 1

2

−1 0 1
1 −4 3























, Es =
1

2





















0 0 0
0 0 0

− 1

2
2 −3 2 − 1

2

0 0 0
− 1

2
2 −3 2 − 1

2

0 0 0

. . .
. . .

. . .
0 0 0

− 1

2
2 −3 2 − 1

2

0 0 0
0 0 0





















.

Define an inflation operator Infl : Rny×nx −→ R

(ny+2)×(nx+2) by adding zeros:

Infl(U) =







0 · · · 0
... U

...
0 · · · 0







(ny+2)×(nx+2)

and its matrix representation is given as Ĩx ⊗ Ĩy where

Ĩx =





0

Inx×nx

0





(nx+2)×nx

, Ĩy =





0

Iny×ny

0





(ny+2)×ny

.

Its adjoint is a restriction operator Res : R(ny+2)×(nx+2) −→ R

ny×nx as

Res(X) = X(2 : ny + 1, 2 : nx + 1) , ∀X ∈ R(ny+2)×(nx+2),

and its matrix representation is ĨTx ⊗ ĨTy .

7.3. Two-dimensional case. For Ω̄ = [0, 1]2 we first consider an elliptic equa-
tion with homogeneous Neumann boundary condition:

−∇ · (a∇u) + b∇u+ cu =f on Ω,(7.8)

a∇u · n =0 on ∂Ω.(7.9)

The variational form is to find u ∈ H1(Ω) satisfying

(7.10) A(u, v) = (f, v), ∀v ∈ H1(Ω).
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The C0-Q2 finite element method with 3 × 3 Gauss-Lobatto quadrature is to find
uh ∈ V h satisfying

(7.11) 〈a∇uh,∇vh〉h + 〈b∇uh, vh〉h + 〈cuh, vh〉h = 〈f, vh〉h, ∀vh ∈ V h,

Let Ū be a (ny + 2) × (nx + 2) matrix such that its (j, i)-th entry is Ū(j, i) =
uh(xi−1, yj−1), i = 1, . . . , nx + 2, j = 1, . . . , ny + 2. Let F̄ be a (ny + 2) × (nx + 2)
matrix such that its (j, i)-th entry is F̄ (j, i) = f(xi−1, yj−1). Then the matrix form
of (7.11) is

(7.12) S̄vec(Ū) = M̄vec(F̄ ), M̄ = hxhyW̄x ⊗ W̄y, S̄ =

2
∑

k,l=1

Skl
a +

2
∑

m=1

Sm
b + Sc,

where

S11
a =

hy
hx

(DT
x ⊗ Iy)diag(vec(W̄yA

11W̄x))(Dx ⊗ Iy) +
hy
hx

(ET
x ⊗ Iy)diag(vec(W̄yA

11W̄x))(Ex ⊗ Iy),

S12
a = (DT

x ⊗ Iy)diag(vec(W̄yA
12W̄x))(Ix ⊗Dy) + (ET

x ⊗ Iy)diag(vec(W̄yA
12W̄x))(Ix ⊗ Ey),

S21
a = (Ix ⊗DT

y )diag(vec(W̄yA
21W̄x))(Dx ⊗ Iy) + (Ix ⊗ ET

y )diag(vec(W̄yA
21W̄x))(Ex ⊗ Iy),

S22
a =

hx
hy

(Ix ⊗DT
y )diag(vec(W̄yA

22W̄x))(Ix ⊗Dy) +
hx
hy

(Ix ⊗ ET
y )diag(vec(W̄yA

22W̄x))(Ix ⊗ Ey),

S1
b = hydiag(vec(W̄yB

1W̄x))(Dx ⊗ Iy), S2
b = hxdiag(vec(W̄yB

2W̄x))(Ix ⊗Dy),

Sc = hxhydiag(vec(W̄yCW̄x).

Now consider the scheme (6.3) for nonhomogeneous Dirichlet boundary condi-
tions. Its numerical solution can be represented as a matrix U of size ny × nx with
(j, i)-entry U(j, i) = uh(xi, yj) for i = 1, · · · , nx; j = 1, · · · , ny. Similar to the one-
dimensional case, its stiffness matrix can be obtained as the submatrix of S̄ in (7.12).
Let Ḡ be a (ny + 2) by (nx + 2) matrix with (j, i)-th entry as Ḡ(j, i) = g(xi−1, yj−1),
where

g(x, y) =

{

0, if (x, y) ∈ (0, 1)× (0, 1),

g(x, y), if (x, y) ∈ ∂Ω.

In particular, Ḡ(j + 1, i+ 1) = 0 for j = 1, . . . , ny, i = 1, . . . , nx. Let F be a matrix
of size ny× nx with (j, i)-entry as F (j, i) = f(xi, yj) for i = 1, · · · , nx; j = 1, · · · , ny.
Then the scheme (6.3) becomes

(7.13) (ĨTx ⊗ ĨTy )S̄(Ĩx ⊗ Ĩy)vec(U) = (Wx ⊗Wy)vec(F )− (ĨTx ⊗ ĨTy )S̄vec(Ḡ).

Even though the stiffness matrix is given as S = (ĨTx ⊗ ĨTy )S̄(Ĩx ⊗ Ĩy), S should be
implemented as a linear operator in iterative linear system solvers. For example, the
matrix vector multiplication (ĨTx ⊗ ĨTy )S

11
a (Ĩx⊗ Ĩy)vec(U) is equivalent to the following

linear operator from Rny×nx to Rny×nx:

hy
hx
ĨTy

{

Iy

(

[W̄yA
11W̄x] ◦ [Iy(ĨyUĨ

T
x )D

T
x ]
)

Dx + Iy

(

[W̄yA
11W̄x] ◦ [Iy(ĨyUĨ

T
x )ET

x ]
)

Ex

}

Ĩx,

where ◦ is the Hadamard product (i.e., entrywise multiplication).
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7.4. The Laplacian case. For one-dimensional constant coefficient case with
homogeneous Dirichlet boundary condition, the scheme can be written as a classical
finite difference scheme Hu = f with

H =M−1S =
1

h2

















2 −1
−2 7

2
−2 1

4

−1 2 −1
1

4
−2 7

2
−2 1

4

−1 2 −1

. . .
. . .

1

4
−2 7

2
−2

−1 2

















In other words, if xi is a cell center, the scheme is

−ui−1 + 2ui − ui+1

h2
= fi,

and if xi is a knot away from the boundary, the scheme is

ui−2 − 8ui−1 + 14ui − 8ui+1 + ui+2

4h2
= fi.

It is straightforward to verify that the local truncation error is only second order.
For the two-dimensional Laplacian case homogeneous Dirichlet boundary condi-

tion, the scheme can be rewritten as

(Hx ⊗ Iy) + (Ix ⊗Hy)vec(U) = vec(F ),

where Hx and Hy are the same H matrix above with size nx × nx and ny × ny

respectively. The inverse of (Hx ⊗ Iy) + (Ix ⊗Hy) can be efficiently constructed via
the eigen-decomposition of small matrices Hx and Hy:

1. Compute eigen-decomposition of Hx = TxΛxT
−1
x and Hy = TyΛyT

−1
y .

2. The properties of Kronecker product imply that

(Hx ⊗ Iy) + (Ix ⊗Hy) = (Tx ⊗ Ty)(Λx ⊗ Iy + Ix ⊗ Λy)(T
−1
x ⊗ T−1

y ),

thus

[(Hx ⊗ Iy) + (Ix ⊗Hy)]
−1 = (Tx ⊗ Ty)(Λx ⊗ Iy + Ix ⊗ Λy)

−1(T−1
x ⊗ T−1

y ).

3. It is nontrivial to determine whether H is diagonalizable. In all our numerical
tests, H has no repeated eigenvalues. So if assuming Λx and Λy are diagonal
matrices, the matrix vector multiplication [(Hx ⊗ Iy) + (Ix ⊗Hy)]

−1vec(F )
can be implemented as a linear operator on F :

(7.14) Ty([T
−1
y F (T−1

x )T ]./Λ)T T
x ,

where Λ is a ny×nx matrix with (i, j)-th entry as Λ(i, j) = Λy(i, i)+Λx(j, j)
and ./ denotes entry-wise division for two matrices of the same size.

For the 3D Laplacian, the matrix can be represented as Hx ⊗ Iy ⊗ Iz + Ix ⊗Hy ⊗
Iz+Ix⊗Iy⊗Hz thus can be efficiently inverted through eigen-decomposition of small
matrices Hx, Hy and Hz as well.

Since the eigen-decomposition of small matrices Hx and Hy can be precomputed,
and (7.14) costs only O(n3) for a 2D problem on a mesh size n×n, in practice (7.14)
can be used as a simple preconditioner in conjugate gradient solvers for the following
linear system equivalent to (7.13):

(W−1
x ⊗W−1

y )(ĨTx ⊗ ĨTy )S̄(Ĩx⊗ Ĩy)vec(U) = vec(F )− (W−1
x ⊗W−1

y )(ĨTx ⊗ ĨTy )S̄vec(G),

even though the multigrid method as reviewed in [19] is the optimal solver in terms
of computational complexity.
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8. Numerical results. In this section we show a few numerical tests verifying
the accuracy of the scheme (6.3) for k = 2 implemented as a finite difference scheme
on a uniform grid. We first consider the following two dimensional elliptic equation:

(8.1) −∇ · (a∇u) + b · ∇u+ cu = f on [0, 1]× [0, 2]

where a =

(

a11 a12
a21 a22

)

, a11 = 10+30y5+x cos y+ y, a12 = a21 = 2+0.5(sin(πx)+

x3)(sin(πy) + y3) + cos(x4 + y3), a22 = 10 + x5, b = 0, c = 1 + x4y3, with an exact
solution

u(x, y) = 0.1(sin(πx) + x3)(sin(πy) + y3) + cos(x4 + y3).

The errors at grid points are listed in Table 1 for purely Dirichlet boundary
condition and Table 2 for purely Neumann boundary condition. We observe fourth
order accuracy in the discrete 2-norm for both tests, even though only O(h3.5) can
be proven for Neumann boundary condition as discussed in Remark 5.5. Regarding
the maximum norm of the superconvergence of the function values at Gauss-Lobatto
points, one can only prove O(h3 log h) even for the full finite element scheme (1.1)
since discrete Green’s function is used, see [4].

Table 1

A 2D elliptic equation with Dirichlet boundary conditions. The first column is the number of
regular cells in a finite element mesh. The second column is the number of grid points in a finite
difference implementation, i.e., number of degree of freedoms.

FEM Mesh FD Grid l2 error order l∞ error order
2× 4 3× 7 3.94E-2 - 7.15E-2 -
4× 8 7× 15 1.23E-2 1.67 3.28E-2 1.12
8× 16 15× 31 1.46E-3 3.08 5.42E-3 2.60
16× 32 31× 63 1.14E-4 3.68 3.96E-4 3.78
32× 64 63× 127 7.75E-6 3.88 2.62E-5 3.92
64× 128 127× 255 5.02E-7 3.95 1.73E-6 3.92
128× 256 255× 511 3.23E-8 3.96 1.13E-7 3.94

Table 2

A 2D elliptic equation with Neumann boundary conditions.

FEM Mesh FD Grid l2 error order l∞ error order
2× 4 5× 9 1.38E0 - 2.27E0 -
4× 8 9× 17 1.46E-1 3.24 2.52E-1 3.17
8× 16 17× 33 7.49E-3 4.28 1.64E-2 3.94
16× 32 33× 65 4.31E-4 4.12 1.02E-3 4.01
32× 64 65× 129 2.61E-5 4.04 7.47E-5 3.78

Next we consider a three-dimensional problem −∆u = f with homogeneous
Dirichlet boundary conditions on a cube [0, 1]3 with the following exact solution

u(x, y, z) = sin(πx) sin(2πy) sin(3πz) + (x− x3)(y2 − y4)(z − z2).

See Table 3 for the performance of the finite difference scheme. There is no es-
sential difficulty to extend the proof to three dimensions, even though it is not
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very straightforward. Nonetheless we observe that the scheme is indeed fourth or-
der accurate. The linear system is solved by the eigenvector method shown in
Section 7.4. The discrete 2-norm over the set of all grid points Z0 is defined as

‖u‖2,Z0
=
[

h3
∑

(x,y,z)∈Z0
|u(x, y, z)|2

]
1

2

.

Table 3

−∆u = f in 3D with homogeneous Dirichlet boundary condition.

Finite Difference Grid l2 error order l∞ error order
7× 7× 7 1.51E-2 - 4.87E-2 -

15× 15× 15 9.23E-4 4.04 3.12E-3 3.96
31× 31× 31 5.68E-5 4.02 1.95E-4 4.00
63× 63× 63 3.54E-6 4.01 1.22E-5 4.00

127× 127× 127 2.21E-7 4.00 7.59E-7 4.00

Last we consider (8.1) with convection term and the coefficients b is incompress-

ible ∇ · b = 0: a =

(

a11 a12
a21 a22

)

, a11 = 100 + 30y5 + x cos y + y, a12 = a21 =

2 + 0.5(sin(πx) + x3)(sin(πy) + y3) + cos(x4 + y3), a22 = 100 + x5, b =

(

b1
b2

)

,

b1 = ψy, b2 = −ψx, ψ = x exp(x2 + y), c = 1 + x4y3, with an exact solution

u(x, y) = 0.1(sin(πx) + x3)(sin(πy) + y3) + cos(x4 + y3).

The errors at grid points are listed in Table 4 for Dirichlet boundary conditions.

Table 4

A 2D elliptic equation with convection term and Dirichlet boundary conditions.

FEM Mesh FD Grid l2 error order l∞ error order
2× 4 3× 7 1.26E-1 - 2.71E-1 -
4× 8 7× 15 2.85E-2 2.15 9.70E-2 1.48
8× 16 15× 31 1.89E-3 3.92 7.25E-3 3.74
16× 32 31× 63 1.17E-4 4.01 4.01E-4 4.17
32× 64 63× 127 7.41E-6 3.98 2.54E-5 3.98

9. Concluding remarks. In this paper we have proven the superconvergence of
function values in the simplest finite difference implementation of C0-Qk finite element
method for elliptic equations. In particular, for the case k = 2 the scheme (6.3) can
be easily implemented as a fourth order accurate finite difference scheme as shown in
Section 7. It provides only only an convenient approach for constructing fourth order
accurate finite difference schemes but also the most efficient implementation of C0-Qk

finite element method without losing superconvergence of function values. In a follow
up paper [12], we will show that discrete maximum principle can be proven for the
scheme (6.3) in the case k = 2 when solving a variable coefficient Poisson equation.
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