
TREATMENT OF COMPLEX INTERFACES FOR MAXWELL’S
EQUATIONS WITH CONTINUOUS COEFFICIENTS USING THE

CORRECTION FUNCTION METHOD

YANN-MEING LAW∗, ALEXANDRE NOLL MARQUES† , AND JEAN-CHRISTOPHE NAVE∗

Abstract. We propose a high-order FDTD scheme based on the correction function method
(CFM) to treat interfaces with complex geometry without increasing the complexity of the numeri-
cal approach for constant coefficients. Correction functions are modeled by a system of PDEs based
on Maxwell’s equations with interface conditions. To be able to compute approximations of cor-
rection functions, a functional that is a square measure of the error associated with the correction
functions’ system of PDEs is minimized in a divergence-free discrete functional space. Afterward,
approximations of correction functions are used to correct a FDTD scheme in the vicinity of an
interface where it is needed. We perform a perturbation analysis on the correction functions’ system
of PDEs. The discrete divergence constraint and the consistency of resulting schemes are studied.
Numerical experiments are performed for problems with different geometries of the interface. A
second-order convergence is obtained for a second-order FDTD scheme corrected using the CFM.
High-order convergence is obtained with a corrected fourth-order FDTD scheme. The discontinuities
within solutions are accurately captured without spurious oscillations.

1. Introduction. Maxwell interface problems arise when dielectric materials are
considered, or when surface charges and currents are present at the interface. In com-
putational electromagnetics, the treatment of interface conditions between materials
is challenging for several reasons, such as the treatment of complex geometries of
the interface, the level of complexity of a numerical method for arbitrarily complex
interfaces and the consideration of discontinuous coefficients to name a few [10].

To handle interface conditions, various numerical strategies use the Immersed In-
terface Method (IIM) [13] or the Matched Interface and Boundary (MIB) method [22]
for dielectric interface [8], perfectly electric conducting (PEC) boundaries [21] and
Drude materials [18]. However, high-order schemes are difficult to achieve using these
approaches for complex interfaces. An alternative approach is to use the correction
function method (CFM) [15], which was inspired by the Ghost Fluid Method (GFM)
[9]. This method was originally developed to handle Poisson’s equation with interface
jump conditions for arbitrarily complex interfaces. In contrast to the GFM for which
high accuracy is hard to obtain, the CFM achieves high-order accuracy by means of a
minimization problem. The CFM’s minimization problem is derived as follows. Based
on the original problem, a system of partial differential equations (PDEs) for which
the solution corresponds to a function, namely the correction function, is derived. A
functional that is a square measure of the error associated with the correction func-
tion’s system of PDEs is minimized on patches around the interface in an appropriate
functional space. This allows us to compute approximations of the correction function
to correct the finite difference (FD) scheme in the vicinity of an interface. The CFM
was applied on Poisson’s equation with piecewise constant coefficients [16] and on the
wave equation with constant coefficients [2].

In addition to the difficulties associated with the treatment of the interface, one
needs to satisfy at the discrete level or to accurately approximate the divergence-
free constraints coming from Maxwell’s equations to obtain accurate results. Many
numerical methods were proposed to enforce these constraints, such as Yee’s scheme
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2 Y.-M. LAW AND A. N. MARQUES AND J.C. NAVE

[20] in finite-difference time-domain (FDTD) methods, local divergence-free shape
functions in finite element methods [6, 5, 12] and penalization approaches [4, 17].

In this work, we focus on the construction of high-order FDTD schemes for arbi-
trarily complex interfaces without increasing the complexity of the numerical scheme
for constant coefficients. The main goal of this paper is to demonstrate the feasibility
to construct such schemes using the CFM. To our opinion, this is the first necessary
stepping stone towards a general numerical approach to treat interface conditions
with discontinuous coefficients. Discontinuous coefficients introduce additional com-
plexity in the context of the CFM, and we will address such problems in future work.
We choose FDTD schemes composed of a staggered finite difference scheme in space,
similar to what is done for Yee’s scheme, and the fourth-order Runge-Kutta method
as a time-stepping method. The staggered grid in space guarantees that the nodes
far from the interface satisfy the divergence constraints at the discrete level. The
CFM requires a functional to be minimized in a chosen functional space. In our case,
the functional coming from correction functions’ system of PDEs is minimized within
a divergence-free functional space, which again enforces the divergence constraints.
Two-dimensional numerical examples based on the transversal magnetic (TMz) mode
are investigated to verify the proposed numerical strategy.

The paper is structured as follows. In section 2, we define the problem, namely
Maxwell’s equations with interface jump conditions. The correction function method
is introduced in section 3. We derive the correction functions’ system of PDEs coming
from Maxwell’s equations and perform a perturbation analysis. The minimization
procedure of the discrete problem is described. The combination of the staggered
finite difference scheme with the fourth-order Runge-Kutta method and the CFM is
presented in section 4. The consistency and the discrete divergence constraint of the
proposed schemes are discussed. Several two-dimensional numerical examples with
complex interfaces are investigated in section 5.

2. Definition of the Problem. Consider a domain Ω subdivided into two sub-
domains Ω+ and Ω− for which the interface Γ between the subdomains is stationary,
that is it does not vary in time, and allows the magnetic field and the electric field to
be discontinuous. The jumps in the magnetic field and the electric field are denoted
as

JHK = H+ −H−,

JEK = E+ −E−,

where H+ and E+ are the solutions in Ω+, and H− and E− are the solutions in Ω−.
We also consider the boundary ∂Ω and a time interval I = [0, T ]. The geometry of
a typical domain is illustrated in Figure 1. Assuming linear media in such a domain
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TREATMENT OF COMPLEX INTERFACES FOR MAXWELL’S EQUATIONS 3

and Ohm’s law, Maxwell’s equations are then given by

∂t(µH) +∇×E = 0 in Ω × I,(1a)

∂t(εE)−∇×H = − σE in Ω × I,(1b)

∇ · (εE) = ρ in Ω × I,(1c)

∇ · (µH) = 0 in Ω × I,(1d)

n̂× JEK = 0 on Γ × I,(1e)

n̂× JHK = Js on Γ × I,(1f)

n̂ · JεEK = ρs on Γ × I,(1g)

n̂ · JµHK = 0 on Γ × I,(1h)

n×H = e(x, t) on ∂Ω × I,(1i)

n×E = g(x, t) on ∂Ω × I,(1j)

H = H(x, 0) in Ω,(1k)

E = E(x, 0) in Ω,(1l)

where µ is the magnetic permeability, ε is the electric permittivity, σ is the conductiv-
ity, ρ is the electric charge density, Js is the surface current density, ρs is the surface
charge density, n is the unit outward normal to ∂Ω and n̂ is the unit normal to the
interface Γ pointing toward Ω+. Equation (1a) to (1c) are known respectively as
Faraday’s law, Ampère-Maxwell’s law and Gauss’ law. The divergence-free constraint
on the magnetic induction field is given by equation (1d). Interface conditions on Γ
are given by equations (1e) to (1h), and boundary conditions and initial conditions
are given by equations (1i) to (1l). Even if divergence constraints (1c) and (1d) seem
to be redundant, it is important to consider them in order to guarantee the uniqueness
of the solution [11]. As mentioned in the introduction, it also helps to obtain accurate
numerical solutions.

n̂

Γ
Ω+

Ω−

∂Ω

Fig. 1. Geometry of a domain Ω with an interface Γ .

To ease the verification of the proposed FDTD schemes, we use divergence-free
source terms in each subdomain, that is f+

1 (x, t) in Ω+ and f−1 (x, t) in Ω−, for Fara-
day’s law. For Ampère-Maxwell’s law, we consider f+

2 (x, t) and f−2 (x, t) respectively
in Ω+ and Ω− as source terms. We also use more general interface conditions, given
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by

n̂× JEK = a(x, t) on Γ × I,
n̂× JHK = b(x, t) on Γ × I,
n̂ · JεEK = c(x, t) on Γ × I,
n̂ · JµHK = d(x, t) on Γ × I.

Hence, we allow both the tangential and normal components of H and E across the
interface to be discontinuous. Even if these source terms and interface conditions are
not substantiated by physics, it helps the verification of the numerical approach by
using manufactured solutions in a more general framework.

3. Correction Function Method. In this section, we first present the idea
behind the correction function method and the benefits of using it. We then define
a system of PDEs coming from problem (1) that models correction functions. A
perturbation analysis is performed on the correction functions’ system of PDEs. A
quadratic functional that is a square measure of the error associated with the correc-
tion functions’ system of PDEs is then derived. This functional is then minimized in a
discrete functional space to obtain approximations of correction functions. Particular
attention is paid to the choice of the discrete functional space in order to guarantee
the divergence-free constraint.

3.1. Introduction to the CFM. Noticing first that the solution to problem
(1) is discontinuous, one cannot use a priori a numerical method, such as a standard
finite difference method, that requires at least the solution to be in C1(Ω). In the
following, we show how to circumvent this issue by using a correction function that
extends the solution in different subdomains and, hence, allow us to use FD schemes.

For simplicity and without loss of generality, we show the principle behind the
CFM through an 1-D example problem. Let us assume a domain Ω = [x`, xr] divided
in Nx cells. The nodes are defined as xi+1/2 = x` + i∆x for i = 0, . . . , Nx, where

∆x = xr−x`
Nx

. For a given i, we now consider an interface Γ between xi−1/2 ∈ Ω+ and

xi+1/2 ∈ Ω−. Let us suppose that we want to compute a second-order approximation
of the first derivative of H(x) at the cell center xi ∈ Ω+. We clearly have

∂xH
+(xi) ≈ ∂xH+

i 6=
H−i+1/2 −H

+
i−1/2

∆x

because of the discontinuity at the interface Γ . However, assuming for the moment
that we can extend the solution H+ in the domain Ω− in such a way that

∂xH
+
i =

H+
i+1/2 −H

+
i−1/2

∆x

=
(H−i+1/2 +Di+1/2)−H+

i−1/2

∆x

=
H−i+1/2 −H

+
i−1/2

∆x
+
Di+1/2

∆x
,

where Di+1/2 = H+
i+1/2−H

−
i+1/2 is a correction function evaluated at xi+1/2. We are

therefore able to compute an accurate approximation of ∂xH
+
i . In a PDE context,

the term
Di+1/2

∆x acts as a source term. In the next subsection, we build the governing
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TREATMENT OF COMPLEX INTERFACES FOR MAXWELL’S EQUATIONS 5

correction functions’ system of PDEs coming from Maxwell’s equations (1) for which
the solutions are defined as correction functions, namely D in the above 1-D example.

3.2. CFM for Maxwell’s equations. To find the correction functions’ system
of PDEs associated with Maxwell’s equations, we consider a small region ΩΓ of the
domain that encloses the interface Γ . We assume that H+, H−, E+, E− and the
associated source terms can be smoothly extended in ΩΓ × I in such a way that
Maxwell’s equations are still satisfied, that is

(2)

µ∂tH
+ +∇×E+ = f+

1 (x, t) in ΩΓ × I,
ε ∂tE

+ −∇×H+ = − σE+ + f+
2 (x, t) in ΩΓ × I,

∇ ·E+ =
ρ

ε
in ΩΓ × I,

∇ ·H+ = 0 in ΩΓ × I,
µ ∂tH

− +∇×E− = f−1 (x, t) in ΩΓ × I,
ε ∂tE

− −∇×H− = − σE− + f−2 (x, t) in ΩΓ × I,

∇ ·E− =
ρ

ε
in ΩΓ × I,

∇ ·H− = 0 in ΩΓ × I,
n̂× JEK = a(x, t) on Γ × I,
n̂× JHK = b(x, t) on Γ × I,
n̂ · JεEK = c(x, t) on Γ × I,
n̂ · JµHK = d(x, t) on Γ × I.

Subtracting from the equations for H+ and E+ the equations for H− and E− of
system (2), we obtain the following system of equations

µ∂tDH +∇×DE = fD1(x, t) in ΩΓ × I,(3a)

ε ∂tDE −∇×DH = − σDE + fD2(x, t) in ΩΓ × I,(3b)

∇ ·DE = 0 in ΩΓ × I,(3c)

∇ ·DH = 0 in ΩΓ × I,(3d)

n̂×DE = a(x, t) on Γ × I,(3e)

n̂×DH = b(x, t) on Γ × I,(3f)

n̂ ·DE = c(x, t)/ε on Γ × I,(3g)

n̂ ·DH = d(x, t)/µ on Γ × I,(3h)

which determine the correction functions DH = JHK and DE = JEK. Source terms
are given by fD1

= f+
1 − f−1 and fD2

= f+
2 − f−2 . Interface conditions (1e) to (1h)

become boundary conditions (3e) to (3h) for system (3).

Remark 1. It is worth to mention that system (3) describes the behaviour of
jumps (or correction functions) in the magnetic field and the electric field in a general
approach. Hence, by construction and consistency, derivatives of correction functions
DH and DE satisfy derivative jump conditions [22] without explicitly imposing them.

3.3. Perturbation Analysis of CF’s PDEs for Maxwell’s Equations. In
this subsection, a perturbation analysis of the correction functions’ system of PDEs
coming from Maxwell’s equations is investigated using a standard Fourier analysis
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6 Y.-M. LAW AND A. N. MARQUES AND J.C. NAVE

for initial value problem. We follow the same procedure described in [15, 2]. The
correction function’s system of PDEs is not always well-posed. An example of such a
situation is Poisson problems for which the CFM leads to an ill-posed Cauchy problem
[15]. This could influence the choice of the numerical scheme to be corrected and the
construction of the discretization of the correction functions’ system of PDEs.

In the following, we only focus on the first two equations of (3) because divergence
constraints are naturally satisfied by an appropriate choice of the functional space
in which we minimize the quadratic functional (see subsection 3.4). We suppose,
without loss of generality, that the interface is flat and is parallel to the xy-plane and
x = 0 ∈ Γ . Let us also define the distance d from the interface, which is along the
positive part of the z-axis in the subdomain Ω+. We therefore have an orthogonal
coordinate system (y, d), where y = [x, y]T spans the interface and d = z. Assume
that physical parameters are such that µ > 0, ε > 0 and σ > 0 and there is no
source term. Consider a periodic domain Ω = [−π, π]3, we search solutions for small
perturbations of DH and DE on the interface, namely D̃H and D̃H , of the form

(4) Ũ(x, t) =
∑

kx,ky,kz∈Z
Ûkx,ky,kz (t) e

ik·x,

where Ũ =
[
D̃T
H D̃T

E

]T
and k = [kx, ky, kz]

T . Substitute (4) into the first two
equations of (3) with fD1

= fD2
= 0 leads to a system of ordinary differential

equations (ODE) for each coefficient, given by :

∂tÛkx,ky,kz = A Ûkx,ky,kz

with

A =


0 0 0 0 i kz/µ −i ky/µ
0 0 0 −i kz/µ 0 i kx/µ
0 0 0 i ky/µ −i kx/µ 0
0 −i kz/ε i ky/ε −σ/ε 0 0

i kz/ε 0 −i kx/ε 0 −σ/ε 0
−i ky/ε i kx/ε 0 0 0 −σ/ε

 .

Depending on the values of k · k, we have three cases:
1) If k · k = 0, we have k = 0 and the matrix A has two distinct eigenvalues

λ1 = 0 and λ2 = −σε . It is easy to show that dim(ker(A − λi I)) = 3 for
i = 1, 2, and that B = [s1 . . . s6] = I, where sj for j = 1, . . . , 6 denotes an
eigenvector. Hence, we have six linearly independent eigenvectors.

2) If k · k = µσ2

4 ε , the matrix A has three distinct eigenvalues λ1 = 0, λ2 = −σε
and λ3 = − σ

2 ε . We have dim(ker(A − λ1 I)) = dim(ker(A − λ2 I)) = 1.
However, the multiplicity of λ3 is four, but dim(ker(A − λ3 I)) = 2. We
therefore need to find two other solutions of the form c = s t + b associated
with eigenvectors of λ3. Using a standard method to solve an ODE with
multiple eigenvalues, we find

det(B) =
ε2 σ2 µ

4 ε k2
y + 4 ε k2

z − µσ2
6= 0,

where B = [s1 . . . s4 c1 c2].
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3) Otherwise, the matrix A has four distinct eigenvalues given by λ1 = 0, λ2 =
−σε and

λ3,4 =
−σ µ±

√
µ(4 εk · k − µσ2) i

2 ε µ
.

We have dim(ker(A − λi)) = 1 for i = 1, 2, and dim(ker(A − λi)) = 2 for
i = 3, 4. A direction computation of det(B) shows that we have six linearly
independent eigenvectors.

For all cases, it is possible to obtain a general solution of the form

Ûkx,ky,kz (t) =
∑
i

ai e
λit,

where the vectors ai are computed using given initial conditions of small perturbations
and eigenvectors. Since σ > 0 and ε > 0, there is no exponential growth of the form
ea t with a > 0. Hence, the problem coming from the first two equations of (3) does
not allow perturbations to growth. A perturbation of DH and DE on the interface
Γ is therefore unchanged, dispersed and/or diffused. Hence, this allows us to have
more flexibility on the discretization of the correction functions’ system of PDEs (see
subsection 3.4) and the choice of an appropriate numerical scheme.

Remark 2. For highly resistive medium, it is common to consider σ = 0. In this
case, if k · k 6= 0, the matrix A has three distinct eigenvalues λ1 = 0 and

λ2,3 = ±

√
k · k
ε µ

i.

Following the same procedure than the one for σ > 0, we find that the problem coming
from the first two equations of (3) does not allow perturbations to growth.

3.4. Discretization of Maxwell’s equations CFM. In this subsection, we
define a local patch ΩhΓ ⊂ ΩΓ and a time interval IhΓ = [tn−∆tΓ , tn], where correction
functions, namely DH and DE , need to be computed at a node (x, t) ∈ ΩhΓ × IhΓ .
Approximations of correction functions within a patch are obtained by minimizing a
quadratic functional.

The construction of a patch is a slight modification of the “Node Centered” tech-
nique [15]. It is recalled that the correction functions’ system of PDEs for Maxwell’s
equations does not allow perturbations to growth. Hence, some restrictions on the
construction of the local patch are loosened, such as the size of the patch and the rep-
resentation of the interface within the patch. As in the “Node Centered” approach,
we construct a patch for each node that needs to be corrected. However, we restrict
the patch to be squared and aligned with the computational grid. We now summarize
the procedure to compute ΩhΓ . For a given node xc that needs to be corrected, we
find an approximation of the point p on the interface Γ that is the closest to xc. We
construct a square centered at p of length `h = β max{∆x,∆y,∆z} where β is a
positive constant. The parameter β depends on the FD scheme and it is chosen to
ensure that xc ∈ ΩhΓ . For exemple, β = 1 and β = 3 for respectively the second and
the fourth order staggered FD scheme presented in section 4. This construction of
the patch guarantees the uniqueness of a correction function at each node. This is
important for the conservation of the discrete divergence constraint for some nodes
close to Γ (see Theorem 4.3).
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8 Y.-M. LAW AND A. N. MARQUES AND J.C. NAVE

Let us now present the functional to be minimized in order to obtain approxi-
mations of correction functions. We begin by introducing some notations. The inner
product in L2

(
ΩhΓ × IhΓ

)
is defined by

〈v,w〉 =

ˆ

IhΓ

ˆ

ΩhΓ

v ·w dV dt.

For legibility, we also use the notation

〈v,w〉Γ =

ˆ

IhΓ

ˆ

ΩhΓ∩Γ

v ·w dS dt.

To compute approximations of correction functions DH and DE , we consider the
following quadratic functional to minimize

J(DH ,DE) =
`c
2

〈
µ∂tDH +∇×DE − fD1 , µ ∂tDH +∇×DE − fD1

〉
+
`c
2
〈ε ∂tDE −∇×DH + σDE − fD2 , ε ∂tDE −∇×DH + σDE − fD2

〉
+

1

2

〈
n̂×DH − b, n̂×DH − b

〉
Γ

+
1

2

〈
n̂ ·DH − d

µ , n̂ ·DH − d
µ

〉
Γ

+
1

2

〈
n̂×DE − a, n̂×DE − a

〉
Γ

+
1

2

〈
n̂ ·DE − c

ε , n̂ ·DE − c
ε

〉
Γ
,

where `c > 0 is a scale factor. The scale factor `c is chosen to ensure that all terms
in the functional J behave in a similar way when the computational grid is refined
(see Remark 4). As one can observe, we do not explicitly consider the divergence-free
constraint (3c) and (3d). These constraints are naturally satisfied by an appropriate
choice of polynomial spaces in which we minimize the functional J . The problem
statement is then

(5) Find (DH ,DE) ∈ V ×W such that (DH ,DE) ∈ arg min
v∈V,w∈W

J(v,w),

where V and W are two divergence-free polynomial spaces that is

V =
{
v ∈

[
P k
(
ΩhΓ × IhΓ

)]3
: ∇ · v = 0

}
,

where P k denotes the space of polynomials of degree k, and V = W . Space-time
basis functions of V are obtained using the tensor product between basis functions of
P k(IhΓ ) and basis functions of

Ṽ =
{
v ∈

[
P k
(
ΩhΓ
)]3

: ∇ · v = 0
}
.

Computing Gateaux derivatives and using a necessary condition to obtain a min-
imum, we have the following problem :

Find (DH ,DE) ∈ V ×W such that

`c
〈
µ2 ∂tDH + µ∇×DE − µfD1 , ∂tv

〉
− `c

〈
ε ∂tDE +∇×DH − σDE + fD2 ,∇× v

〉
+
〈
n̂×DH − b, n̂× v

〉
Γ
+
〈
n̂ ·DH − d

µ
, n̂ · v

〉
Γ
= 0, ∀v ∈ V,

`c
〈
µ∂tDH +∇×DE − fD2 ,∇×w

〉
+ `c

〈
ε2 ∂tDE − ε∇×DH + ε σDE − εfD2 , ∂tw

〉
+
〈
σ ε ∂tDE − σ∇×DH + σ2 DE − σ fD2 ,w

〉
+
〈
n̂×DE − a, n̂×w

〉
Γ
+
〈
n̂ ·DE − c

ε
, n̂ ·w

〉
Γ
= 0, ∀w ∈W.
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Remark 3. For simplicity, consider the 1-D version of system (3) with σ = 0,
ρ = 0 and without source term, it can be shown that the information is propagated at
a speed of 1√

ε µ as it is well-known for homogeneous Maxwell’s equations. This gives

us an insight on how to choose an appropriate time step ∆tΓ for the CFM. For the
general case, we choose ∆tΓ ≈

√
ε µ `h to allow information coming from the interface

Γ to propagate in the whole local patch ΩhΓ .

Remark 4. Consider a square patch of length `h and ∆tΓ = O(`h). Using dis-
crete polynomial spaces P k, correction functions are (k + 1)-order accurate and we
have

µ∂tDH +∇×DE − fD1
= O(`kh),

ε ∂tDE −∇×DH + σDE − fD2
= O(`kh),

n̂×DE − a = O(`k+1
h ),

n̂×DH − b = O(`k+1
h ),

n̂ ·DE − c/ε = O(`k+1
h ),

n̂ ·DH − d/µ = O(`k+1
h ).

Substituting these terms in the functional J , we find that the terms 〈·, ·〉 and 〈·, ·〉Γ
behave respectively as O(`c `

2 k+4
h ) and O(`2 k+5

h ). Hence, we need `c = `h to have all
terms converging in a similar way when the computational grid is refined.

Remark 5. The computational cost of minimization problems for the CFM is
not small. However, only nodes around the interface need a correction. Assuming
an uniform mesh of Nd nodes, where d is the dimension and N is the number of
nodes used in each dimension, the computational cost scales as Nd−1 [15]. For large
problems, this cost then becomes less significant. Moreover, it has been shown that a
parallel implementation of the CFM can help to overcome this issue [1] and make the
CFM suitable for more complex problems.

Remark 6. In this work, 2-D numerical examples are investigated. We use a
similar procedure proposed by [6] to generate basis functions of Ṽ . Besides being at

divergence-free, the dimension of Ṽ , given by (k+1)(k+4)
2 , is smaller than the dimension

of [P k
(
ΩhΓ
)]2

given by (k+1)(k+2). This reduces the computational cost of the CFM.

4. 2-D Staggered Discretization. Considering the transverse magnetic (TMz)
mode, the unknowns are Hx(x, y, t), Hy(x, y, t) and Ez(x, y, t). For a domain Ω ⊂ R2

and constant physical parameters, problem (1) is then simplified to

µ∂tHx + ∂yEz = f1x in Ω × I,
µ ∂tHy − ∂xEz = f1y in Ω × I,

ε ∂tEz − ∂xHy + ∂yHx = − σ Ez + f2 in Ω × I,
∂xHx + ∂yHy = 0 in Ω × I,

with the associated interface, boundary and initial conditions.

Remark 7. In this work, we demonstrate the feasibility of the numerical strategy
in 2-D using the TMz mode. From a conceptual point of view, there is, in principle,
no additional difficulties if one chooses the transverse electric (TEz) mode or a fully
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3-D problem as long as ρ = 0. However, the implementation for a fully 3-D problem
is more involved due to the treatment of the interface which is a surface in 3-D. It
is worth noting that recent progress has been made to ease the implementation of the
CFM in 3-D [14].

4.1. Numerical Scheme. Let us now define the staggered space discretization
which is similar to what is done in space for Yee’s scheme. For simplicity, we consider
a rectangular domain Ω ∈ [x`, xr]× [yb, yt]. The nodes of the grid are defined as

(xi+1/2, yj+1/2) =
(
x` + i∆x, yb + j ∆y

)
for i = 0, 1, . . . , Nx and j = 0, 1, . . . , Ny with ∆x := (xr − x`)/Nx and ∆y := (yt −
yb)/Ny. We also define the center of a cell Ωi,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] by

(xi, yi) =
(
x` + (i− 1

2 )∆x, yb + (j − 1
2 )∆y

)
for i = 1, . . . , Nx and for j = 1, . . . , Ny. The midpoints of edges parallel to the x-axis
and those parallel to the y-axis are respectively defined as

(xi, yj+1/2) =
(
x` + (i− 1

2 )∆x, yb + j ∆y
)

for i = 1, . . . , Nx and for j = 0, . . . , Ny, and

(xi+1/2, yj) =
(
x` + i∆x, yb + (j − 1

2 )∆y
)

for i = 0, . . . , Nx and for j = 1, . . . , Ny. For time discretization, the time interval
I = [0, T ] is subdivided into Nt subintervals of length ∆t := T/Nt. Unlike the space
discretization, we do not staggered variables in time. The components of the magnetic
field are then approximated at the edges of the cell, that is

Hx(xi, yj+1/2, tn) ≈ Hn
x,i,j+1/2

and

Hy(xi+1/2, yj , tn) ≈ Hn
y,i+1/2,j ,

and the z-component of the electric field is approximated at the center of the cell

Ez(xi, yj , tn) ≈ Enz,i,j .

The spatial derivatives are computed using either the second or fourth order
centered approximation. For example, the fourth-order centered approximation of
∂xHy(xi, yj , tn) is given by

(6)
Hn
y,i−3/2,j − 27Hn

y,i−1/2,j + 27Hn
y,i+1/2,j −H

n
y,i+3/2,j

24∆x
.

For time discretization, we use the fourth-order Runge-Kutta (RK4) method,
which is given by

(7) Un+1 = Un +
1

6
(k1 + 2k2 + 2k3 + k4),
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with Un = [Hn
x , H

n
y , E

n
z ]T ,

k1 = ∆tG(tn,U
n),

k2 = ∆tG(tn + ∆t
2 ,U

n + k1

2 ),

k3 = ∆tG(tn + ∆t
2 ,U

n + k2

2 ),

k4 = ∆tG(tn +∆t,Un + k3),

and

(8) G(tn,U
n) =

 1
µ (fn1x − ∂yhE

n
z )

1
µ (fn1y + ∂xhE

n
z )

−σ Enz + fn2 + ∂xhH
n
y − ∂yhHn

x

 ,
where the subscript h in spatial derivatives denotes a given finite difference approxi-
mation of them in Ω. Let us now consider a FD approximation of spatial derivatives
for which we apply correction functions, that is DHx , DHy and DEz . It has been
shown that a direct interpolation of approximations of correction functions at times
tn, tn+1/2 and tn+1, which are needed for different stages of the RK4 method, re-
sults in a suboptimal second-order accurate approximation in time. As proposed in
[2], we need to slightly modify an approximation of a correction function to regain a
full fourth-order approximation in time. Based on Taylor expansions, the modified
approximations of correction functions at each stage are

1st stage : D̂n
1 = Dn,

2nd stage : D̂n
2 ≈Dn + ∆t

2 ∂tD
n,

3rd stage : D̂n
3 ≈Dn + ∆t

2 ∂tD
n + ∆t2

4 ∂2
tD

n,

4th stage : D̂n
4 ≈Dn +∆t∂tD

n + ∆t2

2 ∂2
tD

n + ∆t3

4 ∂3
tD

n,

where Dn = [Dn
Hx
, Dn

Hy
, Dn

Ez
]T . Time derivatives of a correction function can be com-

puted directly using their polynomial approximations coming from the minimization
problem (5).

Remark 8. It is worth mentioning that correction functions can be seen as ad-
ditional source terms. Hence, the stability condition of an original FD scheme should
remain the same when the CFM is used if correction functions are bounded [2]. This
observation has been corroborated by numerical experiments in [2] for the wave equa-
tion. In our case, the assumption of bounded correction functions is reasonable because
the correction functions’ system of PDEs for Maxwell’s equations do not allow per-
turbations to growth (see subsection 3.3).

4.2. Truncation Error Analysis. In this short subsection, we study the im-
pact of an approximation of a correction function on a finite difference scheme. As
shown in Lemma 4.1, the error associated with an approximation of a correction func-
tion coming from the minimization problem (5) can reduce the order of an original
finite difference scheme, that is without correction.

Lemma 4.1. Let us consider a domain Ω subdivided into two subdomains Ω+

and Ω− for which the interface Γ between subdomains allows the solution A(x) to be
discontinuous. Assume that there is sufficiently smooth extensions of A(x) in each
subdomain, namely A+(x) and A−(x). Moreover, assume that an approximation of the
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12 Y.-M. LAW AND A. N. MARQUES AND J.C. NAVE

correction function D is p-order accurate and the fourth-order centered FD scheme,
namely

(9) ∂xAi =
Ai−3/2 − 27Ai−1/2 + 27Ai+1/2 −Ai+3/2

24∆x
.

The order of the fourth-order centered FD scheme when a correction is applied is
q = min{p− 1, 4}.

Proof. Consider that the fourth-order centered FD scheme (9) involves approxi-
mations of A that belongs to different subdomains. For simplicity and without loss of
generality, suppose that xi ∈ Ω+ and only one node belongs to the domain Ω−, that
is xi+1/2 ∈ Ω− and xi−3/2, xi−1/2, xi+3/2 ∈ Ω+. Hence,

(10) ∂xA
+
i =

A+
i−3/2 − 27A+

i−1/2 + 27 (A−i+1/2 +Di+1/2)−A+
i+3/2

24∆x
,

where Di+1/2 is an approximation of the correction function evaluated at xi+1/2. Since
the approximation of the correction function is p-order accurate,

D(xi+1/2) = Di+1/2 +O(∆xp).

Using appropriate Taylor’s expansions about xi of A−i+1/2 and D(xi+1/2), we find

(11)

A−i+1/2 +Di+1/2 = A−i+1/2 +D(xi+1/2) +O(∆xp)

=

∞∑
j=0

1

2j j!

(
∂(j)
x A−(xi) + ∂(j)

x D(xi)
)
∆xj +O(∆xp)

=

∞∑
j=0

1

2j j!
∂(j)
x A+(xi)∆x

j +O(∆xp).

Using (11) and performing a standard Taylor’s expansion of (10) about xi, we find

∂xA
+
i = ∂xA

+(xi) +O(∆x4 +∆xp−1).

4.3. Discrete Divergence Constraint. In this subsection, we discuss about
the conservation of the discrete divergence of the finite difference scheme, presented in
subsection 4.1, combined with the CFM. We first show that the standard FD scheme
preserves the divergence of the initial data at the discrete level. Secondly, we show
that the discrete divergence is still conserved for the FD scheme when combined with
the CFM except for some nodes close to the interface.

A common second-order discrete approximation of the divergence of a 2-D vector
field is computed using

(12)
(
∇ ·A

)n
i+1/2,j+1/2

:=
Anx,i+1,j+1/2 −A

n
x,i,j+1/2

∆x
+
Any,i+1/2,j+1 −A

n
y,i+1/2,j

∆y
,

where Ax(x, y, t) and Ay(x, y, t) [19]. We also introduce the centered fourth-order
discrete approximation of the divergence, given by

(13)

(
∇̃ ·A

)n
i+1/2,j+1/2

:=
Anx,i−1,j+1/2−27Anx,i,j+1/2+27Anx,i+1,j+1/2−A

n
x,i+2,j+1/2

24 ∆x

+
Any,i+1/2,j−1−27Any,i+1/2,j+27Any,i+1/2,j+1−A

n
y,i+1/2,j+2

24 ∆y ,
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which is better suited for the fourth-order centered scheme.
For the TMz mode, we remark that the z-component of the electric field Ez(x, y, t)

is at divergence-free. We then focus on the magnetic field. The following lemma
shows that the standard staggered finite difference scheme combined with the RK4
time-stepping method preserves the discrete divergence of the initial data at all later
times.

Lemma 4.2. Assume that source terms satisfy(
∇̃ · f1

)n
i+1/2,j+1/2

= 0,

for all i, j and all n ≥ 0. The magnetic field, computed with the standard fourth-order
staggered FD scheme combined with the RK4 method, is such that(

∇̃ ·H
)n+1

i+1/2,j+1/2
=
(
∇̃ ·H

)0
i+1/2,j+1/2

,

for all i, j and all n ≥ 0.

Proof. The following demonstration is similar to the proof given in [19]. For a
given time tn, let us consider the two first components of (8), that is

GH(tn, E
n
z ) =

1

µ

[
fn1x − ∂yhE

n
z

fn1y + ∂xhE
n
z

]
,

where ∂yh · and ∂xh · denote the centered fourth-order approximation (6). Applying
the discrete divergence operator to GH(tn, E

n
z ) leads to(

∇̃ ·GH

)n
i+1/2,j+1/2

=
(
∇̃ · f1

)n
i+1/2,j+1/2

+
(
∇̃ ·A

)n
i+1/2,j+1/2

,

where

Anx,i,j+1/2 = −
Enz,i,j−1 − 27Enz,i,j + 27Enz,i,j+1 − Enz,i,j+2

24 ∆y
,

Any,i+1/2,j =
Enz,i−1,j − 27Enz,i,j + 27Enz,i+1,j − Enz,i+2,j

24 ∆x
,

which is a fourth-order approximation of the curl of the electric field at cell edges.
We can easily verify that (

∇̃ ·A
)n
i+1/2,j+1/2

= 0 , ∀i, j, n.

Using
(
∇̃ · f1

)n
i+1/2,j+1/2

= 0 , we obtain(
∇̃ ·GH

)n
i+1/2,j+1/2

= 0 ,

for all i, j and all n ≥ 0. Applying the discrete divergence operator to (7), we find(
∇ ·H

)n+1

i+1/2,j+1/2
=
(
∇ ·H

)n
i+1/2,j+1/2

. Hence, we obtain the desired result.

Due to possible discontinuities at the interface Γ , we need to investigate the dis-
crete divergence for nodes that are close to Γ . We distinguish two cases that are
illustrated in Figure 2. In the first case, we consider that the discrete divergence
operator involves only components of the magnetic field that belong to the same sub-
domain. However, there is no restriction on the electric field. In contrast, the second
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Γ

(a) case I

Γ

(b) case II

Fig. 2. Illustration of the two cases for the computation of the centered fourth-order divergence
of the magnetic field around the interface Γ (dotted line). For legibility, we only show nodes involve
in Theorem 4.3 and Theorem 4.4 for the computation of the discrete divergence of H at the node
represented by ◦. The components Hx, Hy and Ez are respectively represented by �, � and ◦.

case considers Hx and Hy that belong to different subdomains in the computation
of the discrete divergence operator. In that situation, discrete divergence operators
(12) and (13) are not well suited and need to be redefined. In the spirit of the CFM,
we propose a corrected discrete divergence operator that uses correction functions
if it is necessary. The corrected discrete divergence operator is denoted as either(
∇D ·A

)n
i+1/2,j+1/2

or
(
∇̃D ·A

)n
i+1/2,j+1/2

for respectively the second and fourth or-

der centered approximation. The following theorems analyze the discrete divergence
of the approximation of H in both situations.

Theorem 4.3. Under assumptions of Lemma 4.2 and assuming that the approx-
imation of the correction function D̂Ez at each node is unique. If the computation

of
(
∇̃ · H

)◦,n+1

i+1/2,j+1/2
, where the superscript ◦ can be either + or − depending in

which subdomain (Ω+ or Ω−) the node (xi+1/2, yj+1/2) belongs, involves only approx-
imations of the magnetic field in the same subdomain, then the approximation of H,
computed with the fourth-order staggered FD scheme combined with the RK4 method
and the CFM, is such that(

∇̃ ·H
)◦,n+1

i+1/2,j+1/2
=
(
∇̃ ·H

)◦,0
i+1/2,j+1/2

,

for all i, j and all n ≥ 0.

Proof. Let us consider that the discrete divergence operator (13) involves only ap-
proximations of Hx and Hy in the same subdomain than the node (xi+1/2, yj+1/2). For
simplicity and without loss of generality, consider that the corner where the discrete
divergence operator is computed belongs to Ω+. Suppose that some approximations
of the electric field in (8) belong to Ω−. Using the uniqueness of correction functions
and repeating the same procedure as in Lemma 4.2, but with correction functions,
that is

E+,n
z 7→ E−,nz + D̂n

Ez

where it is needed, we find the desired result.

Theorem 4.4. Assume that correction functions, namely DHx and DHy , and the
magnetic field H satisfy assumptions of Lemma 4.1, and a stability condition of the
form

∆t = α min{∆x,∆y},

where α is a positive constant. The approximation of H, computed with the fourth-
order staggered FD scheme combined with the RK4 method and the CFM, is such
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that (
∇̃D ·H

)◦,n
i+1/2,j+1/2

= ∇ ·H(xi+1/2, yj+1/2, tn) +O(∆xr +∆yr +∆ts) ,

for all i, j and all n ≥ 0, where r = min{p − 2, 3}, s = min{p − 1, 3} and the
superscript ◦ can be either + or − depending in which subdomain (Ω+ or Ω−) the
node (xi+1/2, yj+1/2) belongs.

Proof. Consider that the corrected discrete divergence operator involves approx-
imations of the components of H that belong to different subdomains. For simplicity
and without loss of generality, suppose that the corner, where the corrected dis-
crete divergence operator is computed, belongs to Ω+. For a given time tn, assume
that we need a correction on H+,n

x,i+2,j+1/2 and H+,n
y,i+1/2,j+2 in the computation of(

∇̃D ·H
)+,n
i+1/2,j+1/2

, that is

H+,n
x,i+2,j+1/2 ≈ H−,nx,i+2,j+1/2 +Dn

Hx,i+2,j+1/2 ,

H+,n
y,i+1/2,j+2 ≈ H−,ny,i+1/2,j+2 +Dn

Hy,i+1/2,j+2 .

Let us compute the Taylor expansion associated with H+,n
x,i+2,j+1/2. By Lemma 4.1,

using the fourth-order staggered FD scheme combined with the RK4 method and a
p-order accurate approximation of correction functions leads to

H+,n
x,i+2,j+1/2 ≈ H

−
x (xi+2, yj+1/2, tn) +O(∆xq +∆yq +∆t4) +Dn

Hx,i+2,j+1/2,

where q = min{p− 1, 4}. Hence,

(14)

H+,n
x,i+2,j+1/2 = H−x (xi+2, yj+1/2, tn) +DHx(xi+2, yj+1/2, tn)

+O(∆xq +∆yq +∆t4 +∆tp)

= H+
x (xi+2, yj+1/2, tn) +O(∆xq +∆yq +∆tk) ,

where k = min{p, 4}. Using a similar procedure, we also have

(15) H+,n
y,i+1/2,j+2 = H+

y (xi+1/2, yj+2, tn) +O(∆xq +∆yq +∆tk) .

Substituting (14) and (15) in
(
∇̃D · H

)+,n
i+1/2,j+1/2

, and using appropriate Taylor

expansions and the stability condition, we find the desired result.

Remark 9. Similar statements can be obtained with the second-order staggered
FD scheme. However, we need to consider the second-order discrete divergence oper-
ator (12).

5. Numerical Examples. In the following, we perform convergence analysis of
the proposed numerical schemes for problems with a manufactured solution with var-
ious interfaces. We use a fourth-order approximation of the correction functions with
the RK4 method and either the second-order or fourth-order staggered FD scheme.
The domain is Ω = [0, 1] × [0, 1] and the time interval is I = [0, 0.5]. The physical
parameters are µ = σ = ε = 1 in all Ω. Periodic boundary conditions are imposed
on all ∂Ω for all numerical experiments. We also choose the mesh grid size to be
h ∈

{
1
20 ,

1
28 ,

1
40 ,

1
52 ,

1
72 ,

1
96 ,

1
132 ,

1
180 ,

1
244 ,

1
336

}
and ∆x = ∆y = h. The time-step size

is chosen to satisfy a stability condition and to reach exactly the final time, that is
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Fig. 3. Different geometries of the interface.

∆t = h
2 . Figure 3 illustrates different geometries of the interface that are studied in

this work. We have φ(x, y) ≥ 0 in Ω+, φ(x, y) < 0 in Ω− and φ(x, y) = 0 on Γ , where
φ(x, y) is the level-set function.

It is worth to mention that the proposed numerical method can be applied directly
to problems that involve interface conditions and a perfect electric conductor (PEC)
material for which the surface current and charge density are known explicitly. Un-
fortunately, to our knowledge, there is no analytical solution for arbitrary geometries
of the interface. We therefore use manufactured solutions to verify the proposed nu-
merical method. The manufactured solutions that are used satisfy the divergence-free
property in each subdomain, but not in the entire domain. However, it is the interface
condition (1h) that allows the divergence-free property of the magnetic field to hold
in the whole domain, which can be imposed by the proposed numerical method.

5.1. Circular interface. The level set function

φ(x, y) = (x− x0)2 + (y − y0)2 − r2
0,

where x0 = y0 = 0.5 and r0 = 0.25, is used to describe the interface. The manufac-
tured solutions are :

H+
x = sin(2π x) sin(2π y) sin(2π t),

H+
y = cos(2π x) cos(2π y) sin(2π t),

E+
z = sin(2π x) cos(2π y) cos(2π t)

in Ω+, and

H−x = − 2 sin(2π x) sin(2π y) sin(2π t) + 5,

H−y = − 2 cos(2π x) cos(2π y) sin(2π t) + 3,

E−z = − 2 sin(2π x) cos(2π y) cos(2π t) + 2

in Ω−. The associated source terms are f+
1 = f−1 = 0 and

f+
2 = (2π sin(2π t) + cos(2π t)) sin(2π x) cos(2π y),

f−2 = − (4π sin(2π t) + 2 cos(2π t)) sin(2π x) cos(2π y) + 2.

Figure 4(a) and Figure 4(b) illustrate convergence plots for respectively the second-
order and fourth-order staggered FD scheme using the L∞-norm and the L1-norm.
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(a) second-order staggered FD scheme
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(b) fourth-order staggered FD scheme

Fig. 4. Convergence plots for a problem with a manufactured solution and the circular interface
using fourth-order approximations of correction functions, and either the second-order or fourth-
order staggered FD scheme. It is recalled that U = [Hx, Hy , Ez ]T .

For the second-order scheme, a second-order convergence is obtained for components
Hx, Hy and Ez in both norms as expected by Lemma 4.1. The divergence constraint
converges to second and third order using respectively the L∞-norm and the L1-
norm, which is better than expected and still in agreement with the theory. For the
fourth-order scheme, the magnetic field and the electric field converge to third-order
in L∞-norm, while a fourth-order convergence is obtained in L1-norm. A second and
third order convergence are observed for the divergence of H in L∞-norm and the
L1-norm. These results support our previous analysis presented in section 4. Figure 5
shows components Hx, Hy and Ez at different time steps using the smallest mesh grid
size, namely h = 1

336 , and the fourth-order staggered FD scheme with the CFM. The
discontinuities are accurately captured without spurious oscillations.
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t = 0.25 t = 0.5

(a) Hx

t = 0.25 t = 0.5

(b) Hy

t = 0.25 t = 0.5

(c) Ez

Fig. 5. The components Hx, Hy and Ez at two time steps with h = 1
336

and ∆t = h
2

using
a fourth-order FDTD scheme with the CFM for a problem with a manufactured solution and the
circle interface.
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5.2. 5-star interface. The level set function is given by

φ(x, y) = (x− x0)2 + (y − y0)2 − r2(θ),

where

r(θ) = r0 + ε sin(ω θ(x, y)),

ω = 5, x0 = y0 = 0.5, r0 = 0.25, ε = 0.05 and θ(x, y) is the angle between the vector
[x− x0, y− y0]T and the x-axis. Figure 3(b) illustrates the geometry of the interface.
The manufactured solutions are :

H+
x = sin(4π x) sin(4π y) cos(2π t),

H+
y = cos(4π x) cos(4π y) cos(2π t),

E+
z = 0,

H−x = (−x e−x y + 2) sin(2π t),

H−y = (y e−x y + 3) sin(2π t),

E−z = sin(2π x y) cos(2π t).

The associated source terms are

f+
1x

= − 2π sin(4π x) sin(4π y) sin(2π t),

f−1x =
(
2π (−x e−x y + 2) + 2π x cos(2π x y)

)
cos(2π t),

f+
1y

= − 2π cos(4π x) cos(4π y) sin(2π t),

f−1y = 2π (y e−x y − y cos(2π x y) + 3) cos(2π t),

f+
2 = 8π sin(4π x) cos(4π y) cos(2π t),

f−2 =
(
− 2π sin(2π x y) + y2 e−x y + x2 e−x y

)
sin(2π t) + sin(2π x y) cos(2π t).

Figure 6 illustrates the convergence plots for fourth-order approximations of correc-
tion functions, and either the second-order or fourth-order staggered FD scheme.
A second-order convergence for the solutions is obtained with the second-order FD
scheme in both norms while a second and third order convergence for the divergence
constraint are observed with respectively the L∞-norm and the L1-norm. For the
fourth-order FD scheme, the solutions converge to third and fourth order in respec-
tively L∞-norm and L1-norm. We also observe a second-order convergence for the
divergence constraint using the L∞-norm and a third-order convergence using the
L1-norm. Figure 7 shows the evolution of components Hx, Hy and Ez. Here again,
the results are in agreement with the theory and the discontinuities are accurately
captured for a more complex interface.
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(a) second-order staggered FD scheme
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(b) fourth-order staggered FD scheme

Fig. 6. Convergence plots for the problem with a manufactured solution and the 5-star interface
using fourth-order approximations of correction functions, and either the second-order or fourth-
order staggered FD scheme. It is recalled that U = [Hx, Hy , Ez ]T .
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t = 0.25 t = 0.5

(a) Hx

t = 0.25 t = 0.5

(b) Hy

t = 0.25 t = 0.5

(c) Ez

Fig. 7. The components Hx, Hy and Ez at two time steps with h = 1
336

and ∆t = h
2

using the
fourth-order staggered FD scheme with the CFM for the problem with a manufactured solution and
the 5-star interface.
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5.3. 3-star interface. We use the manufactured solution of the circular inter-
face problem. However, a more complex interface is considered. The level set function
is the same than the 5-star interface but with ω = 3, x0 = y0 = 0.55, r0 = 0.25 and
ε = 0.15. The interface is illustrated in Figure 3(c). Figure 8 illustrates the conver-
gence plots for both schemes using the L∞-norm and the L1-norm. Figure 9 shows
the magnetic field and the electric field at two different time steps using h = 1

336 ,
and the fourth-order staggered FD scheme with the CFM. As for previous interfaces,
the computed orders of convergence are in agreement with the theory and there is no
spurious oscillation within the computed solutions.
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(a) second-order staggered FD scheme
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(b) fourth-order staggered FD scheme

Fig. 8. Convergence plots for the problem with a manufactured solution and the 3-star interface
using fourth-order approximations of correction functions, and either the second-order or fourth-
order staggered FD scheme. It is recalled that U = [Hx, Hy , Ez ]T .

This manuscript is for review purposes only.



24 Y.-M. LAW AND A. N. MARQUES AND J.C. NAVE

t = 0.25 t = 0.5

(a) Hx

t = 0.25 t = 0.5

(b) Hy

t = 0.25 t = 0.5

(c) Ez

Fig. 9. The components Hx, Hy and Ez at two time steps with h = 1
336

and ∆t = h
2

using the
fourth-order staggered FD scheme with the CFM for the problem with a manufactured solution and
the 3-star interface.
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5.4. A remark on non-smooth interface. This subsection studies the robust-
ness of the proposed treatment of interface conditions by considering a non-smooth
interface illustrated in Figure 10. This interface is built using three circles of radius

r =
√

3
2 centered at (0.5 + r, 0.9), (0.5 − r, 0.9) and (0.5,−0.6). We note that the

normal n̂ might not be well defined at the cusps. We use the same manufactured
solution than the circular interface problem. Figure 11 illustrates the convergence
plots for the fourth-order staggered FD scheme with the CFM using the L∞-norm
and the L1-norm. Using L1-norm, Hx, Hy and Ez converge to fourth-order while a
third-order convergence is obtained for the divergence of the magnetic field. Even
though we use smooth manufactured solutions in each subdomain, we highlight that
this kind of solutions is misleading for interfaces with cusps or corners. Indeed, solu-
tions of Maxwell interface problems with such interfaces have a singular part [7, 3],
which is not treated in this work. While it is unclear whether the computed solutions
in Figure 12 represent accurately the actual solution (regular and singular parts). It
is interesting to note that the proposed numerical approach is robust, converges to the
prescribed order and provides solutions that are devoid of spurious oscillations. It is
therefore clear that much work is required to assess whether the numerical approach
presented in this paper can be used or modified to compute solutions of problems
with non-smooth interfaces.
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Fig. 10. A non-smooth interface.
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Fig. 11. Convergence plots for the problem with a manufactured solution and a non-smooth
interface using fourth-order approximations of correction functions and the fourth-order staggered
FD scheme. It is recalled that U = [Hx, Hy , Ez ]T .
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(a) Hx (b) Hy

(c) Ez

Fig. 12. The components Hx, Hy and Ez at t = 0.25 with h = 1
336

and ∆t = h
2

using the
fourth-order staggered FD scheme with the CFM for the problem with a manufactured solution and
a non-smooth interface.
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6. Conclusions. This work uses the correction function method to develop high-
order finite-difference time-domain schemes to handle Maxwell’s equations with com-
plex interface conditions and continuous coefficients. The system of PDEs for which
the solution corresponds to correction functions is derived from Maxwell’s equations
with interface conditions. We have shown that this system of PDEs does not allow
a perturbation on the solution to growth. A functional that is a square measure of
the error associated with the correction functions’ system of PDEs is minimized to
allow us to compute approximations of correction functions where it is needed. A
discrete divergence-free polynomial space in which the functional is minimized is cho-
sen to satisfy the divergence constraints. Approximations of correction functions are
then used to correct either the second-order or fourth-order staggered FD scheme.
We use a staggered grid in space to enforce discrete divergence constraints and the
fourth-order Runge-Kutta time-stepping method. The discrete divergence constraint
and the consistency of resulting schemes have been studied. We have shown that an
approximation of the magnetic field remains at divergence-free for a discrete measure
of the divergence, except for some nodes around the interface. Moreover, the leading
error term associated with resulting schemes can be influenced by the order of approx-
imations of correction functions. Numerical experiments have been performed in 2-D
using different geometries of the interface. All convergence studies are in agreement
with the theory. In all our numerical experiments, the discontinuities within solu-
tions are accurately captured without spurious oscillations. The proposed numerical
strategy is a promising candidate to handle Maxwell’s equations with interface condi-
tions without increasing its complexity for arbitrary geometries of the interface while
keeping high-order accuracy. Future work will include discontinuous coefficients to
handle more realistic materials, such as dielectrics, and an extension of the proposed
numerical strategy in 3-D.
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