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NUMERICAL SOLUTION OF MONGE-KANTOROVICH
EQUATIONS VIA A DYNAMIC FORMULATION

ENRICO FACCA, SARA DANERI, FRANCO CARDIN, AND MARIO PUTTI

ABSTRACT. We extend our previous work on a biologically inspired dy-
namic Monge-Kantorovich model [18] and propose it as an effective tool
for the numerical solution of the L'-PDE based optimal transportation
model. Starting from the conjecture that the dynamic model is time-
asymptotically equivalent to the Monge-Kantorovich equations govern-
ing L' optimal transport, we experimentally analyze a simple yet effec-
tive numerical approach for the quantitative solution of these equations.

The novel contributions in this paper are twofold. First, we in-
troduce a new Lyapunov-candidate functional that better adheres to
the dynamics of our proposed model. It is shown that the Lie de-
rivative of the new Lyapunov-candidate functional is strictly negative
and, more remarkably, the OT density is the unique minimizer for this
new Lyapunov-candidate functional, providing further support to the
conjecture of asymptotic equivalence of our dynamic model with the
Monge-Kantorovich equations. Second, we describe and test different
numerical approaches for the solution of our problem. The ordinary dif-
ferential equation for the transport density is projected into a piecewise
constant or linear finite dimensional space defined on a triangulation of
the domain. The elliptic equation is discretized using a linear Galerkin
finite element method defined on uniformly refined triangles. The ensu-
ing nonlinear differential-algebraic equation is discretized by means of
a first order Euler method (forward or backward) and a simple Picard
iteration is used to resolve the nonlinearity. The use of two discretiza-
tion levels is dictated by the need to avoid oscillations on the potential
gradients that prevent convergence of the scheme.

We study the experimental convergence rate of the proposed solution
approaches and discuss limitations and advantages of these formula-
tions. An extensive set of test cases, including problems that admit
an explicit solution to the Monge-Kantorovich equations are appropri-
ately designed to verify and test the expected numerical properties of
the solution methods. Finally, a comparison with literature methods
is performed and the ensuing transport maps are compared. The re-
sults show that optimal convergence toward the asymptotic equilibrium
point is achieved for sufficiently regular forcing function, and that the
proposed method is accurate, robust, and computationally efficient.

1. INTRODUCTION

We are interested in finding the numerical solution to the following non-
linear differential problem. Given a domain Q C R, two positive functions
f* and f~ belonging to L*(£2) and such that [, f* dz = [, f~ dx, find the
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pair (p,u) : [0, +00[xQ — RT x R that satisfies:

(1a) — V- (ult,2) Vult,2) = fH(2) - (@) = f(2)
(1b) Dupa(t, ) = (t,2) (| Vult,z)| - 1)
(Lc) (0, 2) = uo() > 0

complemented by homogeneous Neumann boundary conditions for eq. .
Here, 0; indicates partial differentiation with respect to time, V = V, in-
dicates the spatial gradient operator, and V- the divergence operator. This
problem, proposed initially in Facca et al. [1§], is a generalization to the
continuous setting of the discrete model developed by Tero et al. [29] for
the simulation of the dynamics of Physarum Polycephalum, a slime mold
with exceptional optimization abilities [24]. This latter model was analyzed
in Bonifaci et al. [10], where its equivalence to an optimal transportation
problem on a graph was shown. In analogy to the discrete setting, Facca
et al. [I8] conjecture that, at infinite times, system eq. is equivalent
to the PDE-based formulation of the Monge-Kantorovich (MK) optimal
transportation problem with cost equal to the Euclidean distance as given
in Evans and Gangbo [I7]. This latter problem reads: find a positive func-
tion p* in L'(2) and a potential u* € Lip; (), with Lip;(£2) the space of
Lipschitz continuous functions with unit constant, such that:

(2a) = V-(p(x) Vu'(z)) = f(x)
(2b) |Vu*(z) <1 Ve
(2¢) | Vu(z)] =1 a.e. where p*(x) >0

The function p*, called the Optimal Transport (OT) density, is uniquely
defined by f [19], and we will use the notation p*(f) when the space de-
pendence is not needed explicitly. The function u* is called the transport or
Kantorovich potential [31]. We term this problem the L-MK equations (or
simply MK equations) to distinguish it from the L?-MK problem, charac-
terized by a quadratic distance cost function, and its famous fluid-dynamic
formulation given by Benamou and Brenier [3], Benamou et al. [5]. Intu-
itively, the OT density describes “how much” mass “flows” through each
point of the domain in the optimal reallocation of fT into f~. Indeed, an
equivalent formulation of the MK equations, called Beckmann Problem [2§],
states that the vector field v* = —pu* V u* solves the following problem:

3 i de : V-v=
) vG[ILnll(I(l?)]d{/Q‘U‘ ! ‘ f}

where the divergence is taken in the sense of distributions.

In Facca et al. [I8] local in time existence and uniqueness of the solution
pair (u(t),u(t)) of eq. was proved under the assumption of f € L>*(Q)
and pg € C°(R). The main difficulty in obtaining existence and unique-
ness of the solution to eq. at large times is the absence of a uniform
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upper bound for | V u(t)| or |u(t) V u(t)|. However, several numerical exper-
iments in Facca et al. [I8] support the conjecture of the convergence of
in eq. toward the solution of the MK equations. Moreover, the numerical
approximation of p(t) and u(t) is experimentally well defined with | V u(t)|
always fulfilling the constraints of the MK equations to be less than or equal
to one when t — 4o00. This suggests that the dynamic optimal transport
problem can be an effective strategy for the numerical solution of the L!-
MK equations. Unlike the L? case, for which the fluid-dynamic formulation
of Benamou and Brenier [3], Benamou et al. [5] allows for efficient numerical
solution, discretization of the L' formulation treated in this study is much
more complicated. Algorithms based on nonlinear minimization [I] or on
the solution of the highly nonlinear Monge-Ampere equation on the product
space are often used typically coupled to some regularization [15},[16]. In Bar-
tels and Schon [2], Benamou and Carlier [4] the Beckmann Problem eq.
is solved via augmented Lagrangian methods and H%V discretizations of the
relevant vector fields. Numerical methods based on entropy regularization of
the linear programming problem arising from Kantorovich-relaxation have
been introduced in Benamou et al. [6], Cuturi [I4]. These techniques require
the discretization of the problem in the product space defined by the trans-
ported measures f™ and f', and thus scale quadratically with the number
of unknowns, although they may possess good parallelization properties. Fi-
nally, we mention efficient approaches discussed in Jacobs et al. [22], Li et al.
[23] based on the Primal-Dual Hybrid Gradient (PDHG) algorithm [I3].

In this paper we propose the numerical solution of the MK equations via
the discretization of the dynamic model as an efficient and robust approach
that does not require the introduction of additional regularizing parameters.
Standard Galerkin finite elements and Euler time-stepping can be combined
with efficient numerical linear algebra algorithms to produce effective solu-
tion strategies exploiting also the dynamics of the process. For example,
in Bergamaschi et al. [7] during the time-stepping procedure spectral in-
formation are collected and used to devise efficient preconditioners for the
conjugate gradient solver.

This paper is formed by two separate parts both supporting the conjec-
ture of the equivalence between the dynamic MK equations and the L'-MK
equations. The first part introduces a new Lyapunov-candidate functional
S formed by the sum of an energy functional £; and a mass functional M
given by:

(4) S(u) = E(p) + M(p)
o an= g ([ (e =55 e st =g o
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The energy functional £;(u) is written above in a variational form, which,
under the assumption p € CO(Q) and f € L=(R), is equivalent to

1
Er(p) = Q/QMVUf(u)Izdx,

where Us(p) identifies the solution of eq. given p. Using the same
hypothesis adopted in [I8] to show existence and uniqueness of the solution
pair (u(t),u(t)) for small times, we prove that S is strictly decreasing along
u-trajectories of eq. . More remarkably, we can show that the OT density
1y is the unique minimizer of the functional S, and that the minimum equals
the Wasserstein distance between f* and f~ with cost equal to Euclidean
distance (denoted with W7). This result gives further evidence in support of
the conjecture that ,u}‘c is the unique attractor of the dynamics on p of eq. .
Unfortunately, since we are still not able to provides a uniform bound on
| Vu(t)|, global existence results seem far to be reached and the conjecture
in Facca et al. [18] remains open.

The second part of the paper reports an extensive experimental analysis
of the numerical solution of the dynamic MK equations, with the twofold
ambition of i) supplying additional support of the equivalence conjecture
introduced in Facca et al. [I§], and ii) corroborating the thesis that this
dynamic MK model provides an ideal setting for the numerical solution of
the L'-MK equations. To this aim, we derive and test several numerical
approaches for the solution of eq. . All the considered methods couple
together simple and cost-effective low order (P; or triangular Py) Galerkin
finite element spaces with Euler (forward or backward) scheme for the time-
discretization of the ensuing Differential Algebraic (DAE) system of equa-
tions [27]. Successive (Picard) iterations are used when necessary to resolve
the nonlinearities. The expected convergence of the different approaches are
tested at large simulation times against the closed form solution proposed
by [12] for sufficiently regular forcing functions. We also verify the conver-
gence toward steady-state for increasingly refined grids and the behavior of
the proposed Lyapunov-candidate function.

Next, we extend the comparison already presented in Facca et al. [18]
of our model results against those reported in Barrett and Prigozhin [IJ.
These tests consider a sequence of spatially refined grids where we look at
monotonicity of the solution and convergence of the Lyapunov-candidate
functions toward a common value. The numerical results show that the use
of one single grid may promote the emergence of oscillations in the numer-
ical gradient field. These oscillations are amplified by the companion ODE
solver, eventually preventing the long-time convergence of the schemes. A
monotone solution is obtained by discretizing the transport potential on a
triangulation that is uniformly refined (7/2) with respect to the triangula-
tion Ty, where the gradient field and the transport density are defined, simi-
larly to what happens with the inf-sup stable mixed finite elements methods
for the solution of Stokes equation [9]. In the case of a mesh aligned with the
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support of the transport density, optimal grid convergence for smooth (C!)
forcing functions is obtained using using P1(7}/2) to discretize the trans-
port potential and either the P;(75) or Po(Tr) for the discretization of the
transport density and the gradient of the transport potential. For piece-
wise continuous forcing function, the loss of convergence seems to affect
more the P; — P; strategy than P; — Py, which seems to be more robust.
When the grid is not aligned with the support of the transport density, addi-
tional errors due to geometrical approximations are introduced and optimal
first order convergence convergence is lost. Simple grid refinement strate-
gies can be easily employed to solve this problem, as shown in Barrett and
Prigozhin [I]. However, we work on fixed grids since we are interested in
exploring the convergence properties of the basic methods. In the case of
spatially heterogeneous domain, the comparison against published numeri-
cal results is qualitatively coherent, but no quantitative result is obviously
possible. However, convergence of the Lyapunov-candidate functions toward
the equilibrium point is verified.

The last section of the paper presents the numerical evaluation of the L!-
OT Map described in Evans and Gangbo [17] from the the approximated so-
lution (py, uj) of the MK equations obtained with the DMK approach. The
approximate OT maps are compared with those obtained with the Sinkhorn
algorithm with entropic regularization by computing barycentric maps as
described in Perrot et al. [25] and implemented in the package Pot [20]. The
numerical comparison on a test case with singular optimal sets shows the
accuracy, efficiency and robustness of the proposed approach.

2. THE LYAPUNOV-CANDIDATE FUNCTIONAL S

In Facca et al. [I§] the authors proposed a £(u) given by the product of
&y and M. Here the product is replaced by the sum, and we analyze here
the behavior of of this new functional S along the pu(t)-trajectory given by
the solution of eq. . We have the following proposition:

Proposition 1. Given t > 0 such that eq. admits a solution pair
(u(t), u(t)) with Ct-regularity in time for all t € [0,%[, then S(u(t)) is strictly
decreasing in time and its time derivative is given by:

d

6)  Sk®) = —ifgmw (19 Us ()] = D (| VU (u(0))] + 1) de

Proof. That hypothesis of the Proposition are fulfilled under the regularity

assumptions uo € C°(Q) and f € L=(Q2) used in Facca et al. [I§].
The proof starts by computing the Lie-derivative of £:

R /Q ()] V u(@)* + 201(8) V 0yu(®) V u(t)) de
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Differentiating in time the weak form of equation eq. , we obtain that
Owu(t) solves the following problem:

/ w(t) Vowu(t) - Vedr = —/ Op(t) Vu(t)-Vodr Yoe HY(Q)
Q Q
Substitute ¢ = u(t) we obtain

D)~ 2 [ o] 9 (o) d
Q
from which eq. @ follows.
For any po > 0 we have that p(t) > e ! mingeq po(z) > 0 for t € [0,].
Hence, all terms contained in eq. @ are strictly positive, and thus the time
derivative is strictly negative. O

Looking at eq. @ we note that %S(,u(t)) is equal to zero only if | VU (u(t))| =
1 within the support of u(t), which is one of the constraints of the MK
equations. Thus the OT density p* becomes a natural candidate for the
minimizer of §. To verify this claim, we need the following duality lemma,
whose proof can by found in Bouchitté et al. [I1]:

Lemma 1. Consider p € LY (Q), f € LY (Q) with zero mean, then the
following equalities hold

|V 90\2> }
& = —
f(ﬂ) goeSng)(Q) {/Q (f(P : 2 &

= inf {/W dx : — V-( w)—f}
T ez g 2 M T Y=

where LZ(Q) indicate the space of real-valued functions on €2, square-integrable
with respect to the measure pdzx.

(7)

We can now state the following Proposition:

Proposition 2. Given f = fT — f= € LY(Q) with zero mean, then the OT
density p*(f) is a minimizer for S with value equal to the W1-Wasserstein
distance between f™ and f~.

Proof. This proof is based on the equivalence between the minimization of
S and the Beckmann Problem in eq. . Using lemma (1} Vu € LY () the
following equalities can be written:

S(p) = we[g%fm]d{T(mw) p = Ve(pw) = f}

1 1
T (p, w) ::2/Q|w]2udx+2/ﬂ,ud:c

For any p € L% (€2) and for any w € (Li(Q))d, a straight forward application
of Young inequality yields:

1 1
/ lw|pdr < / lw|?p da + / pdr =Y (u,w) Ywe (L2(Q))?
0 2 Ja 2 Ja :
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By taking the infimum on w € (L2(€))? with —V-(uw) = f in the last
inequality we obtain

wr A ulude s =9 = 1} <500 e L)

we(L2(Q))4

Since v* = —p* Vu* solves the Beckmann problem, we can write:

“do =  inf dz : Vv =
/Q“ ! ve[irllm)]d{/ vl d ! f}

<int{ [ s =¥ = 1§ < 500

which holds for any p € L} (2). Since

S(u") = /Q u* do

we have that:
S < inf S(u),
peLl ()

showing that all the above inequalities are equalities, proving that that the
OTP is a minimum for S. If there were another minimum j # p* for S we
would get a contradiction to the result shown in Feldman and McCann [19]
on the uniqueness of OT density when f € L'(2). Since the integral of the
OT density is equal to the Wi-distance between f* and f~ [17] we obtain
also the second statement of the Proposition, thus concluding the proof. [

3. NUMERICAL DISCRETIZATION

We start this section by stressing the fact that our aim is to show the
effectiveness of simple discretization methods for the solution of eq. .
Obvious improvements in both computational efficiency and accuracy can
be obtained by using more advanced approaches, such as, e.g., higher order
approximations, Newton method, automatic mesh refinement, etc. How-
ever, our starting point is to show that even the simple methods presented
here form an efficient and robust framework for the solution of the L'-MK
equations using the proposed dynamic setting.

3.1. Projection spaces. Our numerical approach at the solution of eq.
is based on the method of lines. Spatial discretization is achieved by pro-
jecting the weak formulation of the system of equations onto a pair of finite
dimensional spaces (Vi, Wy). We denote with 75,(€2) a regular triangulation
of the (assumed polygonal) domain €, characterized by n nodes and m cells,
where h indicates the characteristic length of the elements. We denote with
Po(Trn(2)) = span{ei(x),...,¥am(z)} the space of element-wise constant
functions on T, (Q2), i.e., ¥;(x) is the characteristic function of cell T;. The
space P1(Tn()) = span{¢i(z),...,eon(z)} is the space of continuous lin-
ear Lagrangian basis functions defined on 7,(€2). We consider two different
choices of the space V}, used in the projection of the elliptic equation eq. ,
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namely Vi, = Pip = Pi(Tu(Q) and Vi, = Pipo = Pi(Th/2(R)). Here
Thy2(2) is the triangulation generated by conformally refining each cell
Ty, € Th(Q) (i.e. each element Ty is divided in 2¢ sub-elements having as
nodes the gravity centers of the 2¢~!-faces contained of T}). Again we con-
sider different choices of spaces also for the projection of the dynamic equa-
tion eq. by using alternatively Wy, = Py, and Wy, = Py 1, = Po(Tn(92)),
when the projection is done on the same mesh used for the elliptic equations,
or Wy, = P1nj2 Wh = Po,n, when we use the sub-grid.

Following this approach and separating the temporal and spatial variables,
the discrete potential u(t,x) and diffusion coefficient py,(t,z) are written
as:

N M
un(t,r) =Y wit)pi(x) i €V pn(t,x) =Y pup(t)vr(z) P € Wi
i=1 k=1

where N and M are the dimensions of V; and W), respectively. The fi-
nite element discretization yields the following problem: for ¢ > 0 find
(up(t,-), un(t,-)) € Vi x Wy, such that

(8a) /QMhVUh'ijdx:(f,gﬂj)z/chpjdx j=1,...,N,

(8b) / Dupaniy dar — / (n ¥ un — )i do I=1,....M,
Q Q

(8c) /Quh(O,-)wjdx—/Quowzdx l=1,..., M,

where we add to eq. the zero-mean constraint fQ up dxr = 0 to enforce
well-posedness. In matrix form, indicating with u(t) = {w;(t)},i=1,..., N,
and p(t) = {pk(t)}, k=1,..., M, the vectors that describe the time evolu-
tion of the projected system, we can write the following index-1 nonlinear
system of differential algebraic equations (DAE):

(92) Alp(t)] u(t) = b,
(9) M oup(t) = Bu(t) u(t), M p(0) = po

The N x N stiffness matrix A[u(t)] is given by:

M
Aylu) = Yo m() [ 6V Vi da.
k=1 Q

The components of the N-dimensional source vector b are b; = fQ f pid.
The M x M mass matrix M is expressed by:

My, = /Q by da.
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The M x M matrix B has the same structure of M and is defined as

By [u( /(lZul wll—l> Vit da

and the M-dimensional vector Ko contains the projected initial condition
(o), = Jq ot da.

3.2. Time discretization. In order to solve the DAE eq. @D we define a

discretization in time using either a forward or a backward Euler scheme.

Denoting with At the time-step size so that ;11 = tx + Aty and (gk,ﬁk) =

(u(tg), p(tx)), the approximate solution at time ¢4 can be written as uf (z) =

SN ubgi(x) and Pk (z) = S ¥y (z). The forward Euler scheme is:
A[Hk] uF = b,

HIH_I _ (I+ AtkM_lB[gk])Hk, HO _ M_lﬂ
When backward Euler is employed, the time-stepping scheme becomes:

A[Mk+1] k+1 __ b
Muk+l Mﬂ +Ath[ kJrl] k+1 HU _ M71@

and the nonlinearity is resolved by means of the following successive (Picard)
iteration, starting from p®**+! = pk:

A[Nm k+1] m,k+1 _ b
form=0,1,2,...

I

Mm-ﬁ-l,k—i—l (M — At Bu mk+1]) 1 (Mﬁk>

iterated until the relative difference is smaller than the prefixed tolerance
TNL:

+1,k+1 k-1
ey, —

m-+1,k+1 m,k+1) ||L2 (%))

oy, M

P < TNL,
lL2(0)

||Hh
or the number of Picard iterations m reaches a prefixed maximum myjax.
Note that when we consider Wy, = Py j,, the matrices M and B are diagonal
and thus trivially invertible.
We consider that time-equilibrium has been reached when the relative
variation in up (var(up)) is smaller than 77, i.e.,

var(up) == p(upt', uf) /Aty < Tr.

We indicate with ¢* the time when equilibrium is numerically reached and
with py the corresponding ,uﬁ.
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3.3. Solution of the linear system. At each time step or each Picard
iteration a linear system involving the large, sparse, symmetric, and semi-
positive matrix A must be solved (the linear system involving M and B
is diagonal or can be made diagonal with mass lumping). We use a Pre-
conditioned Conjugate Gradient (PCG) method iterated until the relative
2-norm of the residual is smaller than the tolerance Tcq.

The singularity arising from the pure Neumann boundary conditions is
addressed by maintaining the solution orthogonal to the null space span{1}
of A. This is simply obtained as suggested in Bochev and Lehoucq [§]
by starting from an initial solution that is orthogonal to 1, and when the
rounding error in the matrix-vector multiplication adds non-zero kernel com-
ponents to the current iterate vectors, orthogonalizing with respect to the
vector 1. In addition, we employ the strategy developed in Bergamaschi
et al. [7] to correct for the “near singularity” of the stiffness matrix as time
advances. In fact, the system dynamics drives the transport density up to-
ward zero in large portions of the domain €2, progressively loosing coercivity
of the discrete bilinear form. However, starting from pg > 0, for a number
of initial time steps we have that ui > (. Hence, essentially we are solving
a sequence of slightly varying coercive linear systems. Then, at each system
solution we collect spectral information on the preconditioned matrix to up-
date the previously calculated incomplete Choleski (/C(7)) preconditioner
and enforce orthogonality with respect to the “near null space” of A. In
this situation, direct solvers are not viable and fail to reach a solution in a
reasonable amount of time.

4. NUMERICAL EXPERIMENTS

The numerical schemes described in section |3 are numerically tested on
three test-cases. The first test compares the large-time numerical solution
against the closed form solution proposed by [12] for given forcing functions.
We verify the convergence toward steady-state for increasingly refined grids
and ascertain the order of accuracy of the proposed schemes. The second
test-case is taken from Barrett and Prigozhin [I] and is used to analyze
experimentally the stability of the proposed spatial discretizations. In the
last test-case we consider the reallocation of mass from a centrally located
support towards four disjoint sets with the aim of verifying the ability of
the proposed dynamic formulation to approximate singular sets. In this test
we also build the OT map from the approximate transport density using
the procedure described in Evans and Gangbo [17]. The resulting map is
compared with the maps computed by means of the Sinkhorn algorithm
with entropic regularization as described in Perrot et al. [25].

4.1. Test Case 1: comparison with closed-form solutions. In this first
set of tests we consider a square domain in R?, Q = [0, 1] x [0, 1], and a zero-
mean forcing function f supported in two rectangles @+ and Q~ contained
in , where f assumes opposite signs (fig. . The different supports are
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FIGURE 1. Domain  and supports QT, Q¢, and Q~ for
Test Case 1, together with the unrefined initial meshes. From
the left to the right: Mesh 1 (constrained Delaunay, 438
nodes and 810 elements), and Mesh 2 (constrained Delau-
nay, 297 nodes and 528 elements). The edges of Mesh 1 are
aligned with the supports of f and p*(f). Mesh 2 is aligned
only with the supports of f.

13 13 _ 57 13
o' =55 x[pi] @ =555

To test our numerical schemes we set up two problems that differ from each
other by the specific choice of f. The first test considers a continuous forcing
function f; with opposite sign in QT and @Q~, while in the second case a
piecewise constant function fo is used. Their expression is given by:

given by:

2sin (47r:):—g> sin (2773/—%) , 2 inQ"
_ 5
Alzy), fley) =< _okn <47r1:—2> sin (27ry—g) . —2 Q-

0,0 elsewhere

From Buttazzo and Stepanov [12] we derive explicit formulas for the OT
density p*(f1) and p*(f2) together with their support given by Q* = QT U
Q™ UQ° with Q¢ = [3/8,5/8] x [1/4,3/4]. With this explicit solution, we
can verify the experimental convergence rates at large times for the differ-
ent proposed schemes. We use two different initial triangulation settings
(Mesh 1 and Mesh 2, see fig. , each uniformly refined four times to yield
four refinement levels. Both meshes are constrained to be aligned with the
exact supports of f* and f~, so that the condition Y, [, f(z)pidz = 0
can be imposed exactly, and, at each level, have approximately the same
number of nodes and elements. Mesh 1 (fig. [1} left) is a constrained Delau-
nay triangulations with edges aligned with the boundary of Q*. Mesh 2 is
also a constrained Delaunay triangulation but is not aligned with Q* in the
area between QT and Q. In the latter case, we expect convergence to be
influenced also by the geometric error in approximating the boundaries of
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the support Q" of p1*. Sensitivity to initial conditions is tested by employing
the following different initial data Méz):

s = 18 (@,y) = 0.1+ 4|z — 0.5,y — 0.5]%

,u(()?’) (z,y) = 3 + 2sin(8nx) sin(87y).

(10)

Note that in these tests we do not focus on computational speed, but only
on the numerical behavior of the schemes. Thus we do not limit the mini-
mum time step size and the maximum number of iterations (in both time-
stepping and the PCG algorithm used to solve the linear system of algebraic
equations), and use tight tolerances to determine when time equilibrium is
reached and termination of linear and nonlinear iteration: 7ny, = 107! and
7 =5 % 107?, 7cg = 1073, In the simulations presented here we adopt
both for the forward and backward Euler time-stepping and vary the time
step size by setting Atxyr; = min(1.05 X Atg, Atmax), where Atpax = 0.5.
Preliminary experiments are used to calibrate this strategy so that it ensures
the stability of the forward Euler scheme, or equivalently, the convergence
of the Picard iteration. Convergence as h — 0 is explored by looking also
at the time behavior of the L?(Q) relative p-error defined as:

B () = Nl = (D2 / e (Hllz2e)-

Convergence toward steady-state equilibrium. Figure [2| reports the log-log
scale plots of var(up(t)) and E,«(p5(t)) vs. time, calculated for the two mesh
families in the case of continuous forcing function f;. Each curve in each
sub-plot corresponds to a different mesh level. The columns are related to
different combinations of spatial discretizations. Only results of the Explicit
Euler time-stepping scheme are shown, the results of the Implicit Euler
method being identical. The first set of plots (first two rows) are relative
to the Q*-aligned mesh set, while the lower set reports the results for the
Q/-aligned meshes.

The results show a steady convergence toward the equilibrium point s .
The pyp, variation, var(uy(t)), displays a monotone behavior for all schemes,
with an expected geometric convergence rate toward steady-state, as evi-
denced by the slope of the rectilinear portions of the curves that coincides
for all mesh levels and types. At increasing refinement levels the convergence
curves have a common initial behavior for all schemes but start to diverge
approximately when the corresponding spatial accuracy limit is attained.
Accuracy saturation in the error plots (E,=(up(t)) vs. t) occurs at the same
time at which var(up(t)) start diverging. More uncertain profiles are ob-
tained when spatial discretization is performed on the same mesh for the
pair (up, up) for both P; — Py and Py — P; discretization spaces. The reason
for the loss of regularity is to be attributed to oscillations in the cell gradi-
ents that cause amplified oscillations in the corresponding transport density.
Spatial averaging of the gradient magnitudes, leading to the 75 —7T}, /o formu-
lation, shows a much smoother behavior with a faster convergence towards
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Ficure 2. Convergence toward equilibrium in the case of
continuous forcing (f = f1). The log-log plots of var(up(t, -))
and E,«(pun(t,)) vs. time are reported for Mesh 1 (Q*-
aligned, top block) and for Mesh 2 (Q7-aligned, bottom
block). The columns refer from left to right to the results ob-
tained with Py, —Po n, P1ns2—"Pons Pra—P1hs Pinj2—Prn,
respectively.

equilibrium. We postpone a more detailed discussion of this phenomenon to
section where a more challenging test case is approached.

Looking at the bottom half of fig. [2] we see the effect of using meshes that
are not aligned with the support of the optimal transport density. Because
of the discontinuity in p; occurring across the boundary of Q*, convergence
is limited by the geometric convergence of the triangular shapes towards this
boundary, and the global attainable accuracy is bounded by this error. We
observe a consistent behavior of the error for both mesh-types at different h
levels. The accuracy levels at which the error saturates decrease consistently
with the expected order of spatial convergence of the different schemes, when
the geometric error is negligible. This is clearly observable by looking at the
plots of var(uy(t)) for the Py j, /o — Pon, and the Py j, /o — P1p, cases, where
the optimal second order convergence of the latter approach is observable
from the fact that difference in the attained accuracy levels are doubled
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FIGURE 3. Behavior of E,«(uy) vs. h for the different dis-
cretization methods. The results for the continuous forcing
function f; are shown in the left column, while the right col-
umn reports the results for fo. The top row is relative to the
Mesh-1 sequence (aligned with Q*), while the bottom row
corresponds to the Mesh-2 sequence (aligned only with Q7 ).
For visual reference, the first order convergence line is also
plotted with a thick solid trait. The average experimental
convergence rates are reported in the legends of each plot
next to the discretization method.

with respect to the first order approach. Higher order methods display
higher accuracy, but the geometric error prevents the realization of optimal
convergence rates.

Convergence of the spatial discretization. We would like to recall that con-
tinuity of the transport density p*(f) when the forcing term f is continu-
ous was proved in R? in Fragala et al. [2I] under some assumptions on f.
However, except for partial regularity results along transport rays [12], the
general case seems to be an open question. In our test cases, for both f;
and fy forcings, strong variations in pj are present in a direction orthogonal
to the boundary of Q* in the central portion of the domain (outside Q).
Because of these variations, which in the discontinuous forcing case are ac-
tual p*-discontinuities, we expect a loss of convergence in the FE solution.
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FIGURE 4. Spatial distribution of the error uj — p*(f2) at
steady state for the piecewise constant forcing function fs.
The upper row reports the results on the finest level of Mesh-
1 obtained with the Py j, —Po 5, (left) and Py, — Py p, (right).
The lower row shows the results on the finest level of Mesh-2
from the Py 1,5 — Pop, (left) and Py — Py, (right) ap-
proaches.

We note, however, that convergence towards steady-state is not influenced
by spatial errors, as shown in the previous discussion.

The experimental convergence profiles for the different methods are re-
ported in fig. The column on the left groups the results relative to the
more regular case of continuous forcing function f;. The right column re-
ports the results obtained for piecewise constant forcing f,. The top and
bottom rows identify the mesh sequences aligned with the boundary of Q¥
or with the boundary of Q7, respectively.

From the two plots on the left, we can argue that: i) all methods attain
optimal convergence when the Mesh-1 sequence is used; ii) the T, — T}, /2
combination is characterized by a smoother behavior; iii) the use of the
Mesh-2 sequence, which we recall is aligned only with the boundaries of Qf
and not those of Q*, triggers the emergence of geometrical errors that cause
a sizeable reduction on the convergence rates of both P; — Py and P; — Py
schemes.
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As expected, the results for the discontinuous forcing function (right col-
umn) are characterized by an important loss of convergence rate for all
schemes, except the Py j,/o—Po » in combination with the Q#-aligned meshes.
The use of a T, — T}/ combination seems to be more robust. This is con-
firmed by the spatial distribution of the error pj — u*(f2) shown in fig.
In this figure we report the results obtained with the P;; — Py (upper
left panel) and the P — P (upper right panel) for Mesh 1, and the
Pins2 — Pon (lower left panel) the Py p 0 — P1p (lower right panel) for
Mesh 2. The plots suggest that the P; — P; approach localizes the error
on the north and south boundaries of Q*, where the jump in ©* is concen-
trated. The P; — Py approach, on the other hand, displays an additional
small but non negligible error on the support of the forcing function Q7. The
zooms on the pictures show clear oscillations for the one-mesh methods (up-
per row) in both directions orthogonal and parallel to the pp-discontinuity.
On the contrary, the methods based on two-meshes (lower row) exhibit a
monotone error behavior along the boundary of Q*, but the mis-alignment
of the triangle edges causes an increased error as compared to the Mesh-1
results. The error slightly oscillates in the direction normal to the pp-jump
due to the gradient reconstruction. It is evident that the smoothing due
to the averaging of the gradient magnitude on the larger triangles helps in
reducing overall oscillations. This will become more evident when we will
discuss in section 4.2
Implicit Euler and convergence of the Picard scheme. In the case of implicit
Fuler time-stepping, the nonlinear system is solved by Picard iteration as
described in section Unfortunately, the lack of a uniform bound on
| Vu(t)|Vt > 0 prevents the theoretical derivation of an estimate of the
contraction factor. Experimentally, all numerical experiments displayed a
number of iterations of the Picard scheme increasing linearly with the time
step size Aty, suggesting a fixed rate of contraction. This was evaluated by
computing the relative up-variation:

k) = " = w20
( ) T m*—1,k m*—2,k
||Mh — Hy ||L2(Q)

where m* is the Picard iteration number at convergence. Independently of
the spatial discretization method, preliminary numerical experiments, not
reported here, showed that C'(k) ~ Aty, suggesting that Aty can be used as a
proxy to control the time-step evolution in this case. Values At; > 1 caused
non-convergence of the Picard iteration, thus we impose an upper limit of
Atmax = 0.5. This choice offered a good trade-off between minimizing the
number of Picard iterations and maximizing the time-step size. At the same
time, convergence of the Picard scheme was achieved with an acceptably
small number of Picard iterations, averaging between 2 and 8 depending on
the simulation. Because of the exponential decay of the solution in time, as
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FIGURE 5. Test Case 2: numerical statistics for Py j, /o —Po
on Mesh 2 (Q/ aligned). Top left panel: time behavior of the
Lyapunov-candidate functional S(u(t)) for three the initial
data po in eq. . Bottom left panel: time behavior of
Ew, (up(t)) for four refinement levels starting with po = 1.
Right panel: table with simulation statistics, including # of
time steps, time (¢), number of PCG iterations, Eyy, (t), and
CPU time (in seconds). Corresondingly, var(up(t)) varies in
the range 10~! and 1075,

predicted by the mild solution of eq. , the time step size was incremented
at every step by a factor 1.05.

Dynamics of S (u(t)), Wi-distance and computational cost. In this para-
graph we report numerical evidence of the statements in Propositions
and We also include a discussion on computational cost to show the
effectiveness of the proposed approach, although the employed numerical
techniques are not optimized. In fact, a number of cost-saving strategies
can be envisaged, including using coarse-mesh solutions to extrapolate ini-
tial guesses of pg, re-use of stiffness and preconditioning matrices, use of a
Newton-Raphson strategy to improve stability and allow for larger time-step
sizes together with an inexact Krylov linear solver, etc. On the other hand,
in this work we are interested in showing that, although far from optimal,
our approach is potentially very effective and competitive with literature
approaches in the solution of the Monge-Kantorovich equations.
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Figure |5 (top-left panel) reports the time behavior of S(up(t)) for the
different initial conditions described in eq. using the finest mesh of set
2 of the Py /2 — Py, method. The results for other methods and mesh sets
are practically indistinguishable, and are not reported here. We see that S
decreases monotonically and always attains the same minimum value in time
independently of the initial conditions. After ¢ ~ 100 the value of S(up(t))
becomes approximately stationary, up to machine precision.

The differences among mesh levels emerge after scaling the value of S(u (1))
with its assumed asymptotic value. According to Proposition [2] this value
is the minimum of the S and is equal to the Wi-distance between f* and
f~. For Test Case 2 this value is given by 0.125, (equal to the integral of
the OT density), allowing us to compute the relative error as

S(u) —0.125
Ew, () := (())125

The bottom left panel in fig. [5| reports the time-evolution of Ewyy, (un(t))
for four mesh refinements. Similarly to the behavior of var(u,(t) in fig.
Ew, (u(t)) shares the same profile for all mesh levels until ¢ ~ 10. At this
time the graphs start separating and converge to their corresponding as-
ymptotic values that scale approximately linearly with h. This implies that
the stop-tolerance 71 used to identify steady state can be relaxed depending
on the sought accuracy. In fact, two distinct phases can be identified. The
first initial phase displays profiles of var(uf), E,«(uf), and Eyw, (us(t)) that
are superimposed and independent of the mesh level. This phase is charac-
terized by strong variations of up, and consequently, by higher number of
PCQG iterations. After this initial phase, u;, varies more slowly and stabilizes
within Q* to its final value which depends upon the actual mesh size. At
the same time, in  \ Q*, the decay continues towards zero. This phase
is characterized by larger time-step sizes and faster PCG convergence, but
much slower convergence of py, to its asymptotic value, so that only marginal
accuracy gains require large computational efforts. The use of increasingly
refined meshes should be able to exploit the iterative process of the DMK
approach with consistent reduction of the computational cost.

These results suggest that the proposed approach can be very efficient in
evaluating W distances. This statement is corroborated by the computa-
tional statistics collected in the table shown in the right panel of fig. [5| For
the four mesh levels, we show simulation time (¢), cumulated number of time
steps (#it), number of linear (PCQ) iterations, the value of Eyy, (up(t)), and
CPU time in seconds. The data reported are collected during the simula-
tion at each change in order of magnitude of var(j,(t)) in the range 10~ to
1078, The runs are conducted on a 3.4GHz Intel-17 (1-core) computer. The
table shows that h determines the practical bound of achievable accuracy in
the evaluation of the Wj distance. For example, looking at the results for
Th/4, it evidently useless go beyond ¢ = 405, at which time the accuracy
in the W distance is already 4.6 - 107>, not far from the highest achievable
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FIGURE 6. Domain and supports of the forcing function used
in the discretization of the MK equations eq. for the so-
lution of Example 1 of Barrett and Prigozhin [I]. The two
triangulations 7T, and 7Ty, /o are shown with blue and dashed
black lines, respectively.

error accuracy of 4 - 1075, Note that with 7h at t = 60.4 which achieve an
accuracy of 3.7 - 1072 with a mere 1.2 seconds of CPU time. Most of this
error is probably due to the geometric error of having a mesh not aligned
with the support of the OT density.

4.2. Test Case 2: comparison with literature and stability of the
spatial discretization. In this section we address a test case proposed
by Barrett and Prigozhin [I]. The problem considers the transport of a uni-
form density supported on a circle towards a disjoint ellipsis. Figure |§| (left)
shows the domain ) where problem eq. is defined and the supports QT
and Q™ of the forcing term f = f* — f~, with f*(z) = 2 for z € Q1 and
zero otherwise, and f~(y), appropriately rescaled for y € Q~ to ensure mass
balance. The coarse initial mesh is also shown in light blue lines, and its
uniform refinement is shown in thin dashed lines. This mesh, characterized
by 820 nodes and 1531 triangles, is a constrained Delaunay triangulation
that follows the boundaries of both @+ and @Q~. The same Figure shows
in the right panel the time-converged spatial distribution of the transport
density numerically evaluated with the most stable discretization method,
P1,nj2 — Po,n, on the finest mesh. The spatial distribution of py, is in good
agreement with the results obtained by Barrett and Prigozhin [I], achiev-
ing its maximum value (0.482) on the boundary of the left circle, and its
minimum value 10719 set by the prescribed lower bound as discussed in
section This solution is used in the following digression as a reference
solution. We would like to note that a similar test case was already proposed
in Facca et al. [I8] to to test the conjecture that the solution of the dynamic
MK problem eq. converges at infinite time towards the solution of the
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FIGURE 7. Solution of Test Case 2 at t; = 2.73 x 10% (left),
ty = 1.36 x 103(center) , and t3 = 2.5 x 10°(right), using
the Py, — Po,n approach. Top row: spatial distribution of
iy € Po.p. Bottom row: spatial distribution of | V uy| € Py,
as calculated from uy, € Py .

static MK equations. In this section we re-use this example to experimen-
tally discuss the need to use different FEM spaces for the discretization of
the transport density and of the transport potential.

We start this discussion by presenting the results obtained using the Py j,—
Po,n, approach on the coarsest grid and look at three different times during
the evolution. The times are selected so that V&I‘(MZ) reaches the values 1073,
1074, 5 x 1078, namely ¢; = 2.73 x 102, to = 1.36 x 103, and t3 = 2.5 x 10°,
the latter time corresponding to the time-converged solution. We plot in
fig. [7| both up (upper panels) and |V uy| (lower panels).

At the first sampled time the solution clearly resembles the reference so-
lution shown in fig. [f] (right), although at a much coarser resolution. The
corresponding gradient (shown in the second row) displays some slight but
acceptable overshoots in a region that resembles Q*. Already at this early
time, which occurs after 1630 time steps, some oscillations are visible. At
time to these oscillations are much more pronounced with a checkerboard
pattern that suggests an intrinsic instability of the scheme. We should note
that the color scale in the plots are limited from above and from below by
suitable values to emphasize the oscillations. The maximum and minimum
values for both pj, and | V uy| are reported right below each legend. We ob-
serve that there are no overshoots in | V uy|, which at the final time is never
greater than one. Still, checkerboard-like fluctuations are visible, causing
the dynamic equation to drive up to zero quickly thus determining a drastic
deterioration of the solution accuracy.
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FIGURE 8. Solution of Test Case 2 at t; = 6.82! (left), ty =
5.36% (center), and t3 = 9.65timel03 (left), using the Py, —
P15 approach. Top row: spatial distribution of uj € Py p.
Bottom row: spatial distribution of | V uy| € Py, calculated
from uy, € Py .

The situation does not improve by using higher order spaces for up. Fig-
ure |8 shows the results obtained by using a Py, — Py, approach. We still
observe oscillations, albeit appearing at a later time and with a different
pattern. Once oscillations in | V uy| around the unit value start developing,
the dynamic equation determines a decay of uj within the elements where
| Vup| < 1 even if located within Q. This decay quickly reinforces in time
leading to the observed checkerboard pattern. The behavior resembles the
classical lack of stability due to a violation of an inf-sup-like constraint, but
at this point we are not able to clearly identify this condition.

On the other hand, oscillations completely disappear if we employ a two-
mesh approach. Looking at the checkerboard oscillations displayed in fig.
it is intuitive to think that averaging the gradient magnitude between neigh-
boring triangles should compensate the fluctuations. This observation led
us to employ the Py /9 — Po p discretization described in section (3} Indeed,
with this approach the gradients calculated from uy, € Py (7T}, /2) are projected
onto the space Py(Ty) for insertion into the dynamic equation eq. . This
projection is equivalent to averaging the piecewise constant gradients over
the four triangles of 7} /5 that form one triangle of 7j,. This results in a os-
cillation free py, field, as shown in fig. [9 It is evident that no puy, oscillations
form even at the coarsest mesh level used in this test. Note that the spatial
discretization of the elliptic equation does not guarantee monotonicity [26].
In fact, the gradient magnitudes arising from wu, € Py o still show the
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FIGURE 9. Solution of Test Case 2 at t; = 6.75 x 10* (left),
ty = 2.04 x 10? (center), and t3 = 1.54 x 10% (right) using
the Py j/2 — Pon approach. Top row: spatial distribution
of pup € Py Middle row: spatial distribution of |V uy| €
Po,nj2 calculated from wp, € Pypp/p. Bottom row: spatial
distribution of | V u| € Py .

classical checkerboard fluctuations (fig. |§|, middle row). However, the pro-
jection of |V up| onto Py (fig. [8 bottom row) does not show oscillations,
albeit small overshooting occurs especially at the earlier times. We should
emphasize that | V uy| is plotted here using an extremely narrow color scale
ranging within [0.9999, 1.0001].

Looking at the final time-converged solution, the value |V uj| within
the support of p; and neighboring regions is exactly unitary, and remains
bounded by 1 almost everywhere, in compliance with the constraint of the
MK equations. Only one small region with | Vuy| > 1 develop with a max-
imum value approaching 1.00009, considered consistent with the tolerance
used in the PCG linear solve. Indeed, oscillations of the order of 107° in
the gradient magnitude may be indistinguishable by the linear solver of the
up, equation. Similar considerations can be done in the case pj, € Py, (not
shown here) but in this case some oscillations in | V uy| persist even when
up € Pyp/2- This reinforces the conjecture that some sort of inf-sup stability
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condition exists that couples the discretization spaces for up and pp, and
will be the subject of further studies.

One final observation for this test case concerns the computational cost
of our approach. In comparison with the technique proposed by Barrett
and Prigozhin [1I], our method seems to be computationally advantageous.
In fact, as already mentioned, the simulations reported in Barrett and
Prigozhin [I] where obtained using a mixed FEM approach in combination
with adaptive mesh refinement, leading to nonlinear systems of dimension
approaching 60000. In our case, the dimensions for the smallest test case
are 1531 (number of triangles in 7;) and 3170 (number of nodes in 7y, ;) for
the diagonal dynamic algebraic system and the elliptic system, respectively,
leading to a total of 4701 degrees of freedom. Note that the finest solution of
fig. [6] was obtained with a total of 73917 degrees of freedom. Our confidence
that the approach we propose is superior to that Barrett and Prigozhin [1]
is is reinforced by the observation that effective simulations can be obtained
at intermediate mesh levels. Moreover, time-convergence can be considered
achieved at much earlier times then the ones employed in this work if we
look at the stationarity of the Lyapunov-candidate functional. Obviously,
adding simple adaptive mesh refinement strategies would greatly enhance
the performance of the studied methodology.

4.3. Test case 3: L'-Optimal Transport map. In this section, we present
a further experiment where the numerical solution (y,u;) from the DMK
approach is used to compute approximate L'-OT Maps following the al-
gorithm suggested in Evans and Gangbo [I7]. Finally, these results are
compared with approximate maps obtained by linear programming or the
Sinkhorn algorithm with entropic regularization [25].

This experiment is shaped after Li et al. [23], and considers a square

domain ©Q = [0,1] x [0,1] with a source term fT supported in the ball of
radius 0.35 centered and (z.,y.) = (0.5,0.5) given by f*(z,y) = max(0,1—
V(2 —2:)2 + (y — yc)?). The sink term f~ is the sum of four functions of
the same form of f*, but located near the four corners of the domain. All the
terms are balanced to ensure zero mean of f. The problem setting together
with the triangulation used in the DMK solution is shown in fig. [0} Note
that in this test case the OT map will necessarily split fT into four different
subsets that are reallocated towards the four disjoint sinks f~. The resulting
singular distribution poses non trivial issues on the numerical solution of the
problem.
Calculation of the OT map via DMK. Given two Lipschitz continuous forc-
ings f* and f~ with disjoint supports, the OT map T* : supp(f™) —
supp(f~) can be defined as T*(x) := z(1,z), where z(t, z) is the solution of
the following Cauchy Problem [I7]:

(1) = Y (1,2(1) e
{ 0 =veqt AT A HF@ @

(11)
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Thus, we first compute (p,uy) via the Py /o —Po,n approach combined, for
simplicity, with Explicit Euler time-stepping. We adopt the same parame-
ters (time step, linear solver tolerance, stop criteria, etc.) used in the other
experimental tests in this paper. Then, we construct the approximate OT
map by evaluating the streamlines of the vector field Y in eq. emanating
from the barycenters of the triangles discretizing the support of f*. In order
to avoid division by zero in eq. (L1]), we replace the term (1—¢) f*(2)+tf~(2)
with min[(1 —¢)f*(2) +tf~(2)], 1075]. Time-integration is performed with
a 4-th order Runge-Kutta method. We denote with T} (DM K) this approx-
imate OT map.

Calculation of OT map via barycentric map. The second method considered
follows the approach detailed in Perrot et al. [25], where an approximate OT
map is built from an approximate OT plan. First, f™ and f~ are discretized
with two atomic measures f™ and f~:

Ny N_
(12) fr=)"sio@) f=) 05,
i=1 Jj=1

where (Z;)i—1,.. .n, and (7;)i=1,.. n_ are sampling points in the support of
fT and f~. We then denote with v* the solution of the Linear Program-
ming problem solving the classical L'-OTP given f*, f~. The associated
barycentric map T*[v*] is defined as: -

N_
(13) T v*](z;) == argengllinZ’y*m ly—y;] Vi=1,...,N.
) j=1

In order to build the approximate OT map that can then be compared with
T*(DMK), the sampling points (Z;)i—1,.. n, and (¥;)i=1,.. n_ are taken to
be the barycenters of the triangles discretizing the support of f* and f—,
respectively. The coefficients s € RN+ and t € RV~ in eq. are then
computed as:

S; :/ fTdx VT; € supp(fT) tj = / f~dx VTj € supp(f™).
T T;

We use two algorithms contained in the POT toolbox [20] to find the OT
Plan v* for the discrete OTP. The first algorithm is based on a classical
LP solver and we denote with ~}, this approximated OT plan. The sec-
ond algorithm is based on the the Sinkhorn regularization of discrete L'-
OTPdescribed in Cuturi [14]. We denote with ’y,";, . its approximate solution,
where ¢ indicates the Sinkhorn relaxation parameter with value ¢ = 8e — 4,
which was experimentally evaluated to avoid algorithm failure. The barycen-
tric maps of the two plan are given by:

T*(LP) :==T"[v,] T*(S) :=T"[he
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FIGURE 10. Test case 3. The top row contains the problem
definition with the triangulation 75, (1699 nodes and 3265
triangles) used in the solution of DMK, the source (red) and
the sink(blue) terms (left); the approximate OT density s,
distribution obtained via DMK (middle) and the comparison
between OT maps calculated with DMK, LP, and Sinkhorn
algorithms for few barycenters. The bottom row contains the
full OT maps calculated starting from the triangle barycen-
ters by the DMK (left), the LP (middle), and the Sinkhorn
(right) algorithms.

The computation of 7%(LP) and T*(S) requires the solution of eq. , ie.,
a weighted version of the Fermat-Weber location problem, solved in our case
with the algorithm described in Vardi and Zhang [30].

The spatial distribution of p; as calculated by the DMK approach is
shown in the top central panel in fig. We note the four regions into
which the support of f* is divided. Each region corresponds to the “por-
tion” of f* that is sent to each one of the four circles where f~ is sup-
ported. We call I' the one-dimensional boundary dividing these regions. In
the right top panel we compare the lines connecting 12 sampling point in
supp(f™) with their image through the maps T*(DMK) (black), T*(LP)
(green) and T7(S) (blue). The three approximated maps are qualitatively
similar, suggesting that p; can be effectively used to determine transport
maps. The bottom panels of fig. show the full OT maps calculated for
triangle barycenters within supp(f*) with the three considered methods.
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We first note the almost prefect coincidence of the supports of these lines
with the support of py. Almost all the streamline computed for the map
Ty (DMK) are perfectly straight, with the end-points on the lines covering
supp(f~). The computation of the optimal destination of the barycenters
close to I' creates some numerical difficulties for all methods. Indeed, the
image of the T;(LP) and T}/ (S) with domain located in barycenters of tri-
angles located in I' fall outside supp(f~). For T;(DMK), some of the
streamlines starting from these points are not exactly straight, while others
remain stack at the starting point. Mesh refinement around I' should help
to give a better characterization the partitions dividing supp(f™). In the
DMK model this mesh refinement strategy is easily accomplished as trian-
gles to be refined are easily identified by the fact that p; tends to zero in
the supp(f™). Another advantage of the DMK method is that, given a new
sample point Z € supp(f™), we can compute T} (Z) without recomputing
the pair (uj,u;). The computational effort required is only the integration
of the Cauchy Problem eq. . The results of this test case show that,
for this case of L'-OTP, our approach does not suffer of the out-of samples
problem described in Perrot et al. [25].

5. CONCLUSIONS

The performance of the proposed finite element method for the solution
of the dynamic Monge-Kantorovich equations has been thoroughly analyzed
experimentally on several test cases. The results show that the strategy for
solving the MK equations by searching for the stationary solution of the
dynamic MK problem is highly promising. These experiments show that
the resulting discrete system achieves optimal convergence in space and time
even when using simple successive (Picard) linearization schemes.

The enhancement path for the proposed approach is clear. Some of the
issues currently under study include the development of a Newton method
for the solution of the nonlinear system in the case of implicit Euler time-
stepping, to completely exploit the geometric convergence towards steady
state only hinted at in the present paper. Further improvements can be
readily obtained by careful use of a sequence of meshes with progressively
finer resolution as time increases, with adaptation to the support of the
transport density easily achievable. The iterative nature of DMK approach
allows the tight control of these computational savings both in the spatial
and in the time discretizations.

Theoretical work is needed to ascertain the formal convergence of the
proposed methods and to determine the exact relationships between the
spatial discretization spaces used for up and pp that guarantee stability of
the approach. Future studies include the handling of less regular forcing
functions to address the more interesting problems that can be studied by
means of Optimal Transport theory. We believe that this work can be a
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useful starting point to further developments of time-dependent transport
systems.

ACKNOWLEDGMENTS

This work was partially funded by the the UniPD-SID-2016 project Ap-
proximation and discretization of PDEs on Manifolds for Environmental
Modeling and by the EU-H2020 project “GEOEssential-Essential Variables
workflows for resource efficiency and environmental management”, project of
“The European Network for Observing our Changing Planet (ERA-PLANET)”,
GA 689443.

REFERENCES

[1] J. W. Barrett and L. Prigozhin. A mixed formulation of the Monge-
Kantorovich equations. Math. Model. Num. Anal., 41(6):1041-1060,
2007.

[2] S. Bartels and P. Schon. Adaptive approximation of the
Monge—Kantorovich problem via primal-dual gap estimates. FESAIM-
Math. Model. Num., 51(6):2237-2261, 2017.

[3] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solu-
tion to the Monge-Kantorovich mass transfer problem. Numer. Math.,
2000.

[4] J.-D. Benamou and G. Carlier. Augmented Lagrangian methods for
transport optimization, mean field games and degenerate elliptic equa-
tions. J. Opt. Theory Appl., 167(1):1-26, 2015.

[5] J.-D. Benamou, Y. Brenier, and K. Guittet. The Monge-Kantorovitch
mass transfer and its computational fluid mechanics formulation. Inter-
nat. J. Numer. Methods Fluids, 40(1-2):21-30, 2002. ICFD Conference
on Numerical Methods for Fluid Dynamics (Oxford, 2001).

[6] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. It-
erative Bregman projections for regularized transportation problems.
SIAM J. Sci. Comput., 37(2):A1111-A1138, 2015.

[7] L. Bergamaschi, E. Facca, A. Martinez, and M. Putti. Spectral precon-
ditioners for the efficient numerical solution of a continuous branched
transport model. Journal of Computational and Applied Mathematics,
2018. ISSN 0377-0427.

[8] P. Bochev and R. B. Lehoucq. On the finite element solution of the
pure Neumann problem. SIAM Review, 47(1):50-66, 2005.

[9] D. Boffi, F. Brezzi, and M. Fortin. Mized Finite Element Methods and
Applications. Springer Series in Computational Mathematics. Springer
Berlin Heidelberg, 2013. ISBN 9783642365195.

[10] V. Bonifaci, K. Mehlhorn, and G. Varma. Physarum can compute
shortest paths. J. Theor. Biol., 309:121-133, 2012.



28 ENRICO FACCA, SARA DANERI, FRANCO CARDIN, AND MARIO PUTTI

[11] G. Bouchitté, G. Buttazzo, and P. Seppecher. Shape optimization so-
lutions via Monge-Kantorovich equation. C. R. Acad. Sci. Paris Sér. I
Math, 324(10):1185-1191, 1997.

[12] G. Buttazzo and E. Stepanov. On regularity of transport density in
the Monge—Kantorovich problem. SIAM J. Control Optim, 42(3):1044—
1055, 2003.

[13] A. Chambolle and T. Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. J. Math. Imaging Vis.,
40(1):120-145, 2010.

[14] M. Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal
Transportation Distances. ArXiv e-prints, 2013.

[15] G. L. Delzanno and J. M. Finn. Generalized Monge-Kantorovich opti-
mization for grid generation and adaptation in l,. SIAM J. Sci. Com-
put., 32(6):3524-3547, 2010.

[16] G. L. Delzanno and J. M. Finn. The fluid dynamic approach to equidis-
tribution methods for grid adaptation. Comput. Phys. Commun., 182
(2):330-346, 2011.

[17] L. C. Evans and W. Gangbo. Differential equations methods for the
Monge-Kantorovich mass transfer problem. Mem. Am. Math. Soc., 137
(653):1-66, 1999.

[18] E. Facca, F. Cardin, and M. Putti. Towards a stationary Monge—
Kantorovich dynamics: The Physarum Polycephalum experience.
SIAM J. Appl. Math., 78(2):651-676, 2018.

[19] M. Feldman and R. J. McCann. Uniqueness and transport density in
Monge’s mass transportation problem. Calc. Var. Partial Differ., 15
(1):81-113, 2002.

[20] R. Flamary and N. Courty. Pot python optimal transport library, 2017.
URL https://github.com/rflamary/POT.

[21] 1. Fragala, M. S. Gelli, and A. Pratelli. Continuity of an optimal trans-
port in Monge problem. J. Math. Pure Appl., 84(9):1261-1294, 2005.

[22] M. Jacobs, F. Léger, W. Li, and S. Osher. Solving large-scale optimiza-
tion problems with a convergence rate independent of grid size. arXiv,
2018.

[23] W. Li, E. K. Ryu, S. Osher, W. Yin, and W. Gangbo. A parallel method
for Earth Mover’s distance. J. Scient. Comput., 75(1):182-197, 2018.

[24] T. Nakagaki, H. Yamada, and A. Toth. Maze-solving by an amoeboid
organism. Nature, 407(6803):470-470, 2000.

[25] M. Perrot, N. Courty, R. Flamary, and A. Habrard. Mapping estima-
tion for discrete optimal transport. In Advances in Neural Information
Processing Systems, pages 4197-4205, 2016.

[26] M. Putti and C. Cordes. Finite element approximation of the diffusion
operator on tetrahedra. SIAM J. Sci. Comput., 19(4):1154-1168, 1998.

[27] A. Quarteroni and A. Valli. Numerical approzimation of partial differ-
ential equations, volume 23 of Springer Series in Computational Math-
ematics. Springer-Verlag, Berlin, 1994.


https://github.com/rflamary/POT

[28]

NUMERICAL SOLUTION OF DYNAMIC MK EQUATIONS 29

F. Santambrogio. Optimal transport for applied mathematicians, vol-
ume 87 of Progress in Nonlinear Differential Equations and their Ap-
plications. Birkhauser/Springer, Cham, 2015. Calculus of variations,
PDEs, and modeling.

A. Tero, R. Kobayashi, and T. Nakagaki. A mathematical model for
adaptive transport network in path finding by true slime mold. J.
Theor. Biol., 244(4):553-564, 2007.

Y. Vardi and C.-H. Zhang. A modified Weiszfeld algorithm for the
Fermat-Weber location problem. Math. Prog., 90(3):559-566, 2001.

C. Villani. Optimal transport, volume 338 of Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, 2009.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PADUA, PADOVA, ITALY
E-mail address: facca@math.unipd.it

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ERLANGEN-NURNBERG, ERLANGEN,
GERMANY
E-mail address: daneri@math.fau.de

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PADUA, PADOVA, ITALY
E-mail address: {cardin,putti}@math.unipd.it



	1. Introduction
	2. The Lyapunov-candidate functional S
	3. Numerical discretization
	3.1. Projection spaces
	3.2. Time discretization
	3.3. Solution of the linear system

	4. Numerical experiments
	4.1. Test Case 1: comparison with closed-form solutions
	4.2. Test Case 2: comparison with literature and stability of the spatial discretization
	4.3. Test case 3: L1-Optimal Transport map

	5. Conclusions
	Acknowledgments
	References

