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Abstract

We derive optimal L2-error estimates for semilinear time-fractional subdiffusion
problems involving Caputo derivatives in time of order α ∈ (0, 1), for cases with
smooth and nonsmooth initial data. A general framework is introduced allowing a
unified error analysis of Galerkin type space approximation methods. The analysis
is based on a semigroup type approach and exploits the properties of the inverse
of the associated elliptic operator. Completely discrete schemes are analyzed in the
same framework using a backward Euler convolution quadrature method in time.
Numerical examples including conforming, nonconforming and mixed finite element
(FE) methods are presented to illustrate the theoretical results.

Key words. semilinear fractional diffusion, Galerkin method, nonconforming FE method,
mixed FE method, convolution quadrature, error estimate

AMS subject classifications. 65M60, 65M12, 65M15

1 Introduction

The purpose of this paper is to discuss some aspects of the numerical solution of the semilinear
time-fractional initial boundary value problem

C∂αt u+ Lu = f(x, t, u) in Ω× (0, T0], u(x, 0) = u0(x) in Ω, (1.1)

subject to a homogeneous Dirichlet boundary condition, where Ω ⊂ Rd (d ≥ 2) is a bounded
convex polyhedral domain with a boundary ∂Ω and T0 > 0 is a fixed time. Here u0 is a given
initial data and f is a smooth function of its arguments satisfying

sup
x∈Ω,t∈(0,T0)

(
|∂tf(x, t, u)|+ |∂uf(x, t, u)|

)
≤ L ∀u ∈ R. (1.2)

The operator L is defined by Lu = −div[A(x)∇u] + κ(x)u, where A(x) = [aij(x)] is a d × d
symmetric and uniformly positive definite in Ω̄ matrix, and κ ∈ L∞(Ω) is nonnegative. The
coefficients aij and κ are assumed to be sufficiently smooth on Ω̄. The operator C∂αt is the Caputo
fractional derivative in time of order α ∈ (0, 1) defined by

C∂αt ϕ(t) =
1

Γ(1− α)

∫ t

0

(t− s)−α∂sϕ(s) ds, 0 < α < 1, (1.3)

∗Email: skaraa@squ.edu.om. This research was supported by the Research Council of Oman grant
RC/SCI/DOMS/16/01.
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where ∂sϕ = ∂ϕ/∂s and Γ(·) denotes the usual Gamma function. As α → 1−, C∂αt converges to
∂t, and thus, problem (1.1) reduces to the standard semilinear parabolic problem [34].

Let (·, ·) denote the inner product in L2(Ω) with induced norm ‖ · ‖. Since Ω is convex, the
solution of the elliptic problem Lu = f in Ω, with u = 0 on ∂Ω and f ∈ L2(Ω), belongs to H2(Ω).
With D(L) = H2(Ω) ∩ H1

0 (Ω), recall that the operator L : D(L) → L2(Ω) is selfadjoint, positive
definite and has a compact inverse. Let {λj , ϕj}∞j=1 denotes the eigenvalues and eigenfunctions of

L with {ϕj}∞j=1 an orthonormal basis in L2(Ω). By spectral method, the fractional powers of L
are defined by

Lνv =
∞∑

j=1

λνj (v, ϕj)ϕj , ν > 0,

with domains D(Lν ) = {v ∈ L2(Ω) : ‖Lνv‖ < ∞}. Note that {D(Lν)} form a Hilbert scale of
interpolation spaces and D(L) ⊂ D(Lν) ⊂ D(Lβ) ⊂ D(L0) = L2(Ω) with continuous and compact
embeddings for 0 < β < ν < 1.

The regularity of the solution in (1.1) plays a key role in our error analysis. For initial data
u0 ∈ D(Lν ), ν ∈ (0, 1], problem (1.1) has a unique solution u satisfying [1, Theorem 3.1]:

u ∈ Cαν([0, T0];L
2(Ω)) ∩ C([0, T0];D(Lν)) ∩ C((0, T0];D(L)), (1.4)

C∂αt u ∈ C((0, T0];L
2(Ω)), (1.5)

∂tu(t) ∈ L2(Ω) and ‖∂tu(t)‖ ≤ ctαν−1, t ∈ (0, T0]. (1.6)

The results show that the solution of the semilinear problem (1.1) enjoys (to some extent) smooth-
ing properties analogous to those of the homogeneous linear problem. For u0 ∈ L2(Ω), it is shown
that ([1, Theorem 3.2])

u ∈ C([0, T0];L
2(Ω)) ∩ Lγ(0, T0;D(L)), γ < 1/α. (1.7)

Note that the first time derivative of u is not smooth enough in space even in the case of a smooth
initial data. This actually causes a major difficulty in deriving optimal error estimates based on
standard techniques, such as the energy method.

The numerical approximation of fractional differential equations has received considerable at-
tention over the last two decades. For linear time-fractional equations, a vast literature is now
available. See the short list [26, 27, 11, 10, 16, 18] on problems with nonsmooth data and [12]
for a concise overview and recent developments. In contrast, numerical studies on nonlinear time-
fractional evolution problems are rather limited. In [21], a linearized L1-Galerkin FEM was pro-
posed to solve a nonlinear time-fractional Schrödinger equation. In [20], L1-type schemes have been
analyzed for approximating the solution of (1.1). The error estimates in [21] and [20] are derived
under high regularity assumptions on the exact solution, so the limited smoothing property of the
model (1.1) was not taken into consideration. In [13], the numerical solution of (1.1) was investi-
gated assuming that the nonlinearity f is uniformly Lipschitz in u and the initial data u0 ∈ D(L).
Error estimates are established for linearized time-stepping schemes based on the L1-method and
a convolution quadrature generated by the backward Euler difference formula. In the recent paper
[1], we derived error estimates for the same problem with initial data u0 ∈ D(Lν), ν ∈ (0, 1].
The new estimates extend known results obtained for the standard semilinear parabolic problem
[14]. For other types of time-fractional problems, one may refer to [5] for fractional diffusion-wave
equations and to [28] for an integro-differential equation.

In this paper, we approximate the solution of the semilinear problem (1.1) by general Galerkin
type approximation methods in space and a convolution quadrature in time. Our aim is to develop
a unified error analysis with optimal error estimates with respect to the data regularity. We shall
follow a semigroup type approach and make use of the inverse of the associated elliptic operator
[3]. The current study extends the recent work [16] dealing with the homogeneous linear problem,
which relied on the energy technique. Our analysis includes conforming, nonconforming and mixed
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FEMs, and the results are applicable to nonlinear multi-term diffusion problems. It is worth noting
that most of our results hold in the limiting case α = 1, i.e., our study also generalizes the work
[3]. Particularly interesting are the estimates derived for the mixed FEM, which are new and have
not been established earlier.

The paper is organized as follows. In section 2, a general setting of the problem is introduced
and preliminary error estimates are derived, which require regularity properties analogous to those
of the homogeneous linear problem. In section 3, an alternative error estimation is proposed
without a priori regularity assumptions on the exact solution. Time-stepping schemes based on
a backward Euler convolution quadrature method are analyzed in section 4. Applications are
presented in section 5. The mixed form of problem (1.1) is considered in section 6 and related
convergence rates are obtained. Finally, numerical results are provided to validate the theoretical
findings.

Throughout the paper, we denote by c a constant which may vary at different occurrences,
but is always independent of the mesh size h and the time step size τ . We shall also use the
abbreviation f(u) and f(t) for f(x, t, u) and f(x, t), respectively.

2 General setting and preliminary estimates

Set T = L−1. Then, T : L2(Ω) → D(L) is compact, selfadjoint and positive definite. In terms of
T , we may write (1.1) as

TC∂αt u+ u = Tf(u), t > 0, u(0) = u0. (2.1)

For the purpose of approximating the solution of this problem, let Vh ⊂ L2(Ω) be a family of finite-
dimensional spaces that depends on h, 0 < h < 1. We assume that we are given a corresponding
family of linear operators Th : L2(Ω) → Vh which approximate T . Then consider the semidiscrete
problem: find uh(t) ∈ Vh for t ≥ 0 such that

TCh ∂
α
t uh + uh = Thf(uh), t > 0, uh(0) = u0h ∈ Vh, (2.2)

where u0h is a suitably chosen approximation of u0. In our analysis, we shall make the following
assumptions:
(i) Th is selfadjoint, positive semidefinite on L2(Ω) and positive definite on Vh.
(ii) ThPh = Th, where Ph : L2(Ω) → Vh is the orthogonal L2-projection onto Vh.
(iii) For some constants γ > 0 and c > 0, there holds

‖Thf − Tf‖ ≤ chγ‖f‖ ∀f ∈ L2(Ω). (2.3)

Since T−1
h exists on Vh, (2.2) may be solved uniquely for t > 0. The following diagram displays

the different links between the operators under consideration:

D(L) L2(Ω)

Vh Vh

T = L−1

Ph
Th

Rh

Th

In the diagram, the operator Rh : D(L) → Vh is defined by Rh = ThL. It is the analogue of the
Ritz elliptic projection in the context of Galerkin FE methods. Note that RhT = Th, and in view
of (2.3), Rh satisfies

‖Rhv − v‖ = ‖ThLv − TLv‖ ≤ chγ‖Lv‖ ∀v ∈ D(L). (2.4)
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Further, by the definition of Ph, we see that ‖Phv − v‖ ≤ ‖Rhv − v‖ ∀v ∈ D(L).
Examples of family {Th} with the above properties are exhibited by the standard Galerkin FE

and spectral methods in the case Vh ⊂ H1
0 (Ω), and by other nonconforming Galerkin methods in

the case Vh 6⊂ H1
0 (Ω). The mixed FE method applied to (1.1) is a typical example which has the

above properties and will be considered in this study.
By our assumptions on Th, the operator (z−αI + Th)

−1 : L2(Ω) → L2(Ω) satisfies

‖(z−αI + Th)
−1‖ ≤M |z|α ∀z ∈ Σθ, (2.5)

where Σθ is the sector Σθ = {z ∈ C, z 6= 0, | arg z| < θ} with θ ∈ (π/2, π) being fixed and M
depends on θ. In (2.5), and in the sequel, we keep the same notation ‖ · ‖ to denote the operator
norm from L2(Ω) → L2(Ω). Using that

(z−αI + Th)
−1Th = I − z−α(z−αI + Th)

−1, (2.6)

we obtain
‖(z−αI + Th)

−1Th‖ ≤ 1 +M ∀z ∈ Σθ. (2.7)

Note that (2.5) and (2.7) hold for T . By means of the Laplace transform, the solution of problem
(2.2) is represented by

uh(t) = Eh(t)u0h +

∫ t

0

Ēh(t− s)f(uh(s)) ds, t > 0. (2.8)

The operators Eh(t) : L
2(Ω) → L2(Ω) and Ēh(t) : L

2(Ω) → L2(Ω) are defined by

Eh(t) =
1

2πi

∫

Γθ,δ

eztz−1Kh(z) dz and Ēh(t) =
1

2πi

∫

Γθ,δ

eztz−αKh(z) dz, (2.9)

respectively, where Kh(z) := (z−αI + Th)
−1Th. The contour Γθ,δ = {ρe±iθ : ρ ≥ δ} ∪ {δeiψ : |ψ| ≤

θ}, with θ ∈ (π/2, π) and δ > 0, is oriented with an increasing imaginary part. Similarly, the
solution u of problem (2.1) is given by

u(t) = E(t)u0 +

∫ t

0

Ē(t− s)f(u(s)) ds, t > 0, (2.10)

where the operators E and Ē are respectively defined in terms of K(z) := (z−αI + T )−1T as in
(2.9). Standard arguments show that (see for instance [25])

‖E(t)v‖ + ‖Eh(t)v‖+ t1−α
(
‖Ē(t)v‖ + ‖Ēh(t)v‖

)
≤ c‖v‖ ∀v ∈ L2(Ω). (2.11)

Now let e(t) = uh(t) − u(t) denote the error at time t. Define the intermediate solution
vh(t) ∈ Vh, t ≥ 0, by

TCh ∂
α
t vh + vh = Thf(u), t > 0, vh(0) = u0h. (2.12)

Then, by splitting the error e = (uh − vh) + (vh − u) =: η + ξ, and subtracting (2.12) from (2.1),
we find that ξ satisfies

TCh ∂
α
t ξ(t) + ξ(t) = (Th − T )(f(u)−C∂αt u)(t), t > 0. (2.13)

With
ρ(t) := (Th − T )(f(u)−C∂αt u)(t), (2.14)

we thus obtain
TCh ∂

α
t ξ(t) + ξ(t) = ρ(t), t > 0, ξ(0) ∈ L2(Ω). (2.15)

Before proving the main result of this section, we recall the following lemma which generalizes
the classical Gronwall’s inequality, see [6].
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Lemma 2.1. Assume that y is a nonnegative function in L1(0, T0) which satisfies

y(t) ≤ g(t) + β

∫ t

0

(t− s)−αy(s) ds for t ∈ (0, T0],

where g(t) ≥ 0, β ≥ 0, and 0 < α < 1. Then there exists a constant CT0
such that

y(t) ≤ g(t) + CT0

∫ t

0

(t− s)−αg(s) ds for t ∈ (0, T0].

Note that, by using (2.10), (2.11) and the inequality

‖f(u(t))‖ ≤ ‖f(u(t))− f(0)‖+ ‖f(0)‖ ≤ L‖u‖+ ‖f(0)‖, t ≥ 0, (2.16)

Lemma 2.1 implies that ‖u(t)‖ ≤ c(‖u0‖+‖f(0)‖) for t ≥ 0 with c = c(α,L, T0). Now we are ready

to prove an error estimate for problem (2.1). Here ρ is given by (2.14) and ρ̃(t) :=
∫ t
0 ρ(s) ds.

Lemma 2.2. Let u and uh be the solutions of (2.1) and (2.2), respectively. Assume that Th(u0 −
u0h) = 0. Then, for t > 0,

‖e(t)‖ ≤ c

(
G(t) +

∫ t

0

(t− s)α−1G(s) ds

)
, (2.17)

where
G(t) = t−1 sup

s≤t
(‖ρ̃(s)‖ + s‖ρ(s)‖+ s2‖ρt(s)‖), (2.18)

and c is independent of h.

Proof. First we derive a bound for the difference between u and the intermediate solution vh. Since
Thξ(0) = 0, an application of Lemma 3.5 in [16] to (2.1) and (2.12) yields ‖ξ(t)‖ ≤ cG(t), where
G is given by (2.18). In view of the splitting e = η + ξ, it suffices to estimate ‖η‖. Note that η
satisfies

TCh ∂
α
t η(t) + η(t) = Th(f(uh)− f(u)), t > 0, η(0) = 0.

Hence, by Duhamel’s principle,

η(t) =

∫ t

0

Ēh(t− s)(f(uh(s))− f(u(s))) ds, t > 0.

Using the property of Ēh in (2.11) and condition (1.2), we see that

‖η(t)‖ ≤ cL

∫ t

0

(t− s)α−1‖uh(s)− u(s)‖ ds, t > 0,

and thus

‖e(t)‖ ≤ ‖ξ(t)‖+ c

∫ t

0

(t− s)α−1‖e(s)‖ ds, t > 0.

An application of Lemma 2.1 yields (2.17), which completes the proof.

Clearly the error estimate in Lemma 2.2 is meaningful provided that G ∈ L1(0, T ). Recalling
that ρ = (Th − T )Lu, we have by (2.3), ‖∂tρ(t)‖ ≤ chγ‖L∂tu(t)‖. Hence, to achieve a O(hγ)
order of convergence, we need to assume that ∂tu(t) ∈ D(L) for t ∈ (0, T0]. It turns out that,
without additional conditions on initial data and nonlinearity, this property, which holds in the
linear case, does not generalize to the semilinear problem. This remark equally applies to the
semilinear parabalic problem, see the discussion in [31, pp. 228].
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3 Error estimates without regularity assumptions

We shall present below an alternative derivation of the error bound without a priori regularity
assumptions on the exact solution. To do so, we first introduce the operator

Sh(z) = (z−αI + Th)
−1Th − (z−αI + T )−1T.

Then Sh satisfies the following property.

Lemma 3.1. There holds

‖Sh(z)v‖ ≤ chγ |z|α(1−ν)‖Lνv‖ ∀z ∈ Σθ, ν ∈ [0, 1]. (3.1)

Proof. Using the identity (2.6), we verify that

Sh(z) = z−α(z−αI + T )−1
[
(z−αI + Th)− (z−αI + T )

]
(z−αI + Th)

−1

= z−α(z−αI + T )−1(Th − T )(z−αI + Th)
−1.

Then, by (2.5) and (2.3),

‖Sh(z)v‖ ≤ c‖(Th − T )(z−αI + Th)
−1v‖ ≤ chγ |z|α‖v‖.

This shows (3.1) for ν = 0. For ν = 1, i.e., v ∈ D(L), we have TLv = v. Then, by (2.3) and (2.7),
we get

‖Sh(z)v‖ ≤ c‖(Th − T )(z−αI + T )−1TLv‖ ≤ chγ‖Lv‖.
The desired estimate (2.3) follows now by interpolation.

We further introduce the following operators: Fh(t) = Eh(t)−E(t) and F̄h(t) = Ēh(t)− Ē(t).
Then, by Lemma 3.1,

‖F̄h(t)v‖ ≤ chγ
∫

Γθ,1/t

eRe(z)t |dz| ‖v‖ ≤ ct−1hγ‖v‖. (3.2)

Similarly, based on (3.1), the following estimate

‖Fh(t)v‖ ≤ ct−α(1−ν)hγ‖Lνv‖, ν = 0, 1, (3.3)

holds for Fh(t). Now we are ready to prove a nonsmooth data error estimate. Here and the
throughout the paper, ℓh(ν) = | lnh| if ν = 0 and 1 otherwise.

Theorem 3.1. Let u0 ∈ D(Lν), ν ∈ [0, 1]. Let u and uh be the solutions defined by (2.10)
and (2.8), respectively, with u0h = Phu0. Then there is a constant c = c(r, L, T0), where r ≥
‖Lνu0‖+ ‖f(0)‖, such that

‖uh(t)− u(t)‖ ≤ chγℓh(ν)t
−α(1−ν), t ∈ (0, T0]. (3.4)

Proof. Recall that e = uh − u. From (2.8) and (2.10), we get after rearrangements

e(t) = Fh(t)u0 +

∫ t

0

Ēh(t− s)[f(uh(s)) − f(u(s))] ds+

∫ t

0

F̄h(t− s)f(u(s)) ds. (3.5)

The last term in (3.5) can be written as I + II where

I =

∫ t

0

F̄h(t− s)(f(u(s))− f(u(t))) ds and II =

(∫ t

0

F̄h(t− s) ds

)
f(u(t)).
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For ν ∈ (0, 1], we use (3.2), (1.2) and the property u ∈ Cαν([0, T0], L
2(Ω)) to get

‖I‖ ≤ chγ
∫ t

0

(t− s)−1(t− s)αν ds ≤ chγtαν .

To estimate II, we introduce the operator Ẽ(t) = 1
2πi

∫
Γθ,δ

eztz−1−αSh(z) dz. Then Ẽ
′(t) = F̄ (t)

and ‖Ẽ(t)‖ ≤ chγ for all t ≥ 0 since ‖Sh(z)‖ ≤ chγ |z|α. Hence, ‖II‖ ≤ ‖f(u(t))‖ ‖Ẽ(t)− Ẽ(0)‖ ≤
chγ as ‖f(u)‖ is bounded, see (2.16). Now, using the properties of Ēh and Fh in (2.11) and (3.3),
respectively, we obtain

‖e(t)‖ ≤ ct−α(1−ν)hγ‖Lνu0‖+ c

∫ t

0

(t− s)α−1‖e(s)‖ ds+ chγ + chγtαν . (3.6)

The desired estimate follows now by applying Lemma 2.1. To establish the estimate for ν = 0, we
follow the same arguments presented in the proof of Theorem 4.4 in [1].

As an immediate application of Theorem 3.1, consider the standard conforming Galerkin FEM
with Vh ⊂ H1

0 (Ω) consists of piecewise linear functions on a shape-regular triangulation with a
mesh parameter h. Let Th : L2(Ω) → Vh be the solution operator of the discrete problem:

a(Thf, v) = (f, v) ∀v ∈ Vh, (3.7)

where a(·, ·) is the bilinear form associated with the elliptic operator L. Then, Th is selfadjoint,
positive semidefinite on L2(Ω) and positive definite on Vh, see [3], and satisfies (2.3) with γ = 2.
Thus, by Theorem 3.1,

‖uh(t)− u(t)‖ ≤ ch2ℓh(ν)t
−α(1−ν), t > 0, (3.8)

for ν ∈ [0, 1]. This improves the following estimate

‖uh(t)− u(t)‖ ≤ ch2
(
t−α(1−ν) +max(0, ln(tα(1−ν)/h2))

)
, t > 0, (3.9)

established in [1]. We notice that the logarithmic factor is also present in the parabolic case when
ν = 0, see [14, Theorem 1.1].

As a second example, we show that the present semidiscrete error analysis extends to the
following multi-term time-fractional diffusion problem:

P (∂t)u+ Lu = f(u) in Ω× (0, T0], u(0) = u0 in Ω, u = 0 on ∂Ω× (0, T0], (3.10)

where the multi-term differential operator P (∂t) is defined by P (∂t) = ∂αt +
∑m

i=1 bi∂
αi
t with

0 < αm ≤ · · · ≤ α1 ≤ α < 1 being the orders of the fractional Caputo derivatives, and bi > 0,
i = 1, . . . ,m. This model was derived to improve the modeling accuracy of the single-term model
(1.1) for describing anomalous diffusion. An inspection of the proof of the Theorem 3.1 reveals that
its main arguments are based on the bounds derived for the operators Fh, Ēh and F̄h. Following
[11], one can verify that these operators satisfy the same bounds as in the single-term case. This
readily implies that the estimate (3.4) remains valid for the multi-term diffusion problem (3.10).

Remark 3.1. In the parabolic case, a singularity in time appears which has the same form as in
(3.2). Hence, the estimate (3.4) remains valid when α = 1.

Remark 3.2. For smooth initial data u0 ∈ D(L), the estimate (3.4) still holds for the choice
u0h = Rhu0. Indeed, we have

Eh(t)Rhu0 − E(t)u0 = Eh(t)(Rhu0 − u0) + (Eh(t)u0 − E(t)u0).

By the stability of the operator Eh(t),

‖Eh(t)(Rhu0 − u0)‖ ≤ c‖Rhu0 − u0‖ ≤ chγ‖Lu0‖.
Then we reach our conclusion by following the arguments in the proof of Theorem 3.1.
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4 Fully discrete schemes

This section is devoted to the analysis of a fully discrete scheme for problem (2.2) based on
a convolution quadrature (CQ) generated by the backward Euler method, using the framework
developed in [25, 5]. Divide the time interval [0, T0] into N equal subintervals with a time step
size τ = T0/N , and let tj = jτ . The convolution quadrature [23] refers to an approximation of any
function of the form k ∗ ϕ as

(k ∗ ϕ)(tn) :=
∫ tn

0

k(tn − s)ϕ(s) ds ≈
n∑

j=0

βn−j(τ)ϕ(tj),

where the weights βj = βj(τ) are computed from the Laplace transform K(z) of k rather than
the kernel k(t). With ∂t being time differentiation, define K(∂t) as the operator of (distributional)
convolution with the kernel k: K(∂t)ϕ = k ∗ϕ for a function ϕ(t) with suitable smoothness. Then
a convolution quadrature will approximate K(∂t)ϕ by a discrete convolution K(∂τ )ϕ at t = tn
as K(∂τ )ϕ(tn) =

∑n
j=0 βn−j(τ)ϕ(tj), where the quadrature weights {βj(τ)}∞j=0 are determined by

the generating power series
∑∞

j=0 βj(τ)ξ
j = K(δ(ξ)/τ) with δ(ξ) being a rational function, chosen

as the quotient of the generating polynomials of a stable and consistent linear multistep method.
For the backward Euler method, δ(ξ) = 1− ξ.

An important property of the convolution quadrature is that it maintains some relations of the
continuous convolution. For instance, the associativity of convolution is valid for the convolution
quadrature [5] such as

K2(∂τ )K1(∂τ ) = K2K1(∂τ ) and K2(∂τ )(k1 ∗ ϕ) = (K2(∂τ )k1) ∗ ϕ. (4.1)

In the following lemma, we state an interesting result on the error of the convolution quadrature
[24, Theorem 5.2].

Lemma 4.1. Let G(z) be analytic in the sector Σθ and such that

‖G(z)‖ ≤ c|z|−µ ∀z ∈ Σθ,

for some real µ and c. Then, for ϕ(t) = ctσ−1, the convolution quadrature based on the backward
Euler method satisfies

‖G(∂t)ϕ(t) −G(∂τ )ϕ(t)‖ ≤
{
Ctµ+σ−2τ, σ ≥ 1
Ctµ−1τσ, 0 < σ ≤ 1.

(4.2)

Upon using the relation between the Riemann-Liouville derivative denoted by ∂αt and the
Caputo derivative C∂αt , the semidiscrete scheme (2.2) can be rewritten as

Th∂
α
t (uh − u0h) + uh = Thf(uh), t > 0, uh(0) = u0h. (4.3)

Thus, the proposed backward Euler CQ scheme is to seek Unh ∈ Vh, n ≥ 0, such that

Th∂
α
τ (U

n
h − U0

h) + Unh = Thf(U
n
h ), n ≥ 1, U0

h = u0h. (4.4)

4.1 The linear case

We begin by investigating the time discretization of the inhomogeneous linear problem

TC∂αt u+ u = Tf(t), t > 0, u(0) = u0, (4.5)

with a semidiscrete solution uh(t) ∈ Vh satisfying

TCh ∂
α
t uh + uh = Thf(t), t > 0, uh(0) = Phu0. (4.6)
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The fully discrete solution Unh ∈ Vh is defined by

Th∂
α
τ (U

n
h − U0

h) + Unh = Thf(tn), n ≥ 1, U0
h = Phu0. (4.7)

Then we establish the following result.

Theorem 4.1. Let u0 ∈ D(Lν), ν ∈ [0, 1]. Let u and Unh be the solutions of (4.5) and (4.7),
respectively, with f = 0. Then, for tn > 0,

‖Unh − u(tn)‖ ≤ c(τtαν−1
n + hγt−α(1−ν)n )‖Lνu0‖. (4.8)

Proof. We first notice that ‖uh(tn) − u(tn)‖ ≤ ct
−α(1−ν)
n hγ‖Lνu0‖, which follows from Theorem

3.1 in the case f = 0. In order to estimate ‖Unh − uh(tn)‖, apply ∂−αt and ∂−ατ to (4.6) and (4.7),
respectively, use the associativity of convolution and the property ThPh = Th, to deduce that

Unh − uh(tn) = − (G(∂τ )−G(∂t))u0, (4.9)

where G(z) = (z−αI + Th)
−1Th. We recall that, by (2.5), ‖G(z)‖ ≤ c ∀z ∈ Σθ. Then, Lemma 4.1

(with µ = 0, σ = 1) and the L2-stability of Ph yield

‖Unh − uh(tn)‖ ≤ cτt−1
n ‖u0‖. (4.10)

For u0 ∈ D(L), consider first the choice uh(0) = Rhu0. Recalling that Rh = ThL, we use the
identity G(z) = I − z−α(z−αI + Th)

−1 to get

Unh − uh(tn) = −
(
Ḡ(∂τ )− Ḡ(∂t)

)
Lv,

where Ḡ(z) = z−α(z−αI + Th)
−1Th. Since ‖Ḡ(z)‖ ≤ c|z|−α ∀z ∈ Σθ, an application of Lemma 4.1

(with µ = α, σ = 1) yields
‖Unh − uh(tn)‖ ≤ cτtα−1

n ‖Lv‖. (4.11)

For the choice u0 = Phv, we split the new error

G(∂τ )u0 −G(∂t)u0 = G(∂τ )(u0 −Rhu0) +G(∂τ )Rhu0 −G(∂t)u0.

By the stability of the discrete scheme, the estimate (4.11) and remark 3.2, we deduce that
‖G(∂τ )u0 −G(∂t)u0‖ ≤ c(hγ + τtα−1

n )‖Lu0‖. This shows (4.8) when ν = 1. Finally, for ν ∈ (0, 1),
the estimate (4.8) follows by interpolation.

Now we prove an error estimate when f 6= 0 but with u0 = 0.

Theorem 4.2. Let u and Unh be the solutions of (4.5) and (4.7), respectively, with u0 = 0. If f

satisfies |f(t) − f(s)| ≤ c|t − s|θ ∀t, s ∈ R with some θ ∈ (0, 1) and
∫ t
0
(t − s)α−1‖f ′(s)‖ds < ∞

∀t ∈ (0, T0], then, for tn > 0,

‖Unh − u(tn)‖ ≤ chγ + c

(
τtα−1
n ‖f(0)‖+ τ

∫ tn

0

(tn − s)α−1‖f ′(s)‖ds
)
. (4.12)

Proof. Using the assumptions on f in the proof of Theorem 3.1 we conclude that ‖uh(t)−u(t)‖ ≤
chγ . From (4.6) and (4.7), the semidiscrete and fully discrete solutions are now given by uh =
Ḡ(∂t)f and Unh = Ḡ(∂τ )f , respectively, where Ḡ(z) is defined in the previous proof. Using the
expansion f(t) = f(0) + (1 ∗ f ′)(t) and the second relation in (4.1), we find that

Unh − uh(tn) = (Ḡ(∂τ )− Ḡ(∂t))f(0) + ((Ḡ(∂τ )− Ḡ(∂t))1) ∗ f ′(tn) =: I + II.

By Lemma 4.1 (with µ = α and σ = 1), we have

‖I‖ ≤ cτtα−1
n ‖f(0)‖.

For the second term, Lemma 4.1 yields

‖II‖ ≤
∫ tn

0

‖((Ḡ(∂τ )− Ḡ(∂t))1)(tn − s)f ′(s)‖ ≤ cτ

∫ tn

0

(tn − s)α−1‖f ′(s)‖ds,

which completes the proof of (4.12).
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4.2 The semilinear case

We consider now the time approximation of the nonlinear problem (2.1) and prove related error
estimates. The time-stepping scheme is now defined as follows: find Unh ∈ Vh, n ≥ 0, such that

Th∂
α
τ (U

n
h − U0

h) + Unh = Thf(U
n
h ), n ≥ 1, U0

h = Phu0. (4.13)

This scheme is written in an expanded form as

Th(U
n
h − U0

h) + τα
n∑

j=0

q
(α)
n−jU

j
h = ταTh

n∑

j=0

q
(α)
n−jf(U

j
h),

where q
(α)
j = (−1)j

(
−α
j

)
, see [24]. Since q

(α)
0 = 1, the implicit equation for Unh is of the form

(ταI + Th)U
n
h = Thζ + η + ταThf(U

n
h ), n ≥ 1, (4.14)

where ζ, η ∈ Vh. The solvability of (4.14) is discussed below.

Proposition 4.1. Under the restriction ταML < 1, the nonlinear system (4.14) has a unique
solution Unh ∈ Vh for every n ≥ 1.

Proof. The solvability of (4.14) is equivalent to the existence of a fixed point for the mapping
Sh : Vh → Vh defined by

Sh(v) = (ταI + Th)
−1(Thζ + η + ταThf(v)). (4.15)

Recalling that ‖(ταI + Th)
−1Th‖ ≤M , we have ∀v, w ∈ Vh,

‖Sh(w) − Sh(v)‖ ≤ τα‖(ταI + Th)
−1Th(f(v)− f(w))‖

≤ ταM‖fh(v) − fh(w)‖
≤ ταML‖v − w‖.

Hence, Sh is a contraction if ταML < 1, and therefore, (4.15) has a unique fixed point in Vh which
is also the unique solution of (4.14).

To investigate the stability of the scheme (4.13), we rewrite it in the form

(∂−ατ + Th)U
n
h = ThU

0
h + ∂−ατ Thf(U

n
h ). (4.16)

Noting that Unh depends linearly and boundedly on U0
h , f(U

j
h), 0 ≤ j ≤ n, we deduce the existence

of linear and bounded operators Pn and Rn : Vh → Vh, n ≥ 0, such that Unh is represented by

Unh = PnU
0
h + τ

n∑

j=0

Rn−jf(U
j
h), (4.17)

see [5, Section 4]. In view of (4.16), the operators τRn, n ≥ 0, are the convolution quadrature
weights corresponding to the Laplace transform K(z) = z−α(z−αI + Th)

−1Th, i.e., they are the
coefficients in the series expansion

τ
∞∑

j=0

Rjξ
j = K((1− ξ)/τ).

Since ‖K(z)‖ ≤ c|z|−α, an application of Lemma 3.1 in [5] with µ = α, shows that there is a
constant B > 0, independent of τ , such that

‖Rn‖ ≤ Btα−1
n+1 , n = 0, 1, 2, . . . . (4.18)

Based on this bound, we show that the scheme (4.13) is stable in L2(Ω).
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Proposition 4.2. Under the restriction ταBL < 1, there exists a constant C independent of h
and τ such that

‖Unh ‖ ≤ C(‖U0
h‖+ ‖f(u0)‖), n ≥ 1. (4.19)

Proof. Taking L2(Ω)-norms in (4.17) and using (4.18), we deduce that

‖Unh ‖ ≤ c‖U0
h‖+ τB

n∑

j=0

tα−1
n−j+1‖f(U

j
h)‖.

Since, ‖f(U jh)‖ ≤ L‖U jh‖+ ‖f(0)‖,

‖Unh ‖ ≤ c‖U0
h‖+

B

α
Tα‖f(0)‖+ τBL

n∑

j=0

tα−1
n−j+1‖U

j
h‖.

With the assumption that ταBL < 1, a generalized discrete Gronwall’s lemma (see, e.g., Theorem
6.1 in [8]) readily implies (4.19).

Now we are ready to prove the main result of this section.

Theorem 4.3. Let u0 ∈ D(Lν), ν ∈ (0, 1]. Let u be the solution of (2.1). Then there exists
τ0 > 0 such that, for 0 < τ < τ0, the numerical solution Unh given by (4.13) is uniquely defined
and satisfies

‖Unh − u(tn)‖ ≤ c(τtαν−1
n + hγtα(ν−1)

n ), tn > 0. (4.20)

Proof. Select τ0 such that τα0 ML < 1. Then, for 0 < τ < τ0, the discrete solution Unh ∈ Vh is well
defined. Let vnh , n ≥ 0, be the intermediate discrete solution defined by

Th∂
α
τ (v

n
h − v0h) + vnh = Thf(u(tn)), n ≥ 1, v0h = U0

h . (4.21)

Then (4.21) can be viewed as a fully discretization of (2.1) with a given right-hand side function
f(u). Hence, by applying Theorems 4.1 and 4.2, and using the bound ‖∂tu(s)‖ ≤ csαν−1, we
deduce that

‖u(tn)− vnh‖ ≤cτtαν−1
n + chγtα(ν−1)

n + chγ + cτtα−1
n ‖f(u(0))‖

+ cτ

∫ tn

0

(tn − s)α−1‖∂tf(s, x, u(s)) + ∂uf(s, x, u(s))∂tu(s)‖ ds

≤c(τtαν−1
n + hγtα(ν−1)

n + chγ + τtα−1
n + τtα+αν−1

n )

≤c(τtαν−1
n + hγtα(ν−1)

n ).

(4.22)

On the other hand, expressing vnh in terms of the data, through the discrete operators Pn and Rn,
as in (4.17), we obtain

vnh = PnU
0
h + τ

n∑

j=0

Rn−jf(u(tj)). (4.23)

Thus, in view of (4.17) and (4.23), we have for 0 < tn ≤ T0,

Unh − u(tn) = Unh − vnh + vnh − u(tn)

= vnh − u(tn) + τ

n∑

j=0

Rn−j(f(U
j
h)− f(u(tj))).

By (1.2) and the estimate in (4.18) for Rn, we obtain

‖Unh − u(tn)‖ ≤ ‖vnh − u(tn)‖+ τLB

n∑

j=1

tα−1
n−j+1‖U

j
h − u(tj)‖+ τLBtα−1

n+1‖Phu0 − u0‖.

Using the estimate (4.22) and making the additional assumption τα0 LB < 1, we now apply a
generalized Gronwall’s inequality, see Lemma 5.1 in [1], to finally derive (4.20).
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5 Galerkin type approximations

In this section, we apply our analysis to approximate the solution of (1.1) by general Galerkin type
methods and derive optimal L2(Ω)-error estimates for cases with smooth and nonsmooth initial
data. For a general setting, we assume that we are given a bilinear form ah : Vh × Vh → R which
has the following property:

Property A. ah(·, ·) is symmetric positive definite, and the discrete problem

ah(Thf, χ) = (f, χ) ∀χ ∈ Vh (5.1)

defines a linear operator Th : L2(Ω) → Vh satisfying the estimate (2.3).
The solution of the continuous problem (1.1) will be approximated through the semidiscrete

problem: find uh(t) ∈ Vh such that

(C∂αt uh, χ) + ah(uh, χ) = (f(uh), χ) ∀χ ∈ Vh, t > 0, (5.2)

with uh(0) = Phu0. We recall that Ph : L2(Ω) → Vh is the L2-projection onto Vh. Next we define
the fully discrete scheme based on the backward Euler CQ method as follows: with U0

h = Phu0,
find Unh ∈ Vh, n ≥ 1, such that

(∂ατ U
n
h , χ) + ah(U

n
h , χ) = (∂ατ U

0
h , χ) + (f(Unh ), χ) ∀χ ∈ Vh. (5.3)

Then we have the following result.

Theorem 5.1. Let u be the solution of problem (1.1) with u0 ∈ D(Lν), ν ∈ (0, 1]. Let Unh be the
solution of problem (5.3) with U0

h = Phu0. Assume that ah(·, ·) satisfies Property A. Then there
holds:

‖Unh − u(tn)‖ ≤ c(τtαν−1
n + hγtα(ν−1)

n ), tn > 0, (5.4)

where c is independent of h and τ .

Proof. Since ah(·, ·) is symmetric, the operator Th is selfadjoint and positive semidefinite on L2(Ω):
for all f, g ∈ L2(Ω)

(f, Thg) = ah(Thf, Thg) = (Thf, g) and (f, Thf) = ah(Thf, Thf) ≥ 0.

If f ∈ Vh and Thf = 0, then (5.1) implies that f = 0, that is Th is positive definite on Vh. Further,
as from (5.1), we have Th = ThPh. Hence, Th satisfies all the conditions stated in section 2. In
view of (5.1), the fully discrete scheme (5.3) is equivalently written as

Th∂
α
τ (U

n
h − U0

h) + Unh = Thf(U
n
h ), n ≥ 1, U0

h = Phu0. (5.5)

Thus, the desired estimate is a direct consequence of Theorem4.3.

We notice that Property A is quite standard and holds for a large class of Galerkin type
approximation methods, including FE and spectral methods. For the spectral methods, one may
choose the notation VN instead of Vh and replace the estimate (2.3) by ‖Thf−Tf‖ ≤ cN−γ‖f‖ ∀f ∈
L2(Ω). Further, since we are not imposing restrictions on the space Vh, our analysis applies to
nonconforming space approximations, such as the early method by Nitsche [29] and the method
by Crouzeix and Raviart [4]. Recent examples of nonconforming methods include discontinuous
Galerkin (DG) FE methods. An interesting case is the symmetric DG interior penalty method,
see [2]. Here the discrete bilinear form ah for the Laplacian operator is given by

ah(u, v) :=
∑

K∈Th

∫

K

c2∇u · ∇v dx−
∑

F∈Fh

∫

F

[[u]] · {{c2∇v}} ds

−
∑

F∈Fh

∫

F

[[v]] · {{c2∇u}} ds+
∑

F∈Fh

ρh−1
F

∫

F

c2[[v]] · [[u]] ds, (5.6)
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where Th = {K} is a regular partition of Ω̄ and Fh = {F} is the set of all interior and boundary
edges or faces of Th = {K}. The last three terms in (5.6) correspond to jump and flux terms at
element boundaries, with hF denoting the diameter of the edge or the face F , see [2] for more
details. The parameter ρ > 0 is the interior penalty stabilization parameter that has to be chosen
sufficiently large, independent of the mesh size. The bilinear form ah is clearly symmetric and
satisfies property A with γ = 2. Our analysis extends to other symmetric spatial DG methods as
long as property A is satisfied.

6 Mixed FE methods

We consider now the mixed form of the problem (1.1) and establish a priori error estimates for
smooth and nonsmooth initial data. For the sake of simplicity, we choose L = −∆ and Ω ⊂ R2.
One notable advantage of the mixed FEM is that it approximates the solution u and its gradient
simultaneously, resulting in a high convergence rate for the gradient.

By introducing the new variable σ = ∇u, the problem can be formulated as

C∂αt u−∇ · σ = f(u), σ = ∇u, u = 0 on ∂Ω,

with u(0) = u0. Let H(div; Ω) = {σ ∈ (L2(Ω))2 : ∇ · σ ∈ L2(Ω)} be a Hilbert space equipped

with norm ‖σ‖W = (‖σ‖2 + ‖∇ · σ‖2) 1

2 . Then, with V = L2(Ω) and W = H(div; Ω), the weak
mixed formulation of (1.1) is defined as follows: find (u,σ) : (0, T0] → V ×W such that

(C∂αt u, χ)− (∇ · σ, χ) = (f(u), χ) ∀χ ∈ V, (6.1)

(σ,w) + (u,∇ ·w) = 0 ∀w ∈ W, (6.2)

with u(0) = u0. Note that the boundary condition u = 0 on ∂Ω is implicitly contained in (6.2).
By Green’s formula, we formally obtain σ = ∇u in Ω and u = 0 on ∂Ω.

For the mixed form of problem (1.1), a few numerical studies are available, dealing only with the
linear case. In [7], the authors investigated a hybridizable DG method for the space discretization.
In [32], a non-standard mixed FE method was proposed and analysed. Another related analysis for
mixed method applied to the time-fractional Navier-Stokes equations was presented in [22]. The
convergence analyses in all these studies require high regularity assumptions on the exact solution,
which is not in general reasonable. In the recent work [16], we investigated a mixed FE method
for (1.1) with f = 0 and derived optimal error estimates for semidiscrete schemes with smooth
and nonsmooth initial data. The estimates extend the results obtained for the standard linear
parabolic problem [15]. In the present analysis, we shall avoid energy arguments as employed in
[16] due to the weak regularity of the solution.

For the FE approximation of problem (6.1)-(6.2), let Th be a shape regular and quasi-uniform
partition of the polygonal convex domain Ω̄ into triangles K of diameter hK . Further, let Vh and
Wh be the Raviart-Thomas FE spaces [30] of index ℓ ≥ 0 given respectively by

Vh = {w ∈ L2(Ω) : w|K ∈ Pℓ(K) ∀K ∈ Th}
and

Wh = {v ∈ H(div,Ω) : v|K ∈ RTℓ(K) ∀K ∈ Th},
where RTℓ(K) = (Pℓ(K))2 + xPℓ(K), ℓ ≥ 0. Other examples of mixed FE spaces may also be
considered. We shall restrict our analysis to the low order cases ℓ = 0, 1, as high order Thomas-
Raviart elements are not attractive due to the limited smoothing property of the time-fractional
model, see [16].

For (u,σ) ∈ V ×W, we define the intermediate mixed projection as the pair (ũh, σ̃h) ∈ Vh×Wh

satisfying

(∇ · (σ − σ̃h), χh) = 0 ∀χh ∈ Vh, (6.3)

((σ − σ̃h),wh) + (u− ũh,∇ ·wh) = 0 ∀wh ∈ Wh. (6.4)
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Then, with (u,σ) = (u,∇u), the following estimates hold [15, Theorem 1.1]:

‖u− ũh‖ ≤ Ch1+ℓ‖Lu‖, ‖σ − σ̃h‖ ≤ Ch‖Lu‖, ℓ = 0, 1. (6.5)

For a given function f ∈ L2(Ω), let (uh,σh) ∈ Vh ×Wh be the unique solution of the mixed
elliptic problem

−(∇ · σh, χh) = (f, χh) ∀χh ∈ Vh, (6.6)

(σh,wh) + (uh,∇ ·wh) = 0 ∀wh ∈ Wh. (6.7)

Then, we define a pair of operators (Th, Sh) : L
2(Ω) → Vh×Wh as Thf = uh and Shf = σh. With

T : L2(Ω) → D(L) being the inverse of the operator L, the following result holds [15, Lemma 1.5].

Lemma 6.1. The operator Th : L2(Ω) → Vh defined by Thf = uh is selfadjoint, positive semidefi-
nite on L2(Ω) and positive definite on Vh. Further, we have

‖Thf − Tf‖ ≤ ch1+ℓ‖f‖, ℓ = 0, 1.

6.1 Semidiscrete scheme

The semidiscrete mixed FE scheme is to seek a pair (uh,σh) : (0, T0] → Vh ×Wh such that

(C∂αt uh, χh)− (∇ · σh, χh) = (f(uh), χh) ∀χh ∈ Vh, (6.8)

(σh,wh) + (uh,∇ ·wh) = 0 ∀wh ∈ Wh, (6.9)

with uh(0) = Phu0. Since Vh and Wh are finite-dimensional, we can eliminate σh in the discrete
level using (6.9) by writing it in terms of uh. Therefore, substituting in (6.8), we obtain a system
of time-fractional ODEs. Existence and uniqueness can be shown using standard results from
fractional ODE theory [34].

For the error analysis, define eu = uh − u and eσ = σh − σ. Then, from (6.1)-(6.2) and
(6.8)-(6.9), eu and eσ satisfy

(C∂αt eu, χh)− (∇ · eσ, χh) = (f(uh)− f(u), χ) ∀χh ∈ Vh, (6.10)

(eσ,wh) + (eu,∇ ·wh) = 0 ∀wh ∈ Wh. (6.11)

Using the projections (ũh, σ̃), we split the errors eu = (uh − ũh) − (ũh − u) =: θ − ρ, and eσ =
(σh − σ̃h)− (σ̃h − σ) =: ξ − ζ. From (6.10)-(6.11), we then obtain

(C∂αt eu, χh)− (∇ · ξ, χh) = (f(uh)− f(u), χ) ∀χh ∈ Vh, (6.12)

(ξ,wh) + (θ,∇ ·wh) = 0 ∀wh ∈ Wh. (6.13)

Next we state our results for the semidiscrete problem.

Theorem 6.1. Let (u,σ) and (uh,σh) be the solutions of (6.1)-(6.2) and (6.8)-(6.9), respectively,
with uh(0) = Phu0. Then, for u0 ∈ D(Lν), ν ∈ [0, 1], the following error estimates hold for t > 0:

‖uh(t)− u(t)‖ ≤ ch1+ℓℓh(ν)t
−α(1−ν), ℓ = 0, 1, (6.14)

and
‖σh(t)− σ(t)‖ ≤ chℓh(ν)t

−α(1−ν), ℓ = 1. (6.15)

Proof. From the definition of the operator Th above, the semidiscrete problem may also be written
as

TCh ∂
α
t uh + uh = Thf(uh), t > 0, uh(0) = Phu0. (6.16)
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Note that Th satisfies the properties in Lemma 6.1 and ThPh = Th. Recalling the definition of the
continuous operator T , see (2.1), the estimate (6.14) follows immediately from Theorem 3.1. Now,
using (6.13) and the standard inverse inequality: ‖∇ · ξ‖ ≤ ch−1‖ξ‖ ∀ξ ∈ Wh, we have

‖ξ‖2 ≤ ‖θ‖ ‖∇ · ξ‖ ≤ ch−1‖θ‖ ‖ξ‖.
Further, ‖θ‖ ≤ ‖eu‖+‖ρ‖ ≤ ch2ℓh(ν)t

−α(1−ν) by (6.5) and (6.14), so that ‖ξ(t)‖ ≤ chℓh(ν)t
−α(1−ν).

Together with ‖ζ(t)‖ ≤ ch‖Lu(t)‖ ≤ cht−α(1−ν)‖u0‖, this shows (6.15).

Remark 6.1. Avoiding the inverse inequality in the estimation of the flux variable σ seems to be
challenging as estimates for the first and second time derivatives of u are not available, even in
the H1(Ω)-norm.

Remark 6.2. The following estimate holds in the stronger L∞(Ω)-norm:

‖uh(t)− u(t)‖L∞(Ω) ≤ ch| lnh|t−α(1−ν), t > 0, ℓ = 1. (6.17)

Indeed, from (6.13), we may get ‖θ(t)‖L∞(Ω) ≤ C| lnh| ‖ξ(t)‖, see [15, Lemma 1.2]. Noting also
that ‖ζ(t)‖ ≤ ch| lnh|‖Lu(t)‖, see [15, Theorem 1.1], we obtain (6.17).

Remark 6.3. For the linear problem with f = 0 and u0 ∈ D(Lν), ν ∈ [1/2, 1], the solution
u(t) ∈ H3(Ω) for t > 0. As a consequence, when ℓ = 1, approximations of order O(h2) are
achieved for both variables u and σ, see [16, Thorem 5.4].

6.2 Fully discrete scheme

The fully mixed FE scheme based on the backward Euler CQ method is to find a pair (Unh ,Σ
n
h) ∈

Vh ×Wh such that for n ≥ 1,

(∂ατ U
n
h , χh)− (∇ · Σnh, χh) = (∂ατ U

0
h , χh) + (f(Unh ), χh) ∀χh ∈ Vh, (6.18)

(Σnh ,wh) + (Unh ,∇ ·wh) = 0 ∀wh ∈ Wh, (6.19)

with U0
h = Phu0. We now prove the following result.

Theorem 6.2. Let (u,σ) be the solution (6.1)-(6.2). Let (Unh ,Σ
n
h) be the solution of (6.18)-(6.19)

with U0
h = Phu0. Then, for u0 ∈ D(Lν), ν ∈ (0, 1], the following error estimate holds for tn > 0:

‖Unh − u(tn)‖ ≤ c(τtαν−1
n + h1+ℓt−α(1−ν)n ), ℓ = 0, 1, (6.20)

where c is independent of h and τ .

Proof. In view of Lemma 6.1, the fully semidiscrete problem is rewritten as

Th∂
α
τ U

n
h + Unh = Th∂

α
τ U

0
h + Thf(U

n
h ), n ≥ 1, U0

h = Phu0. (6.21)

Recalling again the definition of the continuous operator T , the estimate (6.20) follows immediately
from Theorem 4.3.

We conclude this section by showing error estimates for the linear problem with f = 0. The
results are intended to complete the semidiscrete mixed FE error analysis presented in [16].

Theorem 6.3. Let (u,σ) be the solution (6.1)-(6.2) with f = 0. Let (Unh ,Σ
n
h) be the solution of

(6.18)-(6.19) with f = 0 and U0
h = Phu0. Then, for u0 ∈ D(Lν ), ν ∈ [0, 1], the following error

estimate holds for tn > 0:

‖Unh − u(tn)‖ ≤ c(τtαν−1
n + h1+ℓt−α(1−ν)n )‖Lνu0‖, ℓ = 0, 1. (6.22)

Furthermore, in the case ν = 0,

‖Σnh − σ(tn)‖ ≤ c(τt−α/2−1
n + ht−αn )‖u0‖, ℓ = 1, (6.23)

where c is independent of h and τ .
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Proof. The first estimate is given in Theorem 4.1. To derive (6.23), we use (6.8)-(6.9) and (6.18)-
(6.19) so that, with unh = uh(tn) and σnh = σh(tn), we have

(∂ατ (U
n
h − unh), χh)− (∇ · (Σnh − σnh), χh) = −((∂ατ − ∂αt )(u

n
h − u0), χh) ∀χh ∈ Vh,

(Σnh − σnh ,wh) + (Unh − unh,∇ ·wh) = 0 ∀wh ∈ Wh.

Choose χh = Unh − unh and wh = Σnh − σnh so that

‖Σnh − σnh‖2 + (∂ατ (U
n
h − unh), U

n
h − unh) = −((∂ατ − ∂αt )(u

n
h − u0), U

n
h − unh). (6.24)

From (6.16) and (6.21), we see that Unh −unh = G(∂τ )u0−G(∂t)u0, where G(z) = (z−αI+Th)
−1Th.

Hence,

∂ατ (U
n
h − unh) = (∂ατ U

n
h − ∂αt u

n
h)− (∂ατ − ∂αt )u

n
h

= (G̃(∂τ )− G̃(∂t))u0 − (∂ατ − ∂αt )u
n
h,

where G̃(z) = zαG(z). Inserting this result in (6.24), we get

‖Σnh − σnh‖2 + ((G̃(∂τ )− G̃(∂t))u0, U
n
h − unh) = ((∂ατ − ∂αt )u0, U

n
h − unh), (6.25)

and therefore

‖Σnh − σnh‖2 ≤
(
‖(G̃(∂τ )− G̃(∂t))u0‖+ ‖(∂ατ − ∂αt )u0‖

)
‖Unh − unh‖.

Applying Lemma 4.1 (with µ = −α, σ = 1), we obtain ‖(∂ατ − ∂αt )u0‖ ≤ cτt−α−1
n ‖u0‖. Similarly,

‖G̃(z)‖ ≤ c|z|α ∀z ∈ Σθ implies that ‖(G̃(∂ατ ) − G̃(∂αt ))u0‖ ≤ cτt−α−1
n ‖u0‖. The estimate (6.23)

follows now since ‖σh(tn)− σ(tn)‖ ≤ cht−α‖u0‖, see [16]. This completes the proof.

Remark 6.4. For problem (1.1) with Lu = −div[A(x)∇u]+κ(x)u, one may consider an expanded
mixed FE method by setting q = ∇u and σ = Aq, see [33]. Thus, the scalar unknown u, its
gradient and its flux σ are treated explicitly. The new mixed Galerkin method is to find (u,q,σ) :
(0, T0] → V ×W ×W such that

(C∂αt u, χ)− (∇ · σ, χ) + (κu, χ) = (f(u), χ) ∀χ ∈ V,

(q,w) + (u,∇ ·w) = 0 ∀w ∈ W,

(σ,w)− (Aq,w) = 0 ∀w ∈ W,

with u(0) = u0. We define the semidiscrete approximation as the triple (uh,qh,σh) : (0, T0] →
Vh ×Wh ×Wh satisfying

(C∂αt uh, χh)− (∇ · σh, χh) + (κuh, χh) = (f(uh), χh) ∀χh ∈ Vh,

(qh,wh) + (uh,∇ ·wh) = 0 ∀wh ∈ Wh,

(σh,wh)− (Aqh,wh) = 0 ∀wh ∈ Wh,

with uh(0) = Phu0. Then, in order to extend the previous analysis to the expanded mixed FE
method, one may prove a result similar to Lemma 6.1. This can be achieved by using the approxi-
mation properties derived in [33, Theorem 4.8].

7 Numerical Experiments

In this part, we present numerical examples to verify the theoretical results. We consider problem
(1.1) and its mixed form (6.1)-(6.2) in the unit square Ω = (0, 1)2 with L = −∆. We choose
f(u) =

√
1 + u2 and perform numerical tests with the following smooth and nonsmooth initial

data:
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(a) u0(x, y) = xy(1 − x)(1 − y) ∈ Ḣ2(Ω).

(b) u0(x, y) = χD(x, y) ∈ Ḣ1/2−ǫ(Ω), ǫ > 0,

where χD(x, y) denotes the characteristic function of the domain D := {(x, y) ∈ Ω : x2 + y2 ≤ 1}.
Since the error analysis of the standard conforming Galerkin FEM has thoroughly been in-

vestigated, see for instance [10], we shall mainly focus on spatial errors from nonconforming and
mixed FEMs. The backward Euler CQ method is used for the time discretization,

In the computation, we divide the domain Ω into regular right triangles withM equal subinter-
vals of length h = 1/M on each side of the domain. We choose α = 0.5 and the final time T = 0.1.
Since the exact solution is difficult to obtain, we compute a reference solution on a refined mesh
in each case. All the numerical results are obtained using FreeFEM++ [9].

To check the spatial discretization errors, we display in Table 1 the L2(Ω)-norm of the errors in
the discrete solutions in cases (a) and (b), computed by the Crouzeix-Raviart nonconforming FEM
(P1nc) based on the numerical scheme (5.3) and its analogue used with the standard conforming
FEM. From the table, we observe a convergence rate of order O(h2) for smooth and nonsmmoth
initial data, which confirms the theoretical convergence rates. Similar results have been obtained
with different values of α. We notice that the nonconforming method yields slightly better results.

Table 1: L2-errors for cases (a) and (b); P1 and P1nc FEMs.
P1 (Conforming) P1nc (Crouzeix-Raviart)

Problem (a) Problem (b) Problem (a) Problem (b)

M L2-error Rate L2-error Rate L2-error Rate L2-error Rate

8 1.83e-3 1.82e-3 9.26e-4 9.39e-4
16 4.47e-4 1.97 4.64e-4 1.98 2.43e-4 1.93 2.46e-4 1.93
32 1.15e-4 2.02 1.14e-4 2.01 6.15e-5 1.98 6.23e-5 1.99
64 2.73e-5 2.06 2.71e-5 2.05 1.52e-5 2.01 1.54e-5 2.02

For the mixed FEM, we perform the computation using the lowest-order Raviart-Thomas FE
spaces (RT 0, P0) and (RT 1, P1dc), where P0 and P1dc denote the sets of piecewise constant and
linear functions, respectively. Here, we adopt the notation used in FreeFEM++. In our tests, we
include the case α = 1 (i.e., the parabolic case) in order to investigate the effect of the solution
regularity.

The numerical results for problem (a) are given in Table 2. They show a convergence rate of
order O(h) in the case of (RT 0, P0) and of order O(h2) in the case of (RT 1, P1dc) for both values
α = 0.5 and α = 1, which agrees well with the theoretical results.

In Table 3, we present the numerical results for problem (b). The results reveal that the
convergence rates are maintained in the cases of (RT 0, P0) with α = 0.5 and (RT 1, P1dc) with
α = 1, which agrees well with our convergence analysis. By contrast, the convergence rate reduces
to O(h1.7) in the case of (RT 1, P1dc) with α = 0.5. This confirms our prediction that the optimal
O(h2) convergence rate is no longer attainable when the initial data is not smooth. Note that, since
the numerical results do not show a convergence rate of O(h), this may be seen as an unexpected
result. However, as the initial data u0 has some smoothness, u0 is roughly in Ḣ1/2−ǫ(Ω) for some
ǫ > 0, the numerical results do not contradict our theoretical findings. Indeed, the smoothness
of the particular initial data u0 could then have a positive effect on the convergence rate. This
fact has also been observed in the study of a homogeneous linear time-fractional problem with
time-dependent coefficients [17].
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Table 2: L2-errors and convergence rates for case (a); mixed FEMs.
M ‖u− uh‖L2 Rate ‖σ − σh‖L2 Rate

(RT1, P1dc), α = 0.5

8 4.63e-4 3.31e-3
16 1.11e-4 2.05 8.23e-4 1.86
32 2.49e-5 2.16 2.49e-4 1.89
64 6.28e-6 1.99 5.48e-5 1.96

(RT1, P1dc), α = 1

8 4.61e-4 3.32e-3
16 1.10e-4 2.06 9.24e-4 1.86
32 2.47e-5 2.15 2.49e-4 1.90
64 6.24e-6 1.99 6.45e-5 1.96

(RT0, P0), α = 0.5

8 5.41e-3 2.73e-2
16 2.71e-3 1.00 1.40e-2 0.97
32 1.35e-3 1.00 7.04e-3 0.97
64 6.81e-4 1.00 3.52e-3 1.00
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[29] J. A. Nitsche, Über ein Variationsprinzip zur Lösung yon Dirichlet-Problemen bei Verwendung
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