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FAST AND HIGH-ORDER ACCURACY NUMERICAL METHODS
FOR TIME-DEPENDENT NONLOCAL PROBLEMS IN R? *
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Abstract. In this paper, we study the Crank-Nicolson method for temporal dimension and the
piecewise quadratic polynomial collocation method for spatial dimensions of time-dependent non-
local problems. The new theoretical results of such discretization are that the proposed numerical
method is unconditionally stable and its global truncation error is of O (7—2 + h4’”) with 0 < v < 1,
where 7 and h are the discretization sizes in the temporal and spatial dimensions respectively. Also
we develop the conjugate gradient squared method to solving the resulting discretized nonsymmet-
ric and indefinite systems arising from time-dependent nonlocal problems including two-dimensional
cases. By using additive and multiplicative Cauchy kernels in non-local problems, structured coef-
ficient matrix-vector multiplication can be performed efficiently in the conjugate gradient squared
iteration. Numerical examples are given to illustrate our theoretical results and demonstrate that
the computational cost of the proposed method is of O(M log M) operations where M is the number
of collocation points.
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1. Introduction. In this paper, we study an error estimate and develop fast
conjugate gradient squares method of the piecewise quadratic polynomial collocation
(PQQC) for time-dependent nonlocal problems, whose prototype is [11 [4, 14 23]

(6)  wlz,t) + /Q Sz —yl) [u(@,t) —uly, )] dy = f(2,1), (1) € Q2x(0,T].

Here J(z) is a radial probability density with a nonnegative symmetric dispersal
kernel, with nonhomogeneous Dirichlet boundary conditions and initial condition
u(z,0) = wuo(z). There are a lot of scientific phenomena that can be described by
model (x) in various applications, for example, in materials science, biology, particle
systems, image processing, coagulation models, mathematical finance, see [I}, 4] for
detailed discussion. The well-posedness (existence and uniqueness) of the model ()
can be found in the monograph [I, p.46]. We notice that there are many different
choices to prescribe J(z) for nonlocal problems (x), e.g., the constant kernel, fractional
Laplacian kernel or commonly used kernel [11, [10} 14}, 29, [31]
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J(z) ~ s €[-0.5,1).
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In this paper, we mainly focus on the case s € (—0.5,0), the other cases can be
similarly studied. Then the nonlocal model (x) reduces to the following nonlocal
diffusion problem

Qu(w,t)  [* ulz) —uly)
1.1 dy = , 1), ,t) € (a,b) x (0,T], 0<~y<1.
) Hl [y < pen, @€ @h)x 0.7 <y

To seek the numerical solution of time-dependent nonlocal problems, or specif-
ically (ILIl), we employ the piecewise quadratic polynomial collocation method to
approximate the following weakly singular integral

b
I(a,b,x) :/ Mdy, x € (a,b), 0<~vy<1,
a |I - y|'y

in the discretization for non-local problems in (1.1). Note that the local truncation
error with O (h3) convergence was established in [2], where h is the discretization size
in the spatial dimension. The quasi-optimal error estimate with O (h4*’y) convergence
was provided in [I6] or [3] p.125]. By using the techniques of hypersingular integral
[1°7,[18,[80], researchers provided an optimal error O (h477i_7), n; = min{x; —a,b— x;}
for the weakly singular integral [IT]. Numerical methods for the steady-state version
of (1) have been proposed and studied in the literature. For example, the second-
order convergence results are provided in [9, 29] by using the finite element method
with piecewise linear polynomial basis. Recently, numerical results for the steady-
state version of (1) with v = 1 was shown that the convergence rate is close to
1.5 by the PLC method [25]. There is still no theoretical convergence results for the
PLC method. In [II], Chen et al. showed the optimal first order and third-order
convergence rates for the PLC and the PQC methods respectively. To the best of our
knowledge, there is only a few study for time-dependent nonlocal problems. In [13],
Du et al. studied the two-dimensional nonlocal wave equation on unbounded domains
and its numerical solution based on quadrature scheme.

The main aim of this paper is to study the Crank-Nicolson method for temporal
dimension and the piecewise quadratic polynomial collocation method for spatial di-
mensions of time-dependent nonlocal problems in (1.1). The new theoretical results of
such discretization are that the proposed numerical method is unconditionally stable
and its global truncation error is of O (72 + h4_7) with 0 < v < 1, where 7 and h are
the discretization sizes in the temporal and spatial dimensions respectively. Also we
employ the conjugate gradient squared method [22] 24] to solving the resulting dis-
cretized nonsymmetric and indefinite systems arising from time-dependent nonlocal
problems. By using additive and multiplicative Cauchy kernels in non-local problems,
structured coefficient matrix-vector multiplication [7, [19, 20], 28| [6l 15] can be per-
formed efficiently in the conjugate gradient squared iteration. Numerical examples
are given to illustrate our theoretical results and demonstrate that the computational
cost of the proposed method is of O(M log M) operations where M is the number of
collocation points.

The paper is organized as follows. In Section 2, we provide the high-order scheme
with the collocation method for solving nonlocal problems. In Section 3, the super-
convergence rate with the Crank-Nicolson scheme is studied. In Section 4, we develop
conjugate gradient squared method to solving the discretized linear system and dis-
cuss the computational cost and the storage requirement. In Section 5, experimental
results are given to illustrate the effectiveness of the proposed numerical method.
Finally, some concluding remarks are given in Section 6.
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2. Discretization Schemes. In this section, we discuss about the discretization
schemes of the nonlocal problems including two-dimensional cases.

2.1. One-dimensional Discretization. Review the piecewise quadratic poly-
nomial collocation method and apply it to the following steady-state version of (LLT)):

b
u(z) —u(y)
2.1 ———Zdy = , 0<y<1
(2.1) /a o Y f(z) g
Let the mesh points a = zg < Ty <z <o <Tauo < Ty = b be a partition with

the uniform spatial stepsize h = (b — a)/M and 0 = to <t <--- <ty =T with

the time stepsize 7 = T/N. Denote uf as the approximated Value of u(z;,t;) and

k+1/2 . tett
FE = (@i, thg1y2) With 10 = 554

2
Let the piecewise quadratic basis function ¢;(y) or ¢;, 1 (y) be given in [3, p. 499].
Then the piecewise Lagrange quadratic interpolant of u(y) is

M M-—1
uqly) = Y ulw)only) + > u(wiy) by (0):
=0 1=0

According to (2.9) from [I1], we can rewrite (2.]) as follows:

(2.2) /bu()uf(y)dyf(x;)ﬂ%;, 1<i<2M—1,
S P

w1tth =0 (h4 ) andm —mln{xl —a,b—x: }fori: 1,2,---,2M — 1.
Thus the d1scret1zat1on scheme of (22) is given by the following system:

M—1
- E m;—j|Uj — E:q\z i-31-3%;
Jj=1

withi:1,2,---,M—1,and

= fi + (Bivo + Brr—iunr),

l\)l»—‘

M-1

dip1tiyy — E :p\i+%—j\—l“3 E Mijltjrt | = firy + (Yo +ym—ic1um)
; =

with i = 0,1,2, - M — 1.

Here, the coefficients are given in (2.10) of [II]. For simplicity, we set 1, to be
%
me =4nny [(k+ 1277 =(k = 1)° ] =npy(3 =) [(k+1)*77 + 6k> 7 + (k— 1)°>77];
and po = 4ms [(3)"7 = ()77 =m0 [T #3307 for k = 1,
Pk =My, 1. Moreover ng = (2 — P27+ ny = Gy for k > 1, and there exists

and explicitly compute mg = 2(1 + )np ~, for k > 1,

Gk =—80n~ (k+ 1> =K +dnp,(3—7) (k+1)>77"+k*77), k> 0.

The boundary coefficients for 1 <i < M — 1 are given by

Bi = 4np [ 27— —(i— 1)377] — 77;177(3 —) [32'277 + (i — 1)2_V —(2— ’7)7;177} ,
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% =Biyy and yo =7y (2 =) (1 —7)27 7
Using the matrix form of the grid functions

T
U= (ulau25"' ,qul,U%,’LL%,"' 7uM7%)

and similarly for F'. We can rewrite the above discretization scheme as follows:

(2.3) AU = F+ K with A= (231 232) - (J;;‘ ﬁ) —D-g,
where the boundary data K is given by
T
K = (77177727"' 777M—1777%777%7"' 777M—%> Uuo
T
+(77M—1777M—27"'7771777M—%7nM—%7"'777%> Upg-

Moreover, D; = diag (di,da,...,dy-1), D2 = diag (d%,d%,...,deé), and M =

toeplitz (mg, m1,...,mar—2), N = toeplitz (ng,n1,...,ny—1). The rectangular ma-
trices P, Q are defined by

Do D1 P2t DPM-3 DPM-2]
Po Po P1 R - PM-3
P1 Po Do :

P - p2 5
PM—4 Po p1
PM—-3 DPM—4 B P1 Po Po
LPM—2 PM-3 PM-4 - p1 Po 1 arwm-1)
and
[ a0 o @ o qM—4 qM—3 qM—2]
q1 qo0 Qo - B qM—4 qM-3
Q= q'2 q1 q0 : : : QM.—4
q1
qu-3 - - - I ¢
Ldv—2 dm—-3 -0 42 q1 q0 qo | (M—1)xM

Hence, the full discretization of time-dependent non-local problems in (1.1) with
Crank-Nicolson scheme is given by

(2.4) (I+%A)U’“:(I—%A)U’“ Ly rFRY yrKR 3k =1,2,-- N,

with U¥F = (u’f,ug, 7“?\447“27“%

uk
Unr—
error is of O (7’ + ht ( ;)_V> with ni = min

T
) . Note that the local truncation
Ti
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2.2. Two-dimensional Nonlocal Problems with Multiplicative Cauchy
Kernel. As one of the two-dimensional nonlocal problems, we consider the following
nonlocal problem with multiplicative Cauchy kernel:

ulz,y) - u(z,9) )
(2.5) v yhddy_f(wx 0<y<1,

with © = (a,b) x (¢, d). Taking the mesh points a = zp <z <1 <+ < Tamgor <
zy, =band c = yp < Yy <y < -0 < Yamy—1 <ym, = dasa partltlon with
the uniform space stepsize h, = (b — a)/M, in o direction, and h, = (d — ¢)/M,
in y direction, and t; = k7 with the time stepsize 7 = T/N. Denote ufj as the

approximated value of w(z;,y;,tr) and fk+l/2 =f (xi,yj,tk+1/2) with tj41/0 =

%. From [3, p.499], we known that the piecewise quadratic basis function ¢;(z)

or ¢_1 (x) are defined by

x—x—1 22 — (2 + T1-1)

=¢; (x), =€ lri_1,1],

ha he
2.6 ={ m1—z (w1 +a) — 20
( ) gbl(x) l+}1L ( I+1 > l) — ¢l+(x)’ T € [$l7$l+1] ,
0, otherwise

withl=1,2,--- , M, — 1 and

(2.7) b1 (z) = 52 ;o T Efmo, @,

0, otherwise
with [ =1,2,---, M,. The piecewise Lagrange quadratic interpolation of u (Z,7) is
oM, 2M, oM, 2M,

8) ug(@9) =33 6y 5 @D rps) = 3 04 3 o5 (w3.05)

=0 r=0
Hence, for 1 <i <2M, —1,1 < j <2M, — 1, we can rewrite (Z5) as

MH

zs = 2|"y; — g

29) K}u(m;,y%) —uQ (f,g)dfdﬂ—f(x;,yj

where the error estimation R; ; will be proved in Lemma[3.9l Thus the discretization
272
scheme of ([2.9) can be expressed as
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and the boundary data k;

J
’2

MI-'

2My 2My

/ / dy Up,z + ¢M / dy UM,
|‘T% - |yJ - 2 |£L'1 —LL‘|'Y |y] —
2M,—1
S 0(9) Com,(y)
+ dy ui o+ / dy wy . -
=1 |$w —I|’Y / |yj _y|'y Y l ,0 Z |$¢ _I|'y |y% _y|»y Y é,My

For convenience of implementation, we define following grid functions

2

T
U:(MthmMmqthL”ww@l),
(2.10) o

U, = (ui717’ui)2,. sy Ug My —1, U 15U 3, wui)]t{[y—%) ’

withi=1,2,...,M, —1,%,3,--- M, — %, and similarly denote F, K. Then we can

obtain the resulting system of (2.9)
(2.11) AU = F+ K with A=D, Dy, — G, ® Gy,

in which Dy, Dy, Gg, Gy of the same form as the matrix D and G in [23).
Consider the following two-dimensional time-dependent nonlocal problem

du(z,y,1) / u(@, y,t) —uw(@, §,t) ,_
2.12 + - — dzdy = f(z,y,t), (z,y,t) € Qx (0,7T],
( ) o 0 lz—z]y—g] Y (z,y,1), (z,9,1) ( ]

with the nonhomogeneous Dirichlet boundary conditions and the initial condition.
Using the grid functions

k __ k k k k k k

U _(UlvUQa"'aUszlvU%vU%a"'aUMz,% )
k __ k k k k k k

Ui = (ui)l,um,...,ui)A4y_1,ui1%,ui1§,...,uinyil),

with i = 1,2,..., M, %kg M, — % for k = 1,2,---,N. Similarly, we can
define the vectors F k and hen the full discretization of tlrne dependent nonlocal

problems ([212)) is
(2.13) (1+ %A) vt = (1- %A) UL L Y

2.3. Numerical scheme for 2D nonlocal problems with additive Cauchy
kernels. Consider the following two-dimensional steady-state nonlocal problem

u(:v,y)—u(g’c,g) FdG = z
(2.14) ~/Q\/($_x)2+(y_y)27d dy = f(z,y), 0<~vy<Ll

From 28), for 1 <i<2M, —1,1<j <2M, — 1, we can rewrite [2.I4) as

7dg-;dy:f(g;%-,y%) R,

i
2

2
2

(2.15) /Q v (x*y—) —uq (7,9)

V@%—@2+@z—@2
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where the error estimation R; ; will be proved in Lemma [3.121 Then the discretiza-
272
tion scheme of ([2.I5]) can be expressed by

1
/ Vdii'dg Ui j
Q 2732

and boundary data k; ; is
272
Pl o,z (z,7) dzdy Pl Oar,.5 (T,7) dzdg
5 Yo,z + 5 UMy, 5
—0 Q _ 2 _ 2 —0 Q _ 2 _ 2
(131—17) + yj—y) (501_17) +(yl_y)
2 2 2
e -1 b1 o(Z,7) dTdy 2Mg -1 b1 ar (Z,7) dZdy
27 + 277y u
171/9 2 2 20 171/Q 2 2|7 M
T (e a) (v -9) (=) + (v -9)
2

For convenience of implementation, applying the grid functions in (2I0) again, we obtain
the algebraic equation of (214

(2.17) AU =F+K with A=D—G and g:(é\;‘ f/)

Here M, Q, P and N are different from which in ([23). Denote the kernel function §(x; —
v
Y5 — ‘\/:cl—:c (5 — y)z )

(4,4) / / ——————dzdy
Ti— T y]_y)

with ¢ = 1,2,--+ My — 1,5, 23, My — %, j = 1,2,--- My — 1,2, 2. M, — 1. It
should be noted that the coefficients of the variables in (2I6) can not be computed directly,
but it can be verified to have the block-Toeplitz properties by the coefficients expression in
(i), (i), (iii) and (iv) later. And the matrix G consists of four block-structured matrices
with Toeplitz-like blocks, and the block-Toeplitz properties of the M s, —1)x(m,—1) can be
expressed as follows:

the entries of D are

M M2 Miv,—2 Mim,—1
Moy M Mi 2 M, —2
M= Moz M ’
M, —2.1 M2
Mur,—11 Muy—21 - Moz Mia

in the same way, Q (s, —1)xMy» Py x(My—1) and N, xm, are expressed in Appendix A.
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Each block of M numbered with i, =1,2,--- , M, — 1 has the following form

(2.18) M=

s

M M .
with M, ; = M,

P N
Miy Mi >(2My1)x(2My1)

and the entries of Ml [ Ml .5 Ml% and Mivl numbered with j and 7 can be expressed as

o MM(j,r)= C’f;7 forj=1,2,--- My —1,7r=1,2,--- , M, — 1;
o MTy(j,r) =Cyt, forj=242%. M,—% r=1,2-- M, -1
. Ml%(j,r—é):cf';’% for j =1,2,-++ My —1,7=1,2,-+, My;
o./\/lf\fl(j,r—%)ch’; for]—2,3,~~~,My—%,7':1,2,~--,My.

Here the above coefficients can be computed by the following
(i) foril=1,2,--- My —1, r=1,2,--- , M, — 1,

Yr Yr41 [T (b (77
_— -z, yg y) ve o, 0@ —Z,y; — 7))

Yr—1 Jay ( i _:C7y3 _y) Yr z (:Cl — T, Y _y)

(11) fOl"l:l727"'7Mx_17 7':1727"'7My7

l ,r,_ (vb'rf— Tit+1 E (vb’rf— (g) o
/ / d dy + / / —— 2 _dzdy;
0zi —Z,y; — § xl—:cyj—y)

(iii) for 1 =1,2,--+ , My, 7=1,2,--- , M, — 1,

z”,r ur o (@) e pa ¢ 1 (B)N(G)
/ / d:cdy+/ / ——r————dzdy;
Yr—1 J 271 Z,Y; — y) Y Ty_1 5(:Cl —T,Y; — y)

(iv) for I=1,2,--+ My, r=1,2,--- | My,

“1e-1 vr ¢ )b 1(y)
c i / / - —2——2 _dzdy.
Yr—1 J ZCZ—JZ yj_y)

M%(J7T):M%(J+17T+l)v forj:1727"' :My_1:7’:1727"' 7My_1:

Moreover, we have

ML Gy =MD (G + 1,7+ 1), forj=213 .. My —3 r=1,2-- M, 1,

le(]vr_l) M (_]+17’+1) forJ:sz"'7My_177':172:"'7My7

; ; 1 ;
Mﬁ(],”l‘ :Mﬁfl(]+1,7’+§), forjzévgv"'vMy_Qvﬁr*l 2 "'7My7

_5)

where M%, ./\/lf\[l are symmetric Toeplitz matrices, and ./\/ll%7 MZ?Z are rectangular matrices.
Consider the following two-dimensional time-dependent nonlocal problem

Ou(zx,y,t) u(z,y,t) — u(Z, g,t) i — F(x -
(2.19) o +/Q \/(:c—x)2—|—(y—y)2Wd dy = f(z,y,1), (z,y,t) € @ x (0,77,

with the nonhomogeneous Dirichlet boundary conditions and the initial condition.
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By the similar discussion in (2I3]), we have the following Crank-Nicolson scheme
(2.20) (1+24) U* = (1= ZA) U 4 rFh o o riE

We can similarly construct the following 4-step backward differentiation formula (BDF4)

[8] to confirm the superconvergence results with O(M log M) operations, i.e.,
2 _ _ 4 1. x_
(2.21)  BDF4 (%HTA) UP =4Uu 1 =30 + gUk = ZU’“ Y4 P K"

3. Stability and convergence analysis. In first subsection, we study the spectral
properties for nonsymmetric and indefinite matrix with one-dimensional cases, the uncon-
ditionally stability and convergence analysis with Crank-Nicolson scheme are proved in the
remainder subsections.

3.1. Spectral analysis for nonsymmetric and indefinite matrix A in 1D.
LEMMA 3.1. [21, p. 28] A real matriz A of order n is positive definite if and only if its
symmetric part H = # is positive definite. Let H € R™ ™ be symmetric. Then H is
positive definite if and only if the eigenvalues of H are positive.

LEMMA 3.2. [27] Assume A is diagonally dominant by rows. Then ||[A™' || < L with
o = min; (|a“| — Z]‘# |ai’j|) .

LEmMMA 3.3. [11] Let the matrices A, M, N, P, Q be defined by 23). Then M, N,
P, Q are positive matrices. Moreover, the matriz A is strictly diagonally dominant by rows.

LEMMA 3.4. Let the matriz A be defined by [23). Then the diagonal entries of A are
bounded.

Proof. Let diag (A) = (al,ag, S AM-1,01,05, . 7‘1M7%)- From Lemma [3.3] and

2
23), we have

b 1—v 1—v 2(h — 1—~
0<ai <77h,«/d1=/ ! 5 dy = ! [(:ci—a) —l—(b—xi) }Si.
2 2 “ ‘x _y‘ 1—fy ) 2 1—7

3
The proof is completed. O
Let the condition number £, (A) = [|A]], HAial with p=1,2,...00. Then we have

LEMMA 3.5. Let the matriz A be defined by [23). Then the condition number
oo (A) = M| [[A7H]]. = O (V).

Proof. Form (4.1) of [I1], we have

b b SN-1 b b
/| 1 dy - > dn(y)dy:/ bo(z) dy+/ N () dy = o p:

zi —y|” o lmi—yl” lzi —y|” lzi —y|”
2-"1-=7) 1 1 | 1 R _
= 2 M Ry S AR ED N  CE

From the above inequality and Lemma[3.2] it yields ||A*1 ‘ ‘oo < (b—a)?h™!. Combine with
Lemmas [3.3] and [3.4] we obtain

oo (A) = [ Allo [[A47Y]] . < 22291 Z o ().

The proof is completed. O
REMARK 3.1. From Lemmal[3.3 and Theorem 1.21 of [26, p. 23], it yields R (A(A)) > 0
and A nonsingular. However, from Lemma [31 and counter-ezample in Figure 1, it shows
that ’
min (A (H)) <0, max(A(H)) >0 with H = A%A,

i.e., matriz A is a nonsymmetric and indefinite.
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0 12
ke ——1=0.0
¢ X— —#—4=03
o 4 —A— =06
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A ——4=09 10
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=015 g
= Ze
£
£ 02 é
4l
A—a A N
-0.25 ] st
03 3V
0.35 0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
M M

. . . . . T
Fig. 3.1: The minimum and maximum eigenvalues of H = %.

3.2. Stability and convergence analysis for Crank-Nicolson scheme (2.4))
in 1D. For steady-state nonlocal problem of (I.1]), an optimal global convergence estimate
with O (h3) was established in [II]. However, for the time-dependent problems of (1), we
next prove the stability and convergence with the superconvergence results.

THEOREM 3.6. The numerical schemes (24)) is unconditionally stable.

Proof. Let ﬂf/z (i=1,2,...,2M — 1; k = 0,1,..., N) be the approximate solution of

uf/27 which is the exact solution of the difference scheme (24). Putting ef/Q = ﬂf/z - uf/Q7
then using (24]), we obtain the following perturbation equation
T T _
(50 = (- 5y
2 2
k kK k E Kk k T
with € = (617627 T M1, €1, €5, 76M7%) . Upon relabeling and reorienting the vec-
tors €* as
&= (ek v el eh o eh " )T
- %7 1 %7 2, yEM -1, M7% )
then the above equation can be recast as
T T =\ ke
(1+—A)Ek: (1— —A)gk L
2 2
ie.,
- L 2M1 L 2M
k k-1 k-1 k 2M—1
(1+§am) €L=¢€ 3 Z aije; g Z aijeg with A= {aigli =1 -
Jj=1 j=1,5#1
Let e’ﬁ = ||k = max e'ﬁ . From Lemmas and it yields a;; < O
2 H HOO 131‘321\471' §| e B4 it y d ’
2M—1 2(b—a)!
i#.j7a'nd Z |az,]|<a“,0<a“<C %then
J=Lg#i
- 7_ 2M— S 2M1
k k— k—1 k
(1+§%,io) HE Hoo <! +3 Z |@iq.i g |ty > aig,l €1
2 j=1 j=1,j7i0
- M—1 - 2M—1
k-1 RIS T IR
<[5 X 45X et
Jj=1 Jj=1,j#i0
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it implies that

H H 1—|—CT)H k= 1H S(1—|—C’a7')kHEOHOOSexp(TC’a)HEOHOO

oo
The proof is completed. O

THEOREM 3.7. Let u (z;2,tx) be the exact solution of (1) with 0 < v < 1, and ufm
the solution of the numerical scheme (2.4). Then

Hu(xi/zytk)—uf/zH =(’)(7'2—&-h47'Y)7 1=1,2,....,2M - 1; k=0,1,...,N

with N7t <T.
Proof. Denote ef/2 = u(xi/g,tk)—uf/27 1=1,2,...,2M—1; k=0,1,...,N. Subtracting
@3 from ([I) with E° = 0, it yields

(1+24) B" = (1= A) B 47RM 2,

k kK k kK k T k—
with E* = (el JEoy 1,61 ,€E5, " 7€M,;) and similarly for R . The local trunca-
2 2

[N

. -
tion error is Rf 2 =0 <7'2 +hnt (771) ) < Cr (7'2 +h47”), ni = min{xi —a,b—:cl-}
2 2 2 2
in (24) and Cr is a constant.
Upon relabeling and reorienting the vectors E* and RF™% as

FR— ok ok ok ok k k T

=\|€1,€1,€3,€3, ;€M _1,€p; 1 )
2 2 2
1 1

sh-l_ (pke3 ph—3 ok

R 2 <Rl A

2 2

then the above equation can be recast as

(I + %X) EF = (I - %Z) EF ' 4+ 7R 2

ie.,

- LM 2M—1 L B
(1 + —ai,i) eh =2 amelj - Z awe] —|—7'R1 > with A= {a;;}>" .

2 2 3 2 3 3 J

J Lj#i

Let 620 = ||Ek||oo = 19;25%71 2 Using Lemmas B3] and B:4] we get as; < 0, ¢ # 7,

2M—1
and Y. |aij| < @i, 0 <ai; <Cq z(b% Therefore, we have

J=1.j#i
L Ml -
k okl k—1 k -3
(1+ alo;lo) HE H €ig +_ Z |a10»J| € 5 Z |ai0;j| 6% +7 RLUZ
: : i=1,3#i0 >
L 2M oM -
L k—1 Z S k 2
I T S e
Jj=1 Jj=1,j#i0
It leads to
HE'“H (1+7C)||E* Y| +Cr (2 +0* )7
(oo}

k
< (1+TCa)kHEOHOO+C’R (FP+n"7)r (1+7C,)
]

-

ES
|
-
I
<}

< Cr (7’2 + h47'y) ) (1 +7C.)" < CrT exp (TC,) (7'2 + h47'y) )
1

Il
<)

The proof is completed. O
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3.3. Stability and convergence analysis for 2D with multiplicative Cauchy
kernel. First, we provide a local truncation error analysis, which is still lacking in [I1], for
two-dimensional cases with multiplicative Cauchy kernel. Then the stability and convergence
analysis are given.

LEMMA 3.8. Let A =Dy ®@Dy—G.®Gy be given in 2I1). Then A is strictly diagonally
dominant by rows.

Proof. From Lemma B3] we known that D, — G, and Dy — G, are strictly diagonally
dominant by rows, and Gz, G, are positive matrices. Denote D, = {d}}, G = {g{,}, i, =
1,2, ,2M, — 1, ie.,

x x x

. 911 91,2 g1,2M, —1
1

T T x

d3 92,1 92,2 92,2M, 1
Dx = gac =
T
A3, —1 - © ©
9on,—1,1 92My,—1,2 7 92Mup—1,2M,—1

Similarly, we can denote Dy = {d}}, G, = {g7,.}, j,v = 1,2,--+ ,2M, — 1. Then

1 ®Dy
ds @ Dy
D;v@Dy _gz®gy =
dnr,—1 ® Dy
9%,1 Y gy 9%,1 & gy T gszzﬂ & gy
951 @Gy 95,2 ® Gy e 93,20, -1 @ Gy
ggszl,l Y gy ggszl,Z & gy givaszzszl ® gy

and the summation by rows in A can be expressed as {d”dy ?iwl” ! 9i1 Z2My 1 }7

since d > ZZM’FI g, and df > ZzMz ! g5 .- The proof is completed. O
LEMMA 3.9. Let 0 <y < 1 u(x,y) € C° ([a,b] x [¢,d]) and ug(x,y) be defined by ZJ).
Then for any (x%-,yl) € (a,b) x (c,d), there exists
2

UQ (z,y) _ af( \77 4 (= \77 5— 5—
/ / i_x , S dxdy = O(hx(n%) —|—hy(n%) )—|—(9(hx“f+hy w)7
i i

with i :min{:c%—a,b—:c%-}, i :min{yl—c,d—yl}, i=1,2...,2M, — 1, j =
2 2 2
1,2...,2M, —
Proof. Let (z,y) € [:c%,:c%H]x[y%,ygﬂ],l:O,1,2...,2Mz—2,r:0,1,2...,2My—

2. Using Taylor expansion and (28], there exist £, € [$L7$L+1]7 Cz € [y%7y%+1] and
2 2 2
r € [y%7y%+1] such that

u(z,y) —uq (z,y) = u(,y) = ) dus(a

5=0

+Z¢l+s Ju (e ,y) - fja@(y)qusz;s (@) (21gs,y s )

=: FE, + Ey + Eacy7
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where
e (€.9)
o= Y (o) o) e o).
=) ) () -1,
and

_1 %u(sr, ¢
By = (3!;2 ga(tzgy?’Z) (x—x%)(x—x#)(x_xéﬂ) (y—yg)(y—y%)(y—ygﬂ).

Form Theorem 3.7 of [11] and Lemma[3.4] for any (x%7yl) € (a,b)x(c,d),i=1,2...,2M,—
2
1,;7=1,2...,2M, — 1, we have

2My—22M, —2

T
5 2 2 ’
oM, —2
Yi

yl i — T Yi
2 2
d
z/ e |
T l’ ¢
2 2

—0 (h;ﬁ (n%) ﬂ) +O (W) +0 (h‘; (ﬁ%)ﬂ> +O(h57) + 0 (h3h3)

2M, —2

b -
1 Ys+1 By 4+ Fy
~dy +/ ——=dx § / 7ydy
a r=0 Yy

’m'—:c z Yi —Y
2 2

— X

i KA
2 2

with ni = min {:c% —a,b— x%} , i = min {yl —c,d— yl}. The proof is completed. O
2 2 2
THEOREM 3.10. The numerical schemes (2I3) is unconditionally stable.
Proof. Let ﬂ’g ; G=1,2,...,2M, — ;5 = 1,2,...,2M, — 1; k = 0,1,...,N) be the
’2

approximate solutlon of u* ,, which is the exact solution of the difference scheme (ZI3).

2°2
Putting €® ; =3 ; —u* ,, and we denote
2°2 2°2 2°2
k __ k k k k k k . 1 3 1
& = (61',1767;,27"' 767.',My7176i7%76i’%7"' 76i,My7%)7 1= 1727"' 7Mac - 175757"' 7Mac — 3

then using (2.I3)), we obtain the following perturbation equation

(1 34) = (1 3=

T
with e* = (Elf,slg,--- 75§/1x,175’§ ef 7E§/I 1) . Upon relabeling and reorienting the
3’35 L)
vectors € as
&= (& 2, )
- %7 1 %7 25" yEMyp—1> ]Wz*% )
where
& ko k kK k k . 1.3 1
g = |€ 1,6 1,6 3,€ 2, € pp—1,E; 1 1=1,=,2,=,- My —1, M. =
7 (2757 1,19 i,57 1,29 s €4, My —1» Z,My7§)7 727 727 ) x ) x 27

then the above equation can be recast as

(JJF;I)E’c = (1— gﬂ)g’“” with A =D, @ Dy — Ga ® Gy,
where 51 = {df}7 gz = {g;v,l}v il =1,2,...,2M, — 1, 5@/ = {d;l}, gy = {gg,r}vjvr =
1,2,...,2M, — 1, i.e.,

sz,leyfl 2MI 12My—1

T )\ k k T g\ k— 1 k—1
(r3ad) =5 X 3 shuald 5 =(1- ga) heg 30 3 sl

(S5
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Let

€

;|- From Lemmas [3.3] and B4} it yields 0 < did} <

J
2

’

| = 1Ml = max e
2072 0 wji 1z

O, = A=)tV (d—c)t 7
d (1-)?

T k
(1 g, ) |||

, using Theorem and Lemma [3.8] we have

2My—12My—1 2Mp—12My—1
k—1 T x y | k—1 T z k—1 T z  y k
< |€ig g0 | T 5% |€ig 10| T3 D D Gieibr |6, T3 > D G |
272 272 22 272
=1 =1 =1 =1
2My—12My—1 2M, —12My—1
k—1 T T gy T Y k—1 T T Y k
e I A WD S 8 ol | S WD S ST | L
oo oo oo
=1 r=1 =1 r=1

which leads to
4] < rea [ < @ rca® 19, < e (e[,

The proof is completed. O

THEOREM 3.11. Let u (m%7yl7tk) be the ezact solution of (212) with 0 < v < 1, and
2

i the solution of the numerical scheme (213). Then

k
Wi 5
272

=0 (r*+hy 7 +hy77),

k
U\Ti,Yji,te) — Ui j
2 2 272

withi=1,2,...,2M, -1;7=1,2,...,2My —1; k=0,1,...,N and N7 <T.

k _ i X k
Proof. Denote e ; =u :cl,yi,tk) —u; ;,and
2°2 2 2 22
k _ k k k k k k s 1 3 1
Ei - (ei,lyei,27"' 761',]\11,71761"%76,‘,%7"' 761"My,%)7 1= 1727"' 7Mz_17§7§7"' 7M;v_§

Subtracting @I3) from (@I2) with E° = 0, a zero vector, it yields
(1 + %A) EF = (I - %A) E¥ ' 4 rRF 3,

T
with EF = (EfEé Ehp, 1, B B, ,E;;F%) and similarly for R*~%. Here the
_1 - ~\7
local truncation error is RIZ ;= O<72 +h* (771) +ht (771) ) <Cr (72—|—hﬁ7” + h‘;*”),
bEp) 2 2
with ni = min {x% —a,b— x%} ,7; = min {yl —¢,d—y; ¢ in (ZI3) and Cr is a constant.
2 2 2
Upon relabeling and reorienting the vectors E* and RF=% as E* and R~ % as in Theorem
[B.10] again, then the above equation can be recast as

([+ gﬂ) EF = (I— gﬁ) E‘k71+7fik7%, with A =D, ®5y _§z®§yy

where D, = {d*}, G, = {1}, il =1,2,...,2M, — 1, D, = {d?}, Gy = {g;-”r}, J,r =
1,2,...,2M, — 1, ie.,

<

p—12My—1
Taag)ek T z Yk
=

2My—12My—1

T .z gy k—1 T z y k-1 k=3

_ (1 - 2di dj) ity Do D ghglel HTR, 2.
3 ot 2 202

I
3
=1
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Let . Using Lemmas B3] and B4l we get 0 < d;d; < Cq :=

= HEkH = max
i,j

%, combine with Theorem [3.7] and Lemma [3.8] we have

2M—12My—1

T gy k krf T Yy k—1 I —1
(1+ganas,) [|BY| < R R R Z Z Giot%5o.r €] 5
2MI 12My—1 o 1
k -3
+3 2 2 il |47 | Ry
T=
2M,—12My—1 1
k-1 T k R 2
g(1+rod)HE H t3 D ng,zgmr E H +7 Ry 5 |
oo 2072
1=1

which leads to

HE H (1+7Ca) HE’“ 1” +Cr(T?+hy 7 +hy )T
k

< A+7C)"||E°||  +Cr (72 +hy Y+ hy ) 7Y (14 7Ca)
i

|
i

Il
<)

e
s

SCr(T+hy "+ hy ") 7Y (14 7Ca)" < CrTexp(TCq) (17 +hy " +hy 7).
1

Il
=3

The proof is completed. O

3.4. Stability and convergence analysis for 2D with additive Cauchy
kernels. It should be noted that the stiffness matrix (2II) with multiplicative Cauchy
kernels can be computed explicitly, but it is not for additive Cauchy kernels.

LEMMA 3.12. Let 0 < v < 1, u(z,y) € C®([a,b] X [c,d]) and ug(z,y) be defined by
@3). Then for any (x%7yl-) € (a,b) x (¢,d), there exists
2

) T+ (1) )0 02,

r\&
T~
o
—
S
=
|
I3
Q
wis, }?
<
=
ISH
8
QU
<
|
S
/N
>
RIS
/\
l\)|s

with ni = min{x% —a7b—ac%-}7 n
1,2...,2M, -1
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Proof. According to ([B3), Lemma [3:4] and Theorem 3.7 in [11], for any (:c%-7yl-) €
2
(a,b) x (¢,d),i=1,2...,2M, — 1,5 =1,2...,2M, — 1, we have

// W DTN

i — )+ (Y2 —y)°

2M gy —2

> [
2

IN

y]/2 y
Tij2— x

b 1 2My — +1 l?y + l;xy
+ / ~da Z / L dy

a T;/9—w 2 1 % |y]/2 _y|

(?Jj/ry) +

—0 (h‘; (n%)ﬂ) +O (W) +0 <h§ (@)77) + O (h37) + 0 (hShD)

with ni = min {:c% —a,b— x%} , i = min {yl —c,d— yl}. The proof is completed. O
2 2 2
THEOREM 3.13. The numerical schemes (220)) is unconditionally stable.
Proof. Let @% ;, (i =1,2...,2M, —1;j = 1,2...,2M, — 1; k = 0,1,...,N) be the

202

, which is the exact solution of the difference scheme (220).

approximate solution of u'i F
2'2
Putting 51‘ J :ﬂ]z J —ukl- ;,» and we denote
272 272 22
k_ [k k k k k K . 13 1
&, = (ei,176i,27"' 7671,My7176i7%767;’%7"' 767;’My7%)7 1= 1727"' 7Mac _175757”' 7Mx -2

then using (2:20]), we obtain the following perturbation equation
T E _ T k—1
(1+24)" = (1-Z4)c

T
with ¥ = (Elf,slg, e ,sﬂm,l,eﬁ,e{i o, ER 1) . Upon relabeling and reorienting the
3% ©=3

vectors e as
&= (2,888, &, )
- %7 1 %7 25 sEMyp—1> A{z*% )
where
~k k k k k k k P | 3 1
gy — (Ei,%76i;176i,%76i,27"' 761‘,1V1y*176i,]\ly7%)’ 1= 5,175727-.- ,Mz —1,M;p — 3

then the above equation can be recast as
T T\ =% T 7\ k-1 : i__ 7~
(I+§A)e :(1—544)5 , with A=D -,

whereﬁ:{di,j}7§:{gf:;}7i7l:1727...72Mx—1;j7r:1727...72My—17 ie.,

k T Lr k Ty N k-1 T Lr k—1
(1+54s) 4y -3 > oty = (1-540) 41 +3 9us€h g
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Let [, ;| = HEkH = max |¢® ,|. Since
iy iy | 203
b pd
[ 1 sasar= [ [ T
a Je —\2 z Yjj2—Y
V(@2 =2+ (w2~ 9)° yjj y) +1‘ &
J
b pd 1
S/ / ——dzdy < Cy,
a c |yj/2 _y|"/
with 0< d;,; < Cyq = z(bfa()l(%;)cw. From (26) and (27), we have
2My—12My—1
Z Z Yig.jo
=1 r=1
ZZ / / (1671 + 161 4 + |¢;+1|) (681 +10ray| +lornl)
ray
yr ‘\/ z/z—fl? (y]/z—y)
2My —12My - Ti41 [ Yr+l
[ 1 o
SDIDY / / 2
= Ve e 9)
1
<9// ~dzdy < 9Cy.
N2
Ve s
Therefore
T k
(1 5 |4
- QMI 12My—1 QMI 12My—
k—1 k— -1 , k
< EZTO’Q +2d1030 6%0770 +_ Z TE: Yig.do %g +_ Z TE: Gig.jo 6%»%
. 2M2712My 2M2712My71
k—1
< (1 Gdioo) |||+ Z Z iy ol |||+ Z 2 [0 SN
<[l smcal +5TC«1HE’“H
which leads to
k 1+ STOd k—1 1+ 5Tcd 0 IOTOd 0
Sl <15 e L S H e 1]l
e} 1—57'Cd 1—57'Cd 1—57’Cd
with 0 <7< 710 = . The proof is completed. O

THEOREM 3.14. Let u (1:%-7y17tk) be the ezact solution of (219) with 0 < v < 1, and
2

u the solution of the numerical scheme (2.20). Then

k
i
2

'S

)

=0 (" +hy " +hy7),

withi=1,2,...,2M, - 1;7=1,2,...,2My —1; k=0,1,...,N and N7 <T.

v
S
P
U
o]
=}
Q
=
@
Q

s &

k _ k k k k k s 1 3 1
Ei - (ei,lyei,27"' ez]\lyflvel_ ezygy"' 761"My,1)7 Z*1727"' 7Mz_172727"' 7M;v_§
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Subtracting ([2.20) from (ZI9) with E° =0, a zero vector, it yields
T k T k—1 k-1
(I+§A)E :(I—aA)E +rRFS
T
with E* = (Ef,Eé“, e ,Eﬁlz,l,E’i,ES,--- ,EL 71) and similarly for RF=2. The local
2 2 )
_1 - _
truncation error is Rlz =0 (7'2 + ht (n%) ! +h* (771) W) < Cr(T?+hy "+ hy ),
33 2

Withn% :min{:c% —a,b—x%},ﬁ% :min{y% —c,d—y% in (2:20)) and Ck is a constant.

Upon relabeling and reorienting the vectors E* and RF=% as E* and R~ % as in Theorem
313l again, then the above equation can be recast as

(]+%ﬂ) EF = (I—%X) Ek71+71§k7%, with 4125—57

where D = {d; ;},G = {gm} il=1,2,....2M, —1; j,r =1,2,...,2M, — 1, i.e.,

L r
=1 =1 22 ’
Let [€f, o | == ||E"||oc = max |} ;| with 0< d;; < Cq in Theorem B3l Then we have
302 303
S 2Ma 1 2My
ok k—1 -1
(1+ dio»jo) [1E"||oo €ig 70 + dlo,Jo €ig g +§ 2 : z : glo»]o i r
2 2 27’2 2’2
=1 r=1
2Myp—12My—1 .
T I,r k k—3
+ 2 Jig,o €L,z +7 Rio Jo
=1 r=1 2 22

2M,—12My—1

k— T k—1 T
SIE* oo+ el B oo 5 30 32 12l
=

2M,—12My—1

% Z Z glo»]o |Ek||°°+7— R;

which leads to

1]

IN

1+57Cy k—1 H 2 4— 4—
(1—5Tcd>HE o FOR(TH T )

k-1

1+570,\" N N 145705\
(m) 1B[| o + Cr (7* + B2 + by ”)T;(m>

IN

k—1 k
_ _ 1+57Cy
< 2 h4 v h4 ¥
_CR(T + x + y )T; 71_57_061
107TCy

< CrT exp (m

) n ),

with 0 <7 <710 = ﬁ. The proof is completed. O
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4. Fast Conjugate Gradient Squared for nonsymmetric and indefinite
linear systems. In this section, we develop fast Conjugate Gradient Squared algorithm
to solve the resulting nonsymmetric and indefinite linear systems including rectangular ma-
trices.

4.1. The operation count and storage requirement. To the best of our
knowledge, most of the early works on fast Toeplitz solvers were focused on squared matrices
by Fast fourier transform (FFT) |5 [6]. Based on the idea of [5l [12] [0} 20| 28], we develop a
fast algorithm for the rectangular matrices P and Q, which realizes the computational count
O(M log M) and the required storage O(M). Let

to t1 to trv—2
t_1 to t1
Tvr=1 ¢, t4 ¢t ta
t1
| t2—m t_o t-1 to |

Then, for any (M — 1)-by-1 vector x, the multiplication Ths—1x can also be computed by
FFTs with the computational count O(M log M) [5, p.12]. More concretely, we take a
2 (M — 1)-by-2 (M — 1) circulant matrix with Th/—1 embedded inside as follows:

J=[ "]

Therefore, we can develop this idea to compute the rectangular matrices Ppsx(a—1) and
Q(m-1)xm- More precisely, we first embed Py -1y of (Z3) into a M-by-M Toeplitz
matrix, i.e,

Thi-1 *

[ po p1 D2 PM-3 PM-—2 0
Po Po Y4 PM—-3 PM-2
p1 Po Po PM-3
P = Do
Pr—4 Po p1 D2
PM-3 PM-4 P Po Ppo p1
|PM—2 PM—-3 PM—-4 ' P1 Po PO | s

Then the multiplication PX can also be computed by FFTs with the computational count

O(Mlog M), i.e.,

*

P

* N

Hﬁ]:{i

Px

-

Px
I
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On the other hand, we embed Q(n;—1)x ar of (Z3) into the following M-by-M Toeplitz matrix,

[ qo0 qo0 q1 vt gqM—-4 qM-3 QMf2-
Q1 qo q0 - . qM—4  qM-3
q2 q1 qo o qMea
Q= @
qrr—3 qo qo q1
qr—2  qrm-3 E G2 q1 qo qo
| O qM-2  qM-3 - q2 q O 1 e

Hence the multiplication OX can also be computed by FFTs with the computational count

O(M log M),
[f 5“§]:{%§] and @i:[gf‘] with 1€ R.

Then, for the matrix A4 of ([Z3]), we only need to store 4M parameters, instead of the full
matrix A which has 4M? parameters, i.e., the required storage O(M). From fast Conjugate
Gradient Squared Algorithm [[lwithin finite iterations, see [22]24], we have the computational
count O(M log M). See Algorithm [Min Appendix B. Two-dimensional cases can be similarly
studied.

4.2. Fast CGS for nonsymmetric indefinite linear systems with rect-

angular matrices in 1D. Let U = [ ;L)U } with w = (u1,u2,---,un—1)", and v =

T Fy .
(u%7u%7--- 7qu%) ; and similarly for F + K = [ r ] Then we can rewrite (23) as

the following general linear system

w Fy
Avl=le ]
and employ the following fast Conjugate Gradient Squared Algorithm [l to solve the steady-

state nonlocal problems (2:3]); and Algorithms[Ii2lin Appendix B to solve the time-dependent
nonlocal problems (24).

4.3. Fast CGS for 2D nonlocal problems with multiplicative Cauchy
kernel . From (2I0), we have the grid functions

2
(4.1)
Ui = (ui717ui727 '7ui,My*17u'L'7%7ui’%7 7“17My7%) )
with¢=1,2,..., My — 1, %, %, S My — %, then denote the matrix

T T T T T T
Unriat = (Ul 7U27"' 7UMm717U%7U%7"' ’U]Ww*%)'

Thus we first employ the fast Fourier transform transform Algorithm Bl to compute the AU
with A = D, ®Dy — G- ®G, in (2I1)). Based on Algorithm[3] we use Algorithm [ to solve the
steady-state nonlocal problems (ZI1]) and Algorithm [2]to solve the time-dependent nonlocal
problems (ZI3). See Algorithm in Appendix B.
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4.4. Fast CGS for 2D nonlocal problems with additive Cauchy kernel
nonlocal. From 2I7), we have G = ( '/7\;1 .%/ ), and each block of M with 4,1 =
1,2,--+ , Mz — 1 in the form of

R
il = )
ME MY
see (ZI7) and ZI8). Similarly, we have Q,;, Pi; and N;; with different i, [, i.e.,
Qiy, fori=1,2,--+ My—1,1=2%,3 .- M, -1,
Pig, fori=22 . M, —211=1,2,--- M, —1,

S 1
Ny, for i = 5

[N

7"'7Mx_%7l:%7%7"'7Mx_l-
Let U in @) denote as U = [Ur, Ug]” with

U = (Uy, Uz, ,Unt,—1) and Ug = (U

Lol
]
Njw
I
S
A
[N
—

Then

PUL + NUE

Based on the block-Toeplitz-Toeplitz-block-like structural properties of M, @, P and N, we
design fast algorithms for computing MUY as an example.

< MUT + QUE >
GU = .

First, to simplify the notation, let
M M Tm To
/\/li,l = P N = )

Mi,l Mi,l TP Tj\[
where T and T are squared Toeplitz matrix with the size of (M, — 1) x (M, — 1) and M, x
M, respectively, To with the size of (M, — 1) x My and Tp with the size of M, x (M, — 1)
are rectangular ones. Then embed T\, To and T’p into My-by-M, squared Toeplitz matrices
and still denote T'h, To and T». Next we embed the above four M,-by-M, Toeplitz matrices

into a big circulant matrix, that is, construct a big circulant matrix ’Rﬁ with Tsm, To, Tp
and Tnr as follows:

Si Tm Sy To Ss3 Tp Si Ty Ss
Ss S1 Tm Sa To Ss Tp Si Ty
Tv S5 S1 Twm S» To S3 Tp Sy
Sy Tn S5 Si Tm S2 To Sz Tp
(4.2) RM=| Tp Si Tn S5 Si Twm S2 To S; |,
Ss Tp Si Ty S5 S1 Twm S» To
To S3 Tp Sa Tn S5 S1 Tm S
So To Ss Tp Si Tnv S5 Si Ta
Tm Sy To S Tp Si Ty S5 S
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where S1 with the size of My x M, is squared Toeplitz matrix, which can be constructed by
the partial entries of the first column of Th4 and 0 denotes the number zero, i.e.

0 TM(My71) TM(My — 171) TM(371) TM(27 1)
Tm(2,1) 0 T (M, 1) Y Y Tam(3,1)
Tam(3,1) Trm(2,1) 0
S1=
TM(MH - 17 1)
Tam(My, —1,1) . . . 0 Tam(My, 1)

and S2 with the size of M, x M, can be constructed by the partial entries of the last column
of T'ry and the first column of Tg, for S2 is between Thq and Tg in R{-‘”ﬂ and 0 denotes the
number zero, i.e.,

0 TQ(My71) TQ(371) TQ(271)
Tam(1, My) 0 To(M,,1) - To(3,1)
Tam(2, My) Tam(1, My) 0 - - :
So = ,
Tpa(My—2, My) 0 To(My,1)
TM(My_LMy) TM(My_27My) TM(LMy) 0

and similarly, we can denote the My-by-M, Toeplitz matrices S3, S4 and S5 as S2, for they
are between To, T'p and Txs. Since R{-Y} is the Toeplitz matrix with the size of 9M, x IM,,
that means the vector U; (I = 1,2,---, M, — 1) in U are also regularly expanded into a
vector with the length of 9M,.

Then we can construct circulant matrices for each block of M, and denote R% as the
resulting circulant matrix of M;,;. Thus, from M in (ZI7), by replacing M;,; with R, we
have the following block-Toeplitz-circulant-block (BTCB) matrix [6 [I5]

RM RS RS o R

Ra=1 R} RS R . R
Ri%

Rih, 1 - R R% RM

Similarly, we can obtain the BTCB matrix Rg, Rp and Ry from Q, P and A in (2I7). The
matrix Ry can also be embedded into a BCCB matrix Caq with the size of 18 My, (M, — 1) x
18 My (My — 1) as follows:
Rm Rm
CM = —— )
Rm Rm
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where M M M
0 Rim,—1 Rin,—2 Ria
M M
Rl,szl 0 Rl,szl
1,M;—2 1,Mg;—1 . 1,My;—2
M
Rin,—1
M M M
R’z Rim,—2 Rim,—1 0

with O denotes the 9M,-by-9M, zero matrix. Let ¢ be the first column vector of the matrix
Cnm. Let Fyar, —1) ® Fon, be the two-dimensional discrete Fourier transform matrix. Then
the matrix Caq has the following diagonalization

Cat = (Faqas,—1) ® Forr,) ™ diag ((Faqar, —1) ® Foa, ) €) (Faar, —1) ® Foag, ) -

That means we can compute MUZ by two-dimensional FFT, i.e., computing with the order
fft2 and ifft2 by MATLAB. The algorithm also can be used to compute QUZ, PUZ and NUZ
fast and efficiently. Based on algorithm above, we use Algorithm [l to solve the steady-state
nonlocal problems ([2I7]) and Algorithm Bl to solve the time-dependent nonlocal problems
220

REMARK 4.1. To compute two-dimensional matriz-vector multiplication (G @ Gy) U
with multiplicative Cauchy kernel, by Algorithm [3, we can reduce the computational com-
plexity O (MzMylog Mo My) to O (MyM, (log M, + log My)). Moreover, for block-Toeplitz
Toeplitz-block-like algebraic system in (2.IT), it only needs O (Mz M, log M. M,).

5. Numerical results. In this section, we numerically verify the above theoretical
results including convergence rates and numerical stability. And the lo norm is used to
measure the numerical errors.

5.1. Numerical results for 1D. Consider one-dimensional time-dependent non-
local problem of (L)) with a finite domain 0 = a < < b =1 and ¢ € (0,1]. The source
function is easy to explicitly compute.

Table 5.1: FCGS to solve Crank-Nicolson scheme in (Z4)) with 7 = h = (b — a)/M. The exact
solution is u(z,t) = e! (z2(b — 2)% + e~2)

v=0.2 v=0.5 7=08
Error Rate CPU Iter Error Rate CPU  Iter Error Rate CPU  Iter
27 1.1223e-06 0.3812s 3 1.1728e-06 0.3610s 1.2235e-06 0.4051s 4
28 2.7995e-07 2.0033 0.8702s 3 | 2.9229e-07 2.0045 0.8240s 3.0432e-07  2.0074 0.8218s 3
29 6.9907e-08 2.0017 2.1701s 3 | 7.2958e-08 2.0023 2.1487s 7.5887e-08 2.0037 2.1628s 3
210 1.7467¢-08 2.0008 4.4068s 2 1.8225e-08 2.0012 5.0112s 1.8964e-08 2.0006 5.0554s 3

@

wW W w w

Table 5.2: FCGS to solve BDF4 scheme in (Z2I) with 7 = h = (b — a)/M. The exact solution is
u(z,t) = et (22(b— )% +e72)

v =02 v =05 v =08
Error Rate CPU  Iter Error Rate CPU  TIter Error Rate CPU It
2% 6.9518¢-08 0.1657s 3 | 1.2045e-07 0.1723 4 | 2.3806e-07 0.1875s
26 4.9176e-09 3.8214 0.3678s 3 | 1.0789e-08 3.5232 0.3752 3 | 2.6632e-08 3.1601 0.3767s
27 3.4026e-10 3.8533 0.9078s 3 | 9.2911e-10 3.5376 0.8966 3 | 2.8910e-09 3.2035 0.9260s
28 2.3611e-11 3.8491 2.2222s 3 7.9967e-11 3.5384 2.2995 3 3.0890e-10  3.2263  2.2558s

@

T

NN

Tables 5.1l and show that Crank-Niclson scheme in (24) has the global convergence
rate O (7% + h*~7) and the computational cost is of O (M log(M)) operations.
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5.2. Numerical results for 2D with multiplicative Cauchy kernel. Con-
sider two-dimensional nonlocal problem (2I2]) with a finite domain 0 = a < z,y < b = 2
and t € (0,2]. The source function is easy to explicitly compute.

Table 5.3: FCGS to solve Crank-Nicolson scheme in 2I3) with 7 = hy = (b — a)/Mz, My = M.

2,2

The exact solution is u(z,y,t) = e! (z2(b — z)2y?(b — y)? — sin(1))
M v=0.2 v=05 v=08
’ Error Rate CPU Iter Error Rate CPU Iter Error Rate CPU Tter
2 2.1016e-02 0.1530s 8 2.1562e-02 0.2281s 12 | 2.2528e-02 0.2887s 17
24 5.5269e-03 1.9269  0.5458s 7 5.6003e-03  1.9449  0.7042s 9 5.7243e-03 1.9765 1.3012s 15
2°  1.3985e-03 1.9826  2.4249s 6 1.4106e-03 1.9892  2.9071s 7 1.4242e-03  2.0069  3.9693s 12
26 3.5060e-04 1.9959 11.4087s 5 3.5334e-04 1.9971 13.0410s 6 3.5620e-04 1.9994 17.6337s 9

Table 5.4: FCGS to solve BDF4 scheme in (ZZI) with 7 = hy
solution is u(z,y,t) = e® (22(b — z)%y%(b — y)? — sin(1))

= (b—a)/Mz, My = M. The exact

M v=02 v=0.5 v=0.8

’ Error Rate CPU Iter Error Rate CPU Iter Error Rate CPU Iter
23 3.0818e-03 0.3900s 6 | 2.6856e-03 0.4190s 8 | 2.9844e-03 0.5832s 12
21 2.8489e-04 3.4353  1.4615s 5 | 2.7296e-04 3.2985 1.5581s 6 | 2.1386e-04 3.8027 2.1692s 11
25 2.1244e-05 3.7453  6.7009s 5 | 2.2197e-05 3.6203  6.6590s 5 | 2.0220e-05 3.4028 8.8939s 9
20 1.4568¢-06 3.8662 32.1854s 4 | 1.6769e-06 3.7526 32.9718s 5 1.9644e-06 3.3636 38.4941 6

Tables [5.3] and 5.4 show that Crank-Niclson scheme in (2.13)) has the global convergence
rate O (7° + h; 7 + hy ") and the computational complexity is O (M, M, (log M, + log My)).

5.3. Numerical results for 2D with additive Cauchy kernel. Consider 2D
time-dependent nonlocal problem (2.19) with a finite domain 0 = a < z,y < b = 1. The
source function is computed by Gauss quadrature.

Table 5.5: FCGS to solve Crank-Nicolson scheme in (220) with 7 = 1/1000 and h; = (b — a)/Mo,
My = My The exact solution is u(z,y,t) = et (e(2*+49) (sin(2z) + cos(4y)) + 1)

M v=0.2 v=05 v=08

’ Error Rate CPU Iter Error Rate CPU Iter Error Rate CPU Tter
21 1.0639e-01 0.3172s 3 1.6147e-01 0.3241s 3 2.5036e-01 0.3181s 3
22 7.7522e-03 3.7786  1.9283s 3 | 1.3699e-02 3.5592  1.9610s 3 | 2.4766e-02 3.3376  2.0489s 3
23 5.5544e-04 3.8029  9.6247s 3 | 1.1571e-03  3.5654  9.8243s 3 | 2.4233e-03 3.3533 10.2416s 3
24 3.8127e-05 3.8648 45.3002s 3 | 9.4740e-05 3.6104 45.1551s 3 | 2.3380e-04 3.3737 45.6625s 3

Table 5.6: FCGS to solve Crank-Nicolson scheme in Z20) with 7 = hy = (b — a)/Mz, My = M.
The exact solution is u(z, y,t) = e* (z? — 23 + 22 + 1) (y* — 293 + y2 + 1)

M v=0.2 v=0.5 v=0.8

’ Error Rate CPU Iter Error Rate CPU Iter Error Rate CPU Iter
23 3.7979e-03 0.1996s 4 | 4.0249e-03 0.2377s 5 | 4.3137e-03 0.2669s 6
24 9.7724e-04 19584  0.9261s 4 | 1.0274e-03  1.9699  0.7341s 4 | 1.0901e-03 1.9845 1.0143s 5
25 24792¢-04 1.9788  3.6859s 4 | 2.5942e-04 1.9857  3.8594s 4 ] 2.7337e-04 19955 3.8412s 4
20 6.2440e-05 1.9893 12.8309s 3 | 6.5160e-05 1.9932 16.1971s 4 | 6.8373e-05 1.9993 16.0575 4

Tables and show that Crank-Niclson scheme in (220 has the global convergence
rate O (7° + h; 7 + hy~7) and the computational cost is almost O (MM, log(M,Ms)).

6. Conclusion. In this work, the nonsymmetric indefinite systems including rect-
angular matrices are arising from two-dimensional time-dependent nonlocal problems. For
one-dimensional steady state nonlocal problems of (LJ), a sharp error estimates has been
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proved in [I1], but it is not easy to be extended to multidimensional cases. This paper pro-
vides rigorous theoretical analysis for two-dimensional steady state nonlocal problems with
multiplicative Cauchy kernel and a few technical analysis for additive Cauchy kernel. More-
over, it reveals the supconvergence results for time-dependent nonlocal problems of (L]
including two-dimensional cases. In further, we develop the FCGS to solve the two different
algebraic systems: Kronecker product and block-Toeplitz Toeplitz-block-like algebraic sys-
tem. We remark that the error estimates in [I3] and [25] can be obtained by following the
idea given in this paper.

Appendix A. The matrix G in (2I7) consists of four block-structured matrices with
Toeplitz-like blocks. Here the block-Toeplitz properties of Qar, —1)xar,s Py x (M, —1) and
N, xm, are expressed following:

Q1,% Q1,g Q1,g Q1,g Ql,Mrg Q1,Mm7%
Qz,% Ql,% Ql,% Ql,g QLMI—%
Qg’% QQ’% Ql,% Ql,%
Q: )
Ql,%
QMm72,% Q1,g Q1,g
QMm—l,% Q]vjm—Q,% Q1 Q1 Ql»% Ql»% (Mg —1)x My
and
P%,l 7)%,2 7)%,3 ,P%,Mm—Q P%,szl
P P P P
b2
Psa Psa Pra
P = P P P P ;
77%’2
PMm—%,l Pg,1 P%,l
Pra—ta Paa-ga Pri o Pia Pia ) snon-n
and
N1 Nias Nis Niaa
272 272 272 27T
Ns 1 Nii Nis
22 272 272
N = Ns 1 Nz1i Nii Nis
272 272 272 272
N1 3
2’2
NM 11 ./\/§ 1 ./\/; 1 ./\/‘l 1
T2 272 22 ’2 Mg X My

It should be noted that the above matrices Q and P have the similar structure properties

with Q and P in (2.3).
Appendix B.
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Algorithm 1 Fast Conjugate Gradient Squared for (23]

1:

2:
3:

=

10:
11:
12:

13:

) Fv —P DQ - N v

% _ 0. — .0 s . 0.
T =1y; Set Py 1= 2y =Ty, Do 1= 2y =Ty

0
Residual[:g’}z[Fw]—[Dl_M -9 }[w};wzo,v:

* 0

T = Tos

‘While residual>tolerance & j < maxit do:

pr _ Dl - M _Q DPw

Apv _,P D2 _N Do

(i) resra])
= Tpwi Ap g
Guw = 2w — CADw, Qv = 2y — A AD,
w=w+a(zw+quw), v=0+a(zy+q)

: it Dy-M -Q 2w + Gu

Residual { ritl } o [ rl ] B { -P Dy - N 2y +

g = (it i)

([rtiri)slrsirsl)
zw =13+ Bau, 2o = 1T + Bay
Pw = zw + B (quw + Bpw)s Pv = 2v + B (¢ + Bpv)
Endwhile

Return w, v

Algorithm 2 Fast Conjugate Gradient Squared for time-dependent problems

t:=0
While t < T Do:
t:=t+r71

solve time-dependent problems by Algorithm [ for 1D or Algorithm [ for 2D
EndWhile
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2]
3]

[4

[5]
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