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Abstract. This note considers the problem of minimizing interacting free energy. Mo-
tivated by the mirror descent algorithm, for a given interacting free energy, we propose a
descent dynamics with a novel metric that takes into consideration the reference measure and
the interacting term. This metric naturally suggests a monotone reparameterization of the
probability measure. By discretizing the reparameterized descent dynamics with the explicit
Euler method, we arrive at a new mirror-descent-type algorithm for minimizing interacting
free energy. Numerical results are included to demonstrate the efficiency of the proposed
algorithms.

1. Introduction

This paper considers the problem of minimizing free energies of the following form

(1) F (p) = D(p||µ) +

∫
Ω
p(x)V (x)dx+

1

2

∫∫
p(x)W (x, y)p(y)dxdy

for a probability density p over domain Ω. D(p||µ) is a divergence function between p and a
reference density µ and typically examples are Kullback-Leibler divergence, reverse Kullback-
Leibler divergence, and Hellinger divergence. In the interacting term

∫∫
pWpdxdy, W is

symmetric and can either be positive-definite or not. Non-positive-definite interacting terms
appear in Keller-Segel models in mathematical biology and granular flows in kinetic theory.
Recently, positive-definite interacting terms appear in the mean field modeling of neural
network training [9, 15,19,21].

The goal of this paper is to develop fast first-order algorithms for identifying minimums
of (1). When F is convex (for example, when W is positive-definite), there exists a unique
global minimizer and the goal is to compute this global minimizer efficiently. When F is
non-convex, there are typically many local minimums and the more moderate goal is to find
one such local minimum.

There are several difficulties for computing local minima for (1). First, this is an optimiza-
tion problem over probability simplex, hence one needs to deal with the constraints p(x) ≥ 0
and

∫
p(x)dx = 1. Second, when the reference measure µ(x) varies drastically for different

x ∈ Ω, the optimization problem can be quite ill-conditioned. Third, we aim to avoid costly
second-order Newton or quasi-Newton methods that involve matrix inversions or solves.
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2 MIRROR DESCENT FOR INTERACTING FREE ENERGY

1.1. Motivations and approach. Our approach is motivated by the mirror descent algo-
rithm [16] popularized recently in the machine learning community. Because of several nice
computational and analytical features, the mirror descent algorithm has played a significant
role in online learning and optimization. For an objective function E(p) over the space of
probability densities, it finds a minimizer of E(p) as follows. Given a current density pk, each
step solves for

(2) p̃ = argminpE(pk) +
δE

δp
(pk) · (p− pk) +

1

η
DKL(p||pk)

and then projects p̃ back to the space of probability densities. Taking derivative of (2) in p
results in

η
δE

δp
(pk) + ln(p̃/pk) + 1 = 0,

with p̃ proportional to pk exp
(
−η δEδp (pk)

)
. Projecting it back to the probability simplex via

rescaling gives

(3) pk+1 =
1

Z
pk exp

(
−η δE

δp
(pk)

)
, Z =

∫
pk exp

(
−η δE

δp
(pk)

)
dx.

Let us now give a different derivation of the mirror descent algorithm from a more numerical
analysis perspective. The starting point is the natural gradient flow of E(p) with the Fisher-
Rao metric diag(1/p):

ṗ = − 1

1/p

(
δE

δp
+ c

)
= −p

(
δE

δp
+ c

)
,

where δE
δp is Frechet derivative and c is the Lagrange multiplier associated with

∫
Ω p(x)dx = 1.

Moving p to the left hand side gives rise to an equation of ln p.

˙(ln p) = −
(
δE

δp
+ c

)
.

Using the explicit Euler method in the new variable ln p with step size η results in

ln pk+1 = ln pk − η
(
δE

δp
(pk) + c

)
,

where c is determined from the condition
∫
pk+1dx = 1 and this is equivalent to (3). This

derivation shows that mirror descent can be viewed as the explicit Euler discretization of the
natural gradient flow in the reparameterization φ(p) ≡ ln p.

The mirror descent is effective when the Hessian of the energy function E(p) is close to the
Fisher-Rao metric 1/p, up to a constant scaling. This is the case for

E(p) =

∫
p(x) ln p(x)dx+

∫
V (x)p(x)dx,

where the Hessian is exactly the Fisher-Rao metric. In this case, the natural gradient is

˙(ln p) = −(ln p+ V + c).

This is a linear system of ordinary differential equations with coefficient 1 in the new variable
ln p. The stiffness is gone and one can take large steps.

Coming back to the free energy (1), the mirror descent algorithm described above is not
particularly effective, due to the existence of the reference measure µ (in the reverse KL and
Hellinger cases) as well as the extra interacting term W . In fact, for general µ and W , the



MIRROR DESCENT FOR INTERACTING FREE ENERGY 3

Fisher-Rao metric 1/p in the natural gradient algorithm is quite far away from the Hessian
matrix of the Newton method. Therefore, there is no reason to expect the standard mirror
descent algorithm to be efficient. Our approach consists of the following steps:

• Choose an appropriate diagonal metric based on µ and W ;
• Design a reparameterization function φ based on the chosen metric;
• Derive the algorithm by performing the explicit Euler discretization;
• Work out the renormalization step.

1.2. Related work. The mirror descent algorithm [3, 16] was proposed as an effective first-
order method for convex optimization by taking into consideration the geometry of the prob-
lem. For certain types of constraint sets, the mirror descent algorithm is nearly optimal
among first order methods [6], offering an almost dimensional independent convergence rate.
In the setting of online optimization, mirror descent also allows one to obtain a bound for the
cumulative regret [2, 5]. There is a vast literature on mirror descent and related algorithms
and we refer to [6, 20] for further discussions.

The interacting free energy of form (1) appear in several applications, such as Keller-
Segel models [18] in mathematical biology, as well as the granular flow in kinetic theory
[7, 22]. In these applications, the evolution of the probability density is governed by the
Wasserstein gradient flow [11, 17] of the free energy, i.e., the gradient flow with respect to
the Wasserstein metric −∇ · (p∇(·)). The main computational task in these applications is
to compute the evolution of the Wasserstein gradient flow and several numerical methods
based on finite element, finite volume, and particle methods [4, 8, 12–14] have been proposed
for this. Compared with these algorithms, the goal of this paper is different as we only care
about the minimizers. Therefore, we have the freedom to pick any descent dynamics that
leads to the minimizer. As we have seen, our flow is closer to the natural gradient rather than
the Wasserstein gradient.

1.3. Contents. The paper considers three common cases of the divergence term D(p||µ) and
is organized as follows. Section 2 addresses the Kullback-Leibler divergence, Section 3 is
about the reverse Kullback-Leibler case, and finally Section 4 discusses the Hellinger distance
case. In each case, we address both the case of positive-definite W term as well as the general
situation of non-positive-definite W .

As the metric adopted here is of the Fisher-Rao type as opposed to the Wasserstein type,
there is no derivative involved in the computation. To simplify the presentation and also
to make connection with the numerical implementation, we work with a probability density
{p1, . . . , pn} over a discrete set of n points {x1, . . . , xn} rather than over a continuous space.
The interacting free energy can be written as

F (p) = D(p||µ) +
∑
i

piVi +
1

2

∑
ij

piWijpj .

This is indeed the setup when (1) is discretized with a numerical treatment.

2. Kullback-Leibler divergence

For the KL divergence case,

DKL(p||µ) =
n∑
i=1

pi ln pi/µi =
n∑
i=1

pi ln pi −
n∑
i=1

pi lnµi.
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The second term can be absorbed into the potential V and hence it is equivalent to consider

FKL(p) =
∑
i

pi ln pi +
∑
i

Vipi +
1

2

∑
i,j

piWijpj .

The Hessian is given by

δ2FKL

δp2
= diag

(
1

p

)
+W.

When W is non-positive-definite, the safe way is to just use diag(1/p) as the gradient metric.
When W is positive-definite, we extract the diagonal α = diag(W ) ∈ Rn of W and use
diag(1/p+ α) as the gradient metric.

2.1. Non-positive-definite case. Using diag(1/p) as the metric, the gradient flow is

ṗ = −p(ln p+ V +Wp+ c).

Moving the metric to the left hand side gives

˙(ln p) = −(ln p+ V +Wp+ c).

If we introduce a reparameterization from p ∈ Rn to g ∈ Rn with gi = φi(pi) ≡ ln pi and
pi = φ−1

i (gi) = exp(gi)

φi : pi → gi, (0, 1)→ (−∞, 0),

φ−1
i : gi → pi, (−∞, 0)→ (0, 1),

the gradient flow becomes

ġ = −(g + V +Wp+ c).

The explicit Euler discretization gives

g̃ = gk −∆t(gk + V +Wpk),

gk+1 = g̃ + c.

The constant c is determined by the normalization condition∑
i

φ−1
i (g̃i + c) = 1,

which leads to c = − ln (
∑

i exp(g̃i)) .
We illustrate the efficiency of the algorithm with a Keller-Segel model. Consider the domain

[0, 1] discretized with n = 1024 points {xi = i
n}. The potential V is zero and the interacting

term is

Wij =
3

2
ln(|xi − xj |+ ε)

with ε = 10−6. The step size ∆t is taken to be 1. Starting from a random initial condition, we
run the descent algorithm for 100 steps. The results are summarized in Figure 1. At the end
of the 100 iterations, the error is of order 10−10. The final density shows the concentration
property of the Keller-Segel free energy.
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Figure 1. KL divergence, non-positive-definite case with a Keller-Segel free
energy. Left: free energy vs. iteration. Middle: free energy error vs. iteration.
Right: density p at the final iteration (solid line) and the uniform density
(dashed line). The uniform density is the minimizer when W term is absent.

2.2. Positive-definite case. Using diag(1/p) + α as the metric, the gradient flow is

ṗ = − 1

1/p+ α
(ln p+ V +Wp+ c).

Moving the metric to the left hand side gives

˙(ln p+ αp) = −(ln p+ αp+ V + (W − α)p+ c).

If we introduce a reparameterization from p ∈ Rn to g ∈ Rn with gi = φi(pi) ≡ ln(pi) + αipi

φi : pi → gi, (0, 1)→ (−∞, αi),
φ−1
i : gi → pi, (−∞, αi)→ (0, 1),

the gradient flow becomes

ġ = −(g + V + (W − α)p+ c).

The explicit Euler discretization gives

g̃ = gk −∆t(gk + V + (W − α)pk),

gk+1 = g̃ + c.

The constant c is determined by the normalization condition∑
i

φ−1
i (g̃i + c) = 1.

Let us observe that
∑

i φ
−1
i (g̃i + c) is an increasing function in c as each φ−1

i is increasing.
The correct value c can be shown to be in(

min

(
ln

1

n
+
αi
n
− g̃i

)
,min(αi − g̃i)

)
.

Plugging the two endpoints of the interval shows that at the left endpoint
∑

i φ
−1
i (g̃i + c) < 1

and at the right endpoint
∑

i φ
−1
i (g̃i + c) > 1. Therefore, there is a unique c value satisfies∑

i φ
−1
i (g̃i + c) = 1 within this interval. This can be easily found using Newton, bisection, or

interpolation methods [10].
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To illustrate the efficiency of this algorithm, we consider the periodic domain [0, 1] dis-
cretized with n = 1024 points. The potential V is chosen to be Vi = sin(4πxi) and the
interacting term is

Wij =


α, i = j,

α/2, i = j ± 1,

0, otherwise,

with α = 103. Hence, αi = 103 for each i. The step size ∆t is taken to be 1. Starting from
a random initial condition, we run the algorithm for 100 steps with the results summarized
in Figure 2. Within 20 iterations, it reaches within 10−15 accuracy. The final probability
density shows that the interacting term in the free energy further suppresses oscillations in
the minimizing density.
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Figure 2. KL divergence, positive-definite case. Left: free energy vs. iter-
ation. Middle: free energy error vs. iteration. Right: density p at the final
iteration (solid line) and the minimizer density with W = 0.

3. Reverse Kullback-Leibler divergence

For the reverse KL divergence

DrKL(p||µ) =
∑
i

µi lnµi/pi =
∑
i

µi lnµi −
∑
i

µi ln pi.

The free energy is now

FrKL(p) = −
∑
i

µi ln pi +
∑
i

Vipi +
1

2

∑
i,j

piWijpj .

The Hessian is given by

δ2FrKL

δp2
= diag

(
µ

p2

)
+W

and it can be quite far from the mirror descent choice diag
(
1/p2

)
even when W is zero, since

µ can be drastically different for different i. When W is non-positive-definite, it is safe to
continue using diag

(
µ/p2

)
as the gradient metric. When W is positive-definite, we extract

the diagonal α = diag(W ) of W and use diag
(
µ/p2 + α

)
as the gradient metric.
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3.1. Non-positive-definite case. Using diag
(
µ/p2

)
as the metric, the gradient flow is

ṗ = − 1

µ/p2

(
−µ
p

+ V +Wp+ c

)
.

Moving the metric to the left hand side gives

˙(−µ/p) = −(−µ/p+ V +Wp+ c).

If we introduce a reparameterization from p ∈ Rn to g ∈ Rn with gi = φi(pi) ≡ −µi/pi and
pi = φ−1

i (gi) = −µi/gi

φi : pi → gi, (0, 1)→ (−∞,−µi),
φ−1
i : gi → pi, (−∞,−µi)→ (0, 1),

the gradient flow becomes

ġ = −(g + V +Wp+ c).

The explicit Euler discretization gives

g̃ = gk −∆t(gk + V +Wpk),

gk+1 = g̃ + c.

The constant c is determined by the normalization condition∑
i

φ−1
i (g̃i + c) = 1,

Since each φ−1
i is increasing,

∑
i φ

−1
i (g̃i + c) is an increasing function in c. We claim that the

correct value c can be shown to be in

(min (−g̃i − nµi) ,min(−g̃i − µi)) .

Plugging the two endpoints of the interval shows that at the left endpoint
∑

i φ
−1
i (g̃i + c) < 1

and at the right endpoint
∑

i φ
−1
i (g̃i + c) > 1. Therefore, there is a unique c value satisfies∑

i φ
−1
i (g̃i + c) = 1 within this interval.

As a numerical example, we consider a Keller-Segel model. Consider the domain [0, 1]
discretized with n = 1024 points {xi = i

n}. The potential V is equal to zero and the
interacting term Wij is given by

Wij =
2

3
ln(|xi − xj |+ ε)

with ε = 10−6. The reference measure µi is taken to be

µi ∼ x4
i ,

leading to a ratio of 1012 between the largest and the smallest µi values. The step size ∆t
is taken to be 1. Starting from a random initial condition, we run the descent algorithm for
100 steps and the results are summarized in Figure 3. Within 30 iterations, the algorithm
reaches within 10−15 accuracy.
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Figure 3. Reverse KL divergence, non-positive-definite case with a Keller-
Segel free energy. Left: free energy vs. iteration. Middle: free energy error vs.
iteration. Right: density p at the final iteration (solid line) and the reference
measure µ (dashed line). The reference density is the minimizer when W = 0.

3.2. Positive-definite case. Using diag
(
µ/p2 + α

)
as the metric, the gradient flow is

ṗ = − 1

µ/p2 + α
(ln p+ V +Wp+ c).

Moving the metric to the left hand side gives

˙(−µ/p+ αp) = −(−µ/p+ αp+ V + (W − α)p+ c).

If we introduce a reparameterization from p ∈ Rn to g ∈ Rn with gi = φi(pi) ≡ −µi/pi +αipi

and pi = φ−1
i (gi) =

gi+
√
g2i +4αiµi
2αi

φi : pi → gi, (0, 1)→ (−∞,−µi + αi),

φ−1
i : gi → pi, (−∞,−µi + αi)→ (0, 1),

the gradient flow becomes

ġ = −(g + V + (W − α)p+ c).

The Explicit Euler discretization gives

g̃ = gk −∆t(gk + V + (W − α)pk),

gk+1 = g̃ + c.

The constant c is determined by the normalization condition∑
i

φ−1
i (g̃i + c) = 1,

which can be solved since it is monotone. The correct value c can be shown to be in(
min

(
−g̃i − nµi +

αi
n

)
,min(−g̃i − µi + αi)

)
.

Plugging the two endpoints of the interval shows that the left endpoint
∑

i φ
−1
i (g̃i + c) < 1

and at the right endpoint
∑

i φ
−1
i (g̃i + c) > 1. Therefore, there is a unique c value satisfies∑

i φ
−1
i (g̃i + c) = 1 within this interval.
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As a numerical example, consider the periodic domain [0, 1] discretized with n = 1024
points. The potential V is chosen to be zero and the interacting term is

Wij =


α, i = j,

α/2, i = j ± 1,

0, otherwise,

with α = 102. So αi = 102 for each i. The step size ∆t is taken to be 1. Starting from a random
initial condition, we run the descent algorithm for 100 steps with the results summarized in
Figure 4. After about only 10 iterations, the error is reduced to about 10−15 .

20 40 60 80 100

iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

fr
e
e
 e

n
e
rg

y

20 40 60 80

iteration

10
-15

10
-10

10
-5

e
rr

o
r

200 400 600 800 1000

i

0.5

1

1.5

2

2.5

3

3.5

d
e

n
s
it
y

10
-3

Figure 4. Reverse KL divergence, positive-definite case. Left: free energy
vs. iteration. Middle: free energy error vs. iteration. Right: density p at the
final iteration (solid line) and the minimizing density without W term.

4. Hellinger divergence

For the Hellinger divergence

DH(p||µ) =
∑
i

(
√
pi −

√
µi)

2 = −2
∑
i

√
µipi + cst.

The free energy up to a constant is

FH(p) = −2
∑
i

√
µipi +

∑
i

Vipi +
1

2

∑
i,j

piWijpj .

The Hessian is given by

δ2FH

δp2
= diag

(
µ1/2

2p3/2

)
+W.

Notice that the Hessian can be quite far from the mirror descent choice diag(1/(2p3/2)) even
when W is zero, since µ can be drastically different for different i. When W is non-positive-
definite, it is safe to continue using diag

(
µ1/2/(2p3/2)

)
as the gradient metric. When W is

positive-definite, we extract the diagonal α = diag(W ) and use diag
(
µ1/2/(2p3/2) + α

)
as the

gradient metric.
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4.1. Non-positive-definite case. Using diag
(
µ1/2/(2p3/2)

)
as the metric, the gradient flow

is

ṗ = − 1

µ1/2/(2p3/2)

(
−
√
µ

p
+ V +Wp+ c

)
.

Moving the metric to the left hand side gives

˙(
−
√
µ/p

)
= −(−

√
µ/p+ V +Wp+ c).

If we introduce a reparameterization from p ∈ Rn to g ∈ Rn with gi = φi(pi) ≡ −
√
µi/pi and

pi = φ−1
i (gi) = µi/g

2
i

φi : pi → gi, (0, 1)→ (−∞,−√µi),
φ−1
i : gi → pi, (−∞,−√µi)→ (0, 1),

the gradient flow becomes

ġ = −(g + V +Wp+ c).

The explicit Euler discretization gives

g̃ = gk −∆t(gk + V +Wpk),

gk+1 = g̃ + c.

The constant c is determined by the normalization condition∑
i

φ−1
i (g̃i + c) = 1,

which can be solved since it is monotone. The correct value c can be shown to be in

(min (−g̃i −
√
nµi) ,min(−g̃i −

√
µi)) .

Plugging the two endpoints of the interval shows that at the left endpoint
∑

i φ
−1
i (g̃i + c) < 1

and at the right endpoint
∑

i φ
−1
i (g̃i + c) > 1. Therefore, there is a unique c value satisfies∑

i φ
−1
i (g̃i + c) = 1 within this interval.

We illustrate the efficiency of the algorithm using a Keller-Segel model. Consider the
domain [0, 1] discretized with n = 1024 points {xi = i

n}. The potential V is zero and the
interacting term Wij is given by

Wij =
1

3
ln(|xi − xj |+ ε)

with ε = 10−6. The reference measure µi is taken to be

µi ∼ x4
i .

The step size ∆t is taken to be 1. Starting from a random initial condition, we run the descent
algorithm for 100 steps and the results are summarized in Figure 5. Within 30 iterations, it
reaches within 10−15 accuracy.



MIRROR DESCENT FOR INTERACTING FREE ENERGY 11

20 40 60 80 100

iteration

-2.4

-2.3

-2.2

-2.1

-2

-1.9

-1.8

-1.7

fr
e
e
 e

n
e
rg

y

20 40 60 80

iteration

10
-15

10
-10

10
-5

e
rr

o
r

200 400 600 800 1000

i

1

2

3

4

5

d
e

n
s
it
y

10
-3

Figure 5. Hellinger divergence, non-positive-definite case with a Keller-Segel
free energy. Left: free energy vs. iteration. Middle: free energy error vs.
iteration. Right: density p at the final iteration (solid line) and the reference
measure µ (dashed line). The reference density is the minimizer when W = 0.

4.2. Positive-definite case. Using diag
(
µ1/2/(2p3/2) + α

)
as the metric, the gradient flow

is

ṗ = − 1

µ1/2/(2p3/2) + α

(
−
√
µ

p
+ V +Wp+ c

)
.

Moving the metric to the left hand side gives

˙(
−
√
µ/p+ αp

)
= −(−

√
µ/p+ αp+ V + (W − α)p+ c).

If we introduce a reparameterization from p ∈ Rn to g ∈ Rn with gi = φi(pi) ≡ −
√
µi/pi +

αipi:

φi : pi → gi, (0, 1)→ (−∞,−√µi + αi),

φ−1
i : gi → pi, (−∞,−√µi + αi)→ (0, 1),

the gradient flow becomes

ġ = −(g + V + (W − α)p+ c).

An explicit Euler discretization gives

g̃ = gk −∆t(gk + V + (W − α)pk),

gk+1 = g̃ + c.

The constant c is determined by the normalization condition∑
i

φ−1
i (g̃i + c) = 1,

which can be solved since it is monotone. The correct value c can be shown to be in(
min

(
−g̃i −

√
nµi +

αi
n

)
,min(−g̃i −

√
µi + αi)

)
.

Plugging the two endpoints of the interval shows that the left endpoint
∑

i φ
−1
i (g̃i + c) < 1

and at the right endpoint
∑

i φ
−1
i (g̃i + c) > 1. Therefore, there is a unique c value satisfies∑

i φ
−1
i (g̃i + c) = 1 within this interval.
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In the numerical test, we consider the periodic domain [0, 1] discretized with n = 1024
points. The potential V is chosen to be zero and the interacting term is

Wij =


α, i = j,

α/2, i = j ± 1,

0, otherwise,

with α = 102. This leads to αi = 102 for each i = 1, . . . , n. The step size ∆t is taken to be
1. Starting from a random initial condition, we run the descent algorithm for 100 steps. The
results are summarized in Figure 6. Within about 15 iterations, it converges to an accuracy
of order 10−15.
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Figure 6. Hellinger divergence, positive-definite case. Left: free energy vs.
iteration. Middle: free energy error vs. iteration. Right: density p at the final
iteration (solid line) and the minimizing density without the W term.

5. Discussions

This paper proposes mirror-descent-type algorithms for minimizing interacting free ener-
gies. Below we point out a few questions for future work. First, the proposed algorithms
are obtained from discretizing the continuous-time gradient flow with a new metric based on
µ and W . One can also derive the algorithm in a more traditional mirror descent form by
starting from the corresponding Bregman divergences.

Second, this paper considers three cases: KL divergence, reverse KL divergence, and
Hellinger divergence. In fact, the same procedure can be extended to most α-divergences
[1].

When we treat the non-positive-definite case, W is simply dropped in the design of the
new metric. A more accurate, but potentially more computational intensive, alternative is to
find a positive-definite approximation to W and then combine it with the Hessian from the
divergence term.

This interacting term of the free energy considered in this paper is only of quadratic form.
It is plausible that a similar procedure can be developed for non-quadratic interacting terms,
as long as there is an efficient way to approximate the diagonal of the Hessian.
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