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Abstract. We study the problem of identifying unknown processes embedded in time-dependent
partial differential equation (PDE) using observational data, with an application to advection-
diffusion type PDE. We first conduct theoretical analysis and derive conditions to ensure the solv-
ability of the problem. We then present a set of numerical approaches, including Galerkin type
algorithm and collocation type algorithm. Analysis of the algorithms are presented, along with their
implementation detail. The Galerkin algorithm is more suitable for practical situations, particularly
those with noisy data, as it avoids using derivative/gradient data. Various numerical examples are
then presented to demonstrate the performance and properties of the numerical methods.

Key words. System identification, data-driven discovery, Galerkin method, collocation method,
advection-diffusion equation

1. Introduction. Data-driven discovery or identification of unknown governing
equations has attracted a growing amount of attention recently, from earlier attempts
using symbolic regression ([1, 33]), to more recent work using techniques such as
Gaussian processes [22], artificial neural networks [24, 25], group sparsity [27], etc.
Most of the recent work transform the problem into an approximation problem and
develop various techniques to create parsimonious models [35], to discover partial
differential equations [28, 30], and to deal with noises in data [3, 31], corruptions
in data [36], or limited amount of data [32]. Methods have also been developed in
conjunction with model selection approach [15], Koopman theory [2], and Gaussian
process regression [23], etc. Results from approximation theory have been borrowed
to justify the use of multiple short burst of trajectories [37]. More recently, machine
learning methods, particularly deep neural networks are being investigated to aid the
task of equation discovery, for ODEs [7, 26, 29, 4, 19]) and PDEs [16, 13, 11, 8, 21,
12, 38].

A related class of problems is to identify unknown parameters or processess em-
bedded in a given system of governing equations. This is sometimes referred to as
“system identification”. Many efforts have been devoted to this line of research, see,
e.g. [14, 10, 18, 9, 5, 34, 39, 6, 17, 20], and more recently, [22, 25, 27]. The major-
ity of the existing work focused on identification of unknown parameters, which take
constant values throughout the domain of interest. The focus and contribution of this
paper is on the identification of unknown processes, which are functions, embedded in
a given system of governing equations. In particular, we use advection-diffusion type
of partial differential equation (PDE) as our primary application. Existing work on
system identification for advection-diffusion problem include [14, 10, 18, 9, 34, 39]),
most of which focused on identification of constant parameters.

The technical contributions of this paper include the following. We first present
an analysis on the uniqueness of the system identification problem for convection-
diffusion type equations. We show that separability of the solution is key to guar-
antee uniqueness. We then present a general numerical framework for identifying
unknown functions embedded in given governing equations using observational data
of the state variable. This framework is based on seeking an approximation of the
unknown functions in a properly defined finite dimensional linear space, which can
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be taken conveniently as the same linear space for the discretization of the governing
equation. The identification of the unknown processes is then conducted by minimiz-
ing the residual of the discretized equations in certain space-time L2 norm. Under
the framework, two types of algorithms, “collocation” and “Galerkin”, are proposed,
depending on the way the residues are defined and minimized. The Galerkin algo-
rithm utilize weak form formulation and can avoid using information of the deriva-
tives/gradients of the solution states. Consequently, it is more suitable for practical
computation than the collocation algorithm, especially when measurement data con-
tain noises. We remark that the proposed numerical framework and algorithms are
applicable to general classes of PDEs. Our focus on advection-diffusion type PDE in
this paper is to have a concrete model to conduct theoretical analysis.

This paper is organized as follows. After the basic problem setup in Section 2, we
present its uniqueness analysis in Section 3. The numerical approaches are discussed
in Section 4, with both a general framework and two types of algorithms, Galerkin
and collocation. An extensive set of numerical examples are presented in Section 5,

2. Problem Setup. Let D ⊆ Rd, d ≥ 1, be a spatial domain with coordinate
x = (x1, · · · , xd), and T > 0 be a real number. Let u(t,x) be a state variable,
governed by a time-dependent partial differential equation (PDE)

L(u(t,x); Γ(x)) = 0, ∀(t,x) ∈ [0, T ]×D, (2.1)

where L is an known differential operator, and Γ(x) = (γ1(x), · · · , γP (x)) unknown
functions depending only on the spatial variable x. Suppose observation data of the
solution state u are available, our goal is to identify the unknown functions Γ(x)
embedded in the governing equation (2.1).

In order to conduct concrete theoretical and numerical analysis, we focus on
advection-diffusion type PDE

L
(
u(t,x); Γ(x)

)
:=

∂u

∂t
+∇ · (α(x)F (u))−∇ · (κ(x)∇u) = 0, (2.2)

where F (·) is flux function, α(x) = (α(1)(x), . . . , α(d)(x))> velocity field and κ(x)
diffusivity field. The flux F is assumed to be known, and the unknown processes
to be recovered are Γ(x) = {α(1)(x), . . . , α(d)(x), κ(x)}. Throughout this paper, we
assume Γ ∈ C1(D). Note that even though our theoretical analysis applies to this
advection-diffusion PDE, the proposed numerical algorithms are applicable to general
type operator L.

3. Uniqueness Analysis. In this section, we present theoretical analysis for the
aforementioned recovery problem. We restrict our analysis to one spatial dimension
with d = 1, as multi-dimensional analysis becomes more challenging and remains open.
We also break down the analysis into three sub-problems: for advection equation, for
diffusion equation, and finally for advection-diffusion equation.

3.1. Advection equation. We now consider the following linear advection equa-
tion with unknown variable velocity field

L(u(t, x); Γ(x)) :=
∂

∂t
u(t, x) +

∂

∂x

(
α(x)F (u(t, x))

)
= 0, (3.1)

where F ∈ C1(R) is known and Γ(x) = α(x) is unknown.
Lemma 3.1. Let u(t, x) ∈ C1([0, T ] × D) be a given solution of the equation

(3.1). A sufficient and necessary condition for the uniquely determine α(x) ∈ C1(D)
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is that: there does not exist nonzero function β(x) ∈ C1(D) such that β(x)F (u(t, x))
is independent of x.

Proof. We first prove the sufficiency by contradiction. Assume that there is
another function α̃ ∈ C1(D) such that α̃ 6≡ α and

∂

∂t
u(t, x) +

∂

∂x

(
α̃(x)F (u(t, x))

)
= 0.

Combining it with (3.1) gives

∂

∂x

(
(α̃(x)− α(x))F (u(t, x))

)
= 0,

which implies that (α̃(x)− α(x))F (u(t, x)) does not depend on x. Therefore, α̃(x)−
α(x) = 0, ∀x ∈ D, which leads to the contradiction. Hence the parameter function
α(x) to be recovered is unique.

We now prove necessity by contradiction. Assume that there is a nonzero function
β(x) ∈ C1(D) such that β(x)F (u(t, x)) does not depend on x. Then

∂

∂x

(
β(x)F (u(t, x))

)
= 0.

This, together with (3.1), imply

∂

∂t
u(x, t) +

∂

∂x

((
α(x) + β(x)

)
F (u(t, x))

)
= 0,

which is contradictory to the uniqueness of α.
Definition 3.2. Consider a bivariate function h : (T1, T2)×Ω→ C1. It is called

separable if it can be written as a product of two univariate functions

h(t, x) = f(t)g(x), ∀(t, x) ∈ (T1, T2)× Ω,

where f ∈ C1(T1, T2) and g(x) ∈ C1(Ω).
Theorem 3.3. Let u ∈ C1([0, T ]×D) be a given solution of the equation (3.1).

If there exists no open interval Ω ⊆ D and (T1, T2) ⊆ (0, T ] such that F (u(t, x)) is
separable on (T1, T2)× Ω, then α(x) is unique.

Proof. We prove it by contradiction. Assume that α(x) is not unique. Then,
according to Lemma 3.1, there exists a nonzero function β(x) ∈ C1(D) such that
β(x)F (u(t, x)) does not depend on x. Thus we have β(x0) 6= 0 for some x0 in the
interior of D, and β(x)F (u(t, x)) = c(t), ∀(t, x) ∈ [0, T ]×D, for some single-variable
function c(t) ∈ C1([0, T ]). Due to the sign-preserving property of β(x), there exists
an open interval Ω0 ⊆ D containing the point x0 such that

β(x) 6= 0, ∀x ∈ Ω0.

Hence

F (u(t, x)) =
1

β(x)
c(t), ∀(t, x) ∈ [0, T ]× Ω0.

This means F (u(t, x)) is separable on [0, T ]×Ω0, which contradicts with the assump-
tion on F (u(t, x)). Therefore, α(x) is unique.
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3.2. Diffusion equation. We now consider the following diffusion equation

L(u(t, x); Γ(x)) :=
∂

∂t
u(x, t)− ∂

∂x

(
κ(x)

∂

∂x
u(t, x)

)
= 0, (3.2)

where Γ(x) = κ(x) is unknown.
Lemma 3.4. Let u ∈ C1([0, T ];C2(D)) be a given solution of the equation (3.2).

A sufficient and necessary condition for the uniqueness of the function κ(x) ∈ C1(D)
is that: there is no nonzero function β(x) ∈ C1(D) such that β(x) ∂

∂xu(t, x) is inde-
pendent of x.

Proof. The proof is similar to that of Lemma 3.1 and omitted here.
Theorem 3.5. Let u ∈ C1([0, T ];C2(D)) be a given solution of the equation (3.2).

If for any given open interval Ω ⊆ D, there exist a temporal interval (T1, T2) ⊂ [0, T ]
such that ∂

∂xu(t, x) is not separable on (T1, T2)× Ω, then κ(x) is unique.
Proof. The proof is similar to that of Theorem 3.3 and omitted here.

3.3. Advection-Diffusion equation. We now consider one-dimensional advection-
diffusion equation

L(u(t, x); Γ(x)) :=
∂

∂t
u(t, x) +

∂

∂x

(
α(x)u(t, x)

)
− ∂

∂x

(
κ(x)

∂

∂x
u(t, x)

)
= 0, (3.3)

where Γ(x) = (α(x), κ(x)) is unknown.
Definition 3.6. Consider a bivariate function h : (T1, T2)×Ω→ C1. It is called

weakly separable if it can be written as

h(t, x) = f1(t)g1(x) + f2(t)g2(x), ∀(t, x) ∈ (T1, T2)× Ω,

where fi ∈ C1(T1, T2) and gi ∈ C1(Ω), i = 1, 2.
Theorem 3.7. Let u(t, x) ∈ C1([0, T ];C2(D)) be a given solution of the equation

(3.3). If there is no open interval Ω ⊆ D and (T1, T2) ⊆ (0, T ] such that u(t, x) is
weakly separable on (T1, T2)× Ω, then the functions α(x) and κ(x) are unique.

Proof. Assume that there are another two functions α̃(x) ∈ C1(D) and κ̃(x) ∈
C1(D) such that

∂

∂t
u(t, x) +

∂

∂x

(
α̃(x)u(t, x)

)
− ∂

∂x

(
κ̃(x)

∂

∂x
u(t, x)

)
= 0, ∀(t, x) ∈ [0, T ]×D,

which, along with (3.3), imply

∂

∂x

(
β(x)u(t, x)

)
− ∂

∂x

(
ξ(x)

∂

∂x
u(t, x)

)
= 0, ∀(t, x) ∈ [0, T ]×D. (3.4)

where β := α̃ − α ∈ C1(D) and ξ := κ̃− κ ∈ C1(D). Note that (3.4) further implies
that

β(x)u(t, x)− ξ(x)
∂

∂x
u(t, x) = c(t), ∀(t, x) ∈ [0, T ]×D (3.5)

for some single-variable function c(t) ∈ C1([0, T ]). Next, we only need to show that
β(x) = ξ(x) = 0,∀x ∈ D.

Let us first prove ξ(x) = 0,∀x ∈ D, by contradiction. Assume that ξ 6≡ 0.
According to the continuity of ξ on D, we have ξ(x0) 6= 0 for some x0 belonging
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to the interior of D. Due to sign-preserving property for ξ(x), there exists an open
interval Ω0 ⊆ D containing x0 such that

ξ(x) 6= 0, ∀x ∈ Ω0.

Let us introduce an auxiliary positive function

η(x) := exp

(
−
∫ x

x0

β(s)

ξ(s)
ds

)
> 0, ∀x ∈ Ω0.

It then follows from (3.5) that

η(x)

(
−β(x)

ξ(x)
u(x, t) +

∂

∂x
u(t, x)

)
= −c(t)η(x)

ξ(x)
, ∀(t, x) ∈ [0, T ]× Ω0.

Or, equivalently, we have

∂

∂x

(
η(x)u(t, x)

)
= −c(t)η(x)

ξ(x)
, ∀(t, x) ∈ [0, T ]× Ω0. (3.6)

By integrating (3.6) we have

η(x)u(t, x)− η(x0)u(t, x0) = −c(t)
∫ x

x0

η(s)

ξ(s)
ds, ∀(t, x) ∈ [0, T ]× Ω0.

Note that η(x0) = 1. We then obtain

u(t, x) = u(t, x0)× 1

η(x)
+ c(t)×

(
− 1

η(x)

∫ x

x0

η(s)

ξ(s)
ds

)
, ∀(t, x) ∈ [0, T ]×Ω0. (3.7)

This implies that u(t, x) is weakly separable on [0, T ] × Ω0 and contradicts with the
hypothesis on u(x, t). Therefore, the assumption that ξ 6≡ 0 is incorrect. Hence we
complete the proof of ξ(x) = 0,∀x ∈ D.

By substituting ξ(x) ≡ 0 into (3.5), we then have

β(x)u(t, x) = c(t), ∀(t, x) ∈ [0, T ]×D. (3.8)

We now prove β ≡ 0 by contradiction. Assume β 6≡ 0. According to the continuity
of β on D, we have β(x1) 6= 0 for some x1 belonging to the interior of D. Due to
sign-preserving property of β(x), there exists an open interval Ω1 ⊆ D containing the
point x1 such that

β(x) 6= 0, ∀x ∈ Ω1.

Hence

u(t, x) =
1

β(x)
c(t), ∀(t, x) ∈ [0, T ]× Ω1.

This means u(t, x) is separable, and subsequently weakly separable, on [0, T ] × Ω1.
This is a contradiction to the hypothesis on u(t, x). Therefore, the assumption that
β 6≡ 0 is incorrect. Hence we have β(x) = 0,∀x ∈ D.

In summary, we have proved that β(x) = ξ(x) = 0,∀x ∈ D. In other words,
α̃(x) = α(x) and κ̃(x) = κ(x) for all x ∈ D. The proof is completed.
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4. Numerical Methods. In this section, we present our numerical methods for
recovery of unknown functions embedded in PDE by using data of the state variables.
We focus on the advection-diffusion type equations (2.2) discussed in the previous
section, although the methods are applicable for general PDEs.

4.1. General Framework. We seek to approximate/represent the unknown
functions Γ(x) = {α(1)(x), . . . , α(d)(x), κ(x)} in a finite N -dimensional linear sub-
space VN ⊂ L2(D) ∩ C2(D). Let Φ(x) := (φ1(x), . . . , φN (x))> be a basis for

VN . Denote αN (x) := (α
(1)
N (x), . . . , α

(d)
N (x))> ∈ [VN ]d and κN (x) ∈ VN the finite-

dimensional representation of α(x) = α(1)(x), . . . , α(d)(x))> and κ(x), respectively.
They can be expressed as

α
(`)
N (x) = a>` Φ(x), 1 ≤ ` ≤ d, κN (x) = k>Φ(x), (4.1)

where the coefficient vectors {a`}d`=1 and k are to be determined.
A straightforward approach to determine these finite-dimensional unknown func-

tions is to minimize the residual of L(u;αN , κN ) in L2(0, T, L2(D)) norm, i.e.,

min
αN∈[VN ]d

κN∈VN

1

T

∫ T

0

∫
D

(
L(u;αN , κN )

)2
dxdt. (4.2)

However, this minimization problem is challenging to solve, as it involves complicated
temporal and spatial integrals, as well as the derivatives of u. We now discuss how to
transform this problem into a tractable one via proper discretization.

4.1.1. Time Discretization. Let {tm}Mm=1 denote a set of time instances in
[0, T ], where the data of the state variable u are collected. We replace the time
integral in (4.2) by a weighted sum. Subsequently, the optimization problem (4.2)
can be transformed into

min
αN∈[VN ]d

κN∈VN

M∑
m=1

wm

∫
D

(
L (u(tm,x);αN (x), κN (x))

)2
dx, (4.3)

where {wm}Mm=1 are a set of weights. Note that with a given time instance set
{tm}Mm=1, one can choose a proper set of weights {wm}Mm=1 such that the weighted
sum in (4.3) is a good approximation to the time integral in (4.2)

4.1.2. Space Discretization. Upon discretization in time, we now discuss two
approaches to simplify the spatial integral in (4.3).

• “Collocation” Type Method. In collocation approach, we seek to minimize
(4.3) at selected nodes in spatial domain, i.e., at collocation points. Let
{xi}NCi=1 be such a set of nodes, we further transform (4.3) into the following
problem:

min
αN∈[VN ]d

κN∈VN

M∑
m=1

wm

NC∑
i=1

(
L(u(tm,xi);αN (xi), κN (xi))

)2

. (4.4)

• “Galerkin” Type Method. Let VNG ⊂ L2(D) ∩ C2(D) be a NG-dimensional
linear subspace, and {φj(x)}NGj=1 be an orthonormal basis of VNG . We use
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VNG as our testing space for the residual. Our Galerkin type method then
transform (4.3) into the following problem:

min
αN∈[VN ]d

κN∈VN

M∑
m=1

wm

NG∑
j=1

(∫
D

L
(
u(tm,x);αN (x), κN (x)

)
φj(x)dx

)2

. (4.5)

4.2. Application to Advection-Diffusion Equation (2.2). We now discuss
the detailed formulation when applying the aforementioned approaches to the advection-
diffusion equation (2.2). The collocation approach (4.4) requires direct evaluations
of the equation (2.2) at the collocation points. This is straightforward to implement
and requires no further discussion. On the other hand, the implementation of the
Galerkin approach (4.5) requires further discussion. First, we show that the Galerkin
minimization problem (4.5) for the advection-diffusion (2.2) can be re-written into
the minimization problem for the expansion coefficients (4.1).

Theorem 4.1. Let c =
[
a>1 , · · · , a>d , k>

]>
. Then the problem (4.5) for

(2.2) is equivalent to

min
c∈R(d+1)N

M∑
m=1

wm

NG∑
j=1

(
Ej(tm)c− bj(tm)

)2
, (4.6)

where for 1 ≤ j ≤ NG and 1 ≤ i ≤ N , bj(t) =
∫
D
∂u
∂t φjdx, and

Ej(t) := −
[
A

(1)
j (t), · · · ,A(d)

j (t),−Kj(t)
]
∈ R1×(d+1)N ,

A
(`)
j (t) =

(
A

(`)
j1 (t), . . . , A

(`)
jN (t)

)
,

A
(`)
ji (t) =

∫
∂D

F (u)φjφinldS −
∫
D

F (u)
∂φj
∂xl

φidx, 1 ≤ ` ≤ d,

Kj(t) =
(
Kj1(t), . . . ,KjN (t)

)
,

Kji(t) =

∫
∂D

φiφj∇u · ndS −
∫
∂D

uφi∇φj · ndS

+

∫
D

u(∇φi · ∇φj + φi∆φj)dx,

(4.7)

with n = (n1, . . . , nd) denoting the outward unit normal vector along ∂D.
Proof. We only need to prove∫

D

L(u;αN , κN )φjdx = bj(t)−Ej(t)c, 0 ≤ t ≤ T, (4.8)

and then substitute (4.8) into (4.5) to obtain (4.6).
To show (4.8), we split

∫
D
L(u;αN , κN )φjdx of (4.5) into three terms: time

derivative term, advection term and diffusion term, as follows.∫
D

L(u;αN , κN )φjdx =

∫
D

(
∂u

∂t
+∇ · (αNF (u))−∇ · (κN∇u)

)
φjdx

= bj(t) +

∫
D

∇ · (αNF (u))φjdx

−
∫
D

∇ · (κN∇u)φjdx.

(4.9)
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By using integration-by-part for the advection and diffusion terms, we have∫
D

∇ · (αNF (u))φjdx =

∫
∂D

F (u)φjαN · ndS

−
∫
D

∇φj · (αNF (u))dx,

(4.10)

and∫
D

∇ · (κN∇u)φjdx

=

∫
∂D

κNφj∇u · ndS −
∫
D

∇φj · (κN∇u)dx

=

∫
∂D

κNφj∇u · ndS −
∫
∂D

uκN∇φj · ndS +

∫
D

u∇ · (∇φjκN )dx

=

∫
∂D

κNφj∇u · ndS −
∫
∂D

uκN∇φj · ndS +

∫
D

u(∇κN · ∇φj + κN∆φj)dx.

(4.11)

Note that in (4.11), the spatial derivatives of u are not required in the interior of D.

Let a` =: (a
(`)
1 , . . . , a

(`)
N )> and k =: (k1, . . . , kN )> be the coefficients in (4.1). We

obtain ∫
∂D

F (u)φjαN · ndS =

∫
∂D

F (u)φj

d∑
l=1

α
(l)
N nldS

=

d∑
l=1

N∑
i=1

a
(l)
i

∫
∂D

F (u)φjφinldS,

−
∫
D

∇φj · (αNF (u))dx = −
∫
D

F (u)

d∑
l=1

∂φj
∂xl

α
(l)
N dx

= −
d∑
l=1

N∑
i=1

a
(l)
i

∫
D

F (u)
∂φj
∂xl

φidx,

∫
∂D

κNφj∇u · ndS =
N∑
i=1

ki

∫
∂D

φiφj∇u · ndS,

−
∫
∂D

uκN∇φjndS = −
N∑
i=1

ki

∫
∂D

uφi∇φj · ndS,

∫
D

u(∇κN · ∇φj + κN∆φj)dx =

N∑
i=1

ki

∫
D

u(∇φi · ∇φj + φi∆φj)dx.

Hence, for the advection term we have∫
D

∇ · (αNF (u))φjdx =

d∑
l=1

N∑
i=1

a
(l)
i

∫
∂D

F (u)φjφinldS −
d∑
l=1

N∑
i=1

a
(l)
i

∫
D

F (u)
∂φj
∂xl

φidx

=

d∑
l=1

N∑
i=1

a
(l)
i

(∫
∂D

F (u)φjφinldS −
∫
D

F (u)
∂φj
∂xl

φidx

)
8



=
[
A

(1)
j (t) · · · A

(d)
j (t)

]a1

...
ad

 , (4.12)

where A
(l)
j (t), 1 ≤ l ≤ d, 1 ≤ j ≤ NG, are defined in (4.7).

For the diffusion term, we have∫
D

∇ · (κN∇u)φjdx =

N∑
i=1

ki

∫
∂D

φiφj∇u · ndS −
N∑
i=1

ki

∫
∂D

uφi∇φj · ndS

+

N∑
i=1

ki

∫
D

u(∇φi · ∇φj + φi∆φj)dx

=

N∑
i=1

ki

(∫
∂D

φiφj∇u · ndS −
∫
∂D

uφi∇φj · ndS

+

∫
D

u(∇φi · ∇φj + φi∆φj)dx

)
= Kj(t)k, (4.13)

where Kj(t), 1 ≤ j ≤ NG, are defined in (4.7). Combining (4.12) and (4.13) into
(4.9) gives ∫

D

∇ · (αNF (u))φjdx−
∫
D

∇ · (κN∇u)φjdx

=
[
A

(1)
j (t) · · · A

(d)
j (t) −Kj(t)

]
a1

...
ad
k


= −Ej(t)c (4.14)

for 1 ≤ j ≤ NG. Substituting (4.14) into (4.9) gives (4.8), with which (4.6) follows
immediately. The proof is complete.

We now derive uniqueness condition for the solution to the minimization problem
(4.6).

Theorem 4.2. Let

E(t) :=

 E1(t)
...

ENG(t)

 , b(t) :=

 b1(t)
...

bNG(t)

 , (4.15)

and define Ξ :=
∑M
m=1 wmE(tm)>E(tm), which is a symmetric positive semidefinite

matrix. A solution to the minimization problem (4.6) satisfies

Ξc =

M∑
m=1

wmE(tm)>b(tm). (4.16)

Furthermore, if the matrix Ξ is nonsingular, then the problem (4.6) has a unique
solution

c = Ξ−1
M∑
m=1

wmE(tm)>b(tm). (4.17)

9



Proof. We immediately have

J(c) :=

M∑
m=1

wm

NG∑
j=1

(
Ej(tm)c− bj(tm)

)2
=

M∑
m=1

wm

(
E(tm)c− b(tm)

)>(
E(tm)c− b(tm)

)
=

M∑
m=1

wm

(
c>E(tm)>E(tm)c− 2c>E(tm)>b(tm) + b(tm)>b(tm)

)
= c>Ξc− 2c>

M∑
m=1

wmE(tm)>b(tm) +

M∑
m=1

wmb(tm)>b(tm),

which is a positive semidefinite quadratic form in the variables c. Thus, the minima
of J(c) satisfy (4.16). If the matrix Ξ is nonsingular, then the linear system (4.16)
for c has unique solution, which is given by (4.17).

Remark 4.1. Note that although the collocation approach (4.4) is straightforward
to implement, we advocate the use of the Galerkin approach (4.5). This can be seen
from its implementation for the advection-diffusion equation. Using the weak form of
Galerkin and integration-by-part, the Galerkin algorithm avoids using derivatives of
the state variable in the interior of the domain. For many pratical problems when the
spatial derivatives are not directly available and need to be estimated from data, this is
preferred because estimating derivatives can induce more numerical errors, especially
when data contain noises.

4.3. Implementation Detail. Assume that {τi}Mtot
i=1 are a large set of time in-

stances in [0, T ], where the state u are measurable. We set wm = 1/M and tm = τim ,
1 ≤ m ≤ M , which are M uniformly i.i.d. (independent and identically distributed)

random samples from the set {τi}. Let {xq}Qq=1 be a properly selected numerical
quadrature for computing the spatial integrals on D and ∂D. Based on the formu-
lations derived in Theorems 4.1 and 4.2, the implementation of our method proceeds
as follows.
Step 1: Sample Data. Collect the data of u(t,x) at the points (tm,xq), 1 ≤ m ≤M ,
1 ≤ q ≤ Q. Let us denote the sampled data as um,q := u(tm,xq)+εm,q, where {εm,q}
are possible noises. We assume that the noises are i..i.d. random.
Step 2: Filter Data. If the data are noisy, we propose to use a filter. For each
m = 1, . . . ,M , q = 1, . . . , Q, we locally construct a polynomial function f̃m,q(x)

in the neighborhood of xq, and obtain filtered data ũm,q := f̃m,q(xq). To do so,
we use standard least square minimization method and sample extra data in the
neighborhood of xq.
Step 3: Estimate Derivatives. We evaluate the time derivative ∂u

∂t (tm,xq) by
locally constructing polynomial function gm,q(t) near tm. To do so, we use standard
least square minimization method and sample extra data in the neighborhood of tm
from {τi}. We obtain time derivative estimate ∂u

∂t (tm,xq) ≈ g′m,q(tm). Similarly, for
the gradients ∇u(tm,xq), xq ∈ ∂D, on the domain boundary, we construct (local)
polynomial function fm,q(x) for each m = 1, . . . ,M , and get∇u(tm,xq) ≈ ∇fm,q(xq).
Step 4: Form E(tm) and b(tm). We compute (4.7) at t = tm by using the filtered
data ũim,q on D and the gradient estimate ∇u(tm,xq) on ∂D with suitable numerical
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quadratures. We then compute bj(tm) using the derivative estimate ∂u
∂t (tm,xq). The

matrix E(tm) and vector b(tm) in (4.15) are then formed immediately.
Step 5: Compute a` and k. Compute the symmetric positive semidefinite matrix

Ξ =
1

M

M∑
m=1

E(tm)>E(tm).

If the matrix Ξ is nonsingular, we obtain the unique expansion coefficient vectors a`
and k in (4.1) by (4.17). That is,

a1

...
ad
k

 = c = Ξ−1
(

1

M

M∑
m=1

E(tm)>b(tm)

)
,

which is the minimum to the least-square problem

min
c∈R(d+1)N

1

M

M∑
m=1

NG∑
j=1

(
Ej(tm)c−bj(tm)

)2

= min
c∈R(d+1)N

1

M

∥∥∥∥∥∥∥
E(t1)

...
E(tM )

 c−
 b(t1)

...
b(tM )


∥∥∥∥∥∥∥
2

.

5. Numerical Examples. In this section, we present numerical examples to
demonstrate the performance of the proposed numerical methods for advection-diffusion
problem (2.2). Our examples include both 1D and 2D cases, as well as a nonlinear
Burgers’ equation that does not fall into the category of linear advection-diffusion.

For benchmarking purpose, we use synthetic data generated by solving known
advection-diffusion equations with high resolution. The data are then collected over
a uniformly distributed time instances in time domain and Gauss points in spatial
domain, both in the interior and along the boundary. This results in our sets of
noiseless data. To generated noisy data, we add i.i.d. Gaussian noises N (0, ε2) to the
clean data, where ε is the noise level.

We use normalized Legendre polynomials as the basis functions. For the noisy
data cases, we employ the filtering procedure described in the previous section. In all
the examples here, we built polynomials f̃m,q(x) of degree 10 using 300 noisy data
drawn from the neighborhood of x. These local polynomials are also used to estimate
the spatial derivatives (when required by the algorithms). The temporal derivatives
are estimated in a similar way, by first building local polynomials gm,q(t) of degree
10 using 300 neighboring data points and then taking their derivative. For noiseless
cases, all derivatives are computed via second-order finite difference.

The recovered velocity and diffusivity fields are evaluated over another set of grids
and then compared to the true values. We then report the relative `2 errors. The sets
of evaluation grids are uniform in 1D and tensor grids in 2D.

5.1. Example 1: Advection Equation. We first consider 1D advection equa-
tion

∂u(t, x)

∂t
= − ∂

∂x
(α(x)u(t, x)), (t, x) ∈ (0, 1]× (−4, 4), (5.1)

where

α(x) = α̃(1 + δ sin(ωx)), (5.2)
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with α̃ = 0.3, δ = 0.2, ω = π. The clean data of u is obtained by solving the equation
numerically with initial condition

u(0, x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , µ = 0, σ2 = 0.3.

The details of the numerical solver are listed in Table 5.1. Our data of u are uniformly

Table 5.1
PDE solver information for convection equation in Example 1.

data u time domain [0, 1]
data u space domain [−4, 4]
boundary condition Dirichlet condition

scheme in time Crank-Nicolson
time step size ∆t 10−4

scheme in space Chebyshev collocation
collocation number Ncoll 100

sampled 50 points in time, and over 50 Gauss points in space, along with 2 boundary
points. Our goal is to recover α(x). We choose polynomial space P50

1 as testing space.
We first consider clean noiseless data case. On the left of Fig. 5.1, the clean data

u(0, x) and u(1, x) are presented. On the right of Fig. 5.1, the relative errors in our
recovered αn(x) versus its polynomial order n are shown. We observe exponential
decay of errors before they saturate after n > 10. The comparison of exact and
recovered α are shown in Fig. 5.2, for n = 6 and n = 30.

Next we consider noisy data case. We add i.i.d. Gaussian noise N (0, ε2) to clean
data u, where ε = 10−3 and 10−4. The comparison of filtered and unfiltered results is
shown in Fig. 5.3. We clearly observe that filtered results perform significantly better
than the unfiltered results, with errors one order of magnitude smaller. This example
demonstrates the necessity of employing filtering for noisy data.
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Fig. 5.1. Example 1 with noiseless data. Left: Solution state u; Right: Relative errors in the
recovered αn(x) vs. polynomial order n.

5.2. Example 2: Diffusion Equation. We now consider a 1D diffusion equa-
tion

∂u(t, x)

∂t
=

∂

∂x

(
κ(x)

∂u(t, x)

∂x

)
, (5.3)
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Fig. 5.2. Example 1 with noiseless data. Left: recovered αn when n = 6; Right: Recovered
alphan(x) withn = 30.
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Fig. 5.3. Example 1 with noise N (0, ε2) in data. Relative errors in the recovered αn(x) vs.
polynomial order n.

where

κ(x) = κ̃
(

2 + δ cos(ωx) + 2δ sin
(ω

2
x
)

+ δ2ex
)
, (5.4)

with κ̃ = 0.3, δ = 0.1, ω = 4π. The initial condition is set as

u(0, x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , µ = 0, σ2 = 0.2.

The details of our numerical solver are listed in Table 5.2. Upon solving the equation,
we collect solution data over 50 uniform points in the temporal domain and 50 Gauss
points plus 2 boundary points in the spatial domain. We then choose P50

1 as the
polynomial space to recover κ(x).

We first consider noiseless clean data case. On the left of Fig. 5.4, we plot the
recovered κn(x) with polynomial order n = 30, along with the true exact κ(x). On the
right of Fig.5.4, we plot error convergence and observe fast exponential error decay.

We then consider noisy data, with noise level at ε = 10−3, 10−4, 10−5. The com-
parison is shown in Fig. 5.5, between recovery with filtering and without filtering. It
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Table 5.2
PDE solver information for diffusion equation in Example 2.

data u time domain [0, 0.3]
data u space domain [−3, 3]
boundary condition Dirichlet condition

scheme in time Crank-Nicolson
time step size ∆t 10−4

scheme in space Chebyshev collocation
collocation number Ncoll 150
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Fig. 5.4. Example 2: Recovery of κ(x) with noiseless data. Left: Result with n = 30; Right:
Error vs. polynomial order n.

is clearly seen that the recovery results with filtering are noticeably more accurate
than those without filtering.

It should be mentioned that the results shown so far are obtained via the Galerkin
method. We then compare the Galerkin method and collocation method for this ex-
ample, with noisy data at noise level ε = 10−4. Filtering is applied in both approaches.
The results are shown in Figs. 5.6 and 5.7. Fig. 5.6 shows the results obtained with
high-order polynomial of degree n = 30. While the Galerkin method produces highly
accurate recovery result, the results by collocation method show visible errors and are
unsatisfactory. The error convergence with respect to increasing polynomial order is
shown in Fig. 5.7. We can see that the collocation method fails to converge properly
as the Galerkin method does. The primary reason for the lack of accuracy in the col-
location method is because it requires derivative estimation in the solver. Computing
derivatives with noisy data inevitably induces additional numerical errors. On the
other hand, the Galerkin method avoids much of the derivative requirement due to
its weak formulation and is able to maintain high accuracy.

5.3. Example 3: 1D Convection-Diffusion Equation. We now consider a
1D advection-diffusion equation

∂u(t, x)

∂t
= − ∂

∂x
(α(x)u(t, x)) +

∂

∂x

(
κ(x)

∂u(t, x)

∂x

)
, in (0, 1]× (−1, 1), (5.5)

where

α(x) = α̃
(

1 + δ sin(ωx) + 2δ cos(
ω

2
x)
)
,

κ(x) = κ̃ (1 + δ cos(ωx)) ,
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Fig. 5.5. Example 2: Comparison of recovery results with filtering and without filtering, using
noisy data at different noise levels.
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Fig. 5.6. Example 2: κ recovery using polynomial order n = 30 with noisy data of noise level
using ε = 10−4. Filtering applied. Left: Galerkin method; Right: Collocation method.

with α̃ = 1, κ̃ = 0.5, δ = 0.2, ω = 10π. The data set is obtained by solving the
equation numerically with initial condition

u(0, x) = sin(πx)− 2e−100(x−0.5)
2

+ e−100(x+0.5)2 .

Details of the numerical solver are listed in Table 5.3. Data are collected over 50
uniform grids in the temporal domain and 200 Gauss point plus the 2 boundary
points in the spatial domain. Our goal is to recover the velocity field α(x) and the
diffusivity field κ(x). We use P60

1 as approximation and testing space.
The recovery result for noiseless data is shown in Fig. 5.8. We observer excellent

visual agreement between the recovered α(x), κ(x) and their true counterparts. Closer
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Fig. 5.7. Example 2: noisy data with noise level ε = 10−4. Filtering applied. Error vs.
polynomial order.

Table 5.3
PDE solver information for convection-diffusion equation in Example 3.

data u time domain [0, 1]
data u space domain [−1, 1]
boundary condition periodic condition

scheme in time Crank-Nicolson
time step size ∆t 10−5

scheme in space Fourier collocation
collocation number Ncoll 200

examination reveals that the relative errors are 2.9335× 10−8 for α(x) and 3.4908×
10−8 for κ(x). The results obtained with noisy data are not shown, as they are visually
similar to the noiseless case and with errors dominated by the input data noise.
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Fig. 5.8. Example 3 with noiseless data. Left: recovered α(x); Right: recovered κ(x).
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5.4. Example 4: Viscous Burgers’ Equation. We now consider the 1D vis-
cous Burgers’ equation

∂u(t, x)

∂t
= − ∂

∂x

(
α(x)

u(t, x)2

2

)
+

∂

∂x

(
κ(x)

∂u(t, x)

∂x

)
, in (0, 0.2]× (−1, 1), (5.6)

where

α(x) = 1, κ(x) = κ̃ (1 + δ cos(ωx)) ,

with κ̃ = 0.1, δ = 0.2, and ω = 3π. The initial condition is set as u(0, x) = − sin(πx).
This nonlinear equation represents a departure from the linear advection-diffusion

equation discussed in the paper. Although our theoretical results do not apply here,
the proposed numerical approaches still apply. We focus on noiseless data case by
Galerkin method. Similar to the other examples, data are collected over 50 uniform
grids in the temporal domain and 100 Gauss point plus boundaries in the spatial
domain. Polynomial space of P40

1 is used as the approximation and testing space for
both α(x) and κ(x). The recovered results are shown in Fig. 5.9. Good agreement
with the true α(x) and κ(x) can be seen. The relative errors are 9.7347 × 10−5 for
α(x) and 4.0632× 10−5 for κ(x).
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Fig. 5.9. Example 4 with noiseless data and polynomial order n = 40. Left: recovery of α;
Right: recovery of κ.

5.5. Example 5: 2D Advection-Diffusion Equation. We finally consider a
2D advection-diffusion equation

∂u

∂t
(t,x) = −∇ · (αu) +∇ · (κ∇u), in (0, 4]× (−1, 1)2, (5.7)

where

α(x) = (α̃xy(1 + δα sin(ωx)),−α̃yx(1 + δα sin(ωy)))
>
,

κ(x) = κ̃ (3 + δκ sin(ωx) + δκ cos(ωy)) ,

with α̃x = 1, α̃y = 1, δα = 0.1, κ̃ = 0.02, δκ = 1, and ω = π. The initial condition is
set as

u(0, x, y) =
1√

(2π)2σ2
xσ

2
y

e

(
− 1

2
(x−µx)2

σ2x
− 1

2

(y−µy)2

σ2y

)
,
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with µx = µy = −0.5, σ2
x = σ2

y = 0.2. The details of the numerical solver are in
Table 5.4. The solutions of the state variable at the initial and final time are shown
in Fig. 5.10, for demonstration purpose.

Table 5.4
PDE solver information for 2-D convection-diffusion equation in Example 5.

data u time domain [0,4]

data u space domain [−4, 4]
2

boundary condition Dirichlet condition
scheme in time Crank-Nicolson

time step size ∆t 10−3

scheme in space Fourier collocation
collocation number Ncoll tensor points 80× 80
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Fig. 5.10. Example 5: State variable u at Initial and final stage.

To recover α(x) and κ(x), we collection solution data over 200 uniformly dis-
tributed grids in the temporal domain and 80× 80 tensor Gauss points in the interior
of the spatial domain, along with 80 Gauss points on each of the boundary edges. We
use P8

2 as approximation and testing space.
The recovered results for α(x) = (α1(x), α2(x))> and κ(x) are shown in Fig. 5.11,

obtained via Galerkin method using noiseless data. Visual comparison with the true
functions shows good agreement. More detailed examination shows that the relative
errors in the recovered solutions are 5.5235×10−4 for α1(x), 4.0274×10−4 for α2(x),
and 6.9119 × 10−4 for κ(x). Results of noisy data case are not shown, as they are
visually similar to the noiseless case and with errors dominated by the data noise.

6. Conclusion. In this paper, we studied the problem of identifying unknown
parameter functions embedded in time-dependent partial differential equations (PDEs)
using observational data of the state variables. Using linear advection-diffusion type
equations, we conducted theoretical analysis on the solvability of the problem and
derived conditions under which unique recovery can be obtained. We then presented
numerical approaches applicable for general PDEs. Two types of approaches, Galerkin
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Fig. 5.11. Example 5: Comparison of true (left column) and recovered (right column) parameter
functions. From top to bottom α1(x), α2(x) and κ(x).
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and collocation, are presented. While the collocation approach is straightforward to
implement, the Galerkin method is preferred because its use of weak form avoids the
use of much spatial derivatives of the state variables. In many practical cases when
only data of the state variables are available, estimating derivatives often induce ad-
ditional errors, especially when data contain noises.
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