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Abstract

This note proposes an efficient preconditioner for solving linear and semi-linear parabolic
equations. With the Crank-Nicholson time stepping method, the algebraic system of equations
at each time step is solved with the conjugate gradient method, preconditioned with hierarchical
interpolative factorization. Stiffness matrices arising in the discretization of parabolic equations
typically have large condition numbers, and therefore preconditioning becomes essential, espe-
cially for large time steps. We propose to use the hierarchical interpolative factorization as
the preconditioning for the conjugate gradient iteration. Computed only once, the hierarchi-
cal interpolative factorization offers an efficient and accurate approximate inverse of the linear
system. As a result, the preconditioned conjugate gradient iteration converges in a small num-
ber of iterations. Compared to other classical exact and approximate factorizations such as
Cholesky or incomplete Cholesky, the hierarchical interpolative factorization can be computed
in linear time and the application of its inverse has linear complexity. Numerical experiments
demonstrate the performance of the method and the reduction of conjugate gradient iterations.

Keywords: hierarchical interpolative factorization; parabolic equations; heat equation;
reaction-diffusion equations

1 Introduction

This note is concerned with the numerical solution of parabolic equations of the form

∂u(x,t)

∂t
=∇·

(
a(x)∇u(x)

)
+r
(
u(x,t)

)
, x∈Ω⊂Rd, (1.1)

in two and three dimensions, with appropriate boundary conditions on ∂Ω and initial conditions
u(x,0) =u0(x). Here, a(x)>0 is the coefficient field of the diffusion operator and r

(
u(x,t)

)
is

the reaction term. We are interested on approximating the unknown field u(x,t). Such reaction-
diffusion equations can model a great variety of physical phenomena, such as heat conduction with
internal heat generation, population dynamics [7, 18] or pattern formation [24] in biology.

The most common spatial discretizations for solving (1.1) are finite difference and finite element
methods. Such a spatial discretization results in a time-dependent system of form

∂u(t)

∂t
=Mu(t)+r(t), (1.2)
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where u(t)∈RN and r(t)∈RN are the spatial discretizations of u(x,t) and r
(
u(x,t)

)
at time t,

respectively, and N is the number of degrees of freedom (DOFs) in the spatial discretization. The
stiffness matrix M ∈RN×N is the discretization of the diffusion term.

The classical approach to solve (1.2) consists of discretizing in time and evolving the numerical
solution at successive time steps using a time marching method. For instance, an explicit scheme
to approximate the solution at every time step successively can be obtained by using the forward
Euler method in time,

uk+1 = (I+M∆t)uk+∆t ·rk.

However, such an approach would require selecting a very small time step ∆t in order to satisfy
the stability condition ∆t≤ 1

2∆x2 maxx∈Ωa(x), where ∆x is the spacing of the spatial grid.
Alternatively, one can overcome the stability condition and use larger time steps by using an

implicit scheme such as the first-order backward Euler or the second-order Crank-Nicolson methods,
which are unconditionally stable. However, such methods introduce another challenge by requiring
to solve a system of equations at each time step. This note focuses on the Crank-Nicolson method(

I−∆t

2
M

)
uk+1 =

(
I+

∆t

2
M

)
uk+∆t ·rk. (1.3)

There are several ways to solve the system of equations. The most direct way is to use exact factor-
ization methods, such as Cholesky decomposition, which would be prohibitively expensive for large
problem sizes. Alternatively, one can use iterative methods such as conjugate gradient (CG) which
takes O(nnz(M)) =O(N) cost per iterations. However, since the matrix I− ∆t

2 M is typically ill-
conditioned, the number of iterations can be quite large, thus requiring the use of a preconditioner.
Finding a good preconditioner is itself a challenging task that has been vastly studied in the litera-
ture. Among others, we highlight here the incomplete Cholesky factorization [20] and multifrontal
method based algorithms coupled with hierarchical matrices [28] and skeletonization [2,5,8,9,13,17].

The main goal of this note is to describe a new efficient preconditioner based on a version of the
hierarchical interpolative factorization (HIF) described in [5] to reduce the number of CG iterations
at each time step. Due to the accuracy and efficiency of this version of HIF, the preconditioned
CG iteration at each time step converges in a small number of iterations. We demonstrate the
effectiveness of this approach of solving (1.1) by studying several 2d and 3d numerical examples.

Other approaches. In recent years, several exponential integrator based models for time dis-
cretization have been proposed to solve parabolic equations, based on the integration factor
method [16] and the exponential time differencing method [15,29].

Boundary integral formulations provide an alternative to the PDE-based approach. In the case
where the diffusion coefficient a(x) is constant, one can make use of parabolic potential theory
[22,25] to obtain a boundary integral equation including time convolution of the form

u(x,t) =

∫
Ω(0)

G(x−y,t)u0(y)dy+

∫ t

0

∫
Ω(τ)

G(x−y,t−τ)r(y,τ)dydτ , (1.4)

where G(x,t) is the free-space Green’s function for the heat equation in d dimensions

G(x,t) =
e−‖x‖

2/4t

(4πt)d/2
. (1.5)
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One can then use fast algorithms to evaluate layer potentials, such as the hierarchical interpolative
factorization [14], the fast multipole method [10] as done by Messner et al. [21] or the fast Gauss
transform [11, 23] used by Wang et al. [26] in this context. Other works include [1, 27]. This
approach has many advantages, such as time stability, reduction of DOFs to the boundary and
the availability of fast linear algorithms for the evaluation of the layer potentials. However, so far,
the classical potential theory is restricted to the set of reaction-diffusion equations with constant
coefficients.

2 Algorithm

This section reviews the version of HIF introduced in [5] and then describes the new preconditioner.
Throughout the note, the following notation are used: the uppercase letters (A, F , M , etc.) denote
matrices; the calligraphic letters (I, B, R, etc.) denote sets of indices, associated to DOFs; AIB
refers to the restriction of A to the |I|×|J | submatrix with rows indexed by I and columns indexed
by B; the notation {Ii}pi=1 represents a collection of p disjoint sets of indices Ii for i= 1,. ..,p.

Consider the PDE (1.1) on Ω = (0,1)2 with the Dirichlet boundary conditions and initial con-
dition u(x,0) =u0(x). We perform finite difference dicretization via the standard five-point stencil
over a uniform grid with step size h, resulting in N = (n−1)2 DOFs, with n= 1/h= 2Lm for some
integers L and m. Each DOF corresponds to the solution uj =u(xj) at grid points xj = (hj1,hj2),
with j= (j1,j2) and 1<j1,j2<n−1. The resulting matrix M corresponding to the discretization
of the diffusion term ∇a(x)∇ in (1.1) is sparse and symmetric negative definite.

2.1 Crank-Nicolson scheme

Since the diffusive term is the leading term, we use the Crank-Nicolson scheme for the diffusive
term and an explicit scheme for the reaction term, with time step ∆t. This leads to the algebraic
system of equations (1.3), which can be solved successively to evolve the numerical solution at
future time steps,

uk+1 =

(
I−∆t

2
M

)−1[(
I+

∆t

2
M

)
uk+∆t ·rk

]
. (2.6)

Since the unconditionally stable Crank-Nicolson scheme is second order in time and space, it allows
for larger time steps than Backward or Forward Euler methods. Since A= I− ∆t

2 M is sparse and
symmetric-positive-definite (SPD) one can use conjugate gradient to solve (2.6) as opposed to
classical direct solvers which are more expensive. However, the number of iterations scale with
κ(A), the condition number of A. For small time steps, κ(A) may be close to 1. However, for the
large time steps adopted here, κ(A) is comparable to the condition number of M , which is quite
large as M is ill-conditioned. Preconditioning then becomes an essential step in order to reduce
the number of CG iterations. The HIF has been shown to significantly reduce the number of CG
iterations for the Poisson equation with variable coefficient [5] and we apply it to precondition
A= I− ∆t

2 M .

2.2 Recursively preconditioned hierarchical interpolative factorization

Here we briefly review the recursively preconditioned hierarchical interpolative factorization (PHIF)
proposed in [5], which is an improved version of the original HIF described in [13]. Given a sparse
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SPD matrix A, PHIF produces a fast factorization that can be seen as a multilevel generalized
Cholesky decomposition, which alternates among block Gaussian elimination, block Jacobi precon-
ditioning and skeletonization at different levels.

One starts by defining a uniform quad-tree with L levels, that partitions the domain Ω into
p`= 2L−`×2L−` square cells at each level `= 0,1,. ..,L. The leaves correspond to level `= 0 and the
root to level `=L. Throughout the factorization we denote active DOFs the DOFs that have not
yet been decoupled. We set A0 =A and start factorizing the matrix by decoupling DOFs starting
from the leaves level `= 0 up to level L−1 with the following three steps at each level `:

(1) Cell elimination. For each cell 1<i<p` at level ` we decouple the interior active DOFs
indexed by I`,i as follows. Up to a permutation matrix A` can be written as

A`=

AI`,iI`,i ATBI`,iABI`,i ABB ATRB
ARB ARR

, (2.7)

where I`,i represents the DOFs inside that cell, B the DOFs on the boundary (i.e. edges and
corners of the cell), and R the remaining DOFs. For clarity purposes, hereafter we use sub-
index ` to denote matrices at level ` and drop the sub-index ` when referring to a particular
block of the matrix, for instance we use ABB to refer to A`BB . Let AI`,i,I`,i =LI`,iL

T
I`,i , Gaussian

elimination leads to

MT
I`,iA`MI`,i =

I XBB ATRB
ARB ARR

, MI`,i =

L−TI`,i −A−1
I`,iI`,iA

T
BI`,i

I
I

, (2.8)

where XBB=ABB−ABI`,iA
−1
I`,iI`,iA

T
BI`,i .

Performing block eliminations for each cell 1<i<p` at level ` of the quadtree leads to

Ā`=MT
` A`M`, M`=

p∏̀
i=1

MI`,i . (2.9)

After block elimination with respect the collection of index sets {I`,i}p`i=1, the DOFs inside
the cells have been decoupled from those in the edges and corners at level `. Therefore,
the remaining active DOFs are those in the edges and corners and we only need to continue
factorizing the matrix Ā` restricted on these active DOFs.

(2) Block Jacobi preconditioning. Let r` be the number of edges and corners at level `, and
{I`,i}r`i=1 be the collection of corresponding index sets for the active DOFs. For a given edge
or corner i, up to a permutation, Ā` can be written as

Ā`=

ĀI`,iI`,i ĀTBI`,iĀBI`,i ĀBB ĀTRB
ĀRB ĀRR

, (2.10)
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where I`,i represents the DOFs in the edge/corner i, B the DOFs on the edges and corners
connected to edge/corner i in Ā`, and R the remaining active DOFs. Then a rescaling of
edge/corner i can be performed using the Cholesky decomposition ĀI`,iI`,i =LI`,iL

T
I`,i as

CTI`,iĀ`CI`,i =

 I L−1
I`,iĀ

T
BI`,i

ĀBI`,iL
−T
I`,i ĀBB ĀTRB

ĀRB ĀRR

, CI`,i =

L−TI`,i I
I

∈RN×N , (2.11)

If we perform this preconditioning for each edge and corner in level `, we obtain a block Jacobi
preconditioning that yields

Ã`=CT` Ā`C`, C`=

r∏̀
i=1

CI`,i , (2.12)

where C` is a block diagonal matrix, up to a permutation, since {I`,i}r`i=1 is a collection of

disjoint index sets. The diagonal blocks of the resulting matrix Ã` are identity matrices and
the set of active DOFs remains unchanged.

(3) Edge skeletonization. Let q` be the number of edges at level `, and {I`,i}q`i=1 the collection
of corresponding index sets.

For a given edge i with DOFs indexed by I`,i skeletonization is performed as follows. For clarity
we drop the subindex in I`,i in the remainder of the explanation for the edge skeletonization
step. Up to a permutation one can write

Ã`=

[
I ÃTRI

ÃRI ÃRR

]
(2.13)

where I are the DOFs in edge i at level ` and R are the rest of active DOFs. Assume
ÃRI ∈RNR×NI has numerical rank k to relative precision ε. Then, we can use interpolative
decomposition (ID) [3], to get a partition of I= Ĩ ∪Î into skeleton Î and redundant Ĩ DOFs,
and approximate the redundant columns of ÃRI by a linear combination of its skeleton columns
such that

ÃRĨ = ÃRÎTI+EI , ‖EI‖=O(ε‖ÃRI‖), (2.14)

with TI ∈Rk×(NI−k). Up to a permutation, using ID we can approximately zero out the redun-
dant columns leading to

ZTI Ã`ZI ≈

 I+T TI TI −T TI
−TI I ÃTRÎ

ÃRÎ ÃRR

, ZI =

 I
−TI I

I

∈RN×N , (2.15)

Now, we can decouple redundant DOFs Ĩ in the edge by performing Gaussian elimination using
the Cholesky decomposition I+T TI TI =LÎL

T
Î ,

MT
Ĩ Z

T
I Ã`ZIMĨ ≈

 I XÎÎ ÃTRÎ

ÃRÎ ÃRR

, MI =

L−TÎ (I+T TI TI)
−1T TI

I
I

 (2.16)
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with XÎÎ = I−TI(I+T TI TI)
−1T TI .

Performing skeletonization for each edge i with set of indices I`,i gives

A`+1≈KT
` Ã`K`, K`=

q∏̀
i=1

KI`,i , KI`,i =ZI`,iMI`,i . (2.17)

The remaining active DOFs are now the skeleton DOFs in the edges and the corners at level
`. We can now move to the following level on the tree and perform the same three steps.

After performing these three steps for all levels `= 0,. ..,L−1, i.e. once we are in the root level
of the tree, the resulting matrix is

AL≈RTL−1 ·· ·RT0 AR0 ·· ·RL−1, R`=M`C`K` (2.18)

which is everywhere the identity except in the block indexed by the remaining active DOFs at the
root level. As opposed to the nested dissection multifrontal factorization, the frontal matrix at
the root is small since sparsification on the separator fronts has been performed throughout all the
levels. Now, we can approximate the original matrix as

A≈F =R−T0 ·· ·R
−T
L−1ALR

−1
L−1 ·· ·R

−1
0 , (2.19)

and its inverse as

A−1≈F−1 =R0 ·· ·RL−1A
−1
L RTL−1 ·· ·RT0 . (2.20)

The factors R`=M`C`K` are easily invertible since M`,C`,K` are block diagonal up to a permu-
tation, with each block being triangular. Therefore, the factorization can be viewed as a generalized
Cholesky decomposition.

In the 3d case, the algorithm for PHIF is similar to the 2d case, except for a few details.
Instead of square cells, the domain is partitioned into cube cells. At each level `, Block Jacobi
preconditioning is performed in faces, edges and corners, while skeletonization is performed on
faces (although it can also be performed in edges to lower the computational complexity of the
factorization).

See Figures 1 and 2 for an illustration of the active DOFs at different steps and levels of the
factorization process in 2d and 3d respectively. The Block Jacobi preconditioning step has been
omitted in the illustrations because it doesn’t change the active DOFs.

2.3 Crank-Nicolson scheme with PHIF preconditioned CG

We now proceed to describe the algorithm for evolving the numerical solution of 1.1. First, we
compute the PHIF factorization F ≈A= (I− ∆t

2 M). Since A is a sparse SPD matrix, the PHIF
can be computed in linear time to obtain F−1≈A−1, and matrix-vector multiplications with F−1

require only O(N) work.
In each time step of the Crank-Nicolson method, the linear system of equation (1.3) is solved

by CG, with F−1 in its factorized form (2.20) used as the preconditioner. The algorithm is pre-
sented in Algorithm 1, where pcg(A,b,P ) represents the preconditioned conjugate gradient with
preconditioner P that attempts to solve for Ax= b.
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`= 0 cell elimination `= 0 skeletonization `= 1 cell elimination

`= 1 skeletonization `= 2 cell elimination `= 2 skeletonization

Figure 1: Active DOFs at each level ` of PHIF in 2d, depicted with black dots. The square cells
and edges at each level, from which DOFs have been eliminated, are represented in gray for cell
elimination and skeletonization steps respectively.
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of a cubic cell before and after skeletonization, with skeleton DOFs represented by hollow circles.
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Algorithm 1: Numerical solution of reaction-diffusion equations

Construct PHIF F for A= (I− ∆t
2 M) with some tolerance ε;

Initialize u0 =u0;
for k= 1 :nsteps do

g= (I+ ∆t
2 M)uk−1 +∆t ·rk−1;

uk = pcg(A,g,F−1) (see (2.20) for the factorization of F−1)
end

3 Numerical Results

In this section, we demonstrate the performance of PHIF preconditioning for parabolic equations by
solving two examples of equation (1.1): the heat equation and a logistic reaction-diffusion equation.
The PHIF preconditioning is compared with incomplete Cholesky preconditioning in terms of the
following quantities

• mem: the memory usage for PHIF and incomplete Cholesky factorizations;

• tf : the factorization time;

• ts: the average solve time for one time step, obtained from averaging over 100 time steps;

• ni: the number of CG iterations averaged over 100 time steps, with the relative residual equal
to 10−12.

The only user-defined parameter in the PHIF factorization is the relative precision ε of the
interpolative decomposition, which is set to 10−3 and 10−6 in the numerical experiments. Similarly,
a drop tolerance ε is used for the incomplete Cholesky factorization.

The MATLAB code for PHIF used for the numerical experiments is a modified version of
FLAM [12] to account for the block Jacobi preconditioning.

Example 1: the heat equation. Consider first the 2d heat equation

∂u(x,t)

∂t
=∇·(a(x)∇u(x,t)), x∈Ω = (0,1)2 (3.21)

with the zero Dirichlet boundary condition and the initial condition equal to the sum of two
Gaussians,

u0(x,y) =e−((x−c1)2+(y−c1)2)/σ2
+e−((x−c2)2+(y−c2)2)/σ2

, (3.22)

where c1 = 0.35, c1 = 0.65 and σ2 = 0.05. The diffusion coefficient field is set to

a(x,y)∼
m∑
i=1

e−((x−xi)2+(y−yi)2)/σ2
2 , (3.23)

rescaled and shifted to have values in the interval [0.1,10], with σ2
2 = 0.005, m= 100 and xi and yi

being i.i.d. random variables sampled from the uniform distribution U(0,1).
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The time step size is set to ∆t= ∆x= 1
N and the numerical solution is obtained for 100 successive

time steps. Note that we want to set ∆t on the order of ∆x to get a second order approximation.
Since Crank-Nicolson is unconditionally stable we can select a large time step, and since the initial
condition is smooth, we don’t observe numerical spurious oscillations.

The numerical solution is evolved by solving (2.6) at each time step using CG. The matrix
A= I− ∆t

2 M is especially ill-conditioned for large time steps, therefore preconditioning becomes
necessary to reduce the number of CG iterations. Numerical results in Table 1 show a decrease
on the number of CG iterations when using PHIF preconditioning instead of incomplete Cholesky
factorization, with the similar memory footprint. The computation time per time step is approxi-
mately halved with the use of PHIF compared to incomplete Cholesky. Additionally, PHIF exhibits
constant and problem size independent number of CG iterations, while the number of CG iterations
for incomplete Cholesky scale with O(N1/4). This results in almost linear O(N) scaling of ts with
PHIF preconditioning and O(N1.25) scaling with incomplete Cholesky preconditioning. PHIF also
provides a good approximation to the inverse for ε= 10−6, thus one could use the factorization to
directly solve the system of equations and bypass CG. For instance with ε= 10−6 and N = 40952,
the PHIF factorization gives a solve error estimated as ‖I−AF−1‖= 7.9×10−6 with randomized
power iteration [4, 19] to 10−2 relative precision.

Table 1: Numerical results for the heat equation in 2d.

PHIF incomplete Cholesky
N ε mem tf ts ni ε mem tf ts ni

(GB) (s) (s) (GB) (s) (s)

5112 0.19 1.4e1 1.7 4.6 0.085 1.7e−1 1.6 58.5
10232 10−3 0.80 6.2e1 7.9 5.2 10−3 0.343 4.7e−1 1.2e1 97
20472 3.24 2.6e2 3.6e1 5.7 1.37 2.1 7.4e1 152.7
40952 13.0 9.1e2 1.7e2 5.8 5.50 7.7 4.6e2 226.8

5112 0.205 1.6e1 8.6e−1 2.3 0.335 1.4 1.1 11
10232 10−6 0.834 6.6e1 4.3 2.7 10−5 1.35 6.1 7.7 16.4
20472 3.36 2.9e2 2.1e1 3 5.4 2.6e1 4.3e1 24.5
40952 13.5 9.8e2 7.9e1 3 21.6 1.1e2 2.7e2 38.2

Let us consider an analogous problem in three dimensions with Ω = (0,1)3 and the initial con-
dition equal to a Gaussian function,

u0(x,y,z) =e−((x−c)2+(y−c)2+(z−c)2)/σ2
, (3.24)

where c= 0.5 and σ2 = 0.05. The coefficient field is generated by

a(x,y,z)∼
m∑
i=1

e−((x−xi)2+(y−yi)2+(z−zi)2)/σ2
2 (3.25)

rescaled and shifted to be within the interval [0.05,20], with σ2
2 = 0.005, m= 1000 and xi, yi and zi

being i.i.d. random variables sampled from the uniform distribution U(0,1). The time step is set
to ∆t= 0.1∆x.
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Numerical results are shown in Table 2. Similarly to the 2d example, PHIF leads to a reduction
of CG iterations when compared to the threshold-based incomplete Cholesky. For instance for
N = 2553 with a tolerance ε= 10−6, CG with PHIF takes an average of 3 iterations, while CG with
incomplete Cholesky takes 11. While the factorization time of PHIF is high for this 3d example, the
solve time per time step can be approximately halved with the use of PHIF as opposed to incomplete
Cholesky. For instance, the solve time per time step for PHIF is 1.8×102 with ε= 10−6, while for
incomplete Cholesky it is 3.8×102 for with ε= 10−4. Additionally, experimentally PHIF exhibits
constant number of CG iterations, while the number of CG iterations for incomplete Cholesky
increases with the problem size N . This results in better scaling of ts with PHIF preconditioning
than with incomplete Cholesky preconditioning, making PHIF better suited for large problem sizes.

Table 2: Numerical results for the heat equation in 3d.

PHIF incomplete Cholesky
N ε mem tf ts ni ε mem tf ts ni

(GB) (s) (s) (GB) (s) (s)

633 1.33 2.5e2 3.8 5.2 0.444 6.0 3.4 14.5
1273 10−3 14.1 3.2e3 3.7e1 5.9 10−4 3.66 1.9e1 2.6e1 22.9
2553 137 1.3e4 3.7e2 6 29.7 1.9e2 3.8e2 35

633 1.78 8.7e1 1.9 3 3.54 5.2e1 6.0 5.8
1273 10−6 21.2 1.5e3 2.0e1 3 10−6 29.2 8.2e2 8.1e1 8
2553 223 2.2e4 1.8e2 3 473 1.1e4 1.4e3 11

Example 2: a logistic reaction-diffusion equation. Consider now a 2d reaction-diffusion
equation with logistic growth

∂u(x,t)

∂t
=∇·(a(x)∇u(x,t))+k1u(x,t)

(
1− u(x,t)

k2

)
, x∈Ω = (0,1)2, (3.26)

with k1 = 1 and k2 = 10, the zero Dirichlet boundary conditions and initial condition

u0(x,y) =
2

3
√

2πσ2
e−((x−c)2+(y−c)2)/σ2

(3.27)

with c= 0.5, σ2 = 0.05. The coefficient field is set analogously to Example 1. This problem is run
with the same time step and the same number of time steps as in Example 1 and we observe no
numerical spurious oscillations in the numerical solution.

The results are summarized in Table 3. Similarly to Example 1, we observe a decrease on the
number of CG iterations ni and on the computation time per time step ts when preconditioning
with PHIF. The initial condition and diffusion coefficients are illustrated in Figure 3 together with
the numerical solution after 128 time steps for N = 40952 and the relative error of the numerical
solution u(k=128) for different problem sizes, which is close to second order asymptotically.

For the three dimensional case with Ω = (0,1)3, we generate the initial condition u0(x) and the
coefficient field in the same way as the 3d case from example 1, with a multiplicative factor of
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Table 3: Numerical results for the 2d logistic reaction-diffusion equation

PHIF incomplete Cholesky
N ε mem tf ts ni ε mem tf ts ni

(GB) (s) (s) (GB) (s) (s)

5112 0.19 1.4e2 2.3 5.1 0.085 1.5e−1 1.8 64.6
10232 10−3 0.81 5.7e1 8.7 5.6 10−3 0.343 5.7e−1 1.3e1 107.1
20472 3.24 2.3e2 5.0e1 6.5 1.37 2.4 8.7e1 167.1
40952 13.0 8.5e2 3.3e2 6.3 5.50 7.8 5.1e2 252.9

5112 0.205 1.5 9.2e−1 2.6 0.335 1.4 1.3 12.2
10232 10−6 0.834 6.0e1 4.3 3 10−5 1.347 6.2 8.6 18.5
20472 3.36 2.9e2 2.8e1 3.4 5.39 2.9e1 5.7e1 29.5
40952 13.5 9.8e2 1.9e2 4 21.5 1.2e2 3.2e2 40.8

(2πσ)−3/2 in (3.24) and m= 200. We also set the time step to ∆t= 0.1∆x and the solution is
evolved for 100 time steps.

Numerical results are shown in Table 4. The initial conditions, coefficient field, solution after 64
time steps for N = 2553 and relative error of the numerical solution u(k=64) for increasing problem
sizes are depicted in Figure 4. We observe that the error is close to second order asymptotically
and CG converges with very few iterations using PHIF, independently of N .

Table 4: Numerical results for 3d logistic reaction-diffusion equation

PHIF incomplete Cholesky
N ε mem tf ts ni ε mem tf ts ni

(GB) (s) (s) (GB) (s) (s)

633 1.31 1.7e2 4.1 5 0.443 2.4 1.6 14
1273 10−3 13.9 9.6e2 4.0e1 6 10−4 3.66 1.6e1 2.4e1 21
2553 135 1.2e4 3.7e2 6 29.7 1.5e2 3.6e2 32

633 1.76 1.8e2 2.1 3 2.77 3.0e1 4.2 5.7
1273 10−6 21.2 1.5e3 2.3e1 3 10−6 29.1 5.2e2 6.2e1 7
2553 223 2.3e4 1.9e2 3 237 7.6e3 8.6e2 10

4 Conclusions

This note proposed an efficient preconditioner for solving linear and semi-linear parabolic equations
based on the hierarchical interpolative factorization in [5]. The preconditioned CG iteration enjoys
several advantages: (1) it provides a good approximate inverse that can be applied very rapidly, (2)
one only needs to construct HIF factorization once at the beginning, and (3) applying the inverse
approximation at each time step has linear cost. Computing the factorization can be done in linear
time as opposed to other more expensive factorizations such as Cholesky or incomplete Cholesky.
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Figure 3: Initial conditions (a), coefficient distribution (b), numerical solution (c) and relative
error plot (d) for the 2d logistic reaction-diffusion equation.

Well-suited for ill-conditioned matrices associated with large time steps, the new preconditioner
reduce the number of CG iterations significantly.

This approach can also be extended to solve other parabolic equations, for instance the time-
dependent fourth-order differential equations for studying the buckling plate or the clamping plate
problems in the plate theory [6]. In such cases, HIF needs to use separators twice as wide, when
using the 9-point and 13-point finite differences stencils in 2d and 3d, respectively.

If the PDE has time-dependent coefficients or moving geometries, instead of constructing the
PHIF factorization once at the beginning, one would need to compute the factorization at each
time step. Such a computation can be expensive, especially for 3d geometries. However, if the
coefficients change slowly with time, one can reuse the result by computing the factorization once
every few time steps.
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Figure 4: Initial conditions (a), coefficient distribution (b), numerical solution (c) and relative
error plot (d) for the 3d logistic reaction-diffusion equation.
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