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Abstract

In this paper, we present analytic formulas of the temporal convolution kernel functions in-
volved in the time-domain non-reflecting boundary condition (NRBC) for the electromagnetic
scattering problems. Such exact formulas themselves lead to accurate and efficient algorithms
for computing the NRBC for domain reduction of the time-domain Maxwell’s system in R3.
A second purpose of this paper is to derive a new time-domain model for the electromag-
netic invisibility cloak. Different from the existing models, it contains only one unknown field
and the seemingly complicated convolutions can be computed as efficiently as the temporal
convolutions in the NRBC. The governing equation in the cloaking layer is valid for gen-
eral geometry, e.g., a spherical or polygonal layer. Here, we aim at simulating the spherical
invisibility cloak. We take the advantage of radially stratified dispersive media and special
geometry, and develop an efficient vector spherical harmonic (VSH)-spectral-element method
for its accurate simulation. Compared with limited results on FDTD simulation, the pro-
posed method is optimal in both accuracy and computational cost. Indeed, the saving in
computational time is significant.

Keywords: Maxwell’s system, electromagnetic wave scattering, anisotropic and dispersive
medium, non-reflecting boundary condition, convolution, invisibility cloaking.

1. Introduction

Numerical simulation of electromagnetic wave propagations in anisotropic and dispersive
medium is of fundamental importance in many scientific applications and engineering designs.
The model problem of interest is the time-dependent three-dimensional Maxwell’s system:{

∂tD(r, t)−∇×H(r, t) = J(r, t) in R3, t > 0, (1.1a)

∂tB(r, t) +∇×E(r, t) = 0 in R3, t > 0, (1.1b)
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with the constitutive relations

D = ε0εE, B = µ0µH, (1.2)

where r = (x, y, z) ∈ R3, E,H are respectively the electric and magnetic fields, D,B are the
corresponding electric displacement and magnetic induction fields, and J is the electric current
density. In (1.2), ε0, µ0 are the electric permittivity and magnetic permeability in vacuum
and ε,µ are the relative permittivity and permeability tensors of the material. Throughout
the paper, we denote c = 1/

√
ε0µ0 and η =

√
µ0/ε0. Without loss of generality, we assume

that the inhomogeneity or dispersity of the medium is confined in a bounded domain Ω and
J is compactly supported. As illustrated in Figure 1.1, both Ω and supp(f) are contained in
a ball Ωb of radius b. The Maxwell’s system (1.1) is supplemented with the initial conditions:

E(r, 0) = E0(r), H(r, 0) = H0(r) in R3, (1.3)

where E0 and H0 are also assumed to be compactly supported in the ball Ωb. As usual,
we impose the far-field Silver-Müller radiation boundary condition on the scattering fields:
Esc = E −Ein and Hsc = H −H in as follows

∂tE
sc
T − η ∂tHsc × r̂ = o(|r|−1) as |r| → ∞, t > 0, (1.4)

where r̂ = r/|r|, and Esc
T := r̂ ×Esc × r̂ is the tangential component of Esc. Here, Ein,H in

are the incident fields.
Despite its seemly simplicity, the system (1.1)-(1.4) is notoriously difficult to solve nu-

merically. Some of the major numerical issues are (i) unboundedness of the computational
domain; (ii) the incompressibility implicitly implied by (1.1) (i.e., div(D) = div(B) = 0); and
(iii) the coefficients ε and µ might be singular or frequency-dependent (see (3.1) and (3.3)).
In this paper, we shall address all these three aspects.

In regards to the first issue, the method of choice typically includes the perfectly matched
layer (PML) technique [5] or the artificial boundary condition [8, 11, 12]. In particular, the
latter is known as the absorbing boundary condition (ABC), if it leads to a well-posed initial-
boundary value problem (IBVP) and the reflection near the boundary is controllable. Ideally,
if the solution of the reduced problem coincides with that of the original problem, then the
underlying artificial boundary condition is called a transparent (or nonreflecting) boundary
condition (TBC) (or NRBC).

In this paper, we resort to the NRBC to reduce the problem (1.1)-(1.4) to an IBVP inside
a spherical bounded domain Ωb := {r : |r| < b}:

∂tD −∇×H = J ; ∂tB +∇×E = 0 in Ωb, t > 0, (1.5a)

E = E0, H = H0 in Ωb, t = 0, (1.5b)

∂tET − η∂tH × r̂ −Tb[E] = ∂tE
in
T − η∂tH in × r̂ −Tb[E

in] := h at r = b, (1.5c)

where the NRBC (1.5c) involves the capacity operator Tb to be specified in Theorem 2.1. It
is important to point out that the NRBC is formulated upon the scattering fields Esc,Hsc,
so h inevitably contains Tb[E

in]. As such, it is rather complicated to implement and compu-
tationally time-consuming due to the involvement of the vector spherical harmonics (VSH)
expressions of Ein and history dependence in time induced by the temporal convolution (see
(2.7) and Remark 2.2). To avoid the serious problem of high costs of computing h, we in-
stead solve the total fields in the subdomain Ωb0 := {r : r < b0} ⊆ Ωb (see Figure 1.1), and
compute the outgoing scattering fields in a narrow spherical shell Ωb \Ωb0 . More precisely, we
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reformulate (1.5) as

∂tD −∇×H = J , ∂tB +∇×E = 0, r < b0, t > 0, (1.6a)

∂tD
sc −∇×Hsc = J , ∂tB

sc +∇×Esc = 0, b0 < r < b, t > 0, (1.6b)

(E −Esc)× r̂ = Ein × r̂; (H −Hsc)× r̂ = H in × r̂, at r = b0, t > 0, (1.6c)

∂tE
sc
T − η∂tHsc × r̂ −Tb[E

sc] = 0, at r = b, t > 0, (1.6d)

E = E0, H = H0, 0 < r < b0, E
sc = Esc

0 , H = Hsc
0 , b0 < r < b, t = 0. (1.6e)

As a consequence, the NRBC (1.6d) depends solely on the scattering fields, which leads to
more efficient algorithm. Note that (1.6c) is obtained from the classic transmission conditions
(see, e.g., [31, Sec. 1.5] and [26]), that is, the continuity of the tangential components of the
total fields E and H at the artificial interface r = b0.

0b

b

0 0

0  0 

E H

scE scHinE inH



0 0

Figure 1.1: An illustration of the geometry

One of the main purposes of this paper is devoted
to deriving new formulas of the NRBC by using the
compact VSH expansion of the scattering field. For
the convolution kernel in the NRBC, an explicit ex-
pression in time domain is obtained based on a direct
inversion of the Laplace transform (see Theorem 2.2
below). As shown in [3, 40], the explicit expressions
of NRBKs allow for a rapid and accurate evaluation
of the convolution in NRBC.

The second main purpose of this paper is to
propose an accurate and efficient numerical method
for the simulation of the electromagnetic invisibility
cloaks by using the new NRBC formula and the com-
pact VSH expansion. Transformation optics origi-
nated from the seminal works [33, 18] offers an effective approach to design novel and unusual
optical devices such as the invisibility cloaks (see, e.g., [33, 9]), superlens (see, e.g., [42, 39])
and beam splitters (see, e.g., [34]), etc. Numerical simulation plays a crucial role in modelling
of the electromagnetic wave interaction with these devices since it serves as a reliable tool to
the justification of expensive physical experiments and validation of theoretical predictions.
Over the recent years, intensive simulations and analysis have been devoted to the frequency
domain (see, e.g., [7, 35, 46, 47, 25, 17, 44, 45]). Due to the fact that metamaterials used
for manufacturing such kind of devices are unavoidably dispersive (cf. [32]), i.e., ε and µ
are frequency-dependent, time-domain mathematical models and simulations of anisotropic
and dispersive electromagnetic devices are of fundamental importance. However, only lim-
ited works are available for the time-domain simulations including the FDTD [48, 49, 29]
and the FETD [19, 21, 22, 43, 24]. Because of the computational complexity, so far the
numerical simulation of spherical cloaking structures has only been examined by [49] with a
parallel implementation of FDTD method. In this paper, we propose a new formulation of
the spherical cloak model in the time domain using the Drude dispersion model (cf. [31]).
This new formulation allows us to use the symmetry of the problem together with the com-
pact VSH expansions to provide an efficient VSH-spectral-element method for the simulation.
Compared with the classic FDTD based algorithm, the VSH-spectral-element method can
produce accurate numerical results in much less computational cost.

The rest of the paper is organised as follows. In section 2, we present some new formulas of
the NRBC and derive an explicit expression for the underlying convolution kernel. In section
3, we first derive a new time-domain model for the spherical dispersive cloaks by using Drude
model. Then, an VSH-spectral-element method with Newmark’s time integration scheme is
proposed for efficient simulation of spherical cloaks. Ample interesting simulations for the
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spherical dispersive cloaks are presented in section 4 to show the accuracy and efficiency of
the proposed numerical scheme.

2. Computation of time-domain NRBC

In this section, we present the formulations of the capacity operator Tb involved in the
time-domain NRBC, and then derive some analytically perspicuous formulas for the associated
temporal convolution kernels (dubbed as NRBKs), which are crucial for efficient and accurate
computation of the NRBC, and in return for its seamless integration with the interior solvers.

2.1. Formulation of time-domain NRBC

Let L2(Ω) be the usual space of square integrable functions on Ω, and denote L2(Ω) =
(L2(Ω))3. We introduce the spaces

H(div; Ω) =
{
v ∈ L2(Ω) : divv ∈ L2(Ω)

}
; H(curl; Ω) =

{
v ∈ (L2(Ω))3 : ∇× v ∈ L2(Ω)

}
,

which are equipped with the graph norms as defined in [26, p. 52]. We further define

H0(div; Ω) =
{
v ∈ H(div; Ω) : divv = 0

}
.

For 0 6= x ∈ R3, let er = x/|x|. Recall that the VSH{
Y m
l ,Ψm

l ,Φ
m
l

}
:=
{
Y ml er,∇SY ml ,∇SY ml × er

}
(2.1)

used in the Spherepack [37] forms a complete orthogonal basis of L2(S) := (L2(S))3, where
{Y ml } are the spherical harmonic basis defined on the unit sphere S as in [28]. Nevertheless,
the following compact form of the VSH expansion of a solenoidal or divergence-free field in
(2.2) can simplify the derivation of NRBC. Moreover, it will lead to more efficient spectral-
element algorithm for the 3D spherical cloaking simulation in Section 3.

Proposition 2.1. For u ∈ H0(div; Ω), we can write

u = u00 Y
0

0 +

∞∑
l=1

l∑
|m|=0

{
ulm Φm

l +∇×
(
ũlm Φm

l

)}
, (2.2)

where u00 satisfies ( d
dr

+
2

r

)
u00 = 0 or u00 =

C

r2
, (2.3)

for a constant C depends on the average value of the er component of u on S. The expansion
(2.2) can be reformulated in terms of the VSH (2.1) as follows

u = u00 Y
0

0 +

∞∑
l=1

l∑
|m|=0

{βl
r
ũlm Y

m
l + ∂̂rũlm Ψm

l + ulm Φm
l

}
, (2.4)

where βl := l(l + 1) and

ulm(r) = β−1
l

〈
u,Φm

l

〉
S
, r−1ũlm(r) = β−1

l

〈
u,Y m

l

〉
S
. (2.5)

Proof. We first show that if (2.3) holds, then the expansion (2.2) automatically satisfies
divu = 0. Note that div(ulm Φm

l ) = 0 (cf. (A.9)). Performing the divergence operator on
(2.2), and using (A.11), we have divu = 0, if u00 satisfies the equation in (2.3) which has
explicit solution: u00 = C/r2. Thanks to (A.10), the expansion (2.4) follows immediately
from (2.2). Then (2.5) is a direct consequence of the orthogonality of VSH.
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Remark 2.1. For any constant C, the field C er/r
2, r > 0 (note: Y 0

0 = 1/(2
√
π)) is solenoidal.

Given a vector field, the VSH expansion coefficients in (2.5) can be evaluated accurately and
efficiently by using discrete VSH-transforms in SpherePack [37].

The time-domain NRBC to be formulated below involves the modified spherical Bessel
function (cf. [41]) defined by

kl(z) =

√
π

2z
Kl+1/2(z), (2.6)

with Kl+1/2(·) being the modified Bessel function of the second kind of order l+1/2, together
with the temporal convolution and inverse Laplace transform:

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ, L −1[F ](t) =
1

2πi

∫ γ+∞i

γ−∞i

F (s)estds,

where F (s) is the Laplace transform of f(t), and the integration is done along the vertical
line <(s) = γ in the complex plane such that γ is greater than the real part of all singularities
of F (s).

The formulation of the capacity operator can be found in e.g., [6, 28, 26], but the notation
and normalisation are very different. Here, we feel compelled to sketch its derivation.

Theorem 2.1. The time-domain capacity operator Tb takes the form

Tb[E
sc] :=

c

b

∞∑
l=1

l∑
m=−l

{(
ρl ∗ ψ(1)

lm

)
Ψm
l +

(
σl ∗ ψ(2)

lm

)
Φm
l

}
, (2.7)

where the convolution kernels are given by the inverse Laplace transforms:

ρl(t) = L −1

[
z

(
z kl(z)

kl(z) + z k′l(z)
+ 1

)]
(t), σl(t) = L −1

[
1 + z + z

k′l(z)

kl(z)

]
(t), (2.8)

with z = sb
c , and where {ψrlm, ψ

(1)
lm , ψ

(2)
lm} are the VSH expansion coefficients of Esc at the

spherical surface r = b, i.e.,

Esc = ψ00 Y
0

0 +

∞∑
l=1

l∑
|m|=0

{
ψrlm Y

m
l + ψ

(1)
lmΨm

l + ψ
(2)
lm Φm

l

}
. (2.9)

Proof. Consider the Maxwell’s equations exterior to the artificial ball B := {r : |r| < b} :
ε0∂tE

e −∇×He = 0, µ0∂tH
e +∇×Ee = 0, in R3 \ B̄, t > 0, (2.10a)

Ee × r̂ = λ, r = b, t > 0 (2.10b)

∂tE
e
T − η ∂tHe × r̂ = o(r−1), |r| → ∞, t > 0, (2.10c)

Ee = He = 0, in R3 \ B̄, t = 0, (2.10d)

where λ is a given field. It is known that this system can be solved analytically by using
Laplace transform in time and separation of variables in space. For this purpose, we denote
by Ĕe, H̆e and λ̆ the Laplace transforms of Ee,He and λ with respect to t, respectively. As
Ĕe is a divergence-free vector field, we have from Proposition 2.1 that

Ĕe = ŭ00Y
0

0 +

∞∑
l=1

l∑
|m|=1

{
ŭlmΦm

l +∇×
(
v̆lmΦm

l

)}
. (2.11)
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According to [28, Chap.5], the Laplace transformed system of (2.10) in s-domain

ε0sĔ
e −∇× H̆e = 0, µ0sH̆

e +∇× Ĕe = 0; Ĕe × r̂ = λ̆ at r = b, (2.12)

has the exact solution (2.11) with ŭ00 = 0 and

ŭlm(r) = −kl(sr/c)
kl(sb/c)

λ̆
(1)
lm , v̆lm =

kl(sr/c)

∂̂rkl(sb/c)
λ̆

(2)
lm , l ≥ 1, (2.13)

where ∂̂r = d
dr + 1

r , {λ̆(1)
lm , λ̆

(2)
lm} are the VSH expansion coefficients of λ̆ (involving only the

tangential components). Moreover, we can derive the electric-to-magnetic Calderon (EtMC)

operator that maps the data λ̆ to H̆e × r̂ (cf. [6, 26]) as follows

H̆e × r̂ = − 1

sµ0

∞∑
l=1

l∑
m=−l

{
s2kl(sr/c)

c2∂̂rkl(sb/c)
λ̆

(2)
lmΨm

l −
∂̂rkl(sr/c)

kl(sb/c)
λ̆

(1)
lmΦm

l

}
, (2.14)

which can be derived from the second equation in (2.11) and the properties of VSH in Ap-

pendix Appendix A. By requiring the scattering fields {Ĕsc, H̆sc} to be identical to the

exterior fields {Ĕe, H̆e} across the artificial boundary r = b, and setting Ĕsc× r̂|r=b = λ̆, we
obtain

µ0sH̆
sc × r̂

∣∣
r=b

= −
∞∑
l=1

l∑
m=−l

{ s2kl(sb/c)

c2∂̂rkl(sb/c)
ψ̆

(1)
lmΨm

l +
∂̂rkl(sb/c)

kl(sb/c)
ψ̆

(2)
lmΦm

l

}

= −
∞∑
l=1

l∑
m=−l

{(1

b
L [ρl]−

s

c

)
ψ̆

(1)
lmΨm

l +
(1

b
L [σl]−

s

c

)
ψ̆

(2)
lmΦm

l

}

= −1

b

∞∑
l=1

l∑
m=−l

{
L [ρl]ψ̆

(1)
lmΨm

l + L [σl]ψ̆
(2)
lmΦm

l

}
+
s

c
Ĕsc
T ,

(2.15)

where σl(t) and ρl(t) are defined in (2.8). Transforming the relation (2.15) back to t-domain
leads to the time-domain NRBC

∂tE
sc
T − η∂tHsc × r̂ −Tb[E

sc] = 0 at r = b, (2.16)

and the capacity operator Tb[E
sc] given by (2.7).

Remark 2.2. Note that the exact NRBC in [13] expressed as a system of Esc and Hsc, is
actually equivalent to the formulation (1.6d) by using the VSH

{
Y m
l ,Ψm

l ,Φ
m
l

}
. From the

NRBC (1.6d) on scattering fields, the NRBC (1.5c) on total field {E,H} can be derived
straightforwardly as follows

∂tET − η∂tH × r̂ −Tb[E] = ∂tE
in
T − η∂tH in × r̂ −Tb[E

in] := h, at r = b. (2.17)

We shall see from (2.7) and (2.17) that the source term h needs to be precomputed from
{Ein,H in} if the model (1.5) is used for solving the total field {E,H} in the whole compu-
tational domain B. However, the involved term Tb[E

in] is computationally costly due to: (i)
The VSH expansion coefficients of the incident wave are necessary for the computation; (ii)
in the time direction, two convolutions need to be calculated numerically for each group of
VSH expansion coefficients; (iii) the numerical scheme for the convolution needs to be more
accurate than the time discretization scheme for the model problem due to sensitivity of the
operator Tb on the error. Thus, a great number of time consuming VSH expansion need to
be performed.
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It is seen from (2.7) that to compute Tb[E
sc] at t > 0, it requires

(i) accurate evaluation of the convolution kernel functions: ρl(t) and σl(t) defined in (2.8);

(ii) fast computation of the temporal convolutions: ρl ∗ ψ(1)
lm and σl ∗ ψ(2)

lm .

With these, we can compute Tb[E
sc] on the sphere r = b by using the VSH transform in the

Spherepack [37].

We now deal with the first issue. Interestingly, the kernel function σl(t) coincides with the
NRBC kernel of the transient wave equation, which admits the following explicit formula (cf.
[36, 13, 40]).

Proposition 2.2. Let σl(t) be the kernel function defined in (2.8). Then we have

σl(t) =
c

b

l∑
j=1

zlje
c
b z

l
jt, l ≥ 1, t ≥ 0, (2.18)

where {zlj}lj=1 are the zeros of Kl+1/2(z) with l ≥ 1.

We remark that according to [41, p. 511], Kl+1/2(z) has exactly l zeros in conjugate pairs
which are simple and lie in the second and third quadrants. The interested readers might
refer to [40, Lemma 2.1] for more details.

Remarkably, we can derive a very similar analytical formula for the kernel function ρl(t).
Our starting point is to rewrite the ratio of the modified Bessel functions in (2.8) by using
(2.6) as follows

z

(
zkl(z)

kl(z) + zk′l(z)
+ 1

)
= z

(
zKl+1/2(z)

1
2Kl+1/2(z) + zK ′l+1/2(z)

+ 1

)
. (2.19)

We are interested in the poles of the ratio, i.e., zeros of 1
2Kl+1/2(z) + zK ′l+1/2(z). It is indeed

very fortunate to find the following results in [38, Lemmas 1-2] (for more general combination
of this form).

−66.274 −46.392 −33.137 −19.882 0
−100

−70

−50

−30

0

30

50

70

100

Re(z
j
l)

Im
(z

jl )

 

 

l=30
l=50

 

 

l=70
l=100

−66.274 −46.392 −33.137 −19.882 0
−100

−70

−50

−30

0

30

50

70

100

Re(z
j
l)

Im
(z

jl )

 

 

l=30
l=50

 

 

l=70
l=100

Figure 2.1: Distributions of the zeros of Kl+1/2(z) (left) and 1
2
Kl+1/2(z) + zK′l+1/2(z) (right).

Lemma 2.1. Let l be a nonnegative integer. Then we have the following properties.

(a) 1
2Kl+1/2(z) + zK ′l+1/2(z) has exactly l + 1 zeros.
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(b) If z∗ is a zero of 1
2Kl+1/2(z) + zK ′l+1/2(z), then its complex conjugate z̄∗ is also a zero.

(c) All zeros of 1
2Kl+1/2(z) + zK ′l+1/2(z) are simple and have negative real parts, so they

lie in the left half of the complex plane.

o

R

L



Figure 2.2: Contour L for the inverse
Laplace transform.

We illustrate in Figure 2.1 the distribution of ze-
ros of Kl+1/2(z) (left) and 1

2Kl+1/2(z) + zK ′l+1/2(z)

(right) for various l. We observe that for a given l, the
zeros of 1

2Kl+1/2(z) + zK ′l+1/2(z) have a distribution

very similar to those of Kl+1/2(z), that is, sitting on
the left half boundary of an eye-shaped domain that
intersects the imaginary axis approximately at ±li,
and the negative real axis at −la with a ≈ 0.66274
(see the vertical dashed coordinate grids). Such a be-
haviour is very similar to that of Kl+1/2(z) (cf. [40]).

With the above understanding, we now ready to
present the analytical formula for the convolution
kernel function ρl(t).

Theorem 2.2. Let {z̃lj}
l+1
j=1 be the zeros of 1

2Kl+1/2(z) + zK ′l+1/2(z) with integer l ≥ 0. Then

we can compute ρl(t) in (2.8) via

ρl(t) =
c

b

l+1∑
j=1

(z̃lj)
3

l(l + 1) + (z̃lj)
2
ectz̃

l
j/b + δ(t)

l+1∑
j=1

(z̃lj)
2

l(l + 1) + (z̃lj)
2
, (2.20)

where δ(t) is the Dirac delta function.

Proof. Using the property

L −1[sf(s)](t) = f ′(t) + f(0)δ(t), (2.21)

we obtain from (2.8) and (2.19) that

ρl(t) = L −1

[
z

(
z kl(z)

kl(z) + z k′l(z)
+ 1

)]
(t) =

b

c

(
ρ̃′l(t) + ρ̃l(0)δ(t)

)
, (2.22)

where z = sb/c, and with a change of variable s = cz/b, we have

ρ̃l(t) =
1

2πi

c

b

∫ γ+∞i

γ−∞i

[
zkl(z)

kl(z) + zk′l(z)
+ 1

]
eczt/bdz :=

1

2πi

c

b

∫ γ+∞i

γ−∞i

Fl(z)e
czt/bdz. (2.23)

In view of the formula (see [30, 10.49.12]):

kl(z) =
π

2

l∑
k=0

(l + k)!e−z

2kk!(l − k)!zk+1
, l ≥ 0, (2.24)

and Lemma 2.1, we conclude that Fl(z) is a meromorphic function. We introduce the closed
contour L as depicted in Figure 2.2. Using the residue theorem and Jordan’s Lemma, we have

2πi

l+1∑
j=1

Res
[
Fl(z)e

czt/b; z̃lj
]

= lim
R→+∞

∮
L

Fl(z)e
czt/bdz =

∫ γ+∞i

γ−∞i

Fl(z)e
czt/bdz.

8



From (2.6), we calculate that

b

c
ρ̃l(t) =

l+1∑
j=1

Res
[
Fl(z)e

czt/b; z̃lj
]

=

l+1∑
j=1

lim
z→z̃lj

{(
z − z̃lj

)
ectz/b

[
zKl+1/2(z)

1
2Kl+1/2(z) + zK ′l+1/2(z)

+ 1

]}

=

l+1∑
j=1

ectz̃
l
j/bz̃ljKl+1/2(z̃lj)

3
2K
′
l+1/2(z̃lj) + z̃ljK

′′
l+1/2(z̃lj)

.

(2.25)

Since Kl+1/2(z) satisfies the equation (cf. [41])

z2 d
2w

dz2
+ z

dw

dz
−
(
z2 + (l + 1/2)2

)
w = 0,

we have

z2K ′′l+1/2(z) +
3

2
zK ′l+1/2(z) =

(
z2 + (l + 1/2)2

)
Kl+1/2(z)− zK ′l+1/2(z) +

3

2
zK ′l+1/2(z)

=
(
z2 + l(l + 1)

)
Kl+1/2(z) +

1

2

(
1

2
Kl+1/2(z) + zK ′l+1/2(z)

)
.

A combination of (2.25) and the fact that {z̃lj}
l+1
j=1 are zeros of 1

2Kl+1/2(z)+zK ′l+1/2(z) yields

ρ̃l(t) =
c

b

l+1∑
j=1

ectz̃
l
j/b
(
z̃lj
)2
Kl+1/2(z̃lj)[(

z̃lj
)2

+ l(l + 1)
]
Kl+1/2(z̃lj)

=
c

b

l+1∑
j=1

ectz̃
l
j/b
(
z̃lj
)2(

z̃lj
)2

+ l(l + 1)
. (2.26)

Inserting (2.26) into (2.22) leads to the expression of ρl(t) in (2.20).

Having addressed the first issue on how to compute the convolution kernel functions, we
now introduce an efficient technique to alleviate the historical burden of temporal convolutions
involved in the capacity operator (2.7). Observe from (2.18) and (2.20) that the time variable
t only presents in the complex exponentials. As a result, the temporal convolutions can be
evaluated recursively as shown in e.g., [3, 40]. More precisely, given a continuous function
g(t), we define

f(t; z) := ectz/b ∗ g(t) =

∫ t

0

ec(t−τ)z/bg(τ)dτ. (2.27)

Then by (2.18) and (2.20),

(σl ∗ g)(t) =
c

b

l∑
j=1

zljf(t; zlj); (2.28a)

(ρl ∗ g)(t) =
c

b

l+1∑
j=1

(
z̃lj
)3
f(t; z̃lj)(

z̃lj
)2

+ l(l + 1)
+ g(t)

l+1∑
j=1

(
z̃lj
)2(

z̃lj
)2

+ l(l + 1)
. (2.28b)

One verifies readily that

f(t+ ∆t; z) = ec∆t z/bf(t; z) +

∫ t+∆t

t

ec(t+∆t−τ)z/bg(τ) dτ, (2.29)

9



so f(t; z) can march in t with step size ∆t recursively. As a result, the temporal convolution
in the NRBC can be computed efficiently with the explicit expressions (2.18) and (2.20), and
with the above fast recursive algorithm.

Next, we provide some numerical results to demonstrate the high accuracy in computing
ρl(t) and the related convolution in (2.20). Let φ(t), t ≥ 0 be a given differentiable function
such that φ(0) = 0. As shown in [40], (σl ∗ φ)(t) can be computed very accurately (i.e., using
Proposition 2.2 and (2.28a)). Let ψl(t) be a function associated with φ(t) through

L [ψl](s) =
kl(z) + zk′l(z)

kl(z)
L [φ](s) =

(
1 + z + z

k′l(z)

kl(z)

)
L [φ](s)− zL [φ](s), (2.30)

where z = sb/c. Applying the inverse Laplace transform and using the definition of σl(t) in
(2.8), we obtain from (2.21), φ(0) = 0 and Proposition 2.2 that

ψl(t) = (σl ∗ φ)(t)− b

c
φ′(t) =

c

b

l∑
j=1

(zlj)
2ectz

l
j/b ∗ φ(t) + φ(t)

l∑
j=1

zlj . (2.31)

We next present two ways to compute (ρl ∗ ψl)(t), where the first one only requires the
use of the formula for σl(t). Indeed, we have from (2.8), (2.21) and (2.30) that

(ρl ∗ ψl)(t) = L −1

[
z
( z kl(z)

kl(z) + z k′l(z)
+ 1
)
L [ψl]

]
= L −1

[
z2L [φ] + zL [ψl]

]
= L −1

[(
1 + z + z

k′l(z)

kl(z)

)
zL [φ]

]
= σl ∗L −1

[
zL [φ]

]
= (σl ∗ φ′)(t).

(2.32)

Then, by Proposition 2.2 and integration by parts, we find

(ρl ∗ ψl)(t) =

l∑
j=1

zlje
ctzlj/b ∗ φ′(t) =

c

b

l∑
j=1

(zlj)
2ectz

l
j/b ∗ φ(t) + φ(t)

l∑
j=1

zlj . (2.33)

On the other hand, using Theorem 2.2 and the relation (2.31) leads to

(ρl ∗ ψl)(t) =
c

b

l+1∑
j=1

(
z̃lj
)3(

z̃lj
)2

+ l(l + 1)
ectz̃

l
j/b ∗ ψl(t) + ψl(t)

l+1∑
j=1

(
z̃lj
)2(

z̃lj
)2

+ l(l + 1)
, (2.34)

where ψl is computed by (2.31). It is evident that the convolutions in (2.33)-(2.34) can be
evaluated by using (2.29).

It is seen that (2.33) and (2.34) are equivalent, but the former solely involves σl(t), which
can used as a reference to check the accuracy of ρl(t). We take b = 3, c = 5 and φ(t) = sin6(8t),
so we can compute the two functions and convolutions with exponential functions in (2.33)-
(2.34) exactly. We tabulate in Table 2.1 the relative errors

el(t) =
|fl(t)− f̃l(t)|
|f̃l(t)|

,

where fl(t) and f̃l(t) denote the convolution computed by (2.34) and (2.33), respectively. We
can see that the relative errors are of machine accuracy, which validate the formula (2.20).

Remark 2.3. It is clear that the number of zeros to be used is determined by the truncation of
the expansion (A.6). If l is large, the pole compression algorithm (cf. [2, 16]) can be adopted
to obtain approximations for the NRBKs: σl(t) and ρl(t). The approximated kernels have
the same form as in (2.18) and (2.20) while the number of poles in the summation has been
reduced significantly.
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Table 2.1: The relative error el(t) for different l and t.
l t = 1 t = 2 t = 4 t = 10
1 3.0366e-015 1.9953e-016 2.6091e-015 2.5178e-015

5 2.0593e-015 7.5062e-015 3.8667e-015 1.7176e-014

10 8.2695e-015 1.7839e-014 3.5474e-014 1.5205e-016

15 8.8691e-015 3.5764e-014 1.1748e-014 1.5469e-015

30 4.4403e-015 3.0733e-015 8.0434e-015 2.8513e-015

50 5.0412e-015 3.0602e-015 1.1924e-016 2.9790e-015

2.2. An alternative formulation of the capacity operator

It is seen from (2.7) that the capacity operator Tb[E
sc] only involves the tangential com-

ponent of the vector field Esc ∈ H0(div; Ω). In fact, as shown in Proposition 2.1, the VSH
expansion coefficients for a divergence-free field satisfy some relation that allows us to derive
the following alternative representation of the capacity operator in Theorem 2.1. We find that
it has certain advantage in the application in the forthcoming section.

Theorem 2.3. The time-domain capacity operator Tb in Theorem 2.1 can also be formulated
as

Tb[E
sc] =

c

b

∞∑
l=1

l∑
|m|=0

{
ωl ∗ ψrlm
l(l + 1)

Ψm
l +

(
σl ∗ ψ(2)

lm

)
Φm
l

}
, (2.35)

where σl is given in (2.8) and

ωl(t) =
b

c

(
σ′l(t) + σl(0)δ(t)

)
=
c

b

l∑
j=1

(
zlj
)2
e

c
b z

l
jt + δ(t)

l∑
j=1

zlj . (2.36)

Here, the expression (2.35) involves two of the VSH expansion coefficients {ψrlm, ψ
(1)
lm , ψ

(2)
lm}

of Esc in (2.9).

Proof. In view of Proposition 2.1, we can reformulate (2.11) as

Ĕe = ŭ00Y
0

0 +

∞∑
l=1

l∑
|m|=0

{
ŭlmΦm

l +
βl
r
v̆lm Y

m
l + ∂̂rv̆lm Ψm

l

}
, (2.37)

which is a solution of the exterior problem (2.12). Let
{
ψ̆rlm, ψ̆

(1)

lm , ψ̆
(2)

lm

}
be the Laplace

transforms of
{
ψrlm, ψ

(1)
lm , ψ

(2)
lm

}
, which is the VSH expansion coefficients of the scattering field

Esc in (2.9). Note that Ĕe = Ĕsc is the solution of the exterior problem (2.12) with boundary

data λ̆ = Ĕsc× r̂ on the artificial boundary r = b. Then by (2.9), (2.13) and (2.37), we arrive

at the VSH expansion coefficients of Laplace transformed scattering field Ĕsc :

ψ̆rlm =
βl
r
v̆lm =

βl
r

kl(sr/c)

∂̂rkl(sb/c)
λ̆

(2)
lm , ψ̆

(1)
lm = ∂̂rv̆lm =

∂̂rkl(sr/c)

∂̂rkl(sb/c)
λ̆

(2)
lm , (2.38)

for r ≥ b. This implies

ψ̆rlm =
βl
r

kl(sr/c)

∂̂rkl(sr/c)
ψ̆

(1)
lm =

βl
r

kl(sr/c)
s
ck
′
l(sr/c) + 1

rkl(sr/c)
ψ̆

(1)
lm ,

11



so at r = b, we have

ψ̆rlm
βl

=
kl(z)

kl(z) + z k′l(z)
ψ̆

(1)
lm , z =

sb

c
. (2.39)

Multiplying both sides of (2.39) by (1 + z)kl(z) + zk′l(z) yields

z

(
z kl(z)

kl(z) + z k′l(z)
+ 1

)
ψ̆

(1)
lm = z

(
1 + z + z

k′l(z)

kl(z)

)
ψ̆rlm
βl

. (2.40)

In view of the definitions of ρl and σl in (2.8) and using the property (2.21), we take the
inverse Laplace transform on both sides of (2.40) and find

ρl ∗ ψ(1)
lm =

ωl ∗ ψrlm
βl

, (2.41)

where the kernel function

ωl(t) = L −1

[
z

(
1 + z + z

k′l(z)

kl(z)

)]
(t) =

b

c

(
σ′l(t) + σl(0)δ(t)

)
. (2.42)

Then, substituting (2.41) into (2.7) leads to the capacity operator Tb[E
sc] in (2.35).

Finally, the last formula in (2.36) can be obtained from (2.2) directly.

3. Simulation of three-dimensional dispersive invisibility cloak

As already mentioned in the introductory section, the invisibility cloak is one of the most
appealing examples in the field of transformation optics [33, 10]. In this section, we focus on
the time-domain modelling and efficient simulation of the electromagentic invisibility cloak
first proposed in [33]. Indeed, there exist very limited works in three-dimensional cloak sim-
ulations. Our contributions are twofold. (i) We shall derive a new mathematical formulation
of the time-domain dispersive cloak. Different from the existing models based on some mixed
forms of both E and H (see, e.g., [14, 49, 21, 23]), the new formulation only involves one
unknown field D (see Theorem 3.1), where the seemingly complicated temporal convolu-
tions in the form of (2.27) can be evaluated efficiently as shown in (2.29). Moreover, the
proposed governing equation in the cloaking layer with special dispersive media is valid for
other geometries (e.g., the polygonal layer) other than the spherical shell. (ii) To simulate
the time-domain spherical cloaking designed in [33], we shall develop a very efficient VSH-
spectral-element method for solving the reduced problem truncated by the NRBC (2.16) using
the alternative formulation of the capacity operator in Theorem 2.3. The implementation of
the new algorithm can run thousands of time steps in a few hours on a desktop with intel
i7 CPU, while the parallel implementation of the classic FDTD method running on a cluster
with 100 processors and 220 GB memory takes 45 hours for 13000 time steps (cf. [49, pp.
7307]).

3.1. Dispersive modelling of 3D invisibility cloaks

The key to the design of invisibility cloak is to fill the cloaking layer, denoted by Ωcl

(see, e.g., Ω1 in Figure 3.1), with specially designed metamaterials, which can steer electro-
magnetic waves from penetrating into the enclosed region, and thereby render the interior
“invisible” to the outside observer. According to the pioneering work by Pendry et al. [33],
the cloaking parameters disperse with frequency and therefore can only be fully effective at a
single frequency. To investigate this interesting phenomena, it is necessary to simulate the full
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wave and consider the non-monochromatic waves passing through such frequency-dependent
materials in time domain.

The central issue for time-domain modelling is to formulate the constitutive relations. The
material parameters of an ideal spherical cloak are given by (cf. [33]):

ε = µ = diag
(
ε(r), ε, ε

)
, ε(r) =

R2

R2 −R1

(r −R1

r

)2

, ε =
R2

R2 −R1
, (3.1)

in the cloaking layer Ωcl = {R1 < r < R2}. Since ε(r) ∈ [0, 1), same as in the left-handed
materials (LHMs), the material parameters are often mapped by dispersive medium models,
e.g., Drude model, Lorentz model [14]. Here, we map ε(r) (to frequency ω-dependent medium)
via the Drude dispersion model:

εk(r, ω) = 1−
ω2
p,k(r)

ω(ω − iγk)
, ωp,k(r) =

√
ωc(ωc − iγk)(1− ε(r)), (3.2)

for k = 1, 2, leading to the dispersive media in Ωcl :

ε̂(r, ω) = diag
(
ε1(r, ω), ε, ε

)
, µ̂(r, ω) = diag

(
ε2(r, ω), ε, ε

)
. (3.3)

In the above expressions, ω is the wave frequency, {ωp,k} are the plasma frequencies, {γk}
are damping terms called collision frequencies and ωc > 0 is the operating frequency of the
cloak. Indeed, if ω = ωc, then (3.3) reduces to (3.1). Although the ideal lossless case, i.e.,
γ1 = γ2 = 0 has been adopted in [48, 49, 21], it is physically more reasonable to include the
loss effect of the medium in the modeling. Hereafter, we assume that γ1 6= 0, γ2 6= 0.

Denote by f̂ the Fourier transform of a generic function f(t), i.e.,

f̂(ω) = F [f(t)](ω) =

∫ +∞

−∞
f(t)e−iωtdt.

Let v = (vr, vθ, vφ)t be a generic vector field, where vr, vθ and vφ are the components of v in
the coordinate units er, eθ and eφ, respectively.

Given (3.3), the constitutive relation in the cloaking layer Ωcl in the frequency domain
reads

D̂ =
(
D̂r, D̂θ, D̂φ

)t
= ε0ε̂(r, ω)Ê = ε0

(
ε1(r, ω)Êr, εÊθ, εÊφ

)t
, (3.4)

B̂ =
(
B̂r, B̂θ, B̂φ

)t
= µ0µ̂(r, ω)Ĥ = µ0

(
ε2(r, ω)Ĥr, εĤθ, εĤφ

)t
. (3.5)

Remark 3.1. The time-domain constitutive equations extensively used in [48, 49, 20, 23] reads

∂2Dr

∂t2
+ γ1

∂Dr

∂t
= ε0

(∂2Er
∂t2

+ γ1
∂Er
∂t

+ ω2
p,1Er

)
, (Dθ, Dφ) = ε0ε(Eθ, Eφ), (3.6)

∂2Br
∂t2

+ γ2
∂Br
∂t

= µ0

(∂2Hr

∂t2
+ γ2

∂Hr

∂t
+ ω2

p,2Hr

)
, (Bθ, Bφ) = µ0ε(Hθ, Hφ), (3.7)

which can be obtained by simply applying the inverse Fourier transform to (3.4)-(3.5).

Different from the existing models, we use (3.4)-(3.5) to derive the following relations in
time domain.

Lemma 3.1. We have the constitutive relations in time domain of the form

E = ε−1
0 D1[D], H = µ−1

0 D2[B], (3.8)
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where for k = 1, 2, the operators

Dk[D] :=
(
Dr +

∫ t

0

ϑk(r, t− τ)Dr(·, τ)dτ, ε−1Dθ, ε
−1Dφ

)t
, (3.9)

with kernel functions given by

ϑk(r, t) =
iω2

p,k(r)

ζ0
k(r)− ζ1

k(r)

(
eiζ0k(r)t − eiζ1k(r)t

)
. (3.10)

Here, {ζ0
k(r), ζ1

k(r)}2k=1 are the roots of the quadratic equation: z2− iγkz−ω2
p,k = 0 given by

ζ0
k(r) = − 1√

2

√√
ξ2
k + η2

k + ξk + i

(
γk
2

+
1√
2

√√
ξ2
k + η2

k − ξk
)
,

ζ1
k(r) =

1√
2

√√
ξ2
k + η2

k + ξk + i

(
γk
2
− 1√

2

√√
ξ2
k + η2

k − ξk
)
,

(3.11)

where

ξk = ω2
c (1− ε(r))− γ2

k

4
, ηk = −γkωc (1− ε(r)), (3.12)

are the real and imaginary parts of ω2
p,k −

γ2
k

4 for k = 1, 2.

Proof. Using the definition of εk(r, ω) in (3.3), we derive from (3.4)-(3.5) that

Êr = ε−1
0

(
1 +

ω2
p,1(r)

ω2 − iγ1ω − ω2
p,1(r)

)
D̂r, (Êθ, Êφ)t = (ε0ε)

−1(D̂θ, D̂φ)t , (3.13)

Ĥr = µ−1
0

(
1 +

ω2
p,2(r)

ω2 − iγ2ω − ω2
p,2(r)

)
B̂r, (Ĥθ, Ĥφ)t = (µ0ε)

−1(B̂θ, B̂φ)t. (3.14)

Applying the inverse Fourier transform to (3.13)-(3.14) leads to

Er = ε−1
0 Dr + ε−1

0 ω2
p,1(r)F−1

[ 1

ω2 − iγ1ω − ω2
p,1(r)

]
∗Dr,

Hr = µ−1
0 Br + µ−1

0 ω2
p,2(r)F−1

[ 1

ω2 − iγ2ω − ω2
p,2(r)

]
∗Br,

(Eθ, Eφ)t = (ε0ε)
−1(Dθ, Dφ)t, (Hθ, Hφ)t = (µ0ε)

−1(Bθ, Bφ)t,

(3.15)

where “ ∗ ” is the usual convolution as before.
The rest of the derivation is to explicitly evaluate two inverse Fourier transforms. Let

ζ0
k , ζ

1
k be two roots of z2 − iγkz − ω2

p,k = 0. Then we immediately have ζ0
k + ζ1

k = iγk and

ζ0
kζ

1
k = −ω2

p,k, so we can write

1

ω2 − iγkω − ω2
p,k(r)

=
1

ζ0
k − ζ1

k

( 1

ω − ζ0
k

− 1

ω − ζ1
k

)
. (3.16)

Recall that (cf. [4]):

F−1
[ 1

iω + a

]
= −i F−1

[ 1

ω − ai

]
= e−atH(t), if R{a} > 0, (3.17)

where H(t) is the Heaviside function. Suppose that we can show

Im{ζ0
k} > 0, Im{ζ1

k} > 0. (3.18)
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Then by (3.16)-(3.17),

F−1
[ 1

ω2 − iγkω − ω2
p,k(r)

]
=

i

ζ0
k − ζ1

k

(
eiζ0kt − eiζ1kt

)
H(t). (3.19)

Consequently, we derive (3.9)-(3.10) from (3.15) and (3.19).
It remains to verify (3.11) and (3.18). It is evident that the quadratic equation has the

roots:

z =
γk
2

i±
√
ω2
p,k −

γ2
k

4
=
γk
2

i±
√
ξk + iηk . (3.20)

Setting αk + iβk =
√
ξk + iηk, we find α2

k − β2
k = ξk and 2αkβk = ηk. Solving this system

yields

α2
k =

√
ξ2
k + η2

k + ξk
2

, β2
k =

√
ξ2
k + η2

k − ξk
2

. (3.21)

Noting that αkβk < 0, we can determine αk, βk, and obtain (3.11) from (3.20). By (3.11),
Im{ζ0

k} > Im{ζ1
k}, so we next show that Im{ζ1

k} > 0, that is,

γk
2
>

1√
2

√√
ξ2
k + η2

k − ξk i.e., γ4
k + 4γ2

kξk − 4η2
k > 0.

Direct calculation from (3.12) leads to

γ4
k + 4γ2

kξk − 4η2
k = 4γ2

kω
2
c ε(r) (1− ε(r)) > 0,

as γk 6= 0, ωc > 0 and 0 < ε(r) < 1 (cf. (3.1)). This verifies (3.18) and completes the
proof.

With the constitutive relations (3.8)-(3.9) at our disposal, we represent E,H in terms of
D,B and then eliminate B, leading to the following equation in Ωcl.

Theorem 3.1. Assume that the source term and initial fields vanish in the cloaking layer
Ωcl. Then the governing equation in the cloaking layer takes the form

∂2
tD + c2∇×

(
D2[∇× (D1[D])]

)
= 0 in Ωcl. (3.22)

Proof. First, we show that given the homogeneous initial condition B(r, 0) = 0, we have
∂tD2[B] = D2[∂tB], that is, the operators ∂t and D2 are commutable. Indeed, by∫ t

0

∂

∂t
ϑ2(r, t− τ)Br(r, τ)dτ =− ϑ2(r, t− τ)Br(r, τ)

∣∣t
0

+

∫ t

0

ϑ2(r, t− τ)
∂Br(r, τ)

∂τ
dτ

=

∫ t

0

ϑ2(r, t− τ)
∂Br(r, τ)

∂τ
dτ,

and (3.8)-(3.9), we verify that ∂tD2[B] = D2[∂tB]. Thus, taking time derivative on both
sides of the second equation in (3.8), we obtain

∂tH = µ−1
0 ∂t(D2[B]) = µ−1

0 D2[∂tB]. (3.23)

By substituting the constitutive relation (3.8) in the second equation in (1.6a), we derive

∂tB = −ε−1
0 ∇×

(
D1[D]

)
. (3.24)

Then, taking time derivative on the first equation in (1.6a) and utilizing (3.23)-(3.24) to
eliminate H leads to (3.22), which ends the proof.
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Remark 3.2. It is worthwhile to note that the mathematical model (3.28) is not limited to
spherical dispersive cloaks. It is applicable to the modelling of many electromagnetic devices
with symmetric non-diagonal ε and µ made from metamaterials. Following the procedure in
[29], we start with diagonalising the symmetric matrices ε and µ, i.e.,

ε = PΛ1P
t, µ = QΛ2Q

t, Λi = diag(λi1, λi2, λi3), i = 1, 2, (3.25)

and {P ,Q} = {Pij , Qij}1≤i,j≤3 are orthonormal matrices. Then, we use the Drude model to
map {λij(r)} less than 1 to {λij(r, ω)} similar with (3.2) and take inverse Fourier transform
to (3.25) with replaced {λij(r, ω)}. As a result, we obtain the same constitutive relations as
(3.8)

E = ε−1
0 D1[D], H = µ−1

0 D2[B]

with more complicated forms of D1 and D2 :

D1[D] := P Λ̃−1
1 P tD +

∫ t

0

PΘ1(r, t− τ)P tD(r, τ)dτ,

D2[B] := QΛ̃−1
2 QtB +

∫ t

0

QΘ2(r, t− τ)QtB(r, τ)dτ,

(3.26)

where Λ̃i = diag
(
λ̃i1(r), λ̃i2(r), λ̃i3(r)

)
, Θi = diag(ϑi1, ϑi2, ϑi3) are diagonal matrices with

λ̃ij =

{
1 if λij(r) ∈ (0, 1),

λij(r) if λij(r) ∈ [1,∞),
ϑij =


i(ωjp,i(r))2

(
eiζ0ijt − eiζ1ijt

)
ζ0
ij − ζ1

ij

if λij(r) ∈ (0, 1),

0 if λij(r) ∈ [1,∞),

ωjp,i(r) has a similar expression

ωjp,i(r) =
√
ωc(ωc − iγi)(1− λij(r)), i = 1, 2,

and complex pairs {ζ0
ij , ζ

1
ij} are the roots of quadratic equations ω2 − iγiω − (ωjp,i(r))2 = 0,

i = 1, 2, respectively.

3.2. Simulation of the spherical invisibility cloaks

1R
2R0 0

0  0 

cloak cloaked region

0

11

0

2

3R

b

2

3

Figure 3.1: Sketch of the cross section.

In what follows, we focus on the simula-
tion of the spherical cloaks. We first present
the full model with reduction of the un-
bounded domain by using the NRBC in Sec-
tion 2. As sketched in Figure 3.1, we denote

R0 = 0; Ωi = {Ri < r < Ri+1}, i = 0, 1;

Ω2 = Ωb0 \ (Ω0 ∪ Ω1), Ω3 = Ωb \ Ωb0 .

Correspondingly, we further denote

F (r, t) = ∂tJ(r, t),

and

Γi = Ω̄i ∩ Ω̄i+1, {Ei,Hi,Di,Bi,F i} = {E,H,D,B,F }|Ωi , i = 0, 1, 2;

{E3,H3,B3,D3,F 3} = {Esc,Hsc,Bsc,Dsc,F }|Ω3 .
(3.27)

We summarise below the assumptions (for usual scattering problems):
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(i) ε = µ = I3 in Ωb \ Ω1;

(ii) There is no wave in the truncated domain Ωb at time t = 0, that is, we shall have
homogeneous initial condition;

(iii) The source term J is compactly supported in Ω2.

Proposition 3.1. The full model for 3D cloak takes the form

∂2
tD

i + c2∇×∇×Di = F i in Ωi, i = 0, 2, 3, (3.28a)

∂2
tD

1 + c2∇×
(
D2[∇× (D1[D1])]

)
= 0 in Ω1, (3.28b)

(D0 −D1[D1])× r̂ = 0,
(
∇×D0 −D2

[
∇×D1[D1]

])
× r̂ = 0 on Γ0, (3.28c)

(D1[D1]−D2)× r̂ = 0,
(
D2

[
∇×D1[D1]

]
−∇×D2

)
× r̂ = 0 on Γ1, (3.28d)

(D2 −D3)× r̂ = Din × r̂, ∇× (D2 −D3)× r̂ = ∇×Din × r̂ on Γ2, (3.28e)

∂tD
3
T + c

(
∇×D3

)
× r̂ −Tb[D

3] = 0 at r = b, (3.28f)

D(r, 0) = 0, ∂tD(r, 0) = 0 in Ωb, (3.28g)

where D3
T := r̂ ×D3 × r̂ is the tangential component of D3 on the boundary r = b.

Proof. Note that (3.28a) is a direct consequence of (1.6a), (3.28b) is proved in Theorem 3.1,
and (3.28e)-(3.28g) are direct consequences of (1.6c)-(1.6e) and the above assumption (i). For
the jump conditions (3.28c)-(3.28d), we recall the standard transmission conditions

Ei × r̂ = Ei+1 × r̂, Hi × r̂ = Hi+1 × r̂ at Γi, i = 0, 1. (3.29)

The first jump conditions in (3.28c)-(3.28d) can be obtained by directly applying the first
constitutive relation between E and D to the above transmission condition on E. Therefore,
we focus on the first jump conditions in (3.28c)-(3.28d). Inserting the constitutive relations
(3.8) into (3.29) directly leads to (3.28c) and

B0 × r̂ = D2[B1]× r̂ at Γ1; B2 × r̂ = D2[B1]× r̂ at Γ2. (3.30)

From (3.23), we derive

∂tB
0 × r̂ = D2

[
∂tB

1
]
× r̂ at Γ1; ∂tB

2 × r̂ = D2

[
∂tB

1
]
× r̂ at Γ2, (3.31)

which, together with (1.6a) and (3.24), yields the second jump conditions in (3.28c)-(3.28d).
This ends the derivation.

3.2.1. VSH-spectral-element discretization

In view of the spherical geometry and radially stratified dispersive media, we can fully
exploit these advantages to develop an efficient and accurate VSH-spectral-element solver
for the Maxwell’s system (3.28). Needless to say, it is optimal compared with the FDTD
simulation in [49, pp. 7307] for the time-domain Pendry’s spherical cloak.

The key is to employ the divergence-free VSH expansion of the fields and reduce the gov-
erning equations into two sequences of decoupled one-dimensional problems. By proposition
2.1, the solenoidal fields Di, F i and Din can have VSH expansions

{Di,F i} = {ui00, f
i
00}Y 0

0 +

∞∑
l=1

l∑
|m|=0

{
{uilm, f

i,m
1,l }Φm

l +∇× ({vilm, f
i,m
2,l }Φm

l

)}
, (3.32)
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and

Din = g00 Y
0

0 +

∞∑
l=1

l∑
|m|=0

{
glm Φm

l +∇× (hlm Φm
l

)}
. (3.33)

It is worthy of pointing out that the capacity operator in (3.28f) has two alternative expressions
(2.7) and (2.35). Both use the usual VSH expansion coefficients. For example, we have

Tb[D
3] =

c

b

∞∑
l=1

l∑
|m|=0

{
ωl ∗Dr

lm

l(l + 1)
Ψm
l +

(
σl ∗D(2)

lm

)
Φm
l

}
, (3.34)

according to (2.35), where {Dr
lm, D

(1)
lm , D

(2)
lm} are the coefficients in the VSH expansion

D3 = D00Y
0

0 +

∞∑
l=1

l∑
|m|=0

{
Dr
lm Ylm +D

(1)
lm Ψm

l +D
(2)
lm Φm

l

}
. (3.35)

In order to do dimension reduction using expansion (3.32), we re-express the formulation
(3.34) using coefficients {u3

lm, v
3
lm}. From the Proposition 2.1, we have relations

Dr
lm =

l(l + 1)

r
v3
lm, D

(1)
lm = ∂̂rv

3
lm, D

(2)
lm = u3

lm. (3.36)

A simple substitution in (3.34) gives

Tb[D
3] =

c

b

∞∑
l=1

l∑
m=−l

{
b−1(ωl ∗ v3

lm) Ψm
l +

(
σl ∗ u3

lm

)
Φm
l

}
. (3.37)

Proposition 3.2. For l ≥ 1, |m| ≤ l and i = 0, 1, 2, 3, denote

g = glm, h = hlm, ui = uilm, vi = vilm, f i1 = f i,m1,l , f i2 = f i,m2,l , Ii := (Ri, Ri+1). (3.38)

With the simple variable substitution

ũ0 = εu0, ũ1 = u1, ũ2 = εu2, ũ3 = εu3, g̃ = εg, (3.39)

the Maxwell system (3.28) reduced to the following two sequences of one-dimensional problem
for v and ũ, respectively, for l ≥ 1, |m| ≤ l:

∂2vi

∂t2
− c2

r2

∂

∂r

(
r2 ∂v

i

∂r

)
+
c2βl
r2

vi = f i2, r ∈ Ii, i = 0, 2, 3, (3.40a)

∂2v1

∂t2
− c2

ε2r2

∂

∂r

(
r2 ∂v

1

∂r

)
+
c2

ε

βl
r2
v1 +

c2

ε

βl
r2
ϑ1 ∗ v1(r, t) = 0, r ∈ I1, (3.40b)

v0 = v1, ∂rv1 = ε∂rv
0 + (ε− 1)r−1v0 at r = R1, (3.40c)

v2 = v1, ∂rv1 = ε∂rv
2 + (ε− 1)r−1v2 at r = R2, (3.40d)

v2 − v3 = h, ∂rv
2 − ∂rv3 = ∂rh at r = R3, (3.40e)

1

c
∂tv

3 +
∂v3

∂r
+

1

b
v3 − 1

b
σl ∗ v3 = 0 at r = b, (3.40f)

v|t=0 = ∂tv|t=0 = 0. (3.40g)

while ũ satisfies the same equations in (3.40) with ũ, f1, g̃ and ϑ2, in place of v, f2, h and
ϑ1, respectively, and for l = m = 0,

∂2
t u

i
00 = f i00, ui00|t=0 = ∂tu

i
00|t=0 = 0, r ∈ Ii. (3.41)
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Proof. We postpone the detailed derivation in Appendix B.

The above proposition shows that ũ and v can be obtained by solving (3.40) with different
input data. Therefore, we only need to focus on the one dimensional problems (3.40). Note
that the solution of (3.40) has a jump at r = R3. We introduce

ṽ(r, t) =


v(r, t), 0 ≤ r ≤ R3, t ≥ 0,

v(r, t) + h(R3, t)
b− r
b−R3

, R3 < r ≤ b, t ≥ 0,
(3.42)

and

f̃2(r, t) =


f2(r, t), 0 < r < R3, t > 0,

f2(r, t) +

{
∂2h(R3, t)

∂t
+
( 2bc2

r(b− r)
+
c2βl
r2

)
h(R3, t)

}
b− r
b−R3

, R3 < r < b, t > 0,

to rewrite (3.40) into

∂2ṽi

∂t2
− c2

r2

∂

∂r

(
r2 ∂ṽ

i

∂r

)
+
c2βl
r2

ṽi = f̃ i2, r ∈ Ii, i = 0, 2, 3, (3.43a)

∂2ṽ1

∂t2
− c2

ε2r2

∂

∂r

(
r2 ∂ṽ

1

∂r

)
+
c2

ε

βl
r2
ṽ1 +

c2

ε

βl
r2
ϑ1 ∗ ṽ1(r, t) = 0, r ∈ I1, (3.43b)

ṽ0 = ṽ1, ∂rṽ1 = ε∂rṽ
0 + (ε− 1)r−1ṽ0 at r = R1, (3.43c)

ṽ2 = ṽ1, ∂rṽ1 = ε∂rṽ
2 + (ε− 1)r−1ṽ2 at r = R2, (3.43d)

ṽ2 = ṽ3, ∂rṽ
2 − ∂rṽ3 = ∂rh+

1

b−R3
h(R3, t) at r = R3, (3.43e)

1

c
∂tṽ

3 +
∂ṽ3

∂r
+

1

b
ṽ3 − 1

b
σl ∗ ṽ3 = − 1

b−R3
h(R3, t) at r = b, (3.43f)

ṽ|t=0 = h(R3, 0)
b− r
b−R3

χ[R3,b], ∂tṽ|t=0 =
∂h(R3, 0)

∂t

b− r
b−R3

χ[R3,b]. (3.43g)

Here χ[R3,b] is the indicator function which is equal to 1 inside the interval [R3, b] and vanish
outside.

Obviously, ṽ(r, t) is continuous in I. Multiplying (3.43a) and (3.43b) by test function
r2φ and εr2φ respectively for φ ∈ H1(I), using integration by parts and summing up the
resulted equations, then applying the interface conditions and boundary condition we obtain
the variational problem: Find ṽ(·, t) ∈ H1(I), s.t.

B(ṽ, φ) = (f̃2, φ) +
(
∂rh(R3, t) +

h(R3, t)

b−R3

)
c2R2

3φ(R3)− h(R3, t)

b−R3
c2b2φ(b), (3.44)

for all φ ∈ H1(I), where

B(ṽ, φ) :=

∫
I\I1

(r2∂ttṽφ+ c2r2∂rṽ∂rφ)dr +

∫
I1

(
εr2∂ttṽφ+

c2r2

ε
∂rṽ∂rφ

)
dr

+βlc
2
(∫

I

ṽφdr +

∫
I1

ϑ1 ∗ ṽ(r, t)φ(r)dr
)

+ c2(ε− 1)R1ṽ(R1, t)φ(R1)

−c2(ε− 1)R2ṽ(R2, t)φ(R2) +
{
cb2∂tṽ(b, t) + c2b(ṽ(b, t)− σ ∗ ṽ(b, t))

}
φ(b).

(3.45)

Based on the variational problem (3.44), we introduce the spectral-element discretization.
Let Ih : 0 = r0 < r1 < · · · < rE = b be an interface conforming mesh of the interval I
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and denote the element by {Ke = (re−1, re)}Ee=1. Here, the interface conforming mesh means
that the points r = R1, R2, R3 are mesh points, see Figure 3.2. Let PN (Ke) be the set of all
complex valued polynomials of degree at most N in each interval Ke and define the spectral
element approximation space as

XN (Ih) :=
{
u ∈ H1(I) : u|Ke

∈ PN (Ke)
}
. (3.46)

The spectral element discretization of (3.43) is to find ṽN (r, t) ∈ XN (Ih) for all t > 0, such
that

B(ṽN , φ) = (f̃2, φ) +
(
∂rh(R3, t) +

h(R3, t)

b−R3

)
c2R2

3φ(R3)− h(R3, t)

b−R3
c2b2φ(b), (3.47)

for all φ ∈XN (Ih).

1R 2R 3R b

Cloaked region

1i 2i

Cloak eK

1er  er


0

Figure 3.2: Interface conforming mesh used by the spectral element discretization.

This spectral element discretization for ṽ leads to the following integral differential system

MV̈ + BV̇ + CV +G− c

b
B(σ ∗ V ) = F , V (0) = V0, V̇ (0) = V1, (3.48)

where
M = (mij)N×N , A = (aij)N×N , G = (Gi)N ,

B = cb2ENN , C = A + c2bENN + c2(ε− 1)(R1Ei1i1 −R2Ei2i2),

are matrices with entries given by

mij =

∫
I\I1

r2φiφjdr + ε

∫
I1

r2φiφjdr, Gi = βlc
2

∫
I1

ϑ1 ∗ ṽN (r, t)φi(r)dr,

aij = c2
∫
I\I1

(r2∂rφj∂rφi + βlφjφi)dr + c2
∫
I1

(r2

ε
∂rφj∂rφi + βlφjφi

)
dr,

Fi =

∫
I

f̃2φi(r)dr +
(
∂rh(R3, t) +

h(R3, t)

b−R3

)
c2R2

3φi(R3)− h(R3, t)

b−R3
c2b2φi(b).

Here, i1, i2 denote the global index of the freedom at r = R1, R2 (see Figure 3.2 for illus-
tration), respectively, N is the degree of freedom and also the global index of the freedom
attached to mesh point r = b, and Emn = (Eij)N×N is the matrix with only one non-zero
entry Emn = 1.

3.2.2. Newmark’s scheme for time discretization

The spectral element discretization leads to the integral differential system (3.48) w.r.t
t. Noting that all the involved time integrations are actually convolutions of exponential
functions with the unknown functions, fast algorithm based on formula (2.29) can be used.
Let us first discuss the discretization of the convolution ϑ1 ∗ ṽN (r, t). Define

ϑ̃α1 (r, t) = eiζ01 (r)t, ϑ̃β1 (r, t) = eiζ11 (r)t. (3.49)
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Then

ϑ1 ∗ ṽN (r, t) =
i(ωp,1(r))2

ζ0
1 (r)− ζ1

1 (r)

(
ϑ̃α1 ∗ ṽN (r, t)− ϑ̃β1 ∗ ṽN (r, t)

)
. (3.50)

By using the trapezoidal rule and (2.29), we have the second-order approximations

ϑ̃α1 ∗ ṽN (r, tn+1) ≈ λ0(r)ϑ̃α1 ∗ ṽN (r, tn) +
∆t

2
(ṽN (r, tn+1) + λ0(r)ṽN (r, tn)),

ϑ̃β1 ∗ ṽN (r, tn+1) ≈ λ1(r)ϑ̃β1 ∗ ṽN (r, tn) +
∆t

2
(ṽN (r, tn+1) + λ1(r)ṽN (r, tn)),

(3.51)

where
λ0(r) = eiζ01 (r)∆t, λ1(r) = eiζ11 (r)∆t. (3.52)

Substituting (3.51) into (3.50), we obtain

ϑ1 ∗ ṽN (r, tn+1) ≈ i(ωp,1(r))2

ζ0
1 (r)− ζ1

1 (r)

(
ṽcN (r, tn) +

∆t

2
(λ0(r)− λ1(r))ṽN (r, tn)

)
, (3.53)

where
ṽcN (r, tn) := (λ0(r)ϑ̃α1 − λ1(r)ϑ̃β1 ) ∗ ṽN (r, tn).

Thus, we get the discretization for G(tn+1) given by Gn+1 := (Gn+1
i ) with

Gn+1
i :=

iβlc
2(ωp,1(r))2

ζ0
1 (r)− ζ1

1 (r)

∫
I1

(vcN (r, tn) +
∆t

2
(λ0(r)− λ1(r))vN (r, tn))φi(r) dr. (3.54)

It is important to point out that Gn+1 is a vector obtained by using the solution before the
current time step thus can be moved to the right hand side in the fully discretization scheme.
We denote the new right hand side vector by F̃ n = F n −Gn.

Next, we consider the discretization of the convolution term (σl ∗V )(t). For this purpose,
we define

Vj(t) :=

∫ t

0

ec(t−τ)zlj/bV (τ) dτ. (3.55)

By using the trapezoidal rule and (2.29) again, we obtain the second order approximations

V 0
j = 0, V n+1

j = ec∆tz
l
j/bV n

j +
∆t

2
V n+1 +

∆t

2
ec∆tz

l
j/bV n, (3.56)

of Vj(tn+1) for j = 1, 2, · · · , l. Accordingly, we have

(σ ∗ V )0 = 0, (σ ∗ V )n+1 =
∆t

2
α1V

n+1 +
∆t

2
α2V

n +

l∑
j=1

αj2V
n
j , (3.57)

with

α1 =
c

b

l∑
j=1

zlj , αj2 =
c

b
zlje

c∆tzlj/b, α2 =

l∑
j=1

αj2,

is a second order discretization of the convolution term (σ ∗ V )(tn+1).
For the dicretization of time derivatives, we adopt the new marks scheme (cf. [40]). The

key idea is to use the approximations:

V n+1 = V n + ∆tV̇ n +
∆t2

2
(1− 2β)V̈ n + β∆t2V̈ n+1, (3.58)

V̇ n+1 = V̇ n + (1− γ)∆tV̈ n + γ∆tV̈ n+1, (3.59)
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where β and γ are given parameters. Using the approximations (3.54) and (3.57), we can
formulate the time discretization of the system (3.48) at tn+1 as

MV̈ n+1 + BV̇ n+1 + CV n+1 − c

b
B
{
α1∆t

2
V n+1 +

α2∆t

2
V n +

l∑
j=1

αj2V
n
j

}
= F̃ n+1. (3.60)

Inserting (3.59) into (3.60) to eliminate V̇ n+1 leads to(
M + γ∆tB

)
V̈ n+1 +

{
C− α1c∆t

2b
B
}
V n+1 = F̃ n+1 −W n, (3.61)

where

W n = (1− γ)∆tBV̈ n + BV̇ n − α2c∆t

2b
BV n − c

b
B

l∑
j=1

αj2V
n
j .

From (3.58), we have

β∆t2V̈ n+1 = V n+1 −
{
V n + ∆tV̇ n + ∆t2

(1

2
− β

)
V̈ n
}

:= V n+1 − Ṽ n. (3.62)

Using (3.62) in (3.61) we arrive the fully discretization scheme{
M+

(
γ∆t− α1cβ∆t3

2b

)
B+ β∆t2C

}
V n+1 = β∆t2

(
F̃ n+1−W n

)
+ (M+ γ∆tB)Ṽ n. (3.63)

It is known that in general, the Newmark’s scheme is of second-order and unconditionally
stable, if the parameter satisfy γ ≥ 1

2 and β ≥ 1
4 ( 1

2 + γ)2.

4. Numerical experiments

In this section, we shall validate the feasibility and accuracy of the methodology for the
simulation of 3D spherical cloaks via some numerical experiments. In all the experiments, we
set ε0 = µ0 = 1, c = 1/

√
ε0µ0 = 1, R3 = 0.95, b = 1, E = 20, N = 20, 4t = 1.0e−3. All VSH

expansions are truncated at L = 40 and the parameters in Newmark’s time discretization are
set to γ = 0.5, β = 0.25.

4.1. Monochromatic incident wave
Set

Din(r, t) = (1− e−10t) cos(kx− ωt)A, A :=
[
0 0 A

]T
, (4.1)

where k = ω = 40 and A = 1. Note that it gets close to a monochromatic wave very quickly
as t increases, e.g. t > 3, (1− e−10t) ≥ 0.999999999999906 due to the exponential term. The
parameters of the cloaking device are set ωc = 40, γ1 = γ2 = 0.001, R1 = 0.15, R2 = 0.35.
We plot the contours of Dz at different time in Figure 4.1. It shows that the spherical domain
|r| < R1 is perfectly cloaked from monochromatic wave with angular frequency ω = 40. No
waves are propagating inside the cloaked region.

In the analysis of [23], a constraint R2 ≥ 2R1 is assumed. It was pointed out that it was
unsure if this constraint is necessary and no numerical results regarding the case R2 < 2R1

were presented therein. Here, we shall do some numerical test for the case R2 < 2R1. For
this purpose, we set R1 = 0.15, R2 = 0.25 < 2R1 and plot the contours of Dz at different
time in Figure 4.2. It shows that the cloak works as well as in the case R2 > 2R1.

As discussed in [49], the cloak is relatively sensitive to the frequency of the incident wave.
Here we use the monochromatic incident wave (4.1) with k = ω = 38 to test the cloak device
with parameters: ωc = 40, γ1 = γ2 = 0.001, R1 = 0.15, R2 = 0.35. The contours of the
numerical Dz at different time are plotted in Figure 4.3. The numerical results show that
there are waves propagating inside the cloaking region.
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(a) t=1 (b) t=3 (c) t=5

(d) t=7 (e) t=9 (f) t=11

Figure 4.1: Contours of the approximated Dz in the XY plane at different time steps with R2 > 2R1.

(a) t=1 (b) t=3 (c) t=5

(d) t=7 (e) t=9 (f) t=11

Figure 4.2: Contours of the approximated Dz in the XY plane at different time steps with R2 < 2R1.

4.2. Polychromatic incident wave

In this example, we use a pulse of plane wave given by

Din = Re{eik(x−t)}e−
(x−t+tc)

2

q A, A :=
[
0 0 A

]T
,

as the incident wave with A = 1, k = 40, tc = 4 and q = 0.5. We first consider the cloaking
device with parameters given by ωc = 40, γ1 = γ2 = 0.001, R1 = 0.15, R2 = 0.35 > 2R1. The

23



(a) t=1 (b) t=3 (c) t=5

(d) t=7 (e) t=9 (f) t=11

Figure 4.3: Contours of the approximated Dz in the XY plane at different time steps with k = 38 6= ωc.

contours of Dz at different time are plotted in Figure 4.4. Then, the outer radius of the cloak
is set to R2 = 0.25 < 2R1 and other parameters remain unchanged. The contours of Dz at
different time are plotted in Figure 4.5. In these tests, there are polychromatic EM waves
interacting with the cloaking devices. We can see from the numerical results that there are
waves propagating inside the cloaked region.

(a) t=3 (b) t=3.5 (c) t=4 (d) t=4.5

(e) t=5 (f) t=5.5 (g) t=6 (h) t=6.5

Figure 4.4: Contours of the approximated Dz in the XY plane at different time steps with R2 > 2R1.
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(a) t=3 (b) t=3.5 (c) t=4 (d) t=4.5

(e) t=5 (f) t=5.5 (g) t=6 (h) t=6.5

Figure 4.5: Contours of the approximated Dz in the XY plane at different time steps with R2 < 2R1.

5. Conclusion

In this paper, we proposed accurate algorithms for computing the involved temporal con-
volutions of the NRBCs for the time-dependent Maxwell’s equations on a spherical artificial
surface. More precisely, we provided the explicit formulas of the convolution kernel functions
defined by inverse Laplace transforms of special modified Bessel functions, and also derived a
new formulation of the NRBC capacity operator. With these at our proposal, the temporal
convolutions in the NRBCs can be computed in a fast manner which therefore could offer
an accurate way to reduce Maxwell’s system in R3 to a bounded domain. As a direct appli-
cation of the truncated model, we considered the modelling and accurate simulation of the
time-domain invisibility cloaks. We derived a new model valid for general cloaking geometry
for the design of time-domain full wave invisibility cloaks involving just one unknown field
D and seemingly complicated convolution operators that could be evaluated recursively in
time again. In this work, we focused on the spherical invisibility cloaks designed in the first,
original of Pendry et al (cf. [33]). We proposed an efficient VSH-spectral-element method
for numerical simulation. The resulted algorithm could produce accurate numerical solution
with far less computation cost compared with the simulations based on FDTD in literature.
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Appendix A. Vector spherical harmonics

We adopt the notation and setting as in Nédélec [28]. The spherical coordinates (r, θ, ϕ)
are related to the Cartesian coordinates r = (x, y, z) via

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (A.1)

where r ≥ 0, θ ∈ [0, π] and φ ∈ [0, 2π). The corresponding moving (right-handed) orthonormal
coordinate basis {er, eθ, eϕ} is given by

er = r̂ = r/r, eθ = (cos θ cosϕ, cos θ sinϕ, − sin θ), eϕ = (− sinϕ, cosϕ, 0). (A.2)

Let {Y ml } be the spherical harmonics as normalized in [28], and let S be the unit sphere.
Recall that

∇SY ml =
∂Y ml
∂θ

eθ +
1

sin θ

∂Y ml
∂ϕ

eϕ. (A.3)

The VSH family
{
Y m
l ,Ψm

l ,Φ
m
l

}
:=
{
Y ml er,∇SY ml ,∇SY ml × er

}
, which has been used

in the Spherepack [37] (also see [27]) forms a complete orthogonal basis of L2(S) := (L2(S))3

under the inner product:

〈u,v〉S =

∫
S

u · v̄ dS =

∫ 2π

0

∫ π

0

u · v̄ sin θ dθdϕ. (A.4)

Define the subspace of L2(S), consisting of the tangent components of the vector fields on S:

L2
T (S) =

{
u ∈ L2(S) : u · x̂ = 0

}
. (A.5)

The VSH {Ψm
l ,Φ

m
l } forms a complete orthogonal basis of L2

T (S). Consequently, the vector
field expanded in terms of VSH has a distinct separation of tangential and normal components.
For any vector fields u ∈ L2(S), we write

u = u00Y
0

0 +

∞∑
l=1

l∑
|m|=0

{
urlm Y

m
l + u

(1)
lmΨm

l + u
(2)
lm Φm

l

}
, (A.6)

where we denote βl = l(l + 1), and have

u00 = 〈u,Y 0
0 〉S , urlm = 〈u,Y m

l 〉S , u
(1)
lm = β−1

l 〈u,Ψ
m
l 〉S , u

(2)
lm = β−1

l 〈u,Φ
m
l 〉S . (A.7)

It is noteworthy that given u, we can be computed {urlm, u
(1)
lm , u

(2)
lm} via the discrete VSH-

transform using the Spherepack [37], and vice versa by the inverse transform. Moreover, the
normal component solely involves the first term while the tangential component ET of E
involves the last two terms in (A.6).

Now, we collect some frequently used vector calculus formulas. Define the differential
operators:

d±l =
d

dr
± l

r
, ∂̂r =

d

dr
+

1

r
, Ll = ∂̂2

r −
βl
r2

=
d2

dr2
+

2

r

d

dr
− βl
r2
, (A.8)

where βl := l(l + 1). For any given f(r), the following properties can be derived from [15]:

• For divergence operator

div
(
fY m

l

)
=
( d
dr

+
2

r

)
f Y ml , div

(
fΨm

l

)
= −βl

f

r
Y m
l , div

(
fΦm

l

)
= 0; (A.9)
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• For curl operator

∇×
(
fY m

l

)
=
f

r
Φm
l , ∇×

(
fΨm

l

)
= −∂̂rf Φm

l , ∇×
(
fΦm

l

)
= ∂̂rf Ψm

l + βl
f

r
Y m
l ;

(A.10)

• For Laplace operator
∆
(
fΦm

l

)
= Ll(f)Φm

l . (A.11)

Appendix B. Proof of Proposition 3.2

Proof. Recall that if divu = 0, then ∇×∇× u = −∆u. Thus, from (A.8)-(A.11), we derive

∇×∇×
(
uΦm

l

)
= −∆

(
uΦm

l

)
= −Ll(u)Φm

l ,

∇×∇×∇×
(
vΦm

l

)
= −∇×

(
∆
(
vΦm

l

))
= −∇×

(
Ll
(
v
)
Φm
l

)
.

Therefore, (3.28a) can be reduced to:

∂2uilm
∂t2

− c2Ll(uilm) = f i,m1,l

∂2vilm
∂t2

− c2Ll(vilm) = f i,m2,l , r ∈ Ii, i = 0, 2, 3, (B.1)

for |m| ≤ l, l = 1, 2, · · · , by using the expansions (3.32). In spherical coordinates (cf. [1]):

∇× v =
1

r sin θ

(∂( sin θvϕ
)

∂θ
− ∂vθ
∂ϕ

)
er +

1

r

( 1

sin θ

∂vr
∂ϕ
−
∂
(
rvϕ
)

∂r

)
eθ +

1

r

(∂(rvθ)
∂r

− ∂vr
∂θ

)
eϕ,

(B.2)
for any vector field v = vrer + vθeθ + vϕeϕ. Apparently, we have ∇× (ui00(r, t)Y 0

0 ) = 0, as
Y 0

0 = er/
√

4π. For the coefficient ui00, we then have

∂2ui00

∂t2
= f i00, r ∈ Ii, i = 0, 2, 3. (B.3)

We now turn to the governing equation (3.28b) in the cloaking layer I1 = (R1, R2). Ac-
cording to (A.10), the vector spherical harmonic expansion of D1 can be rewritten as

D1 = u1
00Y

0
0 +

∞∑
l=1

l∑
|m|=0

{
u1
lmΦm

l + ∂̂rv
1
lmΨm

l +
βl
r
v1
lmY

m
l

}
. (B.4)

Using (B.4) and the fact that D1 defined in (3.9) is uniaxial, we have

D1[D1] =
(
u1

00 +θ1 ∗u1
00

)
Y 0

0 +

∞∑
l=1

l∑
|m|=0

{
ε−1u1

lmΦm
l +ε−1∂̂rv

1
lmΨm

l +
βl
r

(
v1
lm+θ1 ∗v1

lm

)
Y m
l

}
.

(B.5)
Using formula (B.2), we have

∇×
((
u1

00 + θ1 ∗ u1
00

)
Y 0

0

)
= 0. (B.6)

Then, we calculate from (B.5) that

∇×
(
D1[D1]

)
=

∞∑
l=1

l∑
|m|=0

(βl
r2

(
v1
lm + θ1 ∗ v1

lm

)
− ε−1∂̂2

rv
1
lm

)
Φm
l

+

∞∑
l=1

l∑
|m|=0

(
ε−1∂̂ru

1
lmΨm

l + ε−1 βl
r
u1
lmY

m
l

) (B.7)
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by using formulas (A.10). Repeating the above calculation and using the definition of D2 and
(A.10), we obtain

∇×
(
D2

[
∇×

(
D1[D1]

)])
=

∞∑
l=1

l∑
|m|=0

ε−1
(βl
r2

(u1
lm + θ2 ∗ u1

lm)− ε−1∂̂2
ru

1
lm

)
Φm
l

+

∞∑
l=1

l∑
|m|=0

ε−1∇×
((βl

r2
(v1
lm + θ1 ∗ v1

lm)− ε−1∂̂2
rv

1
lm

)
Φm
l

)
,

(B.8)

Inserting the above equation into (3.28b), one immediately shows that the expansion coef-
ficients {u1

lm, v1
lm}, |m| ≤ l, l = 1, 2, · · · satisfy the same governing equation (3.40b) with

different convolution kernels θ2 and θ1, respectively. As in (B.3), u1
00 satisfies the same dif-

ferential equation.
According to (B.4) and (B.5) and the facts

Ψm
l × er = Φm

l , Φm
l × er = −Ψm

l , (B.9)

we have

Di × er =

∞∑
l=1

l∑
|m|=0

(
− uilmΨm

l + ∂̂rv
i
lmΦm

l

)
, i = 0, 2, 3,

(∇×Di)× er =

∞∑
l=1

l∑
|m|=0

{(
∂̂2
rv
i
lm −

βl
r2
vilm

)
Ψm
l + ∂̂ru

i
lmΦm

l

}
, i = 0, 2, 3,

(B.10)

and

D1[D1]× er =

∞∑
l=1

l∑
|m|=0

(
− ε−1u1

lmΨm
l + ε−1∂̂rv

1
lmΦm

l

)
,

(
∇× (D1[D1])

)
× er =

∞∑
l=1

l∑
|m|=0

{(
ε−1∂̂2

rv
1
lm −

βl
r2

(
v1
lm + θ1 ∗ v1

lm

))
Ψm
l + ε−1∂̂ru

1
lmΦm

l

}
.

Substituting the above equations into jump condition (3.28c) and (3.28d), we obtain jump
conditions

εu0
lm = u1

lm, ∂rv
1
lm = ε∂rv

0
lm + (ε− 1)r−1v0

lm at r = R1,

εu2
lm = u1

lm, ∂rv
1
lm = ε∂rv

2
lm + (ε− 1)r−1v2

lm at r = R2,
(B.11)

and

∂ru
1
lm = ε2∂ru

0
lm + ε(ε− 1)r−1u0

lm at r = R1, (B.12)

∂ru
1
lm = ε2∂ru

2
lm + ε(ε− 1)r−1u2

lm at r = R2, (B.13)

∂̂2
rv

0
lm −

βl
r2
v0
lm = ε−2∂̂2

rv
1
lm −

βl
εr2

(
v1
lm + θ1 ∗ v1

lm

)
at r = R1, (B.14)

∂̂2
rv

2
lm −

βl
r2
v2
lm = ε−2∂̂2

rv
1
lm −

βl
εr2

(
v1
lm + θ1 ∗ v1

lm

)
at r = R2. (B.15)

Noting that ∂̂2
ru = 1

r2
∂
∂r

(
r2 ∂u

∂r

)
, the governing equations (3.40a)-(3.40b) then gives

ε−2∂̂2
rv

1
lm −

βl
εr2

(
v1
lm + θ1 ∗ v1

lm

)
=

1

c2
∂2v1

lm

∂t2
, ∂̂2

rv
i
lm −

βl
r2
vilm =

1

c2
∂2vilm
∂t2

, (B.16)
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for i = 0, 2, 3. Substituting (B.16) into the jump conditions (B.14)-(B.15) and integrate w.r.t.
t and using homogeneous initial conditions (3.40g), we derive

v0
lm = v1

lm at r = R1; v2
lm = v1

lm at r = R2. (B.17)

Note that the jump conditions at artificial interface r = R3 are trivial. Thus, we consider the
boundary condition at r = b.

Applying expansion (3.32) in (3.28f) and using identities (B.9), (B.10) and formulation
(3.37), we obtain

∞∑
l=1

l∑
|m|=0

(
∂t∂̂rv

3
lm + c

(
∂̂2
rv

3
lm −

βl
b2
v3
lm

)
− c

b2
ωl ∗ v3

lm

)
Ψm
l

+

∞∑
l=1

l∑
|m|=0

(
∂tu

3
lm + c∂̂ru

3
lm −

c

b
σl ∗ u3

lm

)
Φm
l = 0,

(B.18)

which implies two boundary conditions

1

c
∂tu

3
lm +

∂u3
lm

∂r
+

1

b
u3
lm −

1

b
σl ∗ u3

lm = 0 at r = b, (B.19)

∂

∂r

∂v3
lm

∂t
+

1

b

∂v3
lm

∂t
+ c
(
∂̂2
rv

3
lm −

βl
b2
v3
lm

)
− c

b2
ωl ∗ v3

lm = 0 at r = b. (B.20)

Here, the definition of differential operator ∂̂ in (A.8) is applied. Obviously, the boundary
condition for u3

lm is exactly the one we adopted in the model problem (3.40). Next, we will
show that the equation (B.20) can be reformulated to the same form as (B.19). Indeed, we
can directly calculate

c

b2
ωl(t)∗v3

lm(b, t) =
1

b

(∫ t

0

σ′l(t−τ)v3
lm(b, τ) dτ+σl(0)v3

lm(b, t)

)
=

1

b
∂t(σl∗v3

lm(b, t)), (B.21)

by using the expression of ωl(t) (2.36). Using the above equation and (B.16) in (B.20) gives

∂

∂t

{∂v3
lm

∂r
+

1

b
v3
lm +

1

c

∂v3
lm

∂t
− 1

b
σl ∗ v3

lm

}
= 0 at r = b. (B.22)

Consequently, we obtain boundary condition (3.40f) by the zero initial data assumption.
Note that the initial boundary value problems for coefficients uilm and vilm have almost

the same form except the interface conditions (B.11)-(B.13) and (B.17). Apparently, by
introducing the variable substitution (3.39), {ũilm} satisfy the same governing equation as
{uilm and the same interface and boundary conditions as vilm.
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