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Abstract

We introduce a new local meshfree method for the approximation
of the Laplace-Beltrami operator on a smooth surface of co-dimension
one embedded in R3. A key element of this method is that it does
not need an explicit expression of the surface, which can be simply
defined by a set of scattered nodes. It does not require expressions for
the surface normal vectors and for the curvature of the surface nei-
ther, which are approximated using formulas derived in the paper. An
additional advantage is that it is a local method and, hence, the ma-
trix that approximates the Laplace-Beltrami operator is sparse, which
translates into good scalability properties. The convergence, accuracy
and other computational characteristics of the method are studied nu-
merically. The performance is shown by solving two reaction-diffusion
partial differential equations on surfaces; the Turing model for pat-
tern formation, and the Schaeffer’s model for electrical cardiac tissue
behavior.

1 Introduction

Researchers from a diverse range of areas such as medicine, geoscience or
computational graphics [1, 3, 6, 14, 18] often urge to find solutions to partial
differential equations (PDEs) on surfaces. This is a challenging problem due
to the complexity of the differential operators restricted to the geometry of
the given surfaces. Among all the methods that seek the solution of this class
of PDEs, the most popular are finite element methods, where the equations
are solved using surface triangulation [9, 20, 33]. They are in general very
efficient but they also have several problems. Specifically, the discretization
may not be trivial, and some difficulties may appear when computing geo-
metric primitives such as surface normals and curvatures. Another common
approach is to embed the surface PDE within a differential equation posed
on the whole R3, and then restrict the solution to the surface of interest
[4, 17, 22]. The main advantage of this method comes from working with
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cartesian grids. However, the discretization is done in a higher dimensional
space and, thus, the computational cost increases. Another disadvantage of
these methods is that it is not well understood how the accuracy deteriorates
in this procedure.

An alternative approach to estimating the solutions to PDEs on surfaces
are global RBF-based methods [15, 16, 21]. They can naturally handle irreg-
ular geometries and scattered nodes layouts as no triangularization is needed.
Their main advantages are the ease of implementation and the potential spec-
tral accuracy with respect to the number of nodes n used to discretize the
surface. An additional advantage is that they operate using cartesian coordi-
nates instead of intrinsic coordinates over the surface. However, there are at
least two important drawbacks. One is that the computational cost scales as
O(n3), and thus, it becomes rapidly excessive, making global RBF methods
impractical for large problems. The other drawback is that there exists an
inverse correlation between the accuracy and the stability of these methods,
being the shape parameter that which determines the trade-off between the
two. Indeed, they need a somewhat ad-hoc choice of the value of a shape
parameter that affects the stability and the ill-conditioning of the resulting
linear systems.

To overcome these drawbacks local versions of the global RBF method
have also been proposed to solve PDEs defined on a surface [26, 29, 30].
These methods use only a relatively small subset of all the available points
to approximate the PDE operator locally, so their cost is largely reduced and
the scaling properties improved [13]. As a side effect, the spectral accuracy
is sacrificed but much better conditioned linear systems are obtain. In the
fewest words possible, local RBF methods inherit many key strengths of
global RBF method, with a reduced cost but loosing accuracy.

An interesting consequence of local RBF methods is that they generate
finite differences (FD) schemes with certain weights wi. Hence, they are
known as RBF-FD methods. They benefit from some of the key properties
of traditional FD approximations, but they are more flexible. While FD are
enforced to be exact for polynomials evaluated at the node xk, RBF-FD are
enforced to be exact for RBF interpolants. Thus, weights for FD-like stencils
with scattered nodes can be obtained easily.

In [2], we derived a closed-form formula for the (global) RBF-based ap-
proximation of the Laplace Beltrami Operator (LBO). It can not only be
applied to surfaces whose explicit formula is known, but also to surfaces de-
fined by a set of scattered nodes. The formula only requieres knowledge on
the positions of those points, and its accuracy mainly depends on the er-
rors made in the RBF surface reconstruction. If an explicit representation of
the surface is given and, therefore, the normal vectors to the surface and its
curvature are computed analytically, the convergence is faster than algebraic.

In this paper, we generalize the approach in [2] to local RBF approxima-
tions. We carry out a thorough study of the proposed method and analyze its
convergence and stability properties when it is applied to reaction diffusion
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equations over surfaces. We consider the Turing model for pattern formation
in nature, and the Schaeffer’s model for electrical cardiac tissue behavior.

The paper is organized as follows. In Section 2, we derive an analytical
expression of the LBO applied to a generic RBF, and we characterize the
surface defined by a cloud of points in order to approximate the normal
vectors and the curvature. In Section 3, we analyze the convergence and
stability properties of the proposed method. In Section 4, we apply our
approximation to the solution of two different PDEs over surfaces. Section 5
contains our conclusions.

2 Formulation of the problem

Let Σ be a two dimensional surface embedded in R3, and X = {xi}ni=1 a
set of n scattered points distributed on Σ. The objective of this section is
to derive a local RBF-FD approximation for the Laplace-Beltrami operator
(LBO) applied to a scalar function f : Σ→ R using the data (xi, f(xi)). We
start reviewing the basic concepts of RBF methods necessary to calculate the
numerical approximation of a differential operator; see [5, 28, 12] for more
details. Then, we describe how to compute the weights for local RBF-FD
approximation of the LBO. As in [2], it is also necessary to compute some
characteristics of the surface, such as the normal vectors and its curvature,
which are also computed using a local RBF methodology. Finally, we describe
how to build a differentiation matrix that approximates the action of the LBO
in reaction-diffusion type equations on surfaces.

2.1 RBF fundamentals

Radial functions are real valued functions Φ : R3 → R, whose value depends
only on the magnitude of its argument, i.e., Φ(x) = φ(‖x‖) , x ∈ R3 , where
‖·‖ is, usually, the standard euclidean norm. These functions φ : [0,∞)→ R
are called Radial Basis Functions (RBF). RBFs can be used to construct
interpolants for continuous functions f : Ω → R, Ω ⊆ R3, sampled at a set
of points {xi}ni=1 ∈ Ω. Given a set of data {xi, fi}ni=1,the interpolant

Sf (x) =
n∑
i=1

λiφ(‖x− xi‖), x ∈ Ω, (1)

is constructed as a linear combination of translates of φ over the points xi,
where the interpolation coefficients λi are calculated by imposing that the
interpolant coincides with the function at each point xi, so

Sf (xi) = f(xi), i = 1, 2, ..., n. (2)
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These requirements lead to the following linear system
φ(r1(x1)) φ(r1(x2)) . . . φ(r1(xn))
φ(r2(x1)) φ(r2(x2)) . . . φ(r2(xn))

...
...

. . .
...

φ(rn(x1)) φ(rn(x2)) . . . φ(rn(xn))


︸ ︷︷ ︸

A


λ1

λ2
...
λn


︸ ︷︷ ︸

λ

=


f(x1)
f(x2)

...
f(xn)


︸ ︷︷ ︸

f

, (3)

where ri(x) = ‖ri(x)‖ = ‖x−xi‖. Notice that the RBF interpolation matrix
A is dense, symmetric and, under certain conditions, invertible [5].

It is sometimes useful to add a constant to the RBF interpolant (1), so

Sf (x) =
n∑
i=1

λiφ(ri(x)) + γ . (4)

Adding a constant to the RBF interpolant ensures the exact interpolation
of constant functions. It also results in a less oscillatory interpolant, and
improves the accuracy of the interpolation [12]. To compute the interpolation
coefficients λi and the constant γ we impose the conditions (2) with the
additional constraint

n∑
i=1

λi = 0. (5)

Then, equation (3) takes the form[
A c
cT 0

]
︸ ︷︷ ︸

Ac

[
λ
γ

]
︸︷︷︸
λc

=

[
f
0

]
︸︷︷︸
fc

, (6)

where A, λ and f are defined in (3), and c is a vector with n components
all equal to 1. Thus, the interpolation problem can be solved calculating the
coefficients as

λc = A−1
c fc. (7)

RBFs can also be used to approximate differential operators in a similar
way to what is done in the FD method. FD formulas approximate differential
operators applied to a function f , at a point x0, by a weighted sum

Lf (x0) ≈
n∑
i=1

wi f(xi) (8)

of the values of that function at a set {xi}ni=1 of n neighboring points of x.
In the standard FD formulation the weights wi are computed by enforcing
(8) to be exact for polynomials of a certain degree evaluated at the set of
points {xi}ni=1, while for RBF, the formula is enforced to be exact for RBF
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interpolants at those same points [12]. The resulting formulas are called
Radial Basis Function-Finite Difference (RBF-FD) formulas.

Thus, given a differential operator L and a set of points, the RBF-FD
weights are computed by imposing (8) to be exact for the interpolant (4), so

n∑
i=1

wif(xi) = LSf (x0) =
n∑
i=1

λiLφ(ri)(x0) + γL1. (9)

Equation (9) can be written as

f ·w = λc ·Lc, (10)

where w = [w1, . . . , wn]T is the weight vector andLc = [Lφ(r1)(x0), . . . ,Lφ(rn)(x0),L1]T .
Now, using equation (7)

fc ·wc = fc · A−1
c Lc, (11)

where wc = [wT , w∗]
T is the weight vector whose last component is irrelevant

in the calculation . From (10), we finally obtain

wc = A−1
c Lc. (12)

which is similar to (7) but applied to the differential operator over the RBFs
evaluated at the point x0.

There are several types of RBFs, and the choice of the optimal one for
a given problem is still an open question. Among the infinitely differen-
tiable RBFs, those used most often are the Gaussian φ(r) = exp(−(εr)2),
the Inverse Quadratic φ(r) = 1/(1 + (εr)2) and the Inverse Multiquadric
φ(r) = 1/

√
1 + (εr)2. All these contain a free parameter ε, called shape

parameter, that controls the flatness of the RBF (the smaller the flatter).
These three RBFs are examples of positive definite RBFs that guarantees
that the interpolation matrix is invertible [10]. It is well known that large
values of the shape parameter lead to well-conditioned linear systems, but
to an inaccurate approximation of the operator. On the other hand, small
values of this shape parameter lead to accurate results but make the condi-
tion number of the interpolation matrix large, and hence, the interpolation
coefficients may diverge [5].

2.2 RBF-FD for Laplace-Beltrami operator

To obtain an RBF-FD approximation to the LBO using (12), we start by
applying the operator to an RBF. The LBO can be defined as the surface
divergence of the surface gradient,

∆Σ(·) = divΣ (∇Σ(·)) = ∇Σ ·∇Σ(·). (13)
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Here ∇Σ is the surface nabla operator, which is defined as the orthogonal
projection of the usual nabla onto the tangent plane to the surface at each
point x ∈ Σ. Thus,

∇Σ = ∇− n(x) n(x) ·∇ (14)

where n(x) is the unit normal vector to the surface.
We start by computing the surface gradient of an RBF ∇Σφ. Taking into

account that φ(ri(x)) only depends on the distance ri(x) and applying the
chain rule, we obtain

∇Σφ(ri(x)) =
dφ(ri(x))

dri(x)
∇Σ(ri(x)) =

=
dφ(ri(x))

dri(x)
(∇ri(x)− (n(x) n(x) · ∇) ri(x)) . (15)

Using the fact that ∇ri(x) =
ri(x)

ri(x)
, equation (15) can be written as

∇Σφ(ri) = (ri − (ri · n)n)
1

ri

dφ(ri)

dri
. (16)

Here, and in all that follows, we write ri = ri(x) and n = n(x) to simplify
the notation.

To complete our calculation of the LBO of an RBF using (13), we take
the surface divergence of (16), obtaining

∇Σ ·
(

(ri − (ri · n)n)
1

ri

dφ(ri)

dri

)
=

1

ri

dφ(ri)

dri
∇Σ · (ri − (ri · n)n) + (ri − (ri · n)n) · ∇Σ

(
1

ri

dφ(ri)

dri

)
. (17)

For the first term of this equation we have

∇Σ · (ri − (ri · n)n) = ∇Σ · ri − (ri · n)∇Σ · n− n · ∇Σ(ri · n), (18)

where we note that the last term is zero because is the scalar product of two
perpendicular vectors. Furthermore,

∇Σ · ri = ∇ · ri − (n n · ∇) · ri = ∇ · ri − n · (n · ∇r) = 3− 1 = 2 (19)

and

∇Σ · n = ∇ · n− (n n · ∇) · n = ∇ · n− n · (n · ∇n) = ∇ · n (20)

because n · ∇r = n and n · ∇n = ∇‖n‖2/2 = 0
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For the second term of equation (17), using (16), we have

((ri − (ri · n)n) · ∇Σ

(
1

ri

dφ(ri)

dri

)
= ‖ri − (ri · n)n‖2 1

ri

d

dr

(
1

ri

dφ(ri)

dri

)
.

(21)

Noting that ‖ri−(ri ·n)n‖ is the norm of the projection of ri over the tangent
plane, and applying the Pythagoras Theorem we have ‖ri − (ri · n)n‖2=
r2
i + (n · ri)2. Finally, collecting the terms (18)-(21), we obtain

∆Σφ(ri) =

(
1− (ri · n)2

r2
i

− κri · n
ri

)
1

ri

dφ(ri)

dri
+

(
1 +

(ri · n)2

r2
i

)
d2φ(ri)

dr2
i

,

(22)

where κ = ∇ · n is the curvature term.
In summary, to compute the value of the LBO applied to an RBF at a

certain node xl ∈ X, 1 ≤ l ≤ N , we consider the stencil centered in xl and
size M , which is defined as a subset of X consisting of xl and the M − 1
nearest neighbor nodes. Without loss of generality, we consider that the
center of the stencil is xl = x1, and xk, k = 2, · · · ,M the remaining nodes
in the stencil. Then, from (8)

∆Σf(x1) ≈
M∑
k=1

wkfk , (23)

where the weights are obtained from (12) as
w1

w2
...
wM
w∗

 =


φ(r1(x1)) φ(r1(x2)) . . . φ(rl(xM)) 1
φ(r2(x1)) φ(r2(x2)) . . . φ(r2(xM)) 1

...
...

. . .
...

...
φ(rM(x1)) φ(rM(x2)) . . . φ(rM(xM)) 1

1 1 . . . 1 0


−1 

∆Σφ(r1(x1))
∆Σφ(r2(x1))

...
∆Σφ(rM(x1))

0

 .
(24)

Here, the elements of the vector in the right hand side, ∆Σφ(ri(x1)), are
computed using (22).

2.3 Surface characterization

When the normal vectors n and the curvature κ are unknown, it is necessary
to compute them before applying (22). In this section, we describe a pro-
cedure to approximate the values of these quantities. The procedure uses a
level set formalism and RBF interpolation to construct a local approximation
to the surface, which is used to compute their approximate values.

We consider a stencil of size M centered at the node where we want to
compute n and κ. Assume, as before, that x1 is the center of the stencil
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(a) (b)

Figure 1: (a) A closer look to the stencil with the normal vectors, and the on
and off points used for interpolation. (b) Sphere represented by a set of ME
blue points. We have also represented a 16 points stencil (in brown) with the
central (green) point. We also show the local approximation of the surface
ΣΨ.

and xk, k = 2, · · · ,M , the other nodes of the stencil. We start by defining a
continuously differentiable level-set function Ψ : R3 → R, such that its zero
level set

ΣΨ = {x ∈ R3 : Ψ(x) = 0}, (25)

approximates locally the surface Σ in a neighborhood of x1. To this end, we
use an RBF interpolant (4) with the interpolant conditions Ψ(xk) = 0, k =
1, . . . ,M . We also add two off-surface points x+ and x−, where Ψ(x) has non
zero values. The resulting interpolant will then be zero at the nodes of the
stencil and non zero elsewhere. The off-surface points are placed at either
side of the surface along the direction normal to the surface at x1 (see Figure
1(a)). Although we assume that the normal vectors are not known at this
stage, we can approximate them as

napp = (x1 − xa)× (x1 − xb),

where xa and xb are two points of the stencil not aligned with x1.
Thus, we model the local surface implicitly as

Ψl(x) =
M+2∑
k=1

bkφ(rk(x)) + d, (26)

where rM+1 = ‖x−x+‖ and rM+2 = ‖x−x−‖. The interpolation coefficients
bk and the constant d are obtained by enforcing the interpolation conditions
(see Figure 1(b))

Ψl(xu(k)) = 0, k = 1, . . . ,M (on-surface nodes) ,

Ψl(x+) = 1; Ψ1(x−) = −1 (off-surface nodes). (27)
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and the constraint
M+2∑
k=1

bk = 0.

Once the function Ψ(x) is known, the unit normal vector to the surface
ΣΨ at a point x is simply given by

n =
∇Ψ

‖∇Ψ‖
, (28)

where the gradient can be computed applying the chain rule

∇Ψ =
M+2∑
k=1

bk
dφ(rk)

drk

rk
rk
. (29)

Similarly, the curvature can be obtained from κ = ∇ · n. Note that

∇ · n =
‖∇Ψ‖∇ ·∇Ψ−∇Ψ ·∇‖∇Ψ‖

‖∇Ψ‖2
=

1

‖∇Ψ‖
(∆Ψ− n ·∇ (∇Ψ)) ,

(30)

where we have used (28) and the relation ∇‖∇Ψ‖2= ∇(∇Ψ ·∇Ψ). Then,
using (22) and (16) we obtain

κ =
1

‖∇Ψ‖

M+2∑
k=1

bk

((
1 +

(rk · n)2

r2
k

)
1

rk

dφ(rk)

drk
+

(
1− (rk · n)2

r2
k

)
d2φ(rk)

dr2
k

)
,

(31)
with ∇Ψ given by (29). Evaluating (28) and (31) at x1 we obtain approxi-
mations to the normal vector and the curvature at each node, respectively.

2.4 RBF-FD solution of reaction-diffusion equations at
surfaces

Reaction-diffusion PDEs on surfaces are described by

∂

∂t
u = R(u, t) +D∆Σu on Σ, (32)

supplemented with appropriate boundary and initial conditions. Here, u =
u(x, t) represents the variable of interest, R(u, t) the reaction term, D the
diffusion coefficient, and ∆Σu the LBO that describes diffusion on the surface
Σ.

Let u(t) be a vector of N components containing the values of u(x, t) at
the points xi ∈ Σ, i = 1, · · · , N . Equation (32) can be spatially discretized
as

d

dt
u = R(u, t) +DM∆Σ

u , (33)
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where M∆Σ
is the differentiation matrix containing the RBF-FD weights

for the LBO. Equation (33) is a system of N coupled ordinary differential
equation and, provided it is stable, it can be advanced in time with a suitable
time-integration method.

To compute the matrix M∆Σ
we start by selecting the size of the stencil

at each node, and use (28) and (31) to obtain n(xi) and κ(xi), i = 1, · · · , N .
Then, for each node xi, we create a vector v of n components containing
the indexes of the nodes in the stencil (v(1) = i and v(k), k = 2, . . . ,M ,
the indexes of the nearest neighbors nodes to xi), and use equation (24) to
compute the RBF-FD weights wi,v(k), k = 1, · · · ,M . Each weight wi,v(k) is
stored as element (i,v(k)) of matrix M∆Σ

.
A very relevant property that has to be considered is the stability of

the time integration method used to solve (32). In general, a minimum
requirement for stability is that all eigenvalues of the differentiation matrix
M∆Σ

lie in the left half-plane of the complex plane. M∆Σ
is a sparse N ×

N matrix, with M entries different from zero per row. Unfortunately, the
construction of this matrix does not guarantee that all its eigenvalues lie
on the left half-plane and, therefore, stability is not ensured. Fortunately,
however, we have found that, if the nodes are suitably chosen and if the
internodal distance is small enough, then the eigenvalues do in fact lie in the
left half-plane. Finding the conditions that could guarantee this property is
still an open problem. In this context, the value of the shape parameter and
the distribution of the nodes are crucial [16, 30].

3 Numerical tests

In this section, we present numerical experiments whose aim is to test the
performance of the proposed procedure to approximate the LBO. These ex-
periments are focused (i) on the convergence of the numerical approximation
to the LBO applied to a function at a point, (ii) the quality of the character-
ization of the surface and (iii) the stability properties of the differentiation
matrix resulting from the method described in the previous section. All nu-
merical experiments have been perform using N scattered points {xi}Ni=1 dis-
tributed on the surface of the unit sphere S2 = {(x, y, z) ∈ R3 : x2 +y2 +z2 =
1}. The used scattered points are uniformly distributed Minimal Energy
(ME) nodes, which correspond to the equilibria locations of mutually re-
pelling particles. The exact locations of these ME nodes have been obtained
from the repository [24]. In all the experiments we use Gaussians as RBFs.

3.1 Convergence

In the first test, we estimate the error of the numerical approximation to
∆S2f(x) using equation (23). We apply this operator to the function f(x, y, z) =
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x(1 + y(1 + z)), whose exact ∆S2 is

∆S2f = −2x(1 + 3y(2 + z)). (34)

Note that in the case of the unit sphere, if x ∈ S2 then n(x) = x and
κ(x) = ∇ ·n(x) = 2 (see [2] for details). The error at location x1 is given by

Error = |∆S2f(x1)−
M∑
i=1

wif(xi)| (35)

where xi, i = 2, . . .M are the locations of the M − 1 nearest neighbors to x1.
For this experiment we have used N = 1000 ME nodes which are shown

in Figure 2(a). The stencil center is x1 = (1, 0, 0) (marked with a red circle
in the Figure), and the stencil size is M = 16. The stencil nodes are shown
with thick blue dots.

Figure 2(b) shows the resulting error (35) with a continuous blue line, and
the condition number of the interpolation matrix Ac with a continuous brown
line, as a function of the shape parameter ε. As expected, when the value
of ε decreases, the condition number increases and the error decreases until
we reach a value of ε where the interpolation matrix becomes ill-conditioned
and the error begins to increase sharply.

If instead of considering a single node and its corresponding stencil we
repeat the experiment for all the N = 1000 nodes and compute the maximum
error and maximum condition number, we obtain the results shown with
dashed lines in the Figure. We observe that the behavior is similar to that
shown for the case of a single point but the errors and condition numbers are
higher. As we can see, there is an optimal value of the shape parameter for
which the error is minimum.

To analyze the order of convergence of the method we have numerically
analyzed, for different valuesM of the stencil size, the dependence of the error
on the shape parameter ε and on the internodal distance, which is inversely
proportional to

√
N . These results are shown in Figures 3(a) and 3(b). We

use N = 1000 in Figure 3(a), and ε = 2 in Figure 3(b). Notice that the
optimal shape parameter increases with increasing stencil size. Also notice
that the convergence rate with

√
N is algebraic, while in the global method

the convergence is spectral [2]. To confirm this fact we compute the value of

the order µ that best matches the numerical results (Error ∝
(√

N
)−µ

). We

find µ = 1.8, 2.4, 3.4, 5.4 for stencils sizes M = 11, 15, 21, 31. As expected,
the convergence rate increases with the stencil size.

3.2 Surface characterization

In this Section, we analyze the accuracy in the computation of the normal
vector (28) and the curvature (31) using the procedure described in Section
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(a) (b)

Figure 2: (a) 1000 ME node distribution over the sphere. The nodes of a
M = 16 nodes stencil are marked in black, and the center with a red circle.(b)
Error and condition number of the interpolation matrix. Continuous lines:
data for the point drawn in a) dashed lines: maximum error and condition
number for all nodes.

(a) (b)

Figure 3: (a) Error for N = 1000 ME nodes as a function of ε for different
values of M . (b) Error for ε = 2 as a function of

√
N for different values of

M . Also shown are straight lines with slope −µ which best fit the data.
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2.3. For simplicity, we carry out this analysis for the case of the unit sphere
S2, for which the exact values of the normal vector and curvature are known.

Figure 4 (a) shows the maximum error in the infinity norm of the normal
vector, En = max{‖n(xi)−x(i)‖∞}, i = 1, · · · , N , as a function of the shape
parameter. Figure 4 (b) shows the maximum error in the computation of the
curvature, Eκ = max{|κ(xi) − 2|}, i = 1, · · · , N , as a function of the shape
parameter. In both Figures we use N = 1000 ME nodes. Again, the error

(a) (b)

(c) (d)

Figure 4: (a) Maximum error in the infinity norm of the normal vector as a
function of ε. N = 1000 ME nodes. (b) Maximum error in curvature as a
function of ε. N = 1000 ME nodes. (c) Maximum error in the infinity norm
of the normal vector as a function of

√
N . ε = 2. Also shown are straight

lines with slope −µ which best fit the data. (d) Maximum error in curvature
as a function of

√
N . ε = 2. Also shown are straight lines with slope −µ

which best fit the data.

decreases with decreasing ε until the condition number of the interpolation
matrix becomes very large and round-off errors deteriorate the accuracy. Also
observe that the error decreases with increasing stencil size.

Figures 4 (c) and (d) show the errors in normal vector and curvature (En

and Eκ, respectively) as a function of
√
N . We observe that, similarly to

what happened with the error in the approximation to the LBO, see Figure
3(b), convergence is algebraic. We have computed the value of the order
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µ that best matches the numerical results. In the case of the error in the
approximation to the normal vector, we have obtained µ = 2.4, 3.4, 4.2, 6.0
for stencil sizes M = 11, 15, 21, 31, respectively. Lines with these slopes have
been plotted in Figure 4 (c). In the case of the curvature error, we have
obtained µ = 1.8, 2.0, 3.0, 5.2 for the same stencil sizes. Lines with these
slopes are also plotted in this figure.

3.3 Stability analysis

As mentioned in Section 2.4, the eigenvalues of the differentiation matrix
determine the stability of the numerical time integration of reaction-diffusion
equations over a surface. Here, we consider the differentiation matrix M∆S2

corresponding to the unit sphere for the case of N = 1000 ME nodes, M = 31
stencil size, and ε = 2 shape parameter. The exact eigenvalues of the Laplace-
Beltrami operator are real and non positive; see Chapter 3 of [31]. Their exact
values are λk = −k(k + 1), k = 0, 1, 2, . . . with multiplicity

Mult(λk) =

(
2 + k

2

)
−
(
k

2

)
. (36)

Figure 5 (a) shows the eigenvalues of the M∆S2
matrix. All of them have

negative real part, and for small values of k they are very close to the exact
ones (λk = 2, 6, 12, 20, . . . for k = 1, 2, 3, 4, . . . ). This can be better observed
in Figure 5 (b) which shows the histogram of the real part of eigenvalues
(the imaginary part is approximately zero).Since the height of the histogram
represents the number of eigenvalues of a certain value, that height represents
the multiplicity of the eigenvalue. The exact multiplicity of the eigenvalues
given by (36) are shown with triangles. Notice that, for small values of k,
the exact multiplicities of the eigenvalues of the Laplace-Beltrami operator
are in very good agreement with the multiplicities of the eigenvalues of the
differentiation matrix M∆S2

.

4 Numerical results

In this section we apply the method that we propose for the numerical ap-
proximation of the LBO in order to compute the solution of two examples of
reaction-diffusion problems on surfaces.

4.1 First example:Turing Patterns

As a first example, we consider the reaction-diffusion system proposed by
Alan Turing as a prototype model for pattern formation in nature [34]. These
patterns arise from a homogeneous and uniform initial state. Turing’s model
can generate a variety of spatial patterns which originate from a wide vari-
ety of phenomena: morphogenesis in biology [23], ecological invasion [19] or
tumor growth [7].
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(a) (b)

Figure 5: (a) Real and imaginary parts of eigenvalues. (b) Histogram of
real part of eigenvalues. Triangles represent the exact multiplicity of the
eigenvalues given by (36).

Turing’s equations model the interaction of an activator u(x, t) and an
inhibitor v(x, t). This interaction is described by the following two differential
equations:

∂u

∂t
= αu(1− τ1u

2) + v(1− τ2u) +Du∆Σu (37)

∂v

∂t
= βu

(
1 +

ατ1uv

β
τ1u

2

)
+ u(γ − τ2v) +Dv∆Σv. (38)

Depending on the choice of parameters different patterns can arise natu-
rally out of a homogeneous, uniform state. Both variables, u and v, can lead
to instabilities which evolve to different pattern formations, such as stripes
or spots.

The surface chosen to solve equations (37) and (38) is the Schwarz Prim-
itive Minimal Surface which can be approximated by the implicit equation
[27]

cos(2πx) + cos(2πy) + cos(2πz) = 0. (39)

We consider periodic boundary conditions in the three coordinate axes, that
is, u(x = −1, y, z) = u(x = 1, y, z) and v(x = −1, y, z) = v(x = 1, y, z) and
the same for the Y- and Z-axes.

Figure 4.1 (a) shows the surface (39) and the nodes used for the computa-
tion. These nodes have been obtained by projecting radially over Schwarz’s
surface a set of N = 1800 ME nodes on the unit sphere obtained from the
repository [24]. With this set of nodes, we calculate the normal vectors n(xi)
and the curvature κ(xi) on the surface using equations (28) and (31), respec-
tively. The resulting values are shown in Figure 4.1 (b). These values have
been obtained using a stencil size M = 51 and a shape parameter ε = 3.
Since the analytic formula of the surface is known (39) we can calculate the
exact values of n(xi) and κ(xi) and, thus, the error. We find that these errors
are smaller than 0.1% both for the normal vectors and for the curvature.
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pattern Du Dv α β γ τ1 τ2

spots 2.32 10−3 4.5 10−3 0.899 -0.91 -0.899 0.02 0.2
stripes 1.08 10−3 2.1 10−3 0.899 -0.91 -0.899 3.5 0

Table 1: Parameter values used to solve Turing’s model (37)-(38).

The approximate values of n(xi) and κ(xi) are then used to compute
the differentiation matrix of the Laplace-Beltrami operator M∆Σ

. In this
computation we have used M = 31 stencils and ε = 2. We have also checked
that the eigenvalues of this matrix do not have positive real part.

(a) (b)

(c) (d)

Figure 6: (a) Nodes and surface. (b) Curvature and normal vectors.(c) Sta-
tionary state for variable u resulting from the parameters in the first row of
Table 1. (d) Stationary state for variable u resulting from the parameters in
the second row of Table 1.

For temporal integrations we use function ode45 from MatLab, a standard
solver for non-stiff ordinary differential equations. This function implements
a Runge-Kutta method with a variable time step for efficient computation.
The initial condition in both cases is a perturbation of the activator u. The
interaction between the activator and the inhibitor v results in a transient
state that, for long times, evolves to a stationary state with different char-
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σ τopen τclose τin τout vcrit
10−3 cm2/ms 130ms 150ms 0.2ms 10ms 0.13

Table 2: Parameters used for the solution of Mitchell and Schaeffer’s model
(40)-(41) .

acteristic patterns which depend on the values of the parameters. Figures
4.1 (c) and (d) show the stationary states corresponding to the two sets of
parameters shown in Table 1, which have been taken from [30]. These two
stationary states correspond to two classic patterns of Turing’s model: the
spots and the stripes pattern, respectively. These stationary states are in
agreement with those obtained previously for the same parameters [30].

4.2 Second example: Schaeffer’s model

In the second numerical experiment we solve the bioelectric cardiac source
model proposed by Mitchell and Schaeffer [25]. This is a simple model which
is capable of reproducing the main electrophysiological properties of cardiac
tissue, such as restitution properties or spatial variations of the action po-
tential duration. The model consists of two differential equations

∂v

∂t
= σ∆Σv + Jin(v, h) + Jout(v) + Jstim(t) , (40)

and

∂h

∂t
=


1− h
τopen

, v < vcrit

−h
τclose

, v > vcrit.

(41)

where v = v(x, t) and h = h(x, t) are the transmembrane voltage and the
inactivation gate variable, respectively. In (40), the terms Jin and Jout rep-
resent the inward and outward currents of the cells of the membrane

Jin(v, h) =
h(1− v)v2

τin
and Jout(v) = − v

τout
, (42)

and Jstim represents the initial stimulus. The diffusive term σ∆Σv models
the transmembrane current flowing through the cardiac membrane. The
six parameters σ, τin, τout, τopen, τclose, and vcrit govern the behavior of the
membrane and, depending on their values, they can not only model healthy
tissue, but also tissue with some kind of pathology. We refer the interested
reader to [25, 1] for more details about this model.

We have applied our proposed procedure to the solution of equations (40)-
(42) with the parameters shown in Table 2. These equations are solved on
the epicardium, which is the outermost surface membrane of the heart and
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which is shown in Figure 4.2(a). We also show the N = 2014 points used
for the numerical solution of the problem. These points have been obtained
from a computerized tomography (CT) of a real patient [8]. Therefore, it is
a realistic model in which we do not have information neither on the normal
vectors nor on the curvature of the surface. We consider

v(x, t = 0) = 0 and h(x, t = 0) = 1 ∀x ∈ Σ

as initial conditions, and we apply a current stimulus

Jstim(x, t) = H(tstim − t)e
(x−xs)2

δ2 , t ≥ 0 , (43)

shown in Figure 4.2(b). Here, H(t) denotes the Heavisade function, tstim the
time when the stimulus ends, xs the position where the stimulus is applied,
and δ its spatial width.

We use the same method that in the previous example for temporal inte-
gration. The solution shows the propagation of the electric excitation along
the membrane. For instance, Figure 4.2 (c) shows the transmembrane current
50 ms after the stimulus ends. The tissue goes from a resting to an excited
state. Finally, the membrane returns to the resting state awaiting for the
next stimulus. This behavior can be observed in Figure 4.2 (d), where we
show the evolution with time of the transmembrane voltage v(xm, t) and the
gate variable h(xm, t) at the point xm in Figure 4.2 (c). As we can see, the
cardiac tissue experiences the different stages of a heartbeat corresponding
to those shown in [25].

5 Conclusions

In this article we have introduced a new RBF-FD based method to calculate
the solution of reaction-diffusion equations over surfaces. The diffusive part of
this kind of equations is usually modeled by the LBO, for which we calculate a
numerical approximation, M∆Σ

, using an RBF-FD approach. This approach
is based on an explicit formula for the LBO applied to an RBF, which is
exact; see (22). This formula involves the normal vectors and the curvature
to the surface. These are known if an explicit expression for the surface is
available. If the surface is defined by a set of scattered nodes which is the
usual output of, for example 3D scanning processes, we propose a level set
formalism and an RBF interpolation to construct a local approximation to
the surface, from which we estimate these quantities.

We have study numerically the convergence and stability properties of
our approach, and we have shown the performance of the proposed method-
ology solving the Turing model for natural pattern formation over a Schwarz
Primitive Minimal Surface, and the Schaeffer’s model for electrical cardiac
tissue behavior.

18



(a) (b)

(c) (d)

Figure 7: (a) Nodes and surface. (b) Initial condition for variable V . (c)
Solution at time 50 ms for variable V .(d) Full heartbeat cycle at point xm.
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