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A high-order exponential integrator for nonlinear parabolic equations with

nonsmooth initial data

Buyang Li and Shu Ma

Abstract A variable stepsize exponential multistep integrator, with contour integral approximation of the operator-

valued exponential functions, is proposed for solving semilinear parabolic equations with nonsmooth initial data. By

this approach, the exponential k-step method would have kth-order convergence in approximating a mild solution, pos-

sibly nonsmooth at the initial time. In consistency with the theoretical analysis, a numerical example shows that the

method can achieve high-order convergence in the maximum norm for semilinear parabolic equations with discontinu-

ous initial data.

Key words nonlinear parabolic equation, nonsmooth initial data, exponential integrator, variable stepsize, high-order

accuracy, discontinuous initial data.

1 Introduction

Let A be the generator of a bounded analytic semigroup on a Banach space X , with domain D(A) ⊂ X , and consider

the abstract semilinear initial-value problem
{
u′(t)−Au(t) = f(t, u(t)) for t ∈ (0, T ],

u(0) = u0,
(1)

where u0 ∈ X and f : [0,∞) × X → X is a smooth (locally Lipschitz continuous) function. A function u ∈
C([0, T ];X) is called a mild solution of (1) if it satisfies the integral equation

u(t) = etAu0 +

∫ t

0

e(t−s)Af(s, u(s))ds, ∀ t ∈ (0, T ], (2)

where etA denotes the semigroup generated by the operator A.

In the linear case f(t, u) ≡ f(t), time discretization of (1) by a kth-order Runge–Kutta method satisfies the follow-

ing error estimate:

‖un − u(tn)‖ ≤ Cτkt−k
n for u0 ∈ X, (3)

where τ denotes the stepsize of time discretization; see [22,28]. In particular, for a nonsmooth initial value u0 ∈ X , the

methods have kth-order accuracy when tn is not close to zero. This result also holds for implicit backward difference

formulae (BDF), exponential integrators [12,16], and fractional-order evolution equations [15, Remark 2.6].

However, such high-order convergence as (3) does not hold when the source function f(t, u) is nonlinear with

respect to u. A counter example constructed in [4] shows that a kth-order Runge–Kutta method normally has only

first-order convergence for a general nonsmooth initial data u0 ∈ X , i.e.,

C1τt
−1
n ≤ ‖un − u(tn)‖ ≤ C2τt

−1
n for u0 ∈ X. (4)
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Similarly, semi-implicit Runge–Kutta methods also suffer from this barrier of convergence rate [24]. For nonlinear

problems with nonsmooth initial data, existing error estimates for exponential integrators also yield only first-order

convergence (see [11,23,24])

‖un − u(tn)‖ ≤ Cτ for u0 ∈ X. (5)

No method has been proved to have high-order convergence for semilinear parabolic equations with general nonsmooth

initial data u0 ∈ X .

Of course, if the initial value is sufficiently smooth and satisfies certain compatibility conditions, e.g., u0 ∈ D(Ak),
then O(τk) convergence can be achieved uniformly for tn ∈ [0, T ] for the nonlinear problem (1). This has been proved

for most time discretization methods, including Runge–Kutta methods [4], implicit A(α)-stable multistep methods [20],

implicit–explicit BDF methods [1,2], splitting methods [5,6,10] and several types of exponential integrators [3,11,

12,25]. Extension to quasi-linear parabolic problems has also been done; see [7,8,9,13,14,21]. The error estimates

presented in these articles do not apply to nonsmooth initial data.

Due to the presence of the factor t−1
n , the first-order convergence of Runge–Kutta methods cannot be improved

by using variable stepsizes. However, compared with other time discretization methods, exponential integrators were

proved to have an error bound of O(τ) uniformly for tn ∈ [0, T ] for nonsmooth initial data u0 ∈ X , without the

factor t−1
n appearing in the error estimates for other methods (see [11,23,24]). This uniform convergence motivates us

to consider the possibility of constructing high-order exponential integrators with variable stepsizes.

In this paper, we propose a variable stepsize exponential k-step integrator for (1) with general nonsmooth initial data

u0 ∈ X , by choosing

τn = O((tn/T )
βτ), for some β > 1−

1

k
, (6)

where τn = tn − tn−1 denotes the nth stepsize in the partition 0 = t0 < t1 < · · · < tN = T , and τ the maximal

stepsize. For the convenience of implementation, we also integrate in the numerical method (and the error analysis) an

algorithm for approximating the exponential integrator by using the contour integral techniques developed in [17,19,

27].

The proposed variable stepsize method, with contour integral approximation of the exponential integrator, can

achieve kth-order accuracy in approximating a mild solution of (1), i.e.,

max
1≤n≤N

‖un − u(tn)‖ ≤ Cτk. (7)

This is the first high-order convergence result in approximating semilinear parabolic equations with nonsmooth initial

data (without any regularity in addition to u0 ∈ X). In view of the result (4) for the Runge–Kutta methods, the con-

vergence result (7) shows the superiority of the variable stepsize exponential integrator for problems with nonsmooth

initial data. The approximation of exponential integrator would require O(ln(τ−1)) parallel solutions of linear equa-

tions, and there are N = O(τ−1) time levels by using the stepsize in (6). Therefore, the total computational cost is

O(τ−1 ln(τ−1)) for an accuracy of O(τk).
For rigorous analysis without extra regularity assumptions on the solution, we assume that the nonlinear source

function satisfies the following estimates:

‖f(t, u)− f(t, v)‖ ≤ Cf,u,v‖u− v‖ for u, v ∈ X, (local Lipschitz continuity) (8)

∥∥∥∥
dℓ

dtℓ
f(t, u(t))

∥∥∥∥ (smoothness in t and u)

≤ Cf,u,ℓ

ℓ∑

j=1

∑

m1+···+mj≤ℓ

‖∂m1
t u(t)‖ ‖∂m2

t u(t)‖ · · · ‖∂
mj

t u(t)‖, ℓ = 0, 1, . . . , (9)

where ‖ · ‖ denotes the norm of X , Cf,u,v is a constant depending on f , ‖u‖ and ‖v‖; similarly, Cf,u,ℓ is a constant

depending on f , ‖u(t)‖, ℓ, and the summation above extends over all possible positive integers m1, . . . ,mj satisfying

m1 + · · ·+mj ≤ ℓ for a given j.

Assumptions (8)–(9) are naturally satisfied by a general smooth function f : R → R in a semilinear parabolic partial

differential equation (PDE)




∂tu(x, t)−∆u(x, t) = f(u(x, t)) for (x, t) ∈ Ω × (0, T ],

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ],

u(x, 0) = u0(x) for x ∈ Ω.

(10)
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In this case, the Dirichlet Laplacian ∆ generates a bounded analytic semigroup on X = C0(Ω), the space of continuous

functions on Ω which equal zero on the boundary ∂Ω; see [26]. Furthermore, the smooth function f naturally extends

to a function of u ∈ C0(Ω), satisfying

‖f(u)− f(v)‖C0(Ω) ≤ C max
|s|≤‖u‖+‖v‖

|∂sf(s)| ‖u− v‖C0(Ω)

and

d

dt
f(u(x, t)) = ∂uf(u)∂tu,

d2

dt2
f(u(x, t)) = ∂2

uf(u)(∂tu)
2 + ∂uf(u)∂ttu,

d3

dt3
f(u(x, t)) = ∂3

uf(u)(∂tu)
3 + 3∂2

uf(u)∂tu∂ttu+ ∂uf(u)∂tttu,

...

Obviously, all these time derivatives of f(u(x, t)) satisfy (9). Hence, the semilinear parabolic PDE (10) with a general

smooth function f : R → R is an example of the abstract problem (1) satisfying assumptions (8)–(9).

Assumption (8) is the same as the local Lipschitz continuity assumption used in [3] and [11]. In [3], authors proved

high-order convergence with an addition assumption that the solution is in Ck([0, T ], X), which is not satisfied when the

initial data is nonsmooth, i.e., u0 ∈ X instead of D(Ak). In [11], authors proved high-order convergence of exponential

integrators with an additional assumption that ∂k
t f(u(t)) is uniformly bounded for t ∈ [0, T ], which is also not satisfied

when the initial data is nonsmooth. These additional assumptions in [3,11] are replaced by (9) in this paper, which is

used to prove the weighted estimates

‖∂ℓ
tu(t)‖ ≤ Ct−ℓ

for ℓ = 1, . . . , k,

which allow the solution to be nonsmooth at t = 0. These weighted estimates are used to prove high-order convergence

of the exponential integrator in this paper.

Both the regularity analysis and the error analysis in this paper can be similarly extended to semilinear parabolic

equations with smoothly varying time-dependent operators. However, the extension to quasilinear parabolic equations

with nonsmooth initial data is still not obvious.

2 Numerical method

We denote by ĝ(z) :=
∫∞

0
e−ztg(t)dt the Laplace transform of a given function g. Then we let g(t) := f(t, u(t)) and

take the Laplace transform of (2) in time. This yields

û(z) = (z − A)−1u0 + (z −A)−1ĝ(z). (11)

Since A generates a bounded analytic semigroup on X , there exists an angle φ ∈ (0, π
2 ) such that the operator (z−A)−1

is analytic with respect to z in the sector

Σπ−φ := {z ∈ C : |arg(z)| < π − φ}.

In order to use the established contour integral techniques of [17,19], we take inverse Laplace transform of (11) along

the contour

Γλ = {λ(1− sin(α+ is)) : s ∈ R} ⊂ Σπ−φ,

where α = π
4 − φ

2 and λ is to be determined. Then we have

u(t) =
1

2πi

∫

Γλ

etz(z −A)−1(ĝ(z) + u0)dz.

Similarly, by considering tn−1 as the initial time, the solution at t = tn can be written as

u(tn) =
1

2πi

∫

Γλn

eτnz(z −A)−1(ĝn(z) + u(tn−1))dz, (12)



4 Buyang Li and Shu Ma

where gn(s) = f(tn−1 + s, u(tn−1 + s)).
In [17, Theorem 1] the authors proved that, by choosing the parameter

λn =
2πdK(1− θ)

τna(θ)
, (13)

with

d =
α

2
, θ = 1−

1

K
and a(θ) = arccosh

(
1

(1− θ) sin(α)

)
,

there are quadrature nodes and weights on the contour Γλn
,

zℓ = λ(1− sin(α+ iℓh)) and wℓ =
λh

2π
cos(α+ iℓh), ℓ = −K, . . . ,K, with h =

a(θ)

K
,

such that (12) can be approximated by a quadrature

u(tn) ≈
K∑

ℓ=−K

wℓe
τnzℓ(zℓ −A)−1(ĝn(zℓ) + u(tn−1))

with an error of O(e−K/C).
Therefore, if u(τ) = (un)

N
n=0 denotes the numerical approximation of (u(tn))

N
n=1, then we approximate the source

function f(t, u(t)) by an extrapolation polynomial of degree k − 1:

fn(t;u
(τ)) =

k∑

j=1

Lj(t)f(tn−j , un−j) for t ∈ (tn−1, tn],

where Lj(t) is the unique polynomial of degree k − 1 such that

Lj(tn−i) = δij , i = 1, . . . , k.

For n ≥ k + 1 and given numerical solutions un−j , j = 1, . . . , k, we denote

gn(s;u
(τ)) = fn(tn−1 + s;u(τ)), Lj,n(s) = Lj(tn−1 + s),

and compute

un =

K∑

ℓ=−K

wℓe
τnzℓ(zℓ −A)−1(ĝn(zℓ;u

(τ)) + un−1)

=

K∑

ℓ=−K

wℓe
τnzℓ(zℓ −A)−1

( k∑

j=1

L̂j,n(zℓ)f(tn−j , un−j) + un−1

)
. (14)

The numerical solution at the starting k steps can be computed by using the exponential Euler method

un =

K∑

ℓ=−K

wℓe
τnzℓ(zℓ −A)−1(z−1

ℓ f(tn−1, un−1) + un−1

)
, n = 1, . . . , k. (15)

Since the stepsize choice in (6) implies τn = O(τ
1

1−β ) = O(τk) for the starting k steps, the exponential Euler scheme

(14) can keep the errors of numerical solutions within O(τk) at the starting k steps.

The main result of this paper is the following theorem.

Theorem 1 Let u0 ∈ X and assume that the nonlinear problem (1) has a mild solution u ∈ C([0, T ];X). Then there

exist constants τ0 and c0 such that for τ ≤ τ0 and K ≥ 3
2c0 ln(τ

−1), the solutions un, n = 1, . . . , N , given by

(14)-(15) with stepsize choice from (6), satisfies the following error estimate:

max
1≤n≤N

‖un − u(tn)‖ ≤ Cτk + Cτ−1e−K/c0 . (16)
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Remark 1 For K ≥ (k + 1)c0 ln(τ
−1) there holds τ−1e−K/c0 ≤ τk. Therefore, O(ln(1/τ)) quadrature nodes are

needed to have an error of O(τk).

Remark 2 Instead of choosing different λn at different time steps, one can also divide the time interval [tk+1, T ] into

O(log(τ−1)) parts [Λ−j−1T,Λ−jT ], j = 0, . . . , J = O(log(τ−1)), with

λn =
2πdK(1− θ)

ΛβτKj
a(θ)

being constant for tn ∈ [Λ−j−1T,Λ−jT ], (17)

and

d =
α

2
, θ = 1−

1

K
and a(θ) = arccosh

(
Λ

(1− θ) sin(α)

)
,

where τKj
denotes the minimal stepsize for tn ∈ [Λ−j−1T,Λ−jT ]. This was used in many articles; see [17,18,19,27].

By this method, at most O(log(τ−1)) different contours are needed to have an error of O(τk).

3 Proof of Theorem 1

The proof consists of two parts. In section 3.1, we prove the regularity of the solution u. By using the regularity result,

we estimate errors of numerical solutions in section 3.2.

3.1 Regularity of solution

It is well known that the solution of a linear parabolic equation has higher regularity at positive time and satisfies the

estimate ‖∂ℓ
tu(t)‖ ≤ Ct−ℓ, ℓ = 0, 1, . . . , for a nonsmooth initial data u0 ∈ X . In this subsection, we prove that this

is also true for the nonlinear problem (1) if the source function f is smooth with respect to t and u in the sense of (9).

Since we have not found such a result in the literature for semilinear parabolic equations, we present the proof in the

following lemma.

Lemma 1 If u ∈ C([0, T ];X) is a mild solution of (1), then u ∈ Ck((0, T ];X) and

‖∂ℓ
tu(t)‖ ≤ Ct−ℓ, ℓ = 0, 1, . . . , k.

Proof If u ∈ C([0, T ];X) then the constant Cf,u,ℓ in (9) is bounded for 1 ≤ ℓ ≤ k. We simply denote this constant by

C . By mathematical induction, we assume that for m = 0, . . . , ℓ− 1,

‖∂m
t u(t)‖ ≤ Ct−m, t ∈ (0, T ]. (18)

Then (9) implies ∥∥∥∥
dm

dtm
f(t, u(t))

∥∥∥∥ ≤ Ct−m, t ∈ (0, T ], for m = 0, . . . , ℓ− 1. (19)

In the following, we prove that (18) also holds for m = ℓ.
Multiplying (2) by tℓ yields

tℓu(t) = tℓetAu0 +

∫ t

0

(t− s+ s)ℓe(t−s)Af(s, u(s))ds

= tℓetAu0 +
ℓ∑

j=0

(
ℓ
j

)∫ t

0

(t− s)je(t−s)Asℓ−jf(s, u(s))ds

=: tℓetAu0 +

ℓ∑

j=0

(
ℓ
j

)
wℓ,j(t), (20)

with

wℓ,j(t) =

∫ t

0

gj(t, s)ds and gj(t, s) = (t− s)je(t−s)Asℓ−jf(s, u(s)). (21)
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Note that

∂j
twℓ,j(t) = ∂j

t

∫ t

0

gj(t, s)ds = ∂j−1
t ∂t

∫ t

0

gj(t, s) ds

= ∂j−1
t

∫ t

0

∂tgj(t, s) ds+ ∂j−1
t

[
gj(t, s)|s=t

]

= ∂j−2
t

∫ t

0

∂2
t gj(t, s) + ∂j−2

t [∂tgj(t, s)|s=t] + ∂j−1
t [gj(t, s)|s=t]

= · · ·

=

∫ t

0

∂j
t gj(t, s) ds+

j∑

m=1

∂j−m
t [∂m−1

t gj(t, s)|s=t]. (22)

From the expression of gj in (21) we know that ∂m−1
t gj(t, s)|s=t ≡ 0 for m = 1, . . . , j. As a result, we have

∂j
twℓ,j(t) =

∫ t

0

∂j
t gj(t, s)ds.

=

∫ t

0

∂j
t [(t− s)je(t−s)A]sℓ−jf(s, u(s))ds

=

∫ t

0

∂j
s

[
sjesA

]
(t− s)ℓ−jf(t− s, u(t− s)) ds (change of variable)

=:

∫ t

0

hℓ−j(t, s) ds.

Since the function hℓ−j(t, s) = ∂j
s

[
sjesA

]
(t − s)ℓ−jf(t − s, u(t − s)) contains a factor (t − s)ℓ−j , by a similar

argument as (22) we have

∂ℓ−j
t ∂j

twℓ,j(t) = ∂ℓ−j
t

∫ t

0

hℓ−j(t, s) ds =

∫ t

0

∂ℓ−j
t hℓ−j(t, s) ds,

which implies that

∂ℓ
twℓ,j(t) =

∫ t

0

∂j
s(s

jesA)
dℓ−j

dtℓ−j
[(t− s)ℓ−jf(t− s, u(t− s))]ds, for 0 ≤ j ≤ ℓ.

As a result, we have

‖∂ℓ
twℓ,j(t)‖ ≤

∫ t

0

C‖∂j
s(s

jesA)‖X→X

∥∥∥∥
dℓ−j

dtℓ−j
[(t− s)ℓ−jf(t− s, u(t− s))]

∥∥∥∥ds

≤

∫ t

0

C

∥∥∥∥
dℓ−j

dtℓ−j
[(t− s)ℓ−jf(t− s, u(t− s))]

∥∥∥∥ds, (23)

where we have used ‖∂j
s(s

jesA)‖X→X ≤ C, which is a consequence of the analytic semigroup estimate

‖∂m
s esA‖X→X ≤ Cs−m, m = 0, 1, . . .

If 1 ≤ j ≤ ℓ then substituting (19) into (23) yields

‖∂ℓ
twℓ,j(t)‖ ≤ C, 1 ≤ j ≤ ℓ. (24)

If j = 0 then substituting (9) and (19) into (23) yields

‖∂ℓ
twℓ,0(t)‖ ≤

∫ t

0

C

∥∥∥∥
dℓ

dtℓ
[(t− s)ℓf(t− s, u(t− s))]

∥∥∥∥ds

≤

∫ t

0

C

ℓ∑

j=1

∥∥∥∥[(t− s)ℓ−j dℓ−j

dtℓ−j
f(t− s, u(t− s))]

∥∥∥∥ds

+

∫ t

0

C

∥∥∥∥[(t− s)ℓ
dℓ

dtℓ
f(t− s, u(t− s))]

∥∥∥∥ds (product rule)

≤ C +

∫ t

0

C

∥∥∥∥[(t− s)ℓ
dℓ

dtℓ
f(t− s, u(t− s))]

∥∥∥∥ds (25)
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where we have used (19) in estimating (t − s)ℓ−j dℓ−j

dtℓ−j f(t − s, u(t− s)) for j ≥ 1. By considering the cases j ≥ 2
and j = 1 in (9), separately, we have

∥∥∥∥
dℓ

dtℓ
f(t− s, u(t− s))

∥∥∥∥

≤ C

ℓ∑

j=2

∑

m1+···+mj≤ℓ

‖∂m1
t u(t− s)‖ ‖∂m2

t u(t− s)‖ · · · ‖∂
mj

t u(t− s)‖+ C‖∂ℓ
tu(t− s)‖

≤ C(t− s)−ℓ + C‖∂ℓ
tu(t− s)‖.

Substituting the inequality above into (25), we obtain

‖∂ℓ
twℓ,0(t)‖ ≤ C +

∫ t

0

C‖(t− s)ℓ∂ℓ
tu(t− s)‖ds = C +

∫ t

0

C‖sℓ∂ℓ
su(s)‖ds. (26)

Then substituting (24) and (26) into (20) yields

‖∂ℓ
t (t

ℓu(t))‖ ≤ ‖∂ℓ
t (t

ℓetA)u0‖+
ℓ∑

j=0

(
ℓ
j

)
‖∂ℓ

twℓ,j(t)‖

≤ C +

∫ t

0

C‖sℓ∂ℓ
tu(s)‖ds. (27)

By using the product rule we can derive that

‖tℓ∂ℓ
tu(t)‖ ≤ ‖∂ℓ

t (t
ℓu(t))‖+ C

ℓ∑

j=1

‖tℓ−j∂ℓ−j
t u(t)‖ ≤ ‖∂ℓ

t (t
ℓu(t))‖+ C,

where we have used the induction assumption (18) in the last inequality. The above inequality and (27) imply

‖tℓ∂ℓ
tu(t)‖ ≤ C +

∫ t

0

C‖sℓ∂ℓ
tu(s)‖ds. (28)

By using Gronwall’s inequality, we derive

‖tℓ∂ℓ
tu(t)‖ ≤ C, ∀ t ∈ (0, T ]. (29)

This proves (18) for m = ℓ, and therefore the mathematical induction is closed.

3.2 Error estimate

We shall introduce a function v(t) which is intermediate between u(tn) and un, and denote

en := u(tn)− un, η(t) := u(t)− v(t), and ξn := v(tn)− un, (30)

which imply the error decomposition

en = η(tn) + ξn.

Then we shall estimate η(tn) and ξn separately.

To this end, we define v(tk) = uk and consider n ≥ k+ 1: for given v(tn−1) we define v(t) for t ∈ (tn−1, tn] by

v(t) =
1

2πi

∫

Γλn

e(t−tn−1)z(z −A)−1(ĝn(z;u
(τ)) + v(tn−1))dz. (31)

Comparing (31) with (12), we see that v(t) is actually the solution of the initial-value problem

{
v′(t)−Av(t) = f (τ)(t;u(τ)) for t ∈ (tk, T ],

v(tk) = uk,
(32)
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where

f (τ)(t;u(τ)) = fn(t;u
(τ)), for t ∈ (tn−1, tn], n = k + 1, k + 2, . . .

To estimate η(tn), we consider the difference between (1) and (32). By using the notation in (30), we see that η(t)
satisfies the following equation:

{
η′(t)−Aη(t) = f(t, u(t))− f (τ)(t, u(τ)) for t ∈ (tk, T ],

η(tk) = ek.
(33)

where

‖f(t, u(t))− f (τ)(t, u(τ))‖

= ‖f(t, u(t))− f (τ)(t;u(tn)
N
n=0) + f (τ)(t;u(tn)

N
n=0)− f (τ)(t, u(τ))‖

≤ Cτk
n max

t∈[tn−k,tn]

∥∥ dk

dtk
f(t, u(t))

∥∥+ Cn,u(τ) max
1≤j≤k

‖en−j‖ (use (8)-(9) here)

≤ Cτk
nt

−k
n−k + Cn,u(τ) max

1≤j≤k
‖en−j‖

≤ Cτk
nt

−k
n + Cn,u(τ) max

1≤j≤k
‖en−j‖, for t ∈ (tn−1, tn], n ≥ k + 1.

where Cn,u(τ) is a constant depending on ‖un−j‖ for j = 1, . . . , k.

By using mathematical induction, we assume that

‖uj − u(tj)‖ = ‖ej‖ ≤ 1 for 1 ≤ j ≤ m− 1, (34)

then Cn,u(τ) is bounded for k + 1 ≤ n ≤ m, and therefore

‖f(t, u(t))− f (τ)(t, u(τ))‖

≤ Cτk
nt

−k
n + C max

1≤j≤k
‖en−j‖, for t ∈ (tn−1, tn], k + 1 ≤ n ≤ m.

Then we have

‖η(tn)‖ =

∥∥∥∥e
(tn−tk)Aek +

∫ tn

tk

e(tn−s)A(f(s, u(s))− f (τ)(s;u(τ)))ds

∥∥∥∥

≤ C‖ek‖+ C

∫ tn

tk

‖f(s, u(s))− f (τ)(s;u(τ))‖ds

≤ C‖ek‖+ C
n∑

j=k+1

τjτ
k
j t

−k
j + C

n∑

j=1

τ‖ej‖

≤ C max
0≤j≤k

‖ej‖+ C
n∑

j=k+1

τ‖ej‖+ Cτk, (35)

where we have used the following estimate in the last inequality:

n∑

j=k+1

τjτ
k
j t

−k
j ≤ Cτk

n∑

j=k+1

τjt
k(β−1)
j ≤ Cτk

∫ tn

tk

tk(β−1)dt ≤ Cτk, if k(β − 1) + 1 > 0.

This justifies the choice of β in (6).
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To estimate ξn = v(tn)− un, we note that

v(tn) =
1

2πi

∫

Γλn

eτnz(z −A)−1(ĝn(z;u
(τ)) + v(tn−1))dz

=
1

2πi

∫

Γλn

eτnz(z −A)−1(ĝn(z;u
(τ)) + un−1)dz + eτnAξn−1

= un + eτnAξn−1

+
1

2πi

∫

Γλn

eτnz(z −A)−1(ĝn(z;u
(τ)) + un−1)dz

−

K∑

ℓ=−K

wℓe
τnzℓ(zℓ −A)−1(ĝn(zℓ;u

(τ)) + un−1), (36)

where we have used the identity 1
2πi

∫
Γλn

eτnz(z −A)−1ξn−1dz = eτnAξn−1. Since

ĝn(z;u
(τ)) =

k∑

j=1

L̂j,n(zℓ)f(tn−j , un−j)

and the polynomial Lj,n(z) satisfies |L̂j,n(z)| ≤ C|z|−ν for some ν ≥ 0, it follows that

‖(z − A)−1(ĝn(z;u
(τ)) + un−1)‖ ≤ C|z|−1

(
|z|−ν

k∑

j=1

‖f(tn−j , un−j)‖+ ‖un−1‖
)
.

For a function satisfying the estimate above, in [19, Theorem 1] (also see [17]) the authors proved that

∥∥∥∥
1

2πi

∫

Γλn

eτnz(z −A)−1(ĝn(z;u
(τ)) + un−1)dz

−

K∑

ℓ=−K

wℓe
τnzℓ(zℓ −A)−1(ĝn(zℓ;u

(τ)) + un−1)

∥∥∥∥

≤ Ce−K/c0
( k∑

j=1

‖f(tn−j , un−j)‖+ ‖un−1‖
)

for some constant c0. By choosing e−K/c0 = τk+1, which requires m = O(ln(τ−1)), substituting the inequality above

into (36) yields

‖ξn − eτnAξn−1‖ ≤ Ce−K/c0
( k∑

j=1

‖f(tn−j , un−j)‖+ ‖un−1‖
)
.

If (34) holds then ‖f(tn−j , un−j)‖ ≤ C for j = 1, . . . , k and k + 1 ≤ n ≤ m, and therefore

‖ξn − eτnAξn−1‖ ≤ Ce−K/c0 for k + 1 ≤ n ≤ m.

Therefore, qn := ξn − eτnAξn−1 satisfies ‖qn‖ ≤ Ce−K/c0 and

ξn = qn + eτnAξn−1

= qn + eτnAqn−1 + e(τn+τn−1)Aξn−2

= qn + eτnAqn−1 + e(τn+τn−1)Aqn−2 + e(τn+τn−1+τn−2)Aξn−2

= . . .

=

n−k−1∑

j=0

e(tn−tn−j)Aqn−j ,
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where the last equality holds because ξk = 0. From the equation above we derive, for k + 1 ≤ n ≤ m,

‖ξn‖ ≤

n−k−1∑

j=0

‖e(tn−tn−j)Aqn−j‖ ≤

n−k−1∑

j=0

C‖qn−j‖ ≤

n−k−1∑

j=0

Ce−K/c0 ≤ Cτ−1e−K/c0 . (37)

Combining (35) and (37) and using the decomposition en = η(tn) + ξn, we have

‖en‖ ≤ ‖η(tn)‖+ ‖ξn‖

≤ C max
0≤j≤k

‖ej‖+ C

n∑

j=k+1

τ‖ej‖+ Cτk + Cτ−1e−K/c0 , for k + 1 ≤ n ≤ m.

By using Gronwall’s inequality, we obtain

‖en‖ ≤ C max
0≤j≤k

‖ej‖+ Cτk + Cτ−1e−K/c0 , for k + 1 ≤ n ≤ m. (38)

If the starting steps are approximated sufficiently accurate, i.e.,

max
0≤j≤k

‖ej‖ ≤
1

2
(39)

then there exists a positive constant τ1 such that for m ≥ 3
2c0 ln(1/τ) (thus e−K/c0 ≤ τ

3
2 ) and τ ≤ τ1 there holds

‖em‖ ≤ 1. (40)

This completes the mathematical induction from (34) to (40), provided that (39) holds. Then (38) holds for m = N .

Since the starting k steps are computed by the exponential Euler method, which is the special case k = 1 of the

analysis above. Therefore, the analysis above also implies

max
0≤j≤k

‖ej‖ ≤ Cτk + Ce−K/c0 . (41)

This verifies (39) for sufficiently small stepsize τ and sufficiently large m, say τ ≤ τ2 and m ≥ m2. Then substituting

(41) into (38) yields

max
k+1≤n≤N

‖en‖ ≤ Cτk + Cτ−1e−K/c0 . (42)

This completes the proof of Theorem 1 under the stepsize condition τ ≤ τ0 = min(τ1, τ2) and K ≥ 3
2c0 ln(1/τ).

4 Numerical example

In this section, we present a numerical example to support our theoretical analysis and illustrate the convergence of

the proposed time stepping method. Since the proposed numerical method is only for time discretization, which is

independent of the spatial regularity of solution, we shall present a one-dimensional example with sufficiently accurate

spatial discretization in order to observe the error and order of convergence of the time discretization method.

We consider the nonlinear parabolic equation





∂tu(x, t)− ∂xxu(x, t) = u(x, t)− u3(x, t) for (x, t) ∈ Ω × (0, T ],

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ],

u(x, 0) = u0(x) for x ∈ Ω,

(43)

in a domain Ω × (0, T ) , with a discontinuous initial condition

u0(x) =

{
0 x ∈ (0, 0.5]

1 x ∈ (0.5,1).
(44)

The function f(u) = u − u3 is a smooth function of u and therefore satisfying the assumptions (8)–(9), as mentioned

in the example of semilinear parabolic equation (10).
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The problem (43) has a unique solution

u ∈ C([0, T ];Lp(Ω)) ∩ C((0, T ];C0(Ω)), with u /∈ C([0, T ];L∞(Ω)).

Therefore, X = L∞(Ω) does not fit the abstract problem directly. Nevertheless, the smoothing property of the heat

semigroup guarantees that u(·, t) ∈ C0(Ω) for arbitrarily small t > 0 and therefore X = C0(Ω) would fit the abstract

problem if we replace the initial time t = 0 by an infinitesimal positive time. Therefore, Theorem 1 implies that the

numerical solution given by (14)-(15) has an error bound of

‖un − u(tn)‖C0(Ω) ≤ Cτk

for sufficiently large K = O(ln(1/τ)).
We solve (43) by the method (14)-(15) with β = 3

4 for k = 2 and k = 3, respectively, using α = π
4 and

K = 10 log(1/τ) quadrature nodes, and investigate the time discretization errors of the proposed time stepping method

for several different T . The spatial discretization is done by using the standard finite difference method with a sufficiently

small mesh size 2−10 so that further decreasing spatial mesh size has negligible influence in observing the order of

convergence in time. The errors of numerical solutions between two consecutive stepszies are presented in Tables 1 and

2, where the orders of convergence are computed by the formula

order of convergence = log

(
‖u

(τ)
N − u

(τ/2)
N ‖C0(Ω)

‖u
(τ/2)
N − u

(τ/4)
N ‖C0(Ω)

)
/ log(2)

based on the finest three meshes. The orders of convergence observed in these numerical tests are O(τk), which is

consistent with the theoretical result proved in Theorem 1.

Table 1 Numerical results of ‖u
(τ)
N − u

(τ/2)
N ‖C0(Ω) for k = 2.

T = 1/2 T = 1/4 T = 1/8 T = 1/16
τ =1/64 2.934×10−6 3.935×10−6 1.286×10−6 1.864×10−6

τ =1/128 7.410×10−7 9.351×10−7 3.053×10−7 7.297×10−7

τ =1/256 1.779×10−7 2.269×10−7 7.735×10−8 1.838×10−7

Order of convergence O(τ2.1) O(τ2.0) O(τ2.0) O(τ2.0)

Table 2 Numerical results of ‖u
(τ)
N − u

(τ/2)
N ‖C0(Ω) for k = 3.

T = 1/2 T = 1/4 T = 1/8 T = 1/16
τ =1/64 2.082×10−7 5.807×10−8 2.945×10−7 3.425×10−7

τ =1/128 2.614×10−8 7.756×10−9 3.188×10−8 4.129×10−8

τ =1/256 2.928×10−9 9.988×10−10 3.982×10−9 5.064×10−9

Order of convergence O(τ3.1) O(τ3.0) O(τ3.0) O(τ3.0)

For comparison with the exponential integrator, we also present in Table 3 the numerical results for the Crank–

Nicolson method, 2-stage Gauss Runge–Kutta method and 2-stage Radau Runge–Kutta method for (43), with uniform

stepsize τ = T/N . The numerical results in Table 3 show that the standard Crank–Nicolson method and Gauss Runge–

Kutta method cannot yield any convergence rates. Indeed, these two methods do not satisfy the condition |r(∞)| < 1 in

[4, Theorem 1] when proving (10). This shows the necessary of this condition in solving problems with nonsmooth initial

data. The numerical results in Table 3 also show that the 2-stage Radau Runge–Kutta method has roughly first-order

convergence, instead of the optimal third-order convergence, for nonsmooth initial data.

5 Conclusion

We have proved that a variable stepsize exponential multistep integrator, with contour integral approximation of the

operator-valued exponential functions, can produce high-order accurate numerical solutions for a semilinear parabolic

equation with nonsmooth initial data (with no differentiability at all). The numerical example also supports this theo-

retical result. Both the regularity analysis and the error analysis in this paper can be similarly extended to semilinear
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Table 3 Numerical results of ‖u
(τ)
N − u

(τ/2)
N ‖C0(Ω) at T = 1/2 (with h = 2−14).

τ =1/256 τ =1/512 τ =1/1024 Order of convergence

Crank–Nicolson 1.465×10−1 1.466×10−1 1.466×10−1 O(τ0.0)
Gauss Runge–Kutta (2 stages) 2.930×10−1 2.930×10−1 2.933×10−1 O(τ0.0)
Radau Runge–Kutta (2 stages) 2.215×10−8 1.085×10−8 4.022×10−9 O(τ1.2)

parabolic equations with time-dependent coefficients. However, the extension to quasilinear parabolic equations with

nonsmooth initial data is not trivial.

The proposed method in this paper is essentially the multistep ETD with variable stepsize and contour integral

approximation to the exponential operator. We have proved the first high-order convergence result in approximating

semilinear parabolic equations with nonsmooth initial data (without any regularity in addition to u0 ∈ X). For smooth

initial data the exponential time differencing Runge–Kutta (ETD–RK) method would have the same complexity as the

proposed multistep exponential integrator in this paper, both requiring to solve the equation for O(τ−1) time levels

to achieve the accuracy of O(τk). However, since high-order accuracy of ETD–RK method has not been proved for

nonsmooth initial data, the computational complexity of ETD–RK to achieve the accuracy of O(τk) is still unknown in

this case. We believe the techniques of this paper may also be adapted to ETD–RK to yield high-order convergence for

nonsmooth initial data.
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19. M. López-Fernández, C. Palencia, and A. Schädle. A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer.

Anal., 44:1332–1350, 2006.
20. C. Lubich. On the convergence of multistep methods for nonlinear stiff differential equations. Numer. Math., 58:839–853, 1990.
21. C. Lubich and A. Ostermann. Runge-Kutta approximation of quasi-linear parabolic equations. Math. Comp., 64:601–627, 1995.
22. C. Lubich and A. Ostermann. Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations: nonsmooth-data error

estimates and applications to long-time behaviour. Applied Numer. Math., 22:279–292, 1996.
23. J. D. Mukam and A. Tambue. A note on exponential Rosenbrock–Euler method for the finite element discretization of a semilinear

parabolic partial differential equation. Comput. Math. Appl., 76(7):1719–1738, 2018.



A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data 13

24. A. Ostermann and M. Thalhammer. Non-smooth data error estimates for linearly implicit Runge–Kutta methods. IMA J. Numer. Anal.,

20:167–184, 2000.

25. A. Ostermann, M. Thalhammer, and W. Wright. A class of explicit exponential general linear methods. BIT Numer. Math., 46:409–431,

2006.

26. E.-M. Ouhabaz. Gaussian estimates and holomorphy of semigroups. Proc. Am. Math. Soc., 123:1465–1474, 1995.

27. A. Schädle, M. López-Fernández, and C. Lubich. Fast and oblivious convolution quadrature. SIAM J. Sci. Comput., 28:421–438, 2006.

28. V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, New York, second edition, 2006.


	1 Introduction
	2 Numerical method
	3 Proof of Theorem 1
	4 Numerical example
	5 Conclusion

