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THE POINTWISE STABILITIES OF PIECEWISE LINEAR FINITE

ELEMENT METHOD ON NON-OBTUSE TETRAHEDRAL MESHES OF

NONCONVEX POLYHEDRA

HUADONG GAO AND WEIFENG QIU

Abstract. Let Ω be a Lipschitz polyhedral (can be nonconvex) domain in R
3, and Vh

denotes the finite element space of continuous piecewise linear polynomials. On non-obtuse
quasi-uniform tetrahedral meshes, we prove that the finite element projection Rhu of u ∈
H1(Ω) ∩ C(Ω) (with Rhu interpolating u at the boundary nodes) satisfies

‖Rhu‖L∞(Ω) ≤ C| log h|‖u‖L∞(Ω).

If we further assume u ∈ W 1,∞(Ω), then

‖Rhu‖W 1,∞(Ω) ≤ C| log h|‖u‖W 1,∞(Ω).

1. Introduction

In this paper we consider the the Ritz projection Rhu ∈ Vr,h of u ∈ H1(Ω)∩C(Ω) satisfying

(∇Rhu,∇vh)Ω = (∇u,∇vh)Ω, ∀vh ∈ V 0
r,h, (1.1)

where Vr,h is the finite element subspace of H1(Ω) composed of piecewise polynomials of
degree r (r ≥ 1), V 0

r,h = H1
0 (Ω)∩ Vr,h, and Rhu interpolates u at the boundary nodes on ∂Ω.

In fact, Rhu is the finite element projection of u onto Vr,h for the model problem

∆u = f in Ω, (1.2)

with Dirichlet boundary condition on ∂Ω.
Our motivation is to establish the stability in L∞(Ω)

‖Rhu‖L∞(Ω) ≤ C‖u‖L∞(Ω), (1.3a)

or ‖Rhu‖L∞(Ω) ≤ C| log h|‖u‖L∞(Ω); (1.3b)

and the stability in W 1,∞(Ω) (if u ∈ W 1,∞(Ω))

‖Rhu‖W 1,∞(Ω) ≤ C‖u‖W 1,∞(Ω), (1.4a)

or ‖Rhu‖W 1,∞(Ω) ≤ C| log h|‖u‖W 1,∞(Ω). (1.4b)

There are a lot of important works for estimates (1.3) and (1.4). [9] and [16] are the first
contributions for general quasi-uniform meshes. On convex polygonal domains, [9] considered
piecewise linear (r = 1) approximation while [16] treated the finite element approximation
(for any r ≥ 1) to Neumann problem of (1.2). [13] proved (1.3) and (1.4) on polygonal (can
be nonconvex) domains. When r = 1, the estimates provided in [13] are (1.3b) and (1.4b).
Thus, estimates (1.3) and (1.4) are valid for most practical domains in R

2. On the contrast,
in three dimensional space, all existing works [1, 3, 4, 7, 8, 11, 12, 14, 15] for estimates
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(1.3) and (1.4) are available on either domains with smooth boundary or convex polyhedral
domains (Instead of explicit assumptions on domains, [1] needs ‖w‖W 2,p(Ω) ≤ C‖∆w‖Lp(Ω)

for some p > 3 in three dimensional space, for any function w with zero trace on ∂Ω).
In this paper, we prove that if the meshes are non-obtuse (all internal dihedral angles of

all tetrahedral elements are less than or equal to π
2
), then estimates (1.3b) and (1.4b) hold

for the finite element projection (1.1) with piecewise linear finite element space Vh = V1,h

(r = 1).
In Section 2, we provide the main results and all assumptions. In Section 3, we show the

proofs of our main results.

2. Main results

Let Ω be a Lipschitz polyhedra (can be nonconvex) in R
3. We denote by Th quasi-uniform

conforming tetrahedral meshes of Ω. We define Vh = H1(Ω)∩P1(Th) and V 0
h = H1

0 (Ω)∩ Vh.
For any u ∈ H1(Ω), we introduce the Ritz projection Rhu ∈ Vh to satisfy

(∇Rhu,∇vh)Ω = (∇u,∇vh)Ω, ∀vh ∈ V 0
h , (2.1)

where Rhu interpolates u at the boundary nodes on ∂Ω. In fact, Rhu is the finite element
projection of u onto Vh, and (2.1) is exactly the finite element projection (1.1) with r = 1.

Assumption 2.1. For any T ∈ Th, all internal dihedral angles of the tetrahedral element T

are less than or equal to π
2
. Th is called non-obtuse tetrahedral meshes of Ω.

Assumption 2.2. The mesh Th of Ω can be extended to a larger convex domain Ω̃ quasi-
uniformly with Ω ⋐ Ω̃. We denote by T̃h the extension of Th on Ω̃.

Remark 2.1. We don’t require T̃h introduced in Assumption 2.2 to be non-obtuse for all
tetrahedral elements. Only elements T ∈ Th need to be non-obtuse.

Theorem 2.2. If Assumption (2.1) and Assumption (2.2) hold, then there is a positive
constant C such that for any u ∈ H1(Ω) ∩ C(Ω),

‖Rhu‖L∞(Ω) ≤ C| logh|‖u‖L∞(Ω).

Theorem 2.3. If Assumption (2.1) and Assumption (2.2) hold, then there is a positive
constant C such that for any u ∈ W 1,∞(Ω),

‖Rhu‖W 1,∞(Ω) ≤ C| logh|‖u‖W 1,∞(Ω).

3. Analysis

Proof. (Proof of Theorem 2.2) Since u ∈ C(Ω), we denote by ũ the extension of u to Ω̃,

such that u ∈ C0(Ω̃) and ‖ũ‖L∞(Ω̃) = ‖u‖L∞(Ω). The existence of ũ satisfying the above two

properties follows from the facts that u ∈ C(Ω) and the Whitney type extension operator
E0 in Section 2.2 of Chapter 6 in [17] (see (8) and the proposition in Section 2.2 of Chapter
6 in [17]). We would like to emphasize that we don’t need ũ ∈ H1(Ω̃).

We define Ṽ 0
h = H1

0 (Ω̃) ∩ P1(T̃h). Let ũh ∈ Ṽ 0
h satisfy

(∇ũh,∇ṽh)Ω̃ = ΣT∈T̃h
(−(ũ,∆ṽh)T + 〈ũ,∇ṽh · ~n〉∂T ) , ∀ṽh ∈ Ṽ 0

h . (3.1)
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Here ~n is the outward unit normal vector along ∂T for any T ∈ Th. For any vh ∈ V 0
h =

H1
0 (Ω) ∩ P1(Th), we denote by ṽh ∈ Ṽ 0

h the zero extension of vh to Ω̃. By (3.1) and the
definition of ṽh, it is easy to see that

(∇ũh,∇vh)Ω = (∇ũh,∇ṽh)Ω̃ (3.2)

=ΣT∈T̃h
(−(ũ,∆ṽh)T + 〈ũ,∇ṽh · ~n〉∂T )

=ΣT∈Th
(−(ũ,∆ṽh)T + 〈ũ,∇ṽh · ~n〉∂T )

=ΣT∈Th
(−(u,∆vh)T + 〈u,∇vh · ~n〉∂T ) = (∇u,∇vh)Ω.

The last equality holds since u ∈ H1(Ω). On the other hand, since Ω̃ is convex and ũ ∈ C0(Ω̃),
(3.1) and [8, Theorem 12] imply that

‖ũh‖L∞(Ω̃) ≤ C| log h|‖ũ‖L∞(Ω̃) = C| log h|‖u‖L∞(Ω). (3.3)

We notice that Rhu ∈ Vh = H1(Ω) ∩ P1(Th) satisfies

(∇Rhu,∇vh)Ω = (∇u,∇vh)Ω, ∀vh ∈ V 0
h = H1

0 (Ω) ∩ Vh.

Thus, by the above equation and (3.2), we have that (Rhu− ũh) |Ω ∈ Vh and

(∇(Rhu− ũh),∇vh)Ω = 0, ∀vh ∈ V 0
h = H1

0(Ω) ∩ Vh.

By Assumption (2.1) and [18, Theorem 3.2 and Lemma 5.1(iii)] (or by [2, 5, 6]), the above
equation implies that

‖Rhu− ũh‖L∞(Ω) ≤ ‖Rhu− ũh‖L∞(∂Ω) ≤ ‖u‖L∞(∂Ω) + ‖ũh‖L∞(∂Ω). (3.4)

Thus, by (3.3) and (3.4), it is easy to see that

‖Rhu‖L∞(Ω) ≤ ‖Rhu− ũh‖L∞(Ω) + ‖ũh‖L∞(Ω)

≤‖u‖L∞(∂Ω) + ‖ũh‖L∞(∂Ω) + ‖ũh‖L∞(Ω)

≤‖u‖L∞(Ω) + 2‖ũh‖L∞(Ω) ≤ C| log h|‖u‖L∞(Ω).

The proof is complete. �

Proof. (Proof of Theorem 2.3) We denote by Ihu the standard interpolation of u on Vh =
H1(Ω) ∩ P1(Th).

By applying Theorem 2.2 to u− Ihu, we have

‖Rhu− Ihu‖L∞(Ω) ≤ C| logh|‖u− Ihu‖L∞(Ω).

By inverse inequality and approximation properties of Ih,

‖Rhu‖W 1,∞(Ω) ≤ ‖Rhu− Ihu‖W 1,∞(Ω) + ‖Ihu‖W 1,∞(Ω)

≤Ch−1‖Rhu− Ihu‖L∞(Ω) + C‖u‖W 1,∞(Ω) ≤ C‖u‖W 1,∞(Ω).

The proof is complete. �
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