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Abstract We consider numerical approximations and error analysis for the Cahn-Hilliard
equation with reaction rate dependent dynamic boundary conditions (P. Knopf et al., arXiv,
2020). Based on the stabilized linearly implicit approach, a first-order in time, linear and en-
ergy stable scheme for solving this model is proposed. The corresponding semi-discretized-
in-time error estimates for the scheme are also derived. Numerical experiments, including
the simulations with different energy potentials, the comparison with the former work, the
convergence results for the relaxation parameter K → 0 and K → ∞ and the accuracy tests
with respect to the time step size, are performed to validate the accuracy of the proposed
scheme and the error analysis.

1 Introduction

The Cahn-Hilliard equation, first introduced in [2], was originally utilized to describe the phase
separation and de-mixing processes of binary mixtures. The standard Cahn-Hilliard equation can
be written as follows:

(1.1)


φt = ∆µ, in Ω × (0,T ),

µ = −ε∆φ +
1
ε

F′(φ), in Ω × (0,T ),

where the parameter ε > 0, Ω ⊆ Rd (d = 2, 3) denotes a bounded domain whose boundary Γ = ∂Ω

with the unit outer vector field n. The function φ denotes the difference of two local relative
concentrations, in order to describe the binary alloys. The regions with φ = ±1 in the domain Ω

correspond to the pure phases of the materials, which are separated by a interfacial region whose
thickness is proportional to ε.

In the Cahn-Hilliard equation, µ denotes the chemical potential in Ω, which can be expressed
as the Fréchet derivative of the bulk free energy:

(1.2) Ebulk(φ) =

∫
Ω

ε

2
|∇φ|2 +

1
ε

F(φ)dx,
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where F denotes the potential in Ω. The classical choice of F is the smooth double-well potential

(1.3) F(x) =
1
4

(x2 − 1)2, x ∈ R,

which has a double-well structure with two minima at -1 and 1 and a local unstable maximum at
0.

Since the time-evolution of φ is confined in a bounded domain, suitable boundary conditions
are needed. The classical choice is the homogeneous Neumann conditions:

(1.4) ∂nµ = 0, on Γ × (0,T ),

(1.5) ∂nφ = 0, on Γ × (0,T ),

where ∂n represents the outward normal derivative on Γ. Obviously, the mass conservation law
holds in the bulk (i.e., in Ω) with the no-flux boundary condition (1.4):

(1.6)
∫

Ω

φ(t)dx =

∫
Ω

φ(0)dx, t ∈ [0,T ].

In addition, the time evolution of the bulk free energy Ebulk (Eq. (1.2)) is decreasing with the
boundary conditions (1.4) and (1.5), namely,

(1.7)
d
dt

Ebulk(φ(t)) +

∫
Ω

|∇µ|2dx = 0, t ∈ (0,T ).

When some particular applications (for instance, the hydrodynamic applications such as contact
line problems) are taken into consideration, it’s necessary to describe the short-range interactions
between the mixture and the solid wall. However, the standard homogeneous Neumann conditions
neglect the effects of the boundary to the bulk dynamics. Thus, several dynamic boundary con-
ditions have been proposed and analysed in recent years, see for instance, ([23], [29], [10], [12],
[5], [6], [22], [18], [20], [19]). These dynamic boundary conditions are based on the system with
added surface free energy ([7], [8], [17]). The total free energy can be written as

(1.8) Etotal(φ) = Ebulk(φ) + Esur f (φ),

(1.9) Esur f (φ) =

∫
Γ

δκ

2
|∇Γφ|

2 +
1
δ

G(φ)dS ,

where ∇Γ represents the tangential or surface gradient operator on Γ, G is the surface potential, δ
denotes the thickness of the interfacial region on Γ and the parameter κ is related to the surface
diffusion. When κ = 0, it is related to the moving contact line problem [27].

In the present work, we summarize three Cahn-Hilliard models with dynamic boundary con-
ditions in detail. All the dynamic boundary conditions of the three models have a Cahn-Hilliard
type structure. And they can be interpreted as an H−1-gradient flow of the total free energy.
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The first Cahn-Hilliard model with dynamic boundary conditions was proposed by G.R. Gold-
stein, A. Miranville, and G. Schimperna [12]:

(1.10)



φt = ∆µ, in Ω × (0,T ),

µ = −ε∆φ +
1
ε

F′(φ), in Ω × (0,T ),

φ|Γ = ψ, on Γ × (0,T ),

ψt = ∆Γµ − ∂nµ, on Γ × (0,T ),

µ = −δκ∆Γψ +
1
δ

G′(ψ) + ε∂nφ on Γ × (0,T ).

In the present work, we denote the model as the GMS model for convenience. Here, ∆Γ denotes the
Laplace-Beltrami operator on Γ. Note that the chemical potentials in the bulk and on the boundary
are the same. Moreover, the dynamic boundary conditions ensure the conservation of the total
mass (namely, the sum of the bulk and boundary mass):

(1.11)
∫

Ω

φ(t)dx +

∫
Γ

ψ(t)dS =

∫
Ω

φ(0)dx +

∫
Γ

ψ(0)dS , for all t ∈ [0,T ],

and the energy dissipation law:

(1.12)
d
dt

Etotal(φ, ψ) = −‖∇µ‖2Ω − ‖∇Γµ‖
2
Γ ≤ 0.

The second Cahn-Hilliard model with dynamic boundary conditions was proposed by C. Liu
and H. Wu [20]:

(1.13)



φt = ∆µ, in Ω × (0,T ),

µ = −ε∆φ +
1
ε

F′(φ), in Ω × (0,T ),

∂nµ = 0, on Γ × (0,T ),

φ|Γ = ψ, on Γ × (0,T ),

ψt = ∆ΓµΓ, on Γ × (0,T ),

µΓ = −δκ∆Γψ +
1
δ

G′(ψ) + ε∂nφ on Γ × (0,T ).

We denote it as the Liu-Wu model for short. Here, µΓ denotes the chemical potential on the
boundary. The model assumes that there is no mass exchange between the bulk and the boundary,
namely, ∂nµ = 0. Different from the GMS model (µ = µΓ), the chemical potential µ and µΓ are not
directly coupled. Similarly, we can obtain the following mass conservation law:

(1.14)
∫

Ω

φ(t)dx =

∫
Ω

φ(0)dx and
∫

Γ

ψ(t)dS =

∫
Γ

ψ(0)dS , t ∈ [0,T ],

indicating that the Liu-Wu model satisfies the mass conservation law in the bulk and on the bound-
ary respectively. Moreover, the energy dissipation law (1.12) also holds for the Liu-Wu model. The
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readers can find the well-posedness results for the Liu-Wu model and the GMS model in [20] and
[12] respectively.

Recently, Knopf et al. [19] proposed a new model, which can be interpreted as an interpolation
between the Liu-Wu model and the GMS model. It reads as follows,

(1.15)



φt = ∆µ, in Ω × (0,T ),

µ = −ε∆φ +
1
ε

F′(φ), in Ω × (0,T ),

K∂nµ = µΓ − µ, on Γ × (0,T ),

φ|Γ = ψ, on Γ × (0,T ),

ψt = ∆ΓµΓ − ∂nµ, on Γ × (0,T ),

µΓ = −δκ∆Γψ +
1
δ

G′(ψ) + ε∂nφ, on Γ × (0,T ).

In the present work, we use the authors’ initials and refer it to be the KLLM model for convenience.
Here, in order to describe the binary alloys, φ and ψ represent the phase-field order parameter or
the concentration of one material component in the bulk and on the boundary, respectively. µ

and µΓ represent the chemical potentials in Ω and on Γ, respectively. Notice that µ and µΓ are
coupled by the Robin type boundary condition K∂nµ = µΓ − µ, where the positive parameter K
is the relaxation parameter. The equation on the boundary ((1.15)4) can be viewed as a chemical
reaction in a general case since it describes that one species (φ) changes into another species (ψ)
on the boundary. And (1.15)3 means that there exists mass transfer between the bulk (φ) and the
boundary (ψ). Thus, the constant 1/K can be interpreted as the reaction rate. The well-posedness
of the system (1.15) and convergence to the Liu-Wu model (as K → ∞) and the GMS model (as
K → 0) in both the weak and the strong sense have been investigated by Knopf et al. [19].

The numerical approximations of the Cahn-Hilliard equation and its variants have already been
well investigated. There exists extensive efficient techniques for the time discretization, such as
the stabilized linearly implicit approach [15], the convex splitting approach ([24], [14]), the invari-
ant energy quadratization (IEQ) method ([30], [31], [34]) and the scalar auxiliary variable (SAV)
method [25]. For the higher order scheme and more general case of the phase-field models, we
refer the readers to the recent work of Gong et al. [13]. Moreover, X. Yang et al. have proposed
efficient numerical schemes on the phase-field models with more complicated potentials (the log-
arithmic Flory-Huggins potential [33] and the nonlocal potential [32]). Recently, there have been
numerical approximations for the Cahn-Hilliard equation with dynamic boundary conditions ( see
for instance, [1], [3], [4], [16], [9] and [28]). Specifically, for the Liu-Wu model, the finite element
scheme has been proposed in [28] and [11], where the straightforward discretization based on
piecewise linear finite element functions was utilized to simulate the model, and the correspond-
ing nonlinear system was solved by Newton’s method. A recent contribution on the numerical
analysis can be found in [21]. For the KLLM model, we refer the readers to [19] for the finite
element numerical approximations and numerical analysis. However, the backward implicit Euler
method was used for time discretization in the finite element schemes mentioned above, where
one needs to solve nonlinear systems at each time step. Recently, based on the stabilized linearly
implicit approach, a linear and energy stable numerical scheme has been proposed for the Liu-Wu
model [1] and the corresponding semi-discrete-in-time error estimates are carried out.
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Inspired by the numerical scheme in [1], a first-order in time, linear and energy stable scheme
for solving the KLLM model is proposed in the present work. Note that the scheme is highly
efficient since one only needs to solve a linear equation at each time step. Numerical simulations
are performed in the two-dimensional space to validate the accuracy and stability of the scheme.
We also investigate the error estimates in semi-discrete-in-time for the scheme. To the best of the
authors’ knowledge, the proposed scheme is the first linear numerical scheme to solve the KLLM
model and it is the first work to give the corresponding semi-discrete-in-time error estimates.

The rest of the paper is organized as follows. We first present some notions and notations
appearing in this article in Section 2. In Section 3, the stabilized scheme for the KLLM model and
the energy stability are derived. The error estimates are constructed in Section 4. In Section 5, we
present the numerical examples and illustrate the convergence results for K → 0 and K → ∞. The
accuracy tests are also displayed in this section. Finally, the conclusion is presented in Section 6.

2 Preliminaries

Before giving the stabilized scheme and the corresponding error analysis, we make some defi-
nitions in this section.

We consider a finite time interval [0,T ] and a domain Ω ⊂ Rd (d = 2, 3), which is a bounded
domain with sufficient smooth boundary Γ = ∂Ω and n = n(x) is the unit outer normal vector on
Γ. In this article, we need the boundary Γ to be of class Ck,1 with k ≥ 3. This regularity is needed
for the error estimates in Section 4.

The norm and inner product of L2(Ω) and L2(Γ) are denoted by ‖ · ‖Ω, (·, ·)Ω and ‖ · ‖Γ, (·, ·)Γ

respectively. The usual norm in Hk(Ω) and Hk(Γ) are denoted by ‖·‖Hk(Ω) and ‖·‖Hk(Γ) respectively.
Let τ be the time step size. For a sequence of functions f 0, f 1, . . . , f N in some Hilbert space E,

we denote the sequence by { fτ} and define the following discrete norm for { fτ}:

(2.1) ‖ fτ‖l∞(E) = max
0≤n≤N

(
‖ f n‖E

)
.

We denote by C a generic constant that is independent of τ but possibly depends on the parameters
and solutions, and use f . g to say that there is a generic constant C such that f 6 Cg.

3 The Cahn-Hilliard equation with reaction rate dependent dynamic
boundary conditions and its numerical scheme

In this section, we first summarize the mass conservation and the energy dissipation law of the
KLLM model. Then we propose the stabilized linear numerical scheme and prove the discrete
energy dissipation law.

Since φ is the phase-field order parameter in the bulk, denote its trace φ|Γ , ψ as the order
parameter on the boundary. In the bulk Ω, assume that φ is a locally conserved quantity that
satisfies the continuity equation

(3.1) φt + ∇ · (φu) = 0, (x, t) ∈ Ω × (0,T ),

where u is the microscopic effect velocity.
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We assume that there exists mass exchange between the bulk Ω and the boundary Γ, which is
denoted by the flux J = φu. Assume that the mass flux is directly driven by differences between
the chemical potentials in the sense that

(3.2) K(J · n) = K(φu · n) = µ − µΓ, (x, t) ∈ Γ × (0,T ),

where K is a positive parameter describing the extent of mass exchange. Eq. (3.2) is the boundary
condition of u.

Assume that the boundary dynamics is characterized by a local mass conservation law analo-
gous to (3.1), such that

(3.3) ψt + ∇Γ · (ψv) − J · n = 0, (x, t) ∈ Γ × (0,T ),

where v denotes the microscopic effective tangential velocity field on the boundary Γ. Assume
that Γ is a closed manifold, thus, there is no need to impose any boundary condition on v.

The mass is conserved in the sense that

(3.4)
∫

Ω

φ(t)dx +

∫
Γ

ψ(t)dS =

∫
Ω

φ(0)dx +

∫
Γ

ψ(0)dS , ∀t ∈ [0,T ].

To this end, integrating (3.1) over Ω, we have

(3.5)
d
dt

∫
Ω

φ(·, t)dx +

∫
Γ

φu · ndS = 0,∀t ∈ (0,T ),

and integrating (3.3) over Γ, we have

(3.6)
d
dt

∫
Γ

ψ(·, t)dS −
∫

Γ

J · ndS = 0,∀t ∈ (0,T ).

Combining (3.5) with (3.6) and the flux J = φu, we obtain the total mass conservation law, see
(3.4).

Then we show the energy law of the KLLM model, where the total free energy (sum of the bulk
and surface free energies) is decreasing in time. Precisely, multiplying the first equation of (1.15)
by µ and integrating over Ω, we get

(φt, µ)Ω = (∆µ, µ)Ω = (∂nµ, µ)Γ − ‖∇µ‖
2
L2(Ω).

Since
(φt, µ)Ω = (φt,−ε∆φ +

1
ε

F′(φ))Ω,

(φt,−ε∆φ)Ω = −(ε∂nφ, φt)Γ +
ε

2
d
dt

(
∫

Ω

|∇φ|2dx),

(φt,
1
ε

F′(φ))Ω =
d
dt

(
∫

Ω

1
ε

F(φ)dx),

we arrive that

(3.7)
d
dt

(
∫

Ω

1
ε

F(φ)dx +
ε

2

∫
Ω

|∇φ|2dx) − (ε∂nφ, φt)Γ = (∂nµ, µ)Γ − ‖∇µ‖
2
L2(Ω).
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Multiplying the boundary equation in (1.15) by µΓ and integrating over Γ, we get

(ψt, µΓ)Γ = (∆ΓµΓ, µΓ)Γ − (∂nµ, µΓ)Γ = −‖∇ΓµΓ‖
2
L2(Γ) − (∂nµ, µΓ)Γ.

Since
(ψt, µΓ)Γ = (ψt,−δκ∆Γψ +

1
δ

G′(ψ) + ε∂nφ)Γ,

(ψt,−δκ∆Γψ)Γ =
δκ

2
d
dt

(
∫

Γ

|∇Γψ|
2dS ),

(ψt,
1
δ

G′(ψ))Γ =
d
dt

(
∫

Γ

1
δ

G(ψ)dS ),

we arrive that

(3.8)
d
dt

(
∫

Γ

1
δ

G(ψ)dS +
δκ

2

∫
Γ

|∇Γψ|
2dS ) + (ε∂nφ, ψt)Γ = −(∂nµ, µΓ)Γ − ‖∇ΓµΓ‖

2
L2(Γ).

Adding (3.7) and (3.8) together, we get

(3.9)

d
dt

(
∫

Ω

1
ε

F(φ) +
ε

2
|∇φ|2dx +

∫
Γ

1
δ

G(ψ) +
δκ

2
|∇Γψ|

2dS )

= −‖∇µ‖2L2(Ω) − ‖∇ΓµΓ‖
2
L2(Γ) + (∂nµ, µ − µΓ)Γ

= −‖∇µ‖2L2(Ω) − ‖∇ΓµΓ‖
2
L2(Γ) − K‖∂nµ‖

2
L2(Γ).

Since K > 0, we arrive at

d
dt

(
∫

Ω

1
ε

F(φ) +
ε

2
|∇φ|2dx +

∫
Γ

1
δ

G(ψ) +
δκ

2
|∇Γψ|

2dS ) ≤ 0,

namely,
d
dt

[Ebulk(φ) + Esur f (ψ)] ≤ 0.

Now we present the numerical scheme for the KLLM model (namely, Eq. (1.15)). The scheme
can be written as follows,

φn+1 − φn

τ
= ∆µn+1, in Ω,(3.10)

µn+1 = −ε∆φn+1 +
1
ε

F′(φn) + s1(φn+1 − φn), in Ω,(3.11)

K∂nµ
n+1 = µn+1

Γ − µn+1, on Γ,(3.12)

φn+1|Γ = ψn+1, on Γ,(3.13)
ψn+1 − ψn

τ
= ∆Γµ

n+1
Γ − ∂nµ

n+1, on Γ,(3.14)

µn+1
Γ = −δκ∆Γψ

n+1 +
1
δ

G′(ψn) + ε∂nφ
n+1 + s2(ψn+1 − ψn), on Γ.(3.15)

Here, T is an arbitrary and fixed time, N is the number of time steps and τ = T/N is the step size.
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Remark 3.1. The parameters s1, s2 > 0. And the stabilization terms s1(φn+1−φn) and s2(ψn+1−ψn)
are added in the bulk and on the boundary to enhance the stability, respectively.

Remark 3.2. For the Liu-Wu model, we need to modify Eq. (3.12) to be

∂nµ
n+1 = 0, on Γ,

and the last term ∂nµ
n+1 in (3.14) vanishes. In this article, the scheme for the Liu-Wu model reads

as follows, which is the same as that in [1]:

φn+1 − φn

τ
= ∆µn+1, in Ω,(3.16)

µn+1 = −ε∆φn+1 +
1
ε

F′(φn) + s1(φn+1 − φn), in Ω,(3.17)

∂nµ
n+1 = 0, on Γ,(3.18)

φn+1|Γ = ψn+1, on Γ,(3.19)
ψn+1 − ψn

τ
= ∆Γµ

n+1
Γ , on Γ,(3.20)

µn+1
Γ = −δκ∆Γψ

n+1 +
1
δ

G′(ψn) + ε∂nφ
n+1 + s2(ψn+1 − ψn), on Γ.(3.21)

For the GMS model, Eq. (3.12) is modified to be

µn+1|Γ = µn+1
Γ , on Γ.

In this article, the scheme for the GMS model reads as follows,

φn+1 − φn

τ
= ∆µn+1, in Ω,(3.22)

µn+1 = −ε∆φn+1 +
1
ε

F′(φn) + s1(φn+1 − φn), in Ω,(3.23)

φn+1|Γ = ψn+1, on Γ,(3.24)
ψn+1 − ψn

τ
= ∆Γµ

n+1 − ∂nµ
n+1, on Γ,(3.25)

µn+1 = −δκ∆Γψ
n+1 +

1
δ

G′(ψn) + ε∂nφ
n+1 + s2(ψn+1 − ψn), on Γ.(3.26)

From the above schemes we can conclude that the limiting cases are included in the proposed
scheme in a general sense. The proposed scheme is based on the stabilized linearly implicit ap-
proach and we use the same strategy to deal with the limit cases. Precisely, in the scheme for the
Liu-Wu model and the GMS model, we deal with the linear terms implicitly and the nonlinear
terms explicitly and the stabilization terms are used.

We have the energy stability as follows.

Theorem 3.3. If the parameters s1 and s2 satisfy

(3.27) s1 ≥
1
2ε

max
ξ∈R

F′′(ξ), s2 ≥
1
2δ

max
η∈R

G′′(η),
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the scheme (3.10)-(3.15) is energy stable in the sense that

(3.28)
E(φn+1, ψn+1) − E(φn, ψn)

τ
≤ −‖∇µn+1‖2L2(Ω) − ‖∇Γµ

n+1
Γ ‖

2
L2(Γ) −

1
K
‖µn+1 − µn+1

Γ ‖
2
L2(Γ),

where

(3.29) E(φn, ψn) =

∫
Ω

1
ε

F(φn) +
ε

2
|∇φn|2dx +

∫
Γ

1
δ

G(ψn) +
δκ

2
|∇Γψ

n|2dS

Proof. By taking inner product of (3.10) with µn+1 in Ω, we have

(3.30) (
φn+1 − φn

τ
, µn+1)Ω = (∆µn+1, µn+1)Ω = (∂nµ

n+1, µn+1)Γ − ‖∇µ
n+1‖2L2(Ω).

For the boundary integral term, by using (3.12), we have

(∂nµ
n+1, µn+1)Γ =

1
K

(µn+1
Γ − µn+1, µn+1)Γ.

By using (3.11), we have

(3.31) (
φn+1 − φn

τ
, µn+1)Ω = (

φn+1 − φn

τ
,−ε∆φn+1 +

1
ε

F′(φn) + s1(φn+1 − φn))Ω,

and

(3.32) (
φn+1 − φn

τ
,−ε∆φn+1)Ω = −ε(∂nφ

n+1,
φn+1 − φn

τ
)Γ + ε(∇φn+1,

∇φn+1 − ∇φn

τ
)Ω.

For the boundary integral term in (3.32), by taking the inner product of (3.14) with µn+1
Γ

on Γ,
we obtain

(3.33)
(
ψn+1 − ψn

τ
, µn+1

Γ )Γ = (∆Γµ
n+1
Γ , µn+1

Γ )Γ − (∂nµ
n+1, µn+1

Γ )Γ

= −‖∇Γµ
n+1
Γ ‖

2
L2(Γ) − (∂nµ

n+1, µn+1
Γ )Γ.

By using (3.15), we have

(3.34) (
ψn+1 − ψn

τ
, µn+1

Γ )Γ = (
ψn+1 − ψn

τ
,−δκ∆Γψ

n+1 +
1
δ

G′(ψn) + ε∂nφ
n+1 + s2(ψn+1 − ψn))Γ,

and

(3.35) (
ψn+1 − ψn

τ
,−δκ∆Γψ

n+1)Γ = (
∇Γψ

n+1 − ∇Γψ
n

τ
, δκ∇Γψ

n+1)Γ.

To handle the nonlinear term associated with F′ and G′ in (3.31) and (3.34), we need the
following identities

(3.36)
F′(φn)(φn+1 − φn) = F(φn+1) − F(φn) −

F′′(η)
2

(φn+1 − φn)2,

G′(ψn)(ψn+1 − ψn) = G(ψn+1) −G(ψn) −
G′′(ζ)

2
(ψn+1 − ψn)2,
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with some η ∈ (φn, φn+1) and ζ ∈ (ψn, ψn+1).
Combining the equations mentioned above, we get

(
φn+1 − φn

τ
, µn+1)Ω + (

ψn+1 − ψn

τ
, µn+1

Γ )Γ

= (∂nµ
n+1, µn+1)Γ − ‖∇µ

n+1‖2L2(Ω) − ‖∇Γµ
n+1
Γ ‖

2
L2(Γ) − (∂nµ

n+1, µn+1
Γ )Γ

= −‖∇µn+1‖2L2(Ω) − ‖∇Γµ
n+1
Γ ‖

2
L2(Γ) −

1
K
‖µn+1 − µn+1

Γ ‖
2
L2(Γ),

and

(
φn+1 − φn

τ
, µn+1)Ω + (

ψn+1 − ψn

τ
, µn+1

Γ )Γ

= ε(∇φn+1,
∇φn+1 − ∇φn

τ
)Ω +

1
ε

(F′(φn),
φn+1 − φn

τ
)Ω +

s1

τ
‖φn+1 − φn‖2L2(Ω)

+ (δκ∇Γψ
n+1,
∇Γψ

n+1 − ∇Γψ
n

τ
)Γ +

1
δ

(G′(ψn),
ψn+1 − ψn

τ
)Γ +

s2

τ
‖ψn+1 − ψn‖2L2(Γ)

= ε(∇φn+1,
∇φn+1 − ∇φn

τ
)Ω +

1
ε

(
F(φn+1) − F(φn)

τ
, 1)Ω −

1
2ε

(F′′(η),
(φn+1 − φn)2

τ
)Ω

+
s1

τ
‖φn+1 − φn‖2L2(Ω) + δκ(∇Γψ

n+1,
∇Γψ

n+1 − ∇Γψ
n

τ
)Γ +

1
δ

(
G(ψn+1) −G(ψn)

τ
, 1)Γ

−
1
2δ

(G′′(ζ),
(ψn+1 − ψn)2

τ
)Γ +

s2

τ
‖ψn+1 − ψn‖2L2(Γ)

=
ε

2τ
(‖∇φn+1‖2L2(Ω) − ‖∇φ

n‖2L2(Ω) + ‖∇φn+1 − ∇φn‖2L2(Ω)) +
1
ετ

(F(φn+1) − F(φn), 1)Ω

+
1
τ

(s1 −
1
2ε

F′′(η))‖φn+1 − φn‖2L2(Ω) +
δκ

2τ
(‖∇Γψ

n+1‖2L2(Γ) − ‖∇Γψ
n‖2L2(Γ) + ‖∇Γψ

n+1 − ∇Γψ
n‖2L2(Γ))

+
1
δτ

(G(ψn+1) −G(ψn), 1)Γ +
1
τ

(s2 −
1
2δ

G′′(ζ))‖ψn+1 − ψn‖2L2(Γ)

=
1
τ

[E(φn+1, ψn+1) − E(φn, ψn)] +
ε

2τ
‖∇φn+1 − ∇φn‖2L2(Ω) +

δκ

2τ
‖∇Γψ

n+1 − ∇Γψ
n‖2L2(Γ)

+
1
τ

(s1 −
1
2ε

F′′(η))‖φn+1 − φn‖2L2(Ω) +
1
τ

(s2 −
1
2δ

G′′(ζ))‖ψn+1 − ψn‖2L2(Γ).

Thus, we have

1
τ

[E(φn+1, ψn+1) − E(φn, ψn)] +
ε

2τ
‖∇φn+1 − ∇φn‖2L2(Ω) +

δκ

2τ
‖∇Γψ

n+1 − ∇Γψ
n‖2L2(Γ)

+
1
τ

(s1 −
1
2ε

F′′(η))‖φn+1 − φn‖2L2(Ω) +
1
τ

(s2 −
1
2δ

G′′(ζ))‖ψn+1 − ψn‖2L2(Γ)

= −‖∇µn+1‖2L2(Ω) − ‖∇Γµ
n+1
Γ ‖

2
L2(Γ) −

1
K
‖µn+1 − µn+1

Γ ‖
2
L2(Γ) ≤ 0.

Therefore, under the conditions that

s1 ≥
1
2ε

max
ξ∈R

F′′(ξ)
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and
s2 ≥

1
2δ

max
η∈R

G′′(η),

we have
1
τ

[E(φn+1, ψn+1) − E(φn, ψn)] ≤ 0,

namely, the scheme (3.10)-(3.15) is energy stable. �

Remark 3.4. The assumption (3.27) is reasonable. The energy potential F is a functional with
respect to φ and φ is a function defined as φ : Ω → R. Similarly, G is a functional with respect to
ψ and ψ is a function defined as ψ : Γ→ R. And the derivatives in (3.27) are with respect to φ and
ψ respectively. Thus, if the second derivative of F with respect to φ and the second derivative of
G with respect to ψ (namely, F′′ and G′′) are bounded, we can choose s1 and s2 large enough to
satisfy (3.27).

One example of the energy potentials F and G is the modified double-well potential (also called
the truncated double-well potential). Here, the word ’truncated’ means that it truncates R into
three parts: (−∞,−1), (−1, 1) and (1,∞) and use the quadratic functions to replace the function
1
4 (φ2 − 1)2 on (−∞,−1) and (1,∞). It reads as follows,

F(φ) =


(φ − 1)2 φ > 1,
1
4

(φ2 − 1)2 − 1 ≤ φ ≤ 1,

(φ + 1)2 φ < −1.

G(ψ) =


(ψ − 1)2 ψ > 1,
1
4

(ψ2 − 1)2 − 1 ≤ ψ ≤ 1,

(ψ + 1)2 ψ < −1.

Obviously, the second derivative of F with respect to φ and the second derivative of G with respect
to ψ are bounded:

max
φ∈R
|F′′(φ)| = max

ψ∈R
|G′′(ψ)| ≤ 2.

Thus, we can choose s1 and s2 large enough, namely, s1 > 1/ε and s2 > 1/δ, so that the assumption
(3.27) is satisfied.

Remark 3.5. The proposed scheme (3.10)-(3.15) is first-order in time, linear and unconditionally
energy stable, based on the stabilization method. The stabilization method can be directly extended
to second-order schemes. However, in that case, the higher-order scheme generally cannot be
unconditionally energy stable [26].

4 Error estimates for the stabilized semi-discrete scheme

In this section, we establish the error estimates for the functions φ and ψ for the numerical
scheme (3.10)-(3.15). Here, the mathematics induction is utilized and the trace theorem is applied
to estimate the boundary terms.

Assume that the Lipschitz properties hold for the second derivative of F with respect to φ and
the second derivative of G with respect to ψ (namely, F′′ and G′′), and F′′ and G′′ are bounded.
Precisely, there exists positive constants L1, L2, K1 and K2 that

|F
′′

(φ1) − F
′′

(φ2)| ≤ K1|φ1 − φ2|,
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(4.1) |G
′′

(ψ1) −G
′′

(ψ2)| ≤ K2|ψ1 − ψ2|, for φ1, φ2, ψ1, ψ2 ∈ R,

(4.2) max
φ∈R
|F
′′

(φ)| ≤ L1, max
ψ∈R
|G
′′

(ψ)| ≤ L2.

These assumptions are necessary for error estimates.

Remark 4.1. The assumptions (4.1) - (4.2) are reasonable. One example of the functionals F and
G, satisfying the assumptions mentioned above, is the modified double-well potential:

(4.3) F(φ) =


(φ − 1)2 φ > 1,
1
4

(φ2 − 1)2 − 1 ≤ φ ≤ 1,

(φ + 1)2 φ < −1.

G(ψ) =


(ψ − 1)2 ψ > 1,
1
4

(ψ2 − 1)2 − 1 ≤ ψ ≤ 1,

(ψ + 1)2 ψ < −1.

Obviously, the Lipschitz property holds for the second derivative of F with respect to φ and the
second derivative of G with respect to ψ:

|F
′′

(φ1) − F
′′

(φ2)| ≤ 6|φ1 − φ2|,

|G
′′

(ψ1) −G
′′

(ψ2)| ≤ 6|ψ1 − ψ2|, for φ1, φ2, ψ1, ψ2 ∈ R,

and
max
φ∈R
|F′′(φ)| = max

ψ∈R
|G′′(ψ)| ≤ 2.

The PDE system (1.15) can be rewritten as the following truncated form,

φ(tn+1) − φ(tn)
τ

= ∆µ(tn+1) + Rn+1
φ , in Ω,(4.4)

µ(tn+1) = −ε∆φ(tn+1) +
1
ε

F′(φ(tn)) + s1(φ(tn+1) − φ(tn)) + Rn+1
µ , in Ω,(4.5)

K∂nµ(tn+1) = µΓ(tn+1) − µ(tn+1) on Γ,(4.6)

φ(tn+1)|Γ = ψ(tn+1), on Γ,(4.7)
ψ(tn+1) − ψ(tn)

τ
= ∆ΓµΓ(tn+1) − ∂nµ(tn+1) + Rn+1

ψ , on Γ,(4.8)

µΓ(tn+1) = −δκ∆Γψ(tn+1) +
1
δ

G′(ψ(tn)) + ε∂nφ(tn+1)

+s2(ψ(tn+1) − ψ(tn)) + Rn+1
Γ , on Γ,(4.9)

where

(4.10) Rn+1
φ =

φ(tn+1) − φ(tn)
τ

− φt(tn+1),

(4.11) Rn+1
ψ =

ψ(tn+1) − ψ(tn)
τ

− ψt(tn+1),
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(4.12) Rn+1
µ =

1
ε

F′(φ(tn+1)) −
1
ε

F′(φ(tn)) − s1(φ(tn+1) − φ(tn)),

(4.13) Rn+1
Γ =

1
δ

G′(ψ(tn+1)) −
1
δ

G′(ψ(tn)) − s2(ψ(tn+1) − ψ(tn)).

We assume that the exact solution (φ, ψ, µ, µΓ) of the system (1.15) is sufficiently smooth, or
possesses the following regularity:

(4.14) (A1) :

φ, φt, φtt ∈ L∞(0,T ; Hm1(Ω));

µ ∈ L∞(0,T ; Hm2(Ω));

µΓ ∈ L∞(0,T ; Hm3(Γ));

with m1,m2,m3 sufficiently large (the assumption that m1 > 7/2, m2 > 3/2 and m3 > 1 is suitable
for the following error analysis). Due to the trace theorem and the linearity of the trace operator,
the trace ψ possesses the regularity:

(4.15) (A2) : ψ, ψt, ψtt ∈ L∞(0,T ; Hm1−1/2(Γ))

From the Taylor expansion, it’s easy to prove that

Lemma 4.2. The truncation errors satisfy

(4.16)
‖Rφ,τ‖l∞(H1(Ω)) + ‖Rµ,τ‖l∞(H1(Ω)) . τ,

‖Rψ,τ‖l∞(H1(Γ)) + ‖RΓ,τ‖l∞(H1(Γ)) . τ.

By subtracting (4.4)-(4.9) from the corresponding scheme (3.10)-(3.15), we derive the error
equations as follows,

1
τ

(en+1
φ − en

φ) = ∆en+1
µ + Rn+1

φ , in Ω,(4.17)

en+1
µ = −ε∆en+1

φ +
1
ε

(F′(φ(tn)) − F′(φn)) + s1(en+1
φ − en

φ) + Rn+1
µ , in Ω,(4.18)

K∂nen+1
µ = en+1

Γ − en+1
µ , on Γ,(4.19)

en+1
φ |Γ = en+1

ψ , on Γ,(4.20)
1
τ

(en+1
ψ − en

ψ) = ∆Γen+1
Γ − ∂nen+1

µ + Rn+1
ψ , on Γ,(4.21)

en+1
Γ = −δκ∆Γen+1

ψ +
1
δ

(G′(ψ(tn)) −G′(ψn)) + ε∂nen+1
φ

+s2(en+1
ψ − en

ψ) + Rn+1
Γ , on Γ.(4.22)

Here, the error functions are defined as

(4.23)
en
φ = φ(tn) − φn, en

µ = µ(tn) − µn,

en
ψ = ψ(tn) − ψn, en

Γ = µΓ(tn) − µn
Γ.

Obviously, we have en
φ|Γ = en

ψ. The corresponding sequence of error functions are denoted as eφ,τ,
eψ,τ, eµ,τ and eΓ,τ.

Thus we can establish the estimates for the scheme (3.10)-(3.15) as follows.
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Theorem 4.3. Provided that the exact solutions are sufficiently smooth, there exists some τ0 > 0

such that when τ < τ0, the solution (φm, ψm) (0 ≤ m ≤
[

T
τ

]
− 1) of the scheme (3.10)-(3.15) satisfy

the following error estimate

(4.24) ‖eφ,τ‖l∞(H1(Ω)) + ‖eψ,τ‖l∞(H1(Γ)) . τ.

Here, the error functions are defined as

(4.25)

en
φ = φ(tn) − φn, en

µ = µ(tn) − µn,

en
ψ = ψ(tn) − ψn, en

Γ = µΓ(tn) − µn
Γ,

en
φ|Γ = en

ψ.

The corresponding sequence of error functions are denoted as eφ,τ, eψ,τ, eµ,τ and eΓ,τ, and the
discrete norm ‖ · ‖l∞(·) is defined as Eq. (2.1).

Proof. We use the mathematical induction to prove this theorem. When m = 0, we have e0
φ = e0

ψ =

∇e0
φ = ∇Γe0

ψ = 0. Obviously, (4.24) holds. Assuming that (4.24) holds for all n ≤ m, we need to
show that (4.24) holds for em+1

φ and em+1
ψ .

For each n ≤ m, by taking the L2 inner product of (4.17) with τen+1
µ in Ω, we obtain

(en+1
φ − en

φ, e
n+1
µ )Ω + τ‖∇en+1

µ ‖
2
Ω = τ(∂nen+1

µ , en+1
µ )Γ + τ(Rn+1

φ , en+1
µ )Ω.

By taking the L2 inner product of (4.17) with ετen+1
φ in Ω, we obtain

ε

2
(‖en+1

φ ‖
2
Ω − ‖e

n
φ‖

2
Ω + ‖en+1

φ − en
φ‖

2
Ω) = −ετ(∇en+1

µ ,∇en+1
φ )Ω

+ ετ(∂nen+1
µ , en+1

φ )Γ + ετ(Rn+1
φ , en+1

φ )Ω.

By taking the L2 inner product of (4.18) with −(en+1
φ − en

φ) in Ω, we obtain

− (en+1
µ , en+1

φ − en
φ)Ω +

ε

2
(‖∇en+1

φ ‖
2
Ω − ‖∇en

φ‖
2
Ω + ‖∇en+1

φ − ∇en
φ‖

2
Ω) + s1‖en+1

φ − en
φ‖

2
Ω =

ε(∂nen+1
φ , en+1

φ − en
φ)Γ −

1
ε

(F′(φ(tn)) − F′(φn), en+1
φ − en

φ)Ω − (Rn+1
µ , en+1

φ − en
φ)Ω.

By combining the equations above, we derive

(4.26)

ε

2
(‖∇en+1

φ ‖
2
Ω − ‖∇en

φ‖
2
Ω + ‖∇en+1

φ − ∇en
φ‖

2
Ω) + s1‖en+1

φ − en
φ‖

2
Ω

+
ε

2
(‖en+1

φ ‖
2
Ω − ‖e

n
φ‖

2
Ω + ‖en+1

φ − en
φ‖

2
Ω) + τ‖∇en+1

µ ‖
2
Ω

= τ(∂nen+1
µ , en+1

µ )Γ + τ(Rn+1
φ , en+1

µ )Ω − ετ(∇en+1
µ ,∇en+1

φ )Ω

+ ετ(∂nen+1
µ , en+1

φ )Γ + ετ(Rn+1
φ , en+1

φ )Ω + ε(∂nen+1
φ , en+1

φ − en
φ)Γ

−
1
ε

(F′(φ(tn)) − F′(φn), en+1
φ − en

φ)Ω − (Rn+1
µ , en+1

φ − en
φ)Ω.
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For the boundary term, by taking the L2 inner product of (4.21) with τen+1
Γ

on Γ, we obtain

(en+1
ψ − en

ψ, e
n+1
Γ )Γ + τ‖∇Γen+1

Γ ‖
2
Γ + τ(∂nen+1

µ , en+1
Γ )Γ = τ(Rn+1

ψ , en+1
Γ )Γ.

By taking the L2 inner product of (4.21) with ετen+1
ψ on Γ, we obtain

ε

2
(‖en+1

ψ ‖
2
Γ − ‖e

n
ψ‖

2
Γ + ‖en+1

ψ − en
ψ‖

2
Γ) = −ετ(∇Γen+1

Γ ,∇Γen+1
ψ )Γ

− ετ(∂nen+1
µ , en+1

ψ )Γ + ετ(Rn+1
ψ , en+1

ψ )Γ,

where the boundary terms vanish due to Γ is closed. By taking the L2 inner product of (4.22) with
−(en+1

ψ − en
ψ) on Γ, we obtain

− (en+1
Γ , en+1

ψ − en
ψ)Γ +

δκ

2
(‖∇Γen+1

ψ ‖
2
Γ − ‖∇Γen

ψ‖
2
Γ + ‖∇Γen+1

ψ − ∇Γen
ψ‖

2
Γ) + s2‖en+1

ψ − en
ψ‖

2
Γ

= −ε(∂nen+1
φ , en+1

ψ − en
ψ)Γ −

1
δ

(G′(ψ(tn)) −G′(ψn), en+1
ψ − en

ψ)Γ − (Rn+1
Γ , en+1

ψ − en
ψ)Γ.

By combining the equations above, we derive

(4.27)

δκ

2
(‖∇Γen+1

ψ ‖
2
Γ − ‖∇Γen

ψ‖
2
Γ + ‖∇Γen+1

ψ − ∇Γen
ψ‖

2
Γ) + s2‖en+1

ψ − en
ψ‖

2
Γ

+
ε

2
(‖en+1

ψ ‖
2
Γ − ‖e

n
ψ‖

2
Γ + ‖en+1

ψ − en
ψ‖

2
Γ) + τ‖∇Γen+1

Γ ‖
2
Γ + τ(∂nen+1

µ , en+1
Γ )Γ

= τ(Rn+1
ψ , en+1

Γ )Γ − ετ(∇Γen+1
Γ ,∇Γen+1

ψ )Γ − ετ(∂nen+1
µ , en+1

ψ )Γ

+ τε(Rn+1
ψ , en+1

ψ )Γ −
1
δ

(G′(ψ(tn)) −G′(ψn), en+1
ψ − en

ψ)Γ

− ε(∂nen+1
φ , en+1

ψ − en
ψ)Γ − (Rn+1

Γ , en+1
ψ − en

ψ)Γ.

By combining (4.26) and (4.27) together, we derive

(4.28)

ε

2
(‖∇en+1

φ ‖
2
Ω − ‖∇en

φ‖
2
Ω + ‖∇en+1

φ − ∇en
φ‖

2
Ω) +

ε

2
(‖en+1

φ ‖
2
Ω − ‖e

n
φ‖

2
Ω + ‖en+1

φ − en
φ‖

2
Ω)

+
δκ

2
(‖∇Γen+1

ψ ‖
2
Γ − ‖∇Γen

ψ‖
2
Γ + ‖∇Γen+1

ψ − ∇Γen
ψ‖

2
Γ)

+
ε

2
(‖en+1

ψ ‖
2
Γ − ‖e

n
ψ‖

2
Γ + ‖en+1

ψ − en
ψ‖

2
Γ) + s1‖en+1

φ − en
φ‖

2
Ω + s2‖en+1

ψ − en
ψ‖

2
Γ

+ τ‖∇en+1
µ ‖

2
Ω + τ‖∇Γen+1

Γ ‖
2
Γ + Kτ‖∂nen+1

µ ‖
2
Γ

= ετ(Rn+1
φ , en+1

φ )Ω + τε(Rn+1
ψ , en+1

ψ )Γ (:= term A1)

+ τ(Rn+1
φ , en+1

µ )Ω + τ(Rn+1
ψ , en+1

Γ )Γ (:= term A2)

− ετ(∇en+1
µ ,∇en+1

φ )Ω − ετ(∇Γen+1
Γ ,∇Γen+1

ψ )Γ (:= term A3)

−
1
ε

(F′(φ(tn)) − F′(φn), en+1
φ − en

φ)Ω − (Rn+1
µ , en+1

φ − en
φ)Ω (:= term A4)

−
1
δ

(G′(ψ(tn)) −G′(ψn), en+1
ψ − en

ψ)Γ − (Rn+1
Γ , en+1

ψ − en
ψ)Γ (:= term A5).
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For the term A1, we have

(4.29)

ετ(Rn+1
φ , en+1

φ )Ω + τε(Rn+1
ψ , en+1

ψ )Γ

≤ ετ‖Rn+1
φ ‖Ω‖e

n+1
φ ‖Ω + ετ‖Rn+1

ψ ‖Γ‖e
n+1
ψ ‖Γ

≤
ετ

2
‖en+1
φ ‖

2
Ω +

ετ

2
‖en+1
ψ ‖

2
Γ + C1ετ

3,

where C1 is a constant independent of τ and ε. Here, we use the estimates for the truncation terms
Rn+1
φ and Rn+1

ψ .
In this section, we define Hn = F′(φ(tn)) − F′(φn) for simplicity. It can be rewritten as

(4.30) Hn = en
φ

∫ 1

0
F′′(sφ(tn) + (1 − s)φn)ds.

Then we have ‖Hn‖Ω . ‖en
φ‖Ω since F′′ is bounded. By taking the gradient of Hn, we have

(4.31) ∇Hn = F′′(φ(tn))∇φ(tn) − F′′(φn)∇φn = (F′′(φ(tn)) − F′′(φn))∇φ(tn) + F′′(φn)∇en
φ.

Since F′′ is bounded and Lipschitz and φ ∈ L∞(0,T ; Hm1(Ω)) with m1 sufficiently large, we have

(4.32) ‖∇Hn‖Ω . ‖en
φ‖Ω + ‖∇en

φ‖Ω.

Similarly, we define H̃n = G′(ψ(tn)) − G′(ψn). Since G′′ is bounded and Lipschitz and ψ ∈

L∞(0,T ; Hm1−1/2(Γ)) with m1 sufficiently large, we have

(4.33)
‖H̃n‖Γ . ‖en

ψ‖Γ,

‖∇ΓH̃n‖Γ . ‖en
ψ‖Γ + ‖∇Γen

ψ‖Γ.

For the term A2, we have

(4.34)

τ(Rn+1
φ , en+1

µ )Ω + τ(Rn+1
ψ , en+1

Γ )Γ

= τ(Rn+1
φ ,−ε∆en+1

φ +
1
ε

Hn + s1(en+1
φ − en

φ) + Rn+1
µ )Ω

+ τ(Rn+1
ψ ,−δκ∆Γen+1

ψ +
1
δ

H̃n + ε∂nen+1
φ + s2(en+1

ψ − en
ψ) + Rn+1

Γ )Γ

= ετ(∇Rn+1
φ ,∇en+1

φ )Ω − ετ(∂nen+1
φ ,Rn+1

φ )Γ +
τ

ε
(Hn,Rn+1

φ )Ω + s1τ(Rn+1
φ , en+1

φ − en
φ)Ω

+ τ(Rn+1
φ ,Rn+1

µ )Ω + τδκ(∇ΓRn+1
ψ ,∇Γen+1

ψ )Γ +
τ

δ
(H̃n,Rn+1

ψ )Γ + ετ(∂nen+1
φ ,Rn+1

ψ )Γ

+ s2τ(Rn+1
ψ , en+1

ψ − en
ψ)Γ + τ(Rn+1

ψ ,Rn+1
Γ )Γ

≤ ετ‖∇Rn+1
φ ‖Ω‖∇en+1

φ ‖Ω +
τ

ε
‖Hn‖Ω‖Rn+1

φ ‖Ω + s1τ‖Rn+1
φ ‖Ω‖e

n+1
φ − en

φ‖Ω

+ τ‖Rn+1
φ ‖Ω‖R

n+1
µ ‖Ω + τδκ‖∇ΓRn+1

ψ ‖Γ‖∇Γen+1
ψ ‖Γ +

τ

δ
‖H̃n‖Γ‖Rn+1

ψ ‖Γ

+ s2τ‖Rn+1
ψ ‖Γ‖e

n+1
ψ − en

ψ‖Γ + τ‖Rn+1
ψ ‖Γ‖R

n+1
Γ ‖Γ

≤ C2τ
3 +

ετ

2
‖∇en+1

φ ‖
2
Ω + C3τ‖en

φ‖
2
Ω +

s1τ

2
‖en+1
φ − en

φ‖
2
Ω

+
τδκ

2
‖∇Γen+1

ψ ‖
2
Γ + C4τ‖en

ψ‖
2
Γ +

s2τ

2
‖en+1
ψ − en

ψ‖
2
Γ,
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where Ci (i = 2, 3, 4) are constants independent of τ and we use the estimates for Hn and H̃n and
the truncation terms Rn+1

φ , Rn+1
ψ , Rn+1

µ and Rn+1
Γ

. The fact that Rn+1
φ |Γ = γ(Rn+1

φ ) = Rn+1
ψ is also

applied, where γ is the trace operator.
We estimate A3 as follows

(4.35)
− ετ(∇en+1

µ ,∇en+1
φ )Ω − ετ(∇Γen+1

Γ ,∇Γen+1
ψ )Γ

≤ 2ε2τ‖∇en+1
φ ‖

2
Ω +

τ

8
‖∇en+1

µ ‖
2
Ω + 2ε2τ‖∇Γen+1

ψ ‖
2
Γ +

τ

8
‖∇Γen+1

Γ ‖
2
Γ.

For the first term in A4, we have

(4.36)

−
1
ε

(F′(φ(tn)) − F′(φn), en+1
φ − en

φ)Ω

= −
τ

ε
(Hn,

en+1
φ − en

φ

τ
)Ω = −

τ

ε
(Hn,∆en+1

µ + Rn+1
φ )Ω

=
τ

ε
(∇Hn,∇en+1

µ )Ω −
τ

ε
(Hn, ∂nen+1

µ )Γ −
τ

ε
(Hn,Rn+1

φ )Ω

≤
τ

ε
‖∇Hn‖Ω‖∇en+1

µ ‖Ω +
τ

ε
‖Hn‖Γ‖∂nen+1

µ ‖Γ +
τ

ε
‖Hn‖Ω‖Rn+1

φ ‖Ω.

Applying the trace theorem,

‖Hn‖Γ = ‖γHn‖Γ . ‖Hn‖H1(Ω) . ‖H
n‖Ω + ‖∇Hn‖Ω . ‖en

φ‖Ω + ‖∇en
φ‖Ω . τ,

where we use the assumption that en
φ satisfies the error estimate (4.24), we obtain

(4.37)

−
1
ε

(Hn, en+1
φ − en

φ)Ω

≤ C5τ(‖en
φ‖Ω + ‖∇en

φ‖Ω)‖∇en+1
µ ‖Ω + C6τ(‖en

φ‖Ω + ‖∇en
φ‖Ω)‖∂nen+1

µ ‖Γ

+ C7τ‖en
φ‖Ω‖R

n+1
φ ‖Ω

≤ C8τ
3 +

τ

4
‖∇en+1

µ ‖
2
Ω +

Kτ
16
‖∂nen+1

µ ‖
2
Γ.

Here, Ci (i = 5, 6, 7, 8) are constants independent of τ and we use the estimates for Hn and Rn+1
φ .

For the second term in A4, we have

(4.38)

− (Rn+1
µ , en+1

φ − en
φ)Ω = −τ(Rn+1

µ ,
en+1
φ − en

φ

τ
)Ω

= −τ(Rn+1
µ ,∆en+1

µ + Rn+1
φ )Ω

= τ(∇Rn+1
µ ,∇en+1

µ )Ω − τ(Rn+1
µ , ∂nen+1

µ )Γ − τ(Rn+1
µ ,Rn+1

φ )Ω

≤ τ‖∇Rn+1
µ ‖Ω‖∇en+1

µ ‖Ω + τ‖Rn+1
µ ‖Γ‖∂nen+1

µ ‖Γ + τ‖Rn+1
µ ‖Ω‖R

n+1
φ ‖Ω

≤ 2τ‖∇Rn+1
µ ‖

2
Ω +

τ

8
‖∇en+1

µ ‖
2
Ω +

8τ
K
‖Rn+1

µ ‖
2
Γ +

Kτ
32
‖∂nen+1

µ ‖
2
Γ

+
τ

2
‖Rn+1

µ ‖
2
Ω +

τ

2
‖Rn+1

φ ‖
2
Ω

≤ C9τ
3 +

τ

8
‖∇en+1

µ ‖
2
Ω +

Kτ
32
‖∂nen+1

µ ‖
2
Γ,
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where C9 is a constant independent of τ. And here, we apply the trace theorem that

‖Rn+1
µ ‖Γ = ‖γRn+1

µ ‖Γ . ‖R
n+1
µ ‖H1(Ω) . ‖R

n+1
µ ‖Ω + ‖∇Rn+1

µ ‖Ω . τ,

and use the estimates for Rn+1
µ and Rn+1

φ .
Similarly, for the first term in A5, we have

(4.39)

−
1
δ

(G′(ψ(tn)) −G′(ψn), en+1
ψ − en

ψ)Γ

= −
τ

δ
(H̃n,

en+1
ψ − en

ψ

τ
)Γ = −

τ

δ
(H̃n,∆Γen+1

Γ − ∂nen+1
µ + Rn+1

ψ )Γ

=
τ

δ
(∇ΓH̃n,∇Γen+1

Γ )Γ +
τ

δ
(H̃n, ∂nen+1

µ )Γ −
τ

δ
(H̃n,Rn+1

ψ )Γ

≤
τ

δ
‖∇ΓH̃n‖Γ‖∇Γen+1

Γ ‖Γ +
τ

δ
‖H̃n‖Γ‖∂nen+1

µ ‖Γ +
τ

δ
‖H̃n‖Γ‖Rn+1

ψ ‖Γ

≤ C10τ(‖en
ψ‖Γ + ‖∇Γen

ψ‖Γ)‖∇Γen+1
Γ ‖Γ + C11τ‖en

ψ‖Γ‖∂nen+1
µ ‖Γ + C12τ‖en

ψ‖Γ‖R
n+1
ψ ‖Γ

≤ C13τ
3 +

τ

4
‖∇Γen+1

Γ ‖
2
Γ +

Kτ
32
‖∂nen+1

µ ‖
2
Γ,

where Ci (i = 10, 11, 12, 13) are constants independent of τ. Here, we use the assumption that en
ψ

satisfies the error estimate (4.24) and use the estimate for Rn+1
ψ .

For the second term in A5, we have

(4.40)

− (Rn+1
Γ , en+1

ψ − en
ψ)Γ = −τ(Rn+1

Γ ,
en+1
ψ − en

ψ

τ
)Γ

= −τ(Rn+1
Γ ,∆Γen+1

Γ − ∂nen+1
µ + Rn+1

ψ )Γ

= τ(∇ΓRn+1
Γ ,∇Γen+1

Γ )Γ + τ(Rn+1
Γ , ∂nen+1

µ )Γ − τ(Rn+1
Γ ,Rn+1

ψ )Γ

≤ 2τ‖∇ΓRn+1
Γ ‖

2
Γ +

τ

8
‖∇Γen+1

Γ ‖
2
Γ +

τ

2
‖Rn+1

Γ ‖
2
Γ +

τ

2
‖Rn+1

ψ ‖
2
Γ

+
8τ
K
‖Rn+1

Γ ‖
2
Γ +

τK
32
‖∂nen+1

µ ‖
2
Γ

≤ C14τ
3 +

τ

8
‖∇Γen+1

Γ ‖
2
Γ +

τK
32
‖∂nen+1

µ ‖
2
Γ,

where C14 is a constant independent of τ and we use the estimates for Rn+1
ψ and Rn+1

Γ
.

Combine (4.28) with (4.29), (4.34), (4.35), (4.37), (4.38), (4.39) and (4.40), we derive

(4.41)

ε

2
(‖∇en+1

φ ‖
2
Ω − ‖∇en

φ‖
2
Ω + ‖∇en+1

φ − ∇en
φ‖

2
Ω) +

ε

2
(‖en+1

φ ‖
2
Ω − ‖e

n
φ‖

2
Ω + ‖en+1

φ − en
φ‖

2
Ω)

+
δκ

2
(‖∇Γen+1

ψ ‖
2
Γ − ‖∇Γen

ψ‖
2
Γ + ‖∇Γen+1

ψ − ∇Γen
ψ‖

2
Γ)

+
ε

2
(‖en+1

ψ ‖
2
Γ − ‖e

n
ψ‖

2
Γ + ‖en+1

ψ − en
ψ‖

2
Γ) + s1‖en+1

φ − en
φ‖

2
Ω + s2‖en+1

ψ − en
ψ‖

2
Γ

+
τ

2
‖∇en+1

µ ‖
2
Ω +

τ

2
‖∇Γen+1

Γ ‖
2
Γ +

27Kτ
32
‖∂nen+1

µ ‖
2
Γ

≤ C15τ
3 + C16τ(‖∇en+1

φ ‖
2
Ω + ‖en+1

φ ‖
2
Ω + ‖en+1

φ − en
φ‖

2
Ω

+ ‖∇Γen+1
ψ ‖

2
Γ + ‖en+1

ψ ‖
2
Γ + ‖en+1

ψ − en
ψ‖

2
Γ).
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Here, C15 is a constant independent of τ and the constant C16 = max{ε/2+2ε2, δκ/2+2ε2, s1/2, s2/2},
which is also independent of τ.

Summing (4.41) together for n = 0 to m, we derive

(4.42)

ε

2
‖∇em+1

φ ‖2Ω +
ε

2
‖em+1
φ ‖2Ω +

δκ

2
‖∇Γem+1

ψ ‖2Γ +
ε

2
‖em+1
ψ ‖2Γ

+

m∑
n=0

(
ε

2
‖∇en+1

φ − ∇en
φ‖

2
Ω + (s1 +

ε

2
)‖en+1

φ − en
φ‖

2
Ω

+
δκ

2
‖∇Γen+1

ψ − ∇Γen
ψ‖

2
Γ + (s2 +

ε

2
)‖en+1

ψ − en
ψ‖

2
Γ

+
τ

2
‖∇en+1

µ ‖
2
Ω +

τ

2
‖∇Γen+1

Γ ‖
2
Γ +

27Kτ
32
‖∂nen+1

µ ‖
2
Γ

)
≤ C15(m + 1)τ3 + C16τ

m∑
n=0

(
‖∇en+1

φ ‖
2
Ω + ‖en+1

φ ‖
2
Ω + ‖en+1

φ − en
φ‖

2
Ω

+ ‖∇Γen+1
ψ ‖

2
Γ + ‖en+1

ψ ‖
2
Γ + ‖en+1

ψ − en
ψ‖

2
Γ

)
,

Denote

(4.43) ω = min{
ε

2
,
δκ

2
, (s1 +

ε

2
), (s2 +

ε

2
)},

(4.44)
Im =

ε

2
‖∇em+1

φ ‖2Ω +
ε

2
‖em+1
φ ‖2Ω +

δκ

2
‖∇Γem+1

ψ ‖2Γ +
ε

2
‖em+1
ψ ‖2Γ

+ (s1 +
ε

2
)‖em+1

φ − em
φ ‖

2
Ω + (s2 +

ε

2
)‖em+1

ψ − em
ψ ‖

2
Γ,

and

(4.45)
S m =

m∑
n=0

(
ε

2
‖∇en+1

φ − ∇en
φ‖

2
Ω +

δκ

2
‖∇Γen+1

ψ − ∇Γen
ψ‖

2
Γ

+
τ

2
‖∇en+1

µ ‖
2
Ω +

τ

2
‖∇Γen+1

Γ ‖
2
Γ +

27Kτ
32
‖∂nen+1

µ ‖
2
Γ

)
.

Then we have

(4.46)

Im + S m ≤ C15Tτ2 + C16τ

m∑
n=0

(
‖∇en+1

φ ‖
2
Ω + ‖en+1

φ ‖
2
Ω + ‖en+1

φ − en
φ‖

2
Ω

+ ‖∇Γen+1
ψ ‖

2
Γ + ‖en+1

ψ ‖
2
Γ + ‖en+1

ψ − en
ψ‖

2
Γ

)
= C15Tτ2 +

C16

ω
τ

m∑
n=0

ω
(
‖∇en+1

φ ‖
2
Ω + ‖en+1

φ ‖
2
Ω + ‖en+1

φ − en
φ‖

2
Ω

+ ‖∇Γen+1
ψ ‖

2
Γ + ‖en+1

ψ ‖
2
Γ + ‖en+1

ψ − en
ψ‖

2
Γ

)
≤ C15Tτ2 + C17τ

m∑
n=0

In.
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where C17 = C16/ω is a constant independent of τ. According to the discrete Gronwall’s inequal-
ity, there exists some constants c̃0, which is independent of τ, and τ0 = 1/C17, such that, when
τ < τ0,

(4.47) Im + S m ≤ c̃0τ
2.

And thus the error estimate (4.24) holds for em+1
φ and em+1

ψ .
�

Remark 4.4. If we set the parameters as

ε = δ = 0.02, κ = 1, s1 = s2 = 50,

then C16 = s1/2 = 25, ω = ε/2 = 0.01, we obtain C17 = 2500 and τ0 = 4 × 10−4. Namely, when
τ < 4 × 10−4, the numerical solutions satisfy the error estimates (4.24). Hence, the error estimates
are applicable for time increments that can be used in practical simulations.

5 Numerical simulations

In this section, we present numerical experiments of the KLLM model (Eq. (1.15)) by im-
plementing the developed scheme (3.10)-(3.15). The numerical examples include the simulations
with different energy potentials, the comparison with the numerical results in [19], accuracy tests
with respect to the time step size, and the convergence of discrete solutions for K → ∞ and K → 0.

In this section, we present the numerical simulations in two dimensions. For the spatial oper-
ators, we use the second-order central finite difference method to discretize them over a uniform
spatial grid. After the spacial discretization, the generalized minimum residual method is used as
the linear solver in this section.

Remark 5.1. In this section, we conduct experiments on the rectangular domain. For more regular
domains, the strategy is similar. The finite difference method for the bulk descretization is the
same. For the boundary conditions, we need to choose a suitable coordinate for the boundary Γ

so that we can get the specific representation of the operator ∆Γ and n. And then, we can use the
finite difference method for the spatial discretization on the boundary. Numerical experiments on
other two-dimensional domains will be our future work.

5.1 Case with Flory-Huggins potential

In this section, we consider the numerical approximations for the KLLM model with the log-
arithmic Flory-Huggins potential. Namely, for the bulk and surface potential, we consider the
logarithmic Flory-Huggins potential as follows,

(5.1) F(φ) = φ ln φ + (1 − φ) ln(1 − φ) + θφ(1 − φ),

(5.2) G(ψ) = ψ lnψ + (1 − ψ) ln(1 − ψ) + θψ(1 − ψ),

where the constant θ > 1.
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Figure 1: The initial data of the Section 5.1 and 5.2.

Remark 5.2. The Cahn-Hilliard type equation with the Flory-Huggins potential is widely used to
describe the spinodal decomposition and coarsening phenomena of binary mixtures. In this case,
instead of treating φ and ψ as the order parameters, φ and ψ denote the mass concentration of one
component in the bulk and on the boundary respectively. And the mass concentration of the other
component in the bulk and on the boundary are denoted by 1 − φ and 1 − ψ respectively. Hence,
the corresponding physical relevant interval is (0, 1).

Following the work in [33], we consider the regularized logarithmic potential in this section.
Precisely, for 0 < ζ � 1, the regularized potential is

(5.3) F̂(φ) =


φ ln φ +

(1 − φ)2

2ζ
+ (1 − φ) ln ζ −

ζ

2
+ θφ(1 − φ) φ > 1 − ζ,

φ ln φ + (1 − φ) ln(1 − φ) + θφ(1 − φ) ζ ≤ φ ≤ 1 − ζ,

(1 − φ) ln(1 − φ) +
φ2

2ζ
+ φ ln ζ −

ζ

2
+ θφ(1 − φ) φ < ζ.

(5.4) Ĝ(ψ) =


ψ lnψ +

(1 − ψ)2

2ζ
+ (1 − ψ) ln ζ −

ζ

2
+ θψ(1 − ψ) ψ > 1 − ζ,

ψ lnψ + (1 − ψ) ln(1 − ψ) + θψ(1 − ψ) ζ ≤ ψ ≤ 1 − ζ,

(1 − ψ) ln(1 − ψ) +
ψ2

2ζ
+ ψ ln ζ −

ζ

2
+ θψ(1 − ψ) ψ < ζ.

The advantages of using the regularized potential is that the domains for the regularized potential
F̂ and Ĝ are R, and thus, there’s no need to worry about the overflow which could be caused by
any small fluctuation near the domain boundary (0, 1) of the numerical solution. Obviously, the
second derivatives of F̂ and Ĝ with respect to φ and ψ are bounded, respectively.

We conduct numerical simulations from t = 0 to T = 0.1 on the domain Ω = (0, 0.5)2 ⊂ R2

with the spatial step size h = 0.005 and the time step τ = 1e − 4. The initial data is set as random
values between 0.4 and 0.6, as shown in Fig. 1. The parameters are set as

ε = δ = 0.05, κ = 1, s1 = s2 = 500, ζ = 0.005, θ = 2.5.

The numerical results of the KLLM model at t = 0.005, t = 0.01, t = 0.02 and t = 0.05 for
different K (K = 0.1, 1, 10) are plotted in Fig. 2. Note that the phases are separated in all the
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Figure 2: Numerical results of the KLLM model with the Flory-Huggins potential at t = 0.005,
t = 0.01, t = 0.02 and t = 0.05. From top to bottom: K = 0.1, K = 1 and K = 10.

cases and it shows different phenomenon on the boundary for different K. The time evolution of
the energy and mass is plotted in Fig. 3 and 4 respectively. It reveals that the numerical scheme
is energy stable. And the bulk and surface mass change with respect to time but the sum of them,
namely, the total mass, is conserved for different K, which is consistent with the analysis in Section
3.

The minimal and maximal occurring values of φ and ψ for different K are plotted in Figs. 5-6.
We can conclude that in this case, the values of φ and ψ lie in the physical relevant interval (0, 1),
indicating the practicality of the proposed scheme.

Figure 3: Energy evolution of the KLLM model with the initial data shown in Fig. 1 with the
Flory-Huggins potential.
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Figure 4: Mass evolution of the KLLM model with the initial data shown in Fig. 1 and the Flory-
Huggins potential: the bulk mass evolution (left), the surface mass evolution (middle) and the total
mass (right).

Figure 5: Maximum values of φ (left) and ψ (right) with respect to iterations with the initial data
shown in Fig. 1 and the Flory-Huggins potential.

Figure 6: Minimum values of φ (left) and ψ (right) with respect to iterations with the initial data
shown in Fig. 1 and the Flory-Huggins potential.
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5.2 Case with the double-well potential

In this section, we consider the case with the modified double-well potential shown in Eq. (4.3).
Precisely, we choose F(φ) and G(ψ) as follows:

(5.5) F(φ) =


(φ − 1)2 φ > 1,
1
4

(φ2 − 1)2 − 1 ≤ φ ≤ 1,

(φ + 1)2 φ < −1,

G(ψ) =


(ψ − 1)2 ψ > 1,
1
4

(ψ2 − 1)2 − 1 ≤ ψ ≤ 1,

(ψ + 1)2 ψ < −1.

Obviously, Remark 5 shows that the second derivative of F with respect to φ and the second
derivative of G with respect to ψ, namely, F′′ and G′′, are Lipschitz and bounded.

Remark 5.3. For the case with the modified double-well potential, in order to describe the binary
alloys, φ and ψ are treated as the order parameters, denoting the difference of two local relative
concentrations. The regions with φ = ±1 (or ψ = ±1) in the domain Ω (or on the boundary Γ)
represent the pure phases of the materials. Hence, the corresponding physical relevant interval is
[−1, 1].

We conduct numerical simulations from t = 0 to T = 1 on the domain Ω = (0, 0.5)2 ⊂ R2 with
the spatial step size h = 0.005 and the time step τ = 1e−4. The initial data is set as random values
between 0.4 and 0.6, as shown in Fig. 1. And the parameters are set as

ε = δ = 0.02, κ = 1, s1 = s2 = 50.

The numerical solutions of the KLLM model at time t = 10−3, 5 × 10−3, 10−2 and 5 × 10−2

for different K (K = 0.01, 1, 100) are plotted in Fig. 7. It shows the separation of phases and
there exists interesting phenomenon on the boundary for different K. The energy evolution from
t = 0 to T = 1 and its local magnification from t = 0 to t = 4 × 10−3 are plotted in Fig. 8,
revealing the energy stability. From the magnification, it reveals that at the beginning, the energy
decreases faster for smaller K. Namely, the energy minimization benefits from low values of K.
We can obtain the same observation from Fig. 3 and Fig. 16. This phenomena may because high
values of K inhibit but low values of K promote the mass transfer between Ω and Γ. Moreover, for
different K, the energy decrease in shape of steps, following different paths, and finally approaches
approximately the same value. The configurations of the droplet near the ”steps”(at the time
t = 0.1, 0.2, 0.4) and at the final equilibrium state (at the time t = 1) are shown in Fig. 9, from
which we may conclude that the different paths, which the decrease of the energy follows for
different K, are related to the numbers and configurations of the droplets with values around -1.
And the configurations of the droplets at the equilibrium state for different K are similar.

The time evolutions of masses (the bulk mass
∫
Ω
φdx and the surface mass

∫
Γ
ψdS ) are plotted

in Fig. 10. Note that the bulk and surface mass are not conserved respectively, but time evolution
of the total mass (sum of the bulk and the surface mass) shows the conservation for different K,
indicating the consistence between the numerical results and the analysis in Section 3.

Remark 5.4. To the authors’ knowledge, there is lack of maximum principle for the KLLM model.
Thus, theoretically, the values of φ and ψ can not be bounded in the physical relevant interval.
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Figure 7: Numerical results of the KLLM model with the initial data shown in Fig. 1 and the
modified double-well potential at time t = 10−3, 5× 10−3, 10−2 and 5× 10−2. From top to bottom:
K = 0.01, K = 1 and K = 100.

Figure 8: Energy evolution of the KLLM model with the initial data shown in Fig. 1 and the
modified double-well potential (left) and the corresponding local magnification from t = 0 to
t = 4 × 10−3 (right).
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Figure 9: Numerical results of the KLLM model with the modified double-well potential at the
time t = 0.1, 0.2, 0.4 and 1. From top to bottom: K = 0.01, K = 1 and K = 100.

Figure 10: Mass evolution of the KLLM model with the initial data shown in Fig. 1 and the
modified double-well potential: the bulk mass evolution (left), the surface mass evolution (middle)
and the total mass (right).
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Figure 11: Maximum values of φ (left) and ψ (right) with respect to iterations with the initial data
shown in Fig. 1 and the modified double-well potential.

Figure 12: Minimum values of φ (left) and ψ (right) with respect to iterations with the initial data
shown in Fig. 1 and the modified double-well potential.

For the case of Flory-Huggins potential, the numerical experiments in Section 5.1 reveal that
occurring values of φ and ψ lie in the physical relevant interval. For the case of the modified
double-well potential, the maximal and minimal occurring values of φ and ψ for different K are
plotted in Fig. 11 and 12. We could conclude that the scheme proposed in this article can bound
the numerical solutions within the physical relevant interval only with some small fluctuation.

5.3 Shape deformation of a droplet

In this section, we consider the domain Ω = (0, 1)2 ⊂ R2 and place a square shaped droplet
with center at (0.5, 0.25) and the length of each side is 0.5 (see Fig. 13 ). The phase inside the
droplet is set to be 1 and outside the droplet to be -1. F and G are chosen to be of the regular
double-well form shown in (4.3). And the parameters are set as

ε = δ = 0.02, κ = 1, s1 = s2 = 50.

We simulate the behaviour of the droplet from t = 0 to T = 0.1 with the time step τ = 2 × 10−5

and the spatial step size h = 0.01.
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Figure 13: The initial data of the square shaped droplet.

The evolution of the droplet is plotted in Fig. 14 for different K (K = 0, 0.1, 1, 10,∞). The
corresponding evolution of mass and energy is plotted in Fig. 15 and Fig. 16. For the limiting case
of K = 0 and K = ∞, we use the scheme (3.16)-(3.21) and the scheme (3.22)-(3.26), respectively.
In the case of the Liu-Wu model, namely, the case of K = ∞, the bulk mass

∫
Ω
φdx and the surface

mass
∫
Γ
ψdS are conserved respectively (see Fig. 15). Hence, in that case, the contact area on the

boundary can not change. However, the square shaped droplet still evolves to attain the circular
shape with constant mean curvature (see the last row in Fig. 14). When K < ∞, the conservation
law of both the bulk and the boundary mass is relaxed and only the total mass

∫
Ω
φdx +

∫
Γ
ψdS

is conserved. Therefore, the contact area is allowed to grow (see the first four rows in Fig. 14)
and the droplet’s bulk mass is reduced. This phenomenon is intensifies when K is decreasing.
Meanwhile, the square shaped droplet also evolves to attain the circular shape when K < ∞. In
addition, although we don’t explicitly show the evolution of the total mass, we emphasize here that
in our numerical experiments, the total mass is conserved for different K (K = 0, 0.1, 1, 10,∞).

The time evolutions of the total free energy is plotted in Fig. 16, indicating that our numerical
scheme is energy stable. We observe that an initial drop occurs for different K. After the initial
drop, the evolution of the free energy greatly depends on K. When the energy in the case of K = ∞

stops decreasing and arrives at a stationary state, the energy still decreases for K < ∞. The results
are consistent with the numerical results in [19].

Remark 5.5. In the numerical results above, we choose δ = ε, κ = 1 and the interfacial width
on the boundary is the same as that in the bulk. We notice that if we change the value of κ, the
interfacial width on the boundary would not be the same as that in the bulk. Precisely, we can
conclude from Fig. 17 and Fig. 18 that, since δ = ε, when κ > 1 (κ < 1), the width on the
boundary will be larger (smaller) than that in the bulk. In the authors’ opinion, different values of
κ are related to the surface diffusion, which affects the width on the boundary.

Then we check the experimental order of convergence (EOC) of φ and ψ for K → 0 and
K → ∞. Here, the parameters are set as

ε = δ = 0.02, κ = 1, s1 = s2 = 50, τ = 2 × 1e − 4.

And we conduct numerical simulations from t = 0 to T = 0.2 with the spatial step size h = 0.01.
Define φ∗0 (ψ∗0) as the discrete solution under the case of K = 0, φ∗∞ (ψ∗∞) as the solution under
the case of K = ∞ and φKi (ψKi) as the solution under the case of Ki. First we compare the discrete
solutions φKi (ψKi) with φ∗0 (ψ∗0) for different Ki. The corresponding error is defined as

Erri,0 = ‖φKi − φ∗0‖L2(0,T ;L2(Ω)) (or ‖ψKi − ψ∗0‖L2(0,T ;L2(Γ))),
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Figure 14: Phase-field at t = 1e − 4, t = 0.01, t = 0.04 and t = 0.1 with the initial data of the
square shaped droplet. From top to bottom: K = 0, K = 0.1, K = 1, K = 10 and K = ∞.

Figure 15: Time evolution of the bulk mass and the surface mass with different K and the initial
data of the square shaped droplet.
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Figure 16: Time evolution of the total energy with different K and the initial data of the square
shaped droplet.

Figure 17: Phase-field at t = 1e − 4, t = 0.01, t = 0.02 and t = 0.04 with the initial data of the
square shaped droplet and κ = 0.25: K = 0.1 (top), K = 1 (bottom).

Figure 18: Phase-field at t = 1e − 4, t = 0.01, t = 0.02 and t = 0.04 with the initial data of the
square shaped droplet and κ = 2.5: K = 0.1 (top), K = 1 (bottom).
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K ‖φKi − φ∗0‖L2(0,T ;L2(Ω)) EOC
1e-4 4.1965e-06 -

2*1e-4 8.3917e-06 0.9998
5*1e-4 2.0963e-05 0.9992
1e-3 4.1876e-05 0.9983
0.01 4.1058e-04 0.9914
0.1 0.0036 0.9429
1 0.0333 0.9661

K ‖φKi − φ∗∞‖L2(0,T ;L2(Ω)) EOC
1e4 1.0445e-05 -

5000 2.0886e-05 -0.9997
2500 4.1755e-05 -0.9994
2000 5.2182e-05 -0.9990
1000 1.0425e-04 -0.9984
100 0.0010 -0.9819
10 0.0086 -0.9345

Table 1: Comparison of φ for different K with the solution for K = 0(left) and K = ∞(right).

K ‖ψKi − ψ∗0‖L2(0,T ;L2(Γ)) EOC
1e-4 3.5417e-07 -

2*1e-4 7.0798e-07 0.9993
5*1e-4 1.7681e-06 0.9989
1e-3 3.5303e-06 0.9976
0.01 3.4392e-05 0.9886
0.1 2.9145e-04 0.9281
1 0.0023 0.8972

K ‖ψKi − ψ∗∞‖L2(0,T ;L2(Γ)) EOC
1e4 5.1383e-07 -

5000 1.0276e-06 -0.9999
2500 2.0549e-06 -0.9998
2000 2.5684e-06 -0.9996
1000 5.1343e-06 -0.9993
100 5.0937e-05 -0.9966
10 5.0450e-04 -0.9958

Table 2: Comparison of ψ for different K with the solution for K = 0(left) and K = ∞(right).

where the time integral is approximated using the trapezoidal rule with time increment τ̃ = 1e− 3.
The experimental order is defined as

EOCKi =
ln( Erri+1,0

Erri,0
)

ln( Ki+1
Ki

)
.

Similarly, we can define the corresponding error and the experimental order for the case of K → ∞.
The results for the convergence of φ and ψ are shown in Table 1 and Table 2, indicating that for
K ≤ 1e − 3 and K ≥ 1e3, the convergence rate is almost 1. The convergence rate obtained here is
the same as that in [19].

5.4 Accuracy test

In this section, we present numerical accuracy tests using the scheme (3.10)-(3.15) to support
our error analysis. Let Ω to be the unit square, the spatial step size h = 0.01 and the parameters
are chosen as ε = δ = 0.02, κ = 1 and s1 = s2 = 50. The initial data is set to be

(5.6) φ(x, y) = −
1
2

(
tanh

0.5 −
√

(x − 0.5)2 + (y − 0.5)2

0.02

)
+

1
2
.

In this section, we choose F and G to be the modified double-well potential (4.3), and thus, the
second derivative of F with respect to φ and the second derivative of G with respect to ψ are
bounded,

(5.7) max
φ∈R
|F′′(φ)| = max

ψ∈R
|G′′(ψ)| ≤ 2.
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Figure 19: The L2 numerical errors for φ and ψ at T = 0.1 for K = 1(left) and K = 100(right).

The errors are calculated as the difference between the solution of the coarse time step and
that of the reference time step τ∗ = 10−5. In Fig. 19 , we plot the L2 errors of φ and ψ between
the numerical solution and the reference solution at T = 0.1 with different time step sizes in the
cases of K = 1 and K = 100. The results show clearly that the convergence rate of the numerical
scheme is the asymptotical at least first-order temporally for φ and ψ, which is consistent with our
numerical analysis in Section 4.

6 Conclusions

In the present work, we consider numerical approximations and error analysis for the Cahn-
Hilliard equation with reaction rate dependent dynamic boundary conditions ( P. Knopf et al.,
arXiv, 2020). This model can be interpreted as an interpolation between the Liu-Wu model(C. Liu
and H. Wu, Arch. Rational Mech. Anal., 2019) and the GMS model(G.R. Goldstein et al., Physica
D, 2011).

A first-order in time, linear and energy stable scheme for solving this model is proposed. The
stabilization terms are utilized to enhance the stability of the scheme. To the best of the authors’
knowledge, this is the first linear and energy stable scheme for solving this new model. The semi-
discretized-in-time error estimates for the scheme are also derived.

The numerical experiments are constructed in the two-dimensional space to validate the ac-
curacy of the proposed scheme. Moreover, the accuracy tests with respect to the time step size
validate our error analysis. The convergence results for K → 0 and K → ∞ are also illustrated,
which are consistent with the former work.
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