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AN ENERGY STABLE FINITE ELEMENT SCHEME FOR THE

THREE-COMPONENT CAHN-HILLIARD-TYPE MODEL FOR

MACROMOLECULAR MICROSPHERE COMPOSITE HYDROGELS

MAOQIN YUAN, WENBIN CHEN, CHENG WANG, STEVEN M. WISE AND ZHENGRU ZHANG

Abstract. In this article, we present and analyze a finite element numerical scheme for a three-

component macromolecular microsphere composite (MMC) hydrogel model, which takes the form of

a ternary Cahn-Hilliard-type equation with Flory-Huggins-deGennes energy potential. The numerical

approach is based on a convex-concave decomposition of the energy functional in multi-phase space, in

which the logarithmic and the nonlinear surface diffusion terms are treated implicitly, while the concave

expansive linear terms are explicitly updated. A mass lumped finite element spatial approximation is

applied, to ensure the positivity of the phase variables. In turn, a positivity-preserving property can

be theoretically justified for the proposed fully discrete numerical scheme. In addition, unconditional

energy stability is established as well, which comes from the convexity analysis. Several numerical

simulations are carried out to verify the accuracy and positivity-preserving property of the proposed

scheme.
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1. Introduction

A hydrogel is a network of cross-linked hydrophilic polymers chains. They absorb water and can

swell to many times their original size. Hydrogels, which can act as solids or liquids in various settings,

are versatile materials that have led to extensive industrial and biomedical applications [20, 21, 33].

Macromolecular microsphere composite (MMC) hydrogel, which was originally synthesized by Huang

et al. in 2007, possesses a unique well-defined network structure and very high mechanical strength. This

is due to the highly specialized chemical grafting of the entangled polymer chains, in comparison with

traditional hydrogels [31]. MMC hydrogels have been widely applied in both biomedical and industrial

areas, such as in drug delivery [49], artificial tissues [12, 46], et cetera. The formation process of MMC

hydrogel has been described in detail in [30, 31, 55].

Computational and experimental studies are needed to reveal the complicated properties of MMC

hydrogels. Studies must include the investigation of the parameter space related to their production

and processing, in order to engineer their individual effects. Furthermore, must be explored and refined

to validate their predictions. For example, Zhai et al. [55] developed a reticular free energy for MMCs,

under certain assumptions, most particularly, that the number of graft chains around a macromolecular

microsphere (MMS) is proportional to the perimeter. Based on the time-dependent Ginzburg-Landau

(TDGL) mesoscale simulation method, a two-component model, appropriately named the MMC-TDGL

equation, was developed to understand the time evolution of MMC hydrogel structure in [55]. This

continuum scale model was designed to simulate phase transitions in MMC hydrogels. Li et al. [34] added

a stochastic term in the binary MMC-TDGL equation to consider how random physical fluctuations

modify the dynamics. Recently, the reticular free energy was reconstructed in [32], and shown to

be consistent with the network structures of the MMC hydrogels. Based on the Boltzmann entropy
0
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theorem, the Flory-Huggins lattice theory and assuming TDGL dynamics, a three-component MMC-

TDGL model can be constructed. The MMC and polymer chains are no longer considered as a whole

in this model, making it more consistent with experiments.

It is widely known that phase-field models satisfy certain properties, such as energy decay, mass

conservation, and positivity preservation. These properties represent important physical features and

are also essential for mathematical analysis and consistent numerical simulation. During the past several

decades, there have been many works devoted to designing various kinds of numerical methods to satisfy

these properties, especially for Allen-Cahn and Cahn-Hilliard-type equations. See, for example, [10,11,

48, 52, 54] and the references therein. Zhai et al. [55] constructed a spectral-type numerical method to

approximate the solutions of the binary MMC-TDGL equations. Li et al. used a semi-implicit scheme

for binary MMC-TDGL equation in [34], while there was no discussion of any stability condition.

Subsequently, a convex splitting method was presented in [35], and energy stability was proven for the

numerical solution of the phase variable. Liao et al. applied an adaptive time step strategy to improve

computational efficiency in [36] and Dong et al. [18, 19] presented the theoretical analysis for the first

and second-order energy stable schemes. A stabilized method was also used to solve the binary system

by Xu et al. in [50], though a theoretical justification of the stabilizing parameters (for energy decay)

has not been established. Other related works could be found in [25, 53], etc.

Although there have been many works on the multi-component Cahn-Hilliard flow [4, 5, 8, 54], ad-

dressing polynomial-type energy potentials, the numerical study of ternary MMC-TDGL equations is

still in the preliminary stages. First, it has always been a key difficulty to design a numerical scheme sat-

isfying the physical properties. Furthermore, it is highly challenging to prove the positivity-preserving

property for the logarithmic terms, since the fourth-order partial differential equations fail to satisfy a

maximum principle. In [11], a finite element scheme was proposed based on the backward Euler ap-

proximation for the Cahn-Hilliard equation with logarithmic free energy, and the positivity-preserving

property of the numerical solution was proven under a constraint on the time step. In a more recent

work [9], the authors presented a finite difference scheme based on the convex-concave decomposition

of the free energy with logarithmic potential and established a theoretical justification of the positivity-

preserving property, regardless of time step size. This improvement is based on the following fact: the

singular nature of the logarithmic term around the pure-phase values prevents the numerical solution

from reaching these singular values, so that the numerical scheme is always well-defined as long as the

numerical solution stays similarly bounded at the previous time step. Moreover, similar ideas have been

applied in [18, 19] to analyze the binary MMC-TDGL equation. Also see the related works of other

gradient models with singular energy potential, such as the Poisson-Nernst-Planck system [38, 41], the

reaction-diffusion system in the energetic variational formulation [37], liquid film droplet model [56],

etc.

In this article, we aim to analyze the ternary MMC-TDGL system and obtain the theoretical jus-

tification of both the positivity-preserving property and the energy stability. To this end, the key

ingredient is an application of the convex-concave decomposition of the physical energy, with respect to

the multi-phase variables. In fact, the convex splitting method has been extensively applied to a variety

of gradient flow models [2,3,6,7,15,16,23,26–29,39,42,44,45,47,48,51], for both first and second-order

temporally accurate versions. Meanwhile, most of these existing works have focused on polynomial

free energy potentials. The extension to singular Flory-Huggins-type energy potentials turns out to be

highly challenging. In addition, the appearance of the highly nonlinear and singular deGennes gradient

energy terms makes the whole system even more difficult. To overcome these subtle difficulties, we

make use of a convex-concave decomposition of the physical energy in the ternary MMC-TDGL system,

reported in a recent work [17].

In more details, the logarithmic terms and the highly nonlinear gradient energy terms are placed

in the convex part, while the expansive terms are put in the concave part, based on careful convexity

analyses. In turn, the convex splitting approach leads to a uniquely solvable, positivity-preserving and
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energy stable numerical scheme. The finite difference approximation was reported in [17], and its direct

application to the finite element method is not available, due to the difficulty to ensure the point-wise

positivity of the numerical solution in the standard FEM method. In our work, a mixed FEM method

is applied to the ternary MMC-TDGL system to facilitate the numerical implementation of the fourth

order parabolic equations. It is well-known that the standard conforming FEM fails to satisfy the

discrete maximum principle due to the non-diagonal mass matrix. As a result, a lumped mass FEM

was chosen instead, so as to diagonalize the mass matrix. The diagonal elements are the row sums of

the original mass matrix [43]. In comparison with the finite difference method, the FEM allows for

flexible, adaptive meshes and is often easier to analyze.

This paper is organized as follows. In Section 2, we briefly review the mathematical model of three-

component phase transitions in MMC hydrogels. In Section 3, we present the numerical scheme using

the mass lumped finite element method. The detailed proof for the positivity-preserving property of the

numerical solution is provided in Section 4, and the energy stability analysis is established in Section 5.

In Section 6, the numerical simulations are presented to verify the theoretical results. Finally, some

concluding remarks are given in Section 7.

2. Three-component MMC-TDGL system

Given an open bounded, connected domain Ω ⊂ R
2 with a Lipschitz smooth boundary ∂Ω, we recall

the derivation of the diffuse interface describing the phase transitions of MMC hydrogels. It is worth

mentioning that the ternary system is made of water, macromolecular microsphere, and polymer chain.

Usually, the composition of the mixture is described at each point by the concentration value of one of

the constituents in the mixture. Thus we denote the concentration of the macromolecular microsphere

in the ternary system by the order parameter φ1, the polymer chain by φ2 and the solvent molecules

by φ3. The value of the three order parameters are located between 0 and 1, where three phases vary

rapidly but smoothly across the interface. And also, these three unknowns are linked through the

hyperplain link relationship φ1 + φ2 + φ3 = 1. Due to the mass conservation constraint, we denote

φ3 = 1− φ1 − φ2 throughout the rest of this article, for simplicity of presentation.

The Flory-Huggins reticular free energy takes a form of f(φ1, φ2). Moreover, the evolution of the

system is driven by the minimization of a free energy under the constraint of mass conservation of each

phase. The Ginzburg-Landau type energy functional F (φ1, φ2) takes the following form

F (φ1, φ2) =

∫

Ω

f(φ1, φ2) +K(φ1, φ2)dx, (2.1)

where f(φ1, φ2) contains the mixing entropy S(φ1, φ2) and the mixing enthalpyH(φ1, φ2), i.e., f(φ1, φ2) =

S(φ1, φ2) +H(φ1, φ2). The expression of S(φ1, φ2), H(φ1, φ2), as well as K(φ1, φ2), can be written as

follows

S(φ1, φ2) =
φ1
γ

ln

(

αφ1
γ

)

+
φ2
N

ln

(

βφ2
N

)

+ (1− φ1 − φ2) ln (1− φ1 − φ2) ,

H(φ1, φ2) = χ12φ1φ2 + χ13φ1 (1− φ1 − φ2) + χ23φ2 (1− φ1 − φ2) , (2.2)

K(φ1, φ2) =
a21

36φ1
|∇φ1|2 +

a22
36φ2

|∇φ2|2 +
a23

36 (1− φ1 − φ2)
|∇ (1− φ1 − φ2) |2,

in which the parameter γ is the relative volume of one macromolecular microsphere, N is the degree

of polymerization of the polymer chains. The parameters α and β are determined by the formulas

α = π(
√

γ/π + N/2)2, β = α/
√
πN , dependent on γ and N ; see more detailed derivations of the

model in [55]. In fact, the Flory-Huggins energy density takes a form of φi lnφi for each species

concentration, combined with the interaction energy density φiφj [24]. The constants χ12, χ13, and χ23

are the Flory-Huggins interaction parameters between macromolecular microspheres and polymer chain,

macromolecular microspheres and solvent, and polymer chain and solvent, respectively. In addition,

the deGennes diffusive coefficient, κ(φi) =
a2i

36φi
, depends on the corresponding phase variables. This
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diffusion process was proposed by physicist P.G. deGennes [14] for the binary Cahn-Hilliard flow, in

which the phase variables could be simplified as φ1 = φ, φ2 = 1 − φ, so that the combined diffusion

coefficient and surface diffusion energy density becomes

κ(φ) =
a2

36φ1
+

a2

36φ2
=

a2

36φ
+

a2

36(1− φ)
=

a2

36φ(1− φ)
, |∇φ1| = |∇φ2| = |∇φ|,

K(φ) =
a2

36φ1
|∇φ1|2 +

a2

36φ2
|∇φ2|2 = κ(φ)|∇φ|2 =

a2

36φ(1− φ)
|∇φ|2.

An extension to the ternary gradient flow is natural. Such a nonlinear diffusive coefficient has been

an essential difficulty for the MMC-TDGL model; see the related analysis in [18, 19]. Here ai is the

statistical segment length of the ith component, i = 1, 2, 3. By a simple computation, the variational

derivatives of the free energy function F (φ1(x, t), φ2(x, t)) with respect to φ1 and φ2 are found to be

δF (φ1, φ2)

δφ1
=
∂S (φ1, φ2)

∂φ1
− a21|∇φ1|2

36φ21
−∇ ·

(

a21∇φ1
18φ1

)

+
a23|∇ (1− φ1 − φ2) |2

36 (1− φ1 − φ2)
2 (2.3)

+∇ ·
(

a23∇ (1− φ1 − φ2)

18 (1− φ1 − φ2)

)

− ∂H (φ1, φ2)

∂φ1
,

δF (φ1, φ2)

δφ2
=
∂S (φ1, φ2)

∂φ2
− a22|∇φ2|2

36φ22
−∇ ·

(

a22∇φ2
18φ2

)

+
a23|∇ (1− φ1 − φ2) |2

36 (1− φ1 − φ2)
2 (2.4)

+∇ ·
(

a23∇ (1− φ1 − φ2)

18 (1− φ1 − φ2)

)

− ∂H (φ1, φ2)

∂φ2
,

where

∂S

∂φ1
=

1

γ
ln

(

αφ1
γ

)

+
1

γ
− 1− ln (1− φ1 − φ2) ,

∂S

∂φ2
=

1

N
ln

(

βφ2
N

)

+
1

N
− 1− ln (1− φ1 − φ2) ,

∂H

∂φ1
= −2χ13φ1 + (χ12 − χ13 − χ23)φ2 + χ13,

∂H

∂φ2
= −2χ23φ2 + (χ12 − χ13 − χ23)φ1 + χ23.

To simulate the traditional hydrogels, the time-dependent Ginzburg-Landau (TDGL) mesoscopic

model is widely used to describe the phase transitions of a multi-component polymer blend. Once

this energy F is defined, we can formulate the time evolution of the three-component MMC hydrogels

system for the conserved Cahn-Hilliard equations:

∂φ1
∂t

= D1∆
δF (φ1, φ2)

δφ1
, (2.5)

∂φ2
∂t

= D2∆
δF (φ1, φ2)

δφ2
, (2.6)

where Di = kBθMi are the diffusion coefficients, kB is the Boltzmann constant, θ is the temperature,

and Mi > 0 stand for the mobility of the ith component, i = 1, 2. For simplicity, we select Ω = (0, L)2,

and consider L-periodic boundary condition for this model. However, the finite element method can be

extended to a wider class of regions and Neumann boundary conditions could also be used.

The Cahn-Hilliard system has the important feature that the phase variables, φ1 and φ2, are mass-

conservative. Integrating (2.5) and (2.6) over Ω = (0, L)2, we obtain

d

dt

∫

Ω

φ1dx =

∫

Ω

∂φ1
∂t

dx = D1

∫

∂Ω

∇ δF

δφ1
· nds,

d

dt

∫

Ω

φ2dx =

∫

Ω

∂φ2
∂t

dx = D2

∫

∂Ω

∇ δF

δφ2
· nds.

(2.7)

Notice that δF/δφ1 and δF/δφ2 in (2.3) and (2.4) are both L-periodic with respect to x and y, so that

integration on the boundary vanishes, which implies
∫

Ω

φ1(x, t)dx =

∫

Ω

φ1(x, 0)dx,

∫

Ω

φ2(x, t)dx =

∫

Ω

φ2(x, 0)dx, ∀t > 0. (2.8)
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As a consequence, φ3 = 1− φ1 − φ2 also satisfies the mass-conversation property.

Meanwhile, the most distinguished difficulty for the Cahn-Hilliard equation with logarithmic Flory

Huggins energy potential and deGennes diffusive coefficients is associated with the singularity as the

value of φ approaches the limit value 0. In fact, for the binary Cahn-Hilliard flow, the positivity

property, i.e., 0 < φ1, φ2, has been established at the PDE analysis level in [1, 13, 22, 40]. As a further

development, the phase separation has also been justified for the 1-D and 2-D equations at a theoretical

level, i.e., a uniform distance between the phase variable and the singular limit values has been proved,

and such a distance only depends on the surface diffusion coefficient and expansive parameter, as well

as the initial data. For the ternary MMC TDGL model, a similar positivity estimate is expected to be

valid for the exact PDE solution, i.e., 0 < φi, (1 ≤ i ≤ 3), and a uniform separation property is also

expected to be valid for 2-D flow; more technical details have to be involved for this model.

In terms of the energy stability, by multiplying (2.5) with δF/δφ1 and (2.6) with δF/δφ2, respectively,

and integrating it over Ω, using Green’s formula and the periodic boundary conditions, one obtains

dF

dt
=

∫

Ω

δF

δφ1

∂φ1
∂t

dx+

∫

Ω

δF

δφ2

∂φ2
∂t

dx

= −D1

∫

Ω

|∇ δF

δφ1
|2dx−D2

∫

Ω

|∇ δF

δφ2
|2dx ≤ 0,

(2.9)

which indicates that the energy F (φ1, φ2) is a decreasing function of time.

3. The fully discrete finite element scheme

The standard notation for the norms is used, in their respective function spaces. In particular, we

denote the standard norms for the Sobolev spaces Wm,p(Ω) by ‖ · ‖m,p, and repleace ‖ · ‖0,p by ‖ · ‖p,
‖ · ‖0,2 = ‖ · ‖2 by ‖ · ‖, and ‖ · ‖q,2 by ‖ · ‖Hq . Let C∞

per(Ω) be the set of all restrictions onto Ω of

all real-valued, L-periodic, C∞(Ω)-functions on R
2. For each integer q ≥ 0, let Hq

per(Ω) be the closure

of C∞
per(Ω) in the usual Sobolev norm ‖ · ‖q, and H−q

per(Ω) be the dual space of Hq
per(Ω). Note that

H0
per(Ω) = L2(Ω). In turn, by introducing µ1 = δF

δφ1

= δφ1
F and µ2 = δF

δφ2

= δφ2
F , the mixed weak

formulation of MMC-TDGL equations (2.5) becomes: find φ1, µ1, φ2, µ2 ∈ L2(0, T ;H1
per(Ω)), with ∂tφ1,

∂tφ2 ∈ L2(0, T ;H−1
per(Ω)), satisfying



























(∂tφ1, v1)+(D1∇µ1,∇v1) = 0, ∀v1 ∈ H1
per(Ω),

(µ1, w1)= (δφ1
F (φ1, φ2) , w1) , ∀w1 ∈ H1

per(Ω),

(∂tφ2, v2)+(D2∇µ2,∇v2) = 0, ∀v2 ∈ H1
per(Ω),

(µ2, w2)= (δφ2
F (φ1, φ2) , w2) , ∀w2 ∈ H1

per(Ω),

(3.1)

for any t ∈ [0, T ], where (·, ·) represents the L2 inner product or the duality pairing, as appropriate.

3.1. The finite element scheme. The following preliminary results are associated with the existence

of the convex-concave decomposition of the energy functional F , i.e, F (φ1, φ2) admits a (not necessarily

unique) splitting into purely convex and concave energies, F = Fc − Fe, where Fc =
∫

Ω S (φ1, φ2) +

K (φ1, φ2) dx and Fe = −
∫

Ω
H (φ1, φ2) dx are convex with respect to the specific variables.

Proposition 3.1. [17] Define the functions

T1(u, v) := v2

36u , u ∈ (0,∞), v ∈ R;

T2 (u1, u2, v1, v2) := (v1+v2)
2

36(1−u1−u2)
, u1, u2, v1, v2 ∈ R;

T3(u, v, w) := w2

36(u+v) , u, v, w ∈ R;

T4(u1, u2, u3, v) := 3v2

(u1+u2+u3)
u1, u2, u3, v ∈ R.

Then,

(1) T1(u, v) is convex in (0,+∞)× R.
4



(2) T2 (u1, u2, v1, v2) is convex in R
4, provided u1 + u2 < 1.

(3) T3(u, v, w) is convex in R
3, provided u+ v > 0.

(4) T4(u1, u2, u3, v) is convex in R
4, provided u1 + u2 + u3 > 0.

(5) S (u1, u2) is convex in the Gibbs triangle G, defined as

G := {(u1, u2) | u1, u2 > 0, u1 + u2 < 1} .

(6) H (u1, u2) is concave, provided that 4χ13χ23 − (χ12 − χ13 − χ23)
2
> 0.

We consider a finite element method for solving (3.1). Let Th be a shape-regular triangulation of

Ω with mesh size h, denote he the diameter of each triangle e ∈ Th and △e the area of e. Noticing

that the element is shape regular, we can assume that
h2

e

△e
is uniformly bounded by one constant CT :

h2

e

△e
≤ CT . Based on the quasi-uniform triangulated mesh Th, the finite element space is defined as

Sh := {v ∈ H1
per(Ω) | v is piecewise linear on each e ∈ Th} = span{χj | j = 1, · · · , Np},

where χj is the common nodal basis function which is 1 at the node Pj and 0 at all other nodes. Define

S̊h := Sh ∩L2
0(Ω), with L

2
0(Ω) = {v ∈ L2(Ω) | (v, 1) = 0}, the function space with zero mean in L2(Ω) .

Definition 3.1. The discrete energy E : Sh × Sh → R is defined as

E(φ1, φ2) =

∫

Ω

S (φ1, φ2) +H(φ1, φ2) +K (φ1, φ2) dx.

Lemma 3.1. Suppose that Ω = (0, L)2 and φ1, φ2 ∈ Sh are periodic. Define the discrete energies as

follows

Ec =

∫

Ω

S (φ1, φ2) +K (φ1, φ2) dx, Ee = −
∫

Ω

H (φ1, φ2) dx, (3.2)

where S (·, ·) , H (·, ·) and K (·, ·) are defined by (2.2). Then, both Ec(φ1, φ2) and Ee(φ1, φ2) are convex.

Proof. Since Sh ⊂ H1
per(Ω), the proof follows the analysis in Proposition 3.1, and the conclusions are

obvious. �

Then we introduce the fully-discrete scheme. Let M be a positive integer and 0 = t0 < t1 < · · · <
tM = Mτ = T be a uniform partition of [0, T ], with τ = ti − ti−1 and i = 1, · · · ,M. Due to the

convex-concave decomposition E = Ec−Ee, the potentials could also be split into two parts, namely µ1

and µ2. By treating the convex term implicitly and the concave part explicitly, the first-order in time,

mixed finite element scheme could be formulated as follows: for any 0 ≤ n ≤M−1, given φn1h, φ
n
2h ∈ Sh,

find φn+1
1h , µn+1

1h , φn+1
2h , µn+1

2h ∈ Sh such that

(

φn+1
1h − φn1h

τ
, v1

)

= −
(

D1∇µn+1
1h ,∇v1

)

, ∀v1 ∈ S̊h,

(

µn+1
1h , w1

)

=
(

δφ1
Ec
(

φn+1
1h , φn+1

2h

)

, w1

)

+

(

∂H

∂φ1
(φn1h, φ

n
2h) , w1

)

, ∀w1 ∈ S̊h,

(3.3a)

(

φn+1
2h − φn2h

τ
, v2

)

= −
(

D2∇µn+1
2h ,∇v2

)

, ∀v2 ∈ S̊h,

(

µn+1
2h , w2

)

=
(

δφ2
Ec
(

φn+1
1h , φn+1

2h

)

, w2

)

+

(

∂H

∂φ2
(φn1h, φ

n
2h) , w2

)

, ∀w2 ∈ S̊h,

(3.3b)

where

δφ1
Ec
(

φn+1
1h , φn+1

2h

)

=
∂S

∂φ1

(

φn+1
1h , φn+1

2h

)

+ δφ1
K
(

φn+1
1h , φn+1

2h

)

,

δφ2
Ec
(

φn+1
1h , φn+1

2h

)

=
∂S

∂φ2

(

φn+1
1h , φn+1

2h

)

+ δφ2
K
(

φn+1
1h , φn+1

2h

)

,

(3.4)
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and for i = 1, 2,

(δφi
K (φ1, φ2), w) =

(

−a
2
i |∇φi|2
36φ2i

, w

)

+

(

a2i∇φi
18φi

,∇w
)

+

(

a23|∇ (1− φ1 − φ2) |2

36 (1− φ1 − φ2)
2 , w

)

−
(

a23∇ (1− φ1 − φ2)

18 (1− φ1 − φ2)
,∇w

)

.

Definition 3.2. The discrete Laplacian operator ∆h : Sh → S̊h is defined as follows: for any vh ∈
Sh,∆hvh ∈ S̊h denotes the unique solution to the problem

(∆hvh,χ) = − (∇vh,∇χ) , ∀χ ∈ Sh.

It is straightforward to show that by restricting the domain, ∆h : S̊h → S̊h is invertible, and for any

vh ∈ S̊h, and we have
(

∇ (−∆h)
−1 vh,∇χ

)

= (vh, χ) , ∀χ ∈ Sh.

Definition 3.3. The discrete H−1 norm ‖ · ‖−1,h, is defined as follows:

‖vh‖−1,h :=
√

(vh, (−∆h)−1vh), ∀vh ∈ S̊h. (3.5)

Lemma 3.2. Suppose that Ω = (0, L)2 and φ1, φ2, ψ1, ψ2 ∈ Sh are periodic. Consider the convex-

concave decomposition of the energy E(φ1, φ2) into E = Ec − Ee. Then we have

E(φ1, φ2)− E(ψ1, ψ2) 6 (δφ1
Ec (φ1, φ2)− δφ1

Ee (ψ1, ψ2) , φ1 − ψ1)

+ (δφ2
Ec (φ1, φ2)− δφ2

Ee (ψ1, ψ2) , φ2 − ψ2) ,
(3.6)

where δφ1
and δφ2

denote the variational derivatives.

Proof. Define

ec(u,p) = S(u, p) + T1(u, ux) + T1(u, uy) + T1(p, px) + T1(p, py) + T2(u, p, ux, px) + T2(u, p, uy, py),

ee(u,p) = −H(u, p),

where u = (u, ux, uy),p = (p, px, py). The following identities are obvious

Ec =

∫

Ω

ec(u,p)dx, Ee =

∫

Ω

ee(u,p)dx.

We know that both ec(u,p) and ee(u,p) are convex on ((0, 1)× R× R)2. Then we have

ec(v,p)− ec(u,p) ≥ ∇uec(u,p) · (v − u).

Next, setting u = (φ1, φ1x, φ1y),v = (ψ1, ψ1x, ψ1y),p = (φ2, φ2x, φ2y), one obtains

Ec(ψ1, φ2)− Ec(φ1, φ2) ≥
∫

Ω

∂φ1
ec(u,p)(ψ1 − φ1) + ∂φ1x

ec(u,p)(ψ1x − φ1x)

+ ∂φ1y
ec(u,p)(ψ1y − φ1y)dx

=(δφ1
Ec(φ1, φ2), ψ1 − φ1).

Similarly, the following inequality could be derived for Ee:

Ee(φ1, φ2)− Ee(ψ1, φ2) ≥ (δφ1
Ee(ψ1, φ2), φ1 − ψ1).

Then the following estimate holds

E(ψ1, φ2)− E(φ1, φ2) = Ec(ψ1, φ2)− Ee(ψ1, φ2)− (Ec(φ1, φ2)− Ee(φ1, φ2))

= Ec(ψ1, φ2)− Ec(φ1, φ2)− (Ee(ψ1, φ2)− Ee(φ1, φ2))

≥ (δφ1
Ec(φ1, φ2), ψ1 − φ1) + (δφ1

Ee(ψ1, φ2), φ1 − ψ1)

≥ (δφ1
Ec(φ1, φ2)− δφ1

Ee(ψ1, φ2), ψ1 − φ1),
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and we get

E(φ1, φ2)− E(ψ1, φ2) ≤ (δφ1
Ec(φ1, φ2)− δφ1

Ee(ψ1, φ2), φ1 − ψ1).

A similar inequality could be derived in the same fashion:

E(ψ1, φ2)− E(ψ1, ψ2) ≤ (δφ2
Ec(ψ1, φ2)− δφ2

Ee(ψ1, ψ2), φ2 − ψ2).

To sum up, the proof is completed. �

3.2. The mass lumped finite element method. The standard mixed FEM (3.3) leads to a theo-

retical difficulty for justifying the positivity-preserving property. To overcome this subtle difficulty, we

apply a mass lumped FEM instead, which is a modification of standard conforming FEM for solving

parabolic equations. It simplifies the computation for the inverse of a mass matrix and overcomes the

shortcoming of the standard FEM that can not preserve the maximum principle for homogeneous para-

bolic equations. In this subsection, we extend the lumped mass FEM to solve MMC-TDGL equations.

Let Pe,k(k = i, j,m) be the vertices of triangle e, and △e be the area of triangle e. The generation

of the lumped mass matrix can be regarded as introducing the following quadrature formula:

Qh(f) =
∑

e∈Th

Qe(f), (3.7)

where

Qe(f) =
△e

3

∑

k=i,j,m

f (Pe,k) ≈
∫

e

fdx.

By the above quadrature formula, it is easy to derive Qh(χj , χk) = 0 for k 6= j, so that

Np
∑

k=1

(χj , χk) = Qh(χ
2
j ). (3.8)

Notice that χjχk is a second-degree polynomial, thus it holds that (χj , χk)e = 1
12△e for k 6= j, and

(χj , χj)e =
1
6△e. Then we get

Np
∑

k=1

(χj , χk) =
1

3
area (Dj) , (3.9)

where Dj is the union of triangles with a vertex Pj . It is obvious that

Qh(χ
2
j ) =

∑

e∈Th

Qe
(

χ2
j

)

=
1

3
area (Dj) . (3.10)

We may then define an approximation of the inner product in Sh by

(ψ, η)Q = Qh(ψη), (3.11)

thus ‖η‖Q =
√

(η, η)Q can be denoted as a norm for any η ∈ Sh and is equivalent to the standard ‖ ·‖L2

norm by considering each triangle separately.

To facilitate the analysis below, we have to modify the definition of the discrete Laplacian operator

and the discrete H−1 norm. In fact, the primary difference is in the integral definition.

Definition 3.4. The discrete Laplacian operator ∆h : Sh → S̊h is defined as follows: for any vh ∈
Sh,∆hvh ∈ S̊h denote the unique solution to the problem

(∆hvh,χ)Q = − (∇vh,∇χ) , ∀χ ∈ Sh.

It is straightforward to show that by restricting the domain, ∆h : S̊h → S̊h is invertible, and for any

vh ∈ S̊h, and we have
(

∇ (−∆h)
−1
vh,∇χ

)

= (vh, χ)Q , ∀χ ∈ Sh.
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Definition 3.5. The discrete H−1 norm ‖ · ‖−1,Q, is defined as follows:

‖vh‖−1,Q :=
√

(vh, (−∆h)−1vh)Q, ∀vh ∈ S̊h. (3.12)

Definition 3.6. Define the discrete energy Ê : Sh × Sh → R as follows

Ê(φ1, φ2) = (S (φ1, φ2))Q + (H(φ1, φ2))Q + (K̃(φ1, φ2), 1) (3.13)

where

K̃(φ1, φ2) :=

3
∑

ℓ=1

a2ℓ
36

|∇φℓ|2
A(φℓ)

, (3.14)

and the operator A represents element average operator, that is,

A(φ)|e =
1

△e

∫

e

φdx =
1

3
(φα + φβ + φγ).

In the last equation, φα, φβ, and φγ , are the values of φ at the three vertices of the element e.

Lemma 3.3. (Existence of a convex-concave decomposition). Suppose (φ1, φ2) ∈ Sh. The functions

Êc = (S(φ1, φ2))Q + (K̃(φ1, φ2), 1), (3.15)

Êe = (−H(φ1, φ2))Q, (3.16)

are convex. Therefore, Ê(φ1, φ2) = Êc(φ1, φ2) − Êe(φ1, φ2) is a convex-concave decomposition of the

discrete energy.

Proof. The convex-concave decomposition is easily obtained by applying Proposition 3.1. �

In turn, the lumped mass form of (3.3) becomes: for given φn1h, φ
n
2h ∈ Sh, find φn+1

1h , µn+1
1h , φn+1

2h ,

µn+1
2h ∈ Sh such that

(

φn+1
1h − φn1h

τ
, v1

)

Q

= −
(

D1∇µn+1
1h ,∇v1

)

, (3.17a)

(

µ1h
n+1, w1

)

Q
=
(

δφ1
S
(

φn+1
1h , φn+1

2h

)

, w1

)

Q
+ (δφ1

K̃
(

φn+1
1h , φn+1

2h

)

, w1) (3.17b)

+ (δφ1
H (φn1h, φ

n
2h) , w1)Q ,

(

φn+1
2h − φn2h

τ
, v2

)

Q

= −
(

D2∇µn+1
2h ,∇v2

)

, (3.17c)

(

µ2h
n+1, w2

)

Q
=
(

δφ2
S
(

φn+1
1h , φn+1

2h

)

, w2

)

Q
+ (δφ2

K̃
(

φn+1
1h , φn+1

2h

)

, w2) (3.17d)

+ (δφ2
H (φn1h, φ

n
2h) , w2)Q ,

where for i = 1, 2,

(δφi
K̃ (φ1, φ2), w) =

(

− a2i |∇φi|2
36(A(φi))2

, w

)

+

(

a2i∇φi
18A(φi)

,∇w
)

+

(

a23|∇ (1− φ1 − φ2) |2

36 (1−A(φ1)−A(φ2))
2 , w

)

−
(

a23∇ (1− φ1 − φ2)

18 (1−A(φ1)−A(φ2))
,∇w

)

.

In addition, the following lemma is needed for the later analysis.

Lemma 3.4. Suppose that Ω = (0, L)2 and φ1, φ2, ϕ1, ϕ2 : Ω → R are periodic and sufficiently regular.

Consider the convex-concave decomposition of the energy Ê(φ1, φ2) into Ê = Êc − Êe, given by (3.15)-

(3.16), then we have

Ê(φ1, φ2)− Ê(ϕ1, ϕ2) ≤
(

∂

∂φ1
S(φ1, φ2) +

∂

∂φ1
H(φ1, φ2), ϕ1 − φ1

)

Q

+ (δφ1
K̃(φ1, φ2), ϕ1 − φ1)
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+

(

∂

∂φ2
S(φ1, φ2) +

∂

∂φ2
H(φ1, φ2), ϕ2 − φ2

)

Q

+ (δφ2
K̃(φ1, φ2), ϕ2 − φ2).

Proof. Fix (φ1, φ2) ∈ Sh× Sh and (ψ1, ψ2) ∈ Sh× Sh. For any 0 < λ < 1, we can define the continuous

and differentiable function Jc(λ) := Êc(φ1+λψ1, φ2+λψ2). Since Êc(φ1, φ2) is convex, Jc(λ) is convex.

We have Jc(λ) − Jc(0) ≥ J ′
c(0)λ. This implies that

Êc(φ1 + λψ1, φ2 + λψ2)− Êc(φ1, φ2) ≥
(

∂

∂φ1
S(φ1, φ2), λψ1

)

Q

+

(

∂

∂φ2
S(φ1, φ2), λψ2

)

Q

(3.18)

−
(

a21|∇φ1|2
36(A(φ1))2

, λψ1

)

+

(

a21∇φ1
18A(φ1)

, λ∇ψ1

)

+

(

a23|∇ (1− φ1 − φ2) |2
36(A (1− φ1 − φ2))2

, λψ1

)

−
(

a23∇ (1− φ1 − φ2)

18A (1− φ1 − φ2)
, λ∇ψ1

)

−
(

a22|∇φ2|2
36(A(φ2))2

, λψ2

)

+

(

a22∇φ2
18A(φ2)

, λ∇ψ2

)

+

(

a23|∇ (1− φ1 − φ2) |2
36(A (1− φ1 − φ2))2

, λψ2

)

−
(

a23∇ (1− φ1 − φ2)

18A (1− φ1 − φ2)
, λ∇ψ2

)

.

We may assume that (ϕ1, ϕ2) := (φ1, φ2) + λ(ψ1, ψ2) ∈ Sh × Sh, since λ is small in magnitude. Then

we have

Êc(ϕ1, ϕ2)− Êc(φ1, φ2) ≥
(

∂

∂φ1
S(φ1, φ2), ϕ1 − φ1

)

Q

+

(

∂

∂φ2
S(φ1, φ2), ϕ2 − φ2

)

Q

(3.19)

−
(

a21|∇φ1|2
36(A(φ1))2

, ϕ1 − φ1

)

+

(

a21∇φ1
18A(φ1)

,∇(ϕ1 − φ1)

)

+

(

a23|∇ (1− φ1 − φ2) |2
36(A (1− φ1 − φ2))2

, ϕ1 − φ1

)

−
(

a23∇ (1− φ1 − φ2)

18A (1− φ1 − φ2)
,∇(ϕ1 − φ1)

)

−
(

a22|∇φ2|2
36(A(φ2))2

, ϕ2 − φ2

)

+

(

a22∇φ2
18A(φ2)

,∇(ϕ2 − φ2)

)

+

(

a23|∇ (1− φ1 − φ2) |2
36(A (1− φ1 − φ2))2

, ϕ2 − φ2

)

−
(

a23∇ (1− φ1 − φ2)

18A (1− φ1 − φ2)
,∇(ϕ2 − φ2)

)

.

For Êe, a similar inequality is available:

Êe(ϕ1, ϕ2)− Êe(φ1, φ2) ≥
(

− ∂

∂φ1
H(φ1, φ2), ϕ1 − φ1

)

Q

+

(

− ∂

∂φ2
H(φ1, φ2), ϕ2 − φ2

)

Q

. (3.20)

Combining the inequalities, we have

Ê(φ1, φ2)− Ê(ϕ1, ϕ2) = (Êc(φ1, φ2)− Êc(ϕ1, ϕ2))− (Êe(φ1, φ2)− Êe(ϕ1, ϕ2)) (3.21)

≤
(

∂

∂φ1
S(φ1, φ2), φ1 − ϕ1

)

Q

+ (δφ1
K̃(φ1, φ2), φ1 − ϕ1)

+

(

∂

∂φ2
S(φ1, φ2), φ2 − ϕ2

)

Q

+ (δφ2
K̃(φ1, φ2), φ2 − ϕ2)

−
(

− ∂

∂φ1
H(φ1, φ2), φ1 − ϕ1

)

Q

−
(

− ∂

∂φ2
H(φ1, φ2), φ2 − ϕ2

)

Q

.

Consequently, the proof is completed. �

Remark 3.1. The periodic boundary condition is considered in this article, for simplicity of presenta-

tion, since all the boundary integral terms will cancel, so that the integration by parts is always valid. As

a result, for all the nonlinear and singular terms, the boundary terms will cause any scientific difficulty

in the mathematical analysis. Meanwhile, the analysis in this work could be extended to other type of

physically relevant boundary condition, such a homogeneous Neumann one. In fact, a natural boundary
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condition (corresponding to the Neumann boundary one) is more straightforward in the finite element

set-up, and this extension analysis will be considered in the future works.

4. The unique solvability and positivity-preserving property

The mass lumped method, improving the original mass matrix, provides us with an efficient way to

derive the theoretical proof of preserving positivity property for the MMC-TDGL equations.

Lemma 4.1. [9] Suppose that ξ, ξ̄ ∈ Sh, with (ξ − ξ̄, 1) = 0, that is, ξ − ξ̄ ∈ S̊h, and assume that

‖ξ‖∞ < 1, ‖ξ̄‖∞ ≤M . Then, we have the following estimate:
∥

∥−∆−1
h

(

ξ − ξ̄
)∥

∥

∞
≤ C1, (4.1)

where C1 > 0 depends only upon M and Ω. In particular, C1 is independent of the mesh spacing h .

Lemma 4.2. Let φ, ψ ∈ Sh and A(ψ) > 0, then
(

− |∇φ|2
36(A(φ))2

, ψ

)

+

( ∇φ
18A(φ)

,∇ψ
)

≤ 1

36

( ∇ψ
A(ψ)

,∇ψ
)

, (4.2)

( |∇φ|2
36(A(φ))2

, ψ

)

−
( ∇φ
18A(φ)

,∇ψ
)

≤
( |∇φ|2
18(A(φ))2

, A(ψ)

)

+
1

36

( ∇ψ
A(ψ)

,∇ψ
)

. (4.3)

Proof. By Cauchy-Schwarz inequality, on every element e ∈ Th, one gets
∣

∣

∣

∣

( ∇φ
18A(φ)

,∇ψ
)

e

∣

∣

∣

∣

≤
( |∇φ|2
36(A(φ))2

, A(ψ)

)
1

2

e

( ∇ψ
9A(ψ)

,∇ψ
)

1

2

e

≤
( |∇φ|2
36(A(φ))2

, A(ψ)

)

e

+

( ∇ψ
36A(ψ)

,∇ψ
)

e

. (4.4)

Summing over all e,
∣

∣

∣

∣

( ∇φ
18A(φ)

,∇ψ
)∣

∣

∣

∣

≤
( |∇φ|2
36(A(φ))2

, A(ψ)

)

+

( ∇ψ
36A(ψ)

,∇ψ
)

. (4.5)

Moreover, note that for φ, ψ ∈ Sh,
(

− |∇φ|2
36(A(φ))2

, ψ

)

=

(

− |∇φ|2
36(A(φ))2

, A(ψ)

)

,

then the lemma can be proved by combining this relationship with (4.5). �

Remark 4.1. If A(ψ) ≥ 0, then Lemma 4.2 will be modified by
(

− |∇φ|2
36(A(φ))2

, ψ

)

+

( ∇φ
18A(φ)

,∇ψ
)

≤ 1

36

∑

e∈Th

A(ψ)>0

( ∇ψ
A(ψ)

,∇ψ
)

e

, (4.6)

( |∇φ|2
36(A(φ))2

, ψ

)

−
( ∇φ
18A(φ)

,∇ψ
)

≤
( |∇φ|2
18(A(φ))2

, A(ψ)

)

+
1

36

∑

e∈Th

A(ψ)>0

( ∇ψ
A(ψ)

,∇ψ
)

e

. (4.7)

Lemma 4.3. For any φ ∈ Sh, if A(φ) > 0 on one element e ∈ Th with mesh size he, then we have

|∇φ|
A(φ)

≤ 3
√
2he

2△e
(4.8)

on the element e.

Proof. Let Pi = (xi, yi) (i = 1, 2, 3) be the three vertex points of e, then

∂φ

∂x
=

1

2△e
(φ(P1)(y2 − y3) + φ(P2)(y3 − y1) + φ(P3)(y1 − y2)),

∂φ

∂y
=

1

2△e
(φ(P1)(x3 − x2) + φ(P2)(x1 − x3) + φ(P3)(x2 − x1)).
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So ∇φ can be bounded by

|∇φ| ≤
√
2he

2△e
(φ(P1) + φ(P2) + φ(P3)).

Note that

A(φ) =
1

3
(φ(P1) + φ(P2) + φ(P3)) ,

then the lemma is proved. �

Subsequently, a combination of Lemma 4.2 and Lemma 4.3 leads to the following result.

Lemma 4.4. Let φ, ψ ∈ Sh and A(ψ) ≥ 0, then
(

− |∇φ|2
36(A(φ))2

, ψ

)

+

( ∇φ
18A(φ)

,∇ψ
)

≤ CT

8

∑

e∈Th

A(ψ)|e, (4.9)

( |∇φ|2
36(A(φ))2

, ψ

)

−
( ∇φ
18A(φ)

,∇ψ
)

≤ 3CT

8

∑

e∈Th

A(ψ)|e. (4.10)

Proof. By Lemma 4.3 and noticing that A(ψ) is constant on every element e, we get

1

36

∑

e∈Th

A(ψ)>0

( ∇ψ
A(ψ)

,∇ψ
)

=
1

36

∑

e∈Th

A(ψ)>0

( |∇ψ|2
(A(ψ))2

, A(ψ)

)

≤ 1

36

∑

e∈Th

9h2e
2△2

e

(A(ψ), 1)e =
1

8

∑

e∈Th

h2e
△e

A(ψ)|e.

Similarly,
( |∇φ|2
18(A(φ))2

, A(ψ)

)

≤ 1

4

∑

e∈Th

h2e
△e

A(ψ)|e.

Since the element is shape regular,
h2

e

△e
≤ CT , now the lemma is proved by using Lemma 4.2 and Remark

4.1. �

Theorem 4.1. Given φn1 , φ
n
2 ∈ Sh, with 0 < φn1 , φ

n
2 < 1, 0 < φn1 + φn2 < 1, (so that 0 < φn1 , φ

n
2 < 1),

there exists a unique solution φn+1
1 , φn+1

2 ∈ Sh to (3.17), with φn+1
1 = φn1 , φ

n+1
2 = φn2 , 0 < φn+1

1 , φn+1
2 <

1, and 0 < φn+1
1 + φn+1

2 < 1.

Proof. It is observed that, the numerical solution of (3.17) is a minimizer of the following discrete energy

functional with respect to φ1 and φ2

J n
h (φ1, φ2) =

1

2D1τ
‖φ1 − φn1 ‖2−1,Q +

1

2D2τ
‖φ2 − φn2 ‖2−1,Q + (S (φ1, φ2) , 1)Q

+ (K̃ (φ1, φ2) , 1) + (δφ1
H (φn1 , φ

n
2 ) , φ1)Q + (δφ2

H (φn1 , φ
n
2 ) , φ2)Q ,

(4.11)

over the admissible set

Ah := {(φ1, φ2) ∈ Sh × Sh | φ1, φ2 ≥ 0, 0 ≤ φ1 + φ2 ≤ 1,
(

φ1 − φ̄01, 1
)

Q
= 0,

(

φ2 − φ̄02, 1
)

Q
= 0} ⊂ R

2N2

p .
(4.12)

It is easy to observe that J n
h is a strictly convex functional with respect to φ1 and φ2 over this domain.

Consider the following closed domain:

Ah,δ := {(φ1, φ2) ∈ Sh × Sh | φ1, φ2 ≥ g(δ), δ ≤ φ1 + φ2 ≤ 1− δ,
(

φ1 − φ̄01, 1
)

Q
= 0,

(

φ2 − φ̄02, 1
)

Q
= 0} ⊂ R

2N2

p .
(4.13)

Since Ah,δ is a bounded, compact and convex set in the following hyperplane V in R
2N2

p , with dimension

2N2
p − 2:

V =

{

(φ1, φ2) :
1

|Ω| (φ1, 1)Q = φ01,
1

|Ω| (φ2, 1)Q = φ02

}

, (4.14)
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there exists a (may not unique) minimizer of J n
h (φ1, φ2) over Ah,δ. The key point of the positivity

analysis is that, such a minimizer could not occur on the boundary points (in V ) if δ and g(δ) are small

enough.

Assume the minimizer of J n
h (φ1, φ2) occurs at a boundary point of Ah,δ.

Case 1: We set the minimization point as (φ⋆1, φ
⋆
2), with φ⋆1(Pα0

) := φ⋆1,α0
= g(δ). In addition, we

assume that φ⋆1 reaches the maximum value at α1, so it is obvious that φ⋆1,α1
≥ φ⋆1 = φ01. We can view

the variable φ1,α1
as the N2

p -th one in the hyperplane V , with the condition

φ1,α1
=

(φ01, 1)Q −∑Np

i6=α1
(φ1,i, χi)Q

(χα1
, 1)Q

. (4.15)

In more details, we denote the following alternate function

Unh
(

(φ1,i)|i6=α1

, φ2

)

:= J n
h

(

·, (φ1)α1
, φ2
)

= J n
h

(

·,
(φ01, 1)Q −∑Np

i6=α1
(φ1,i, χi)Q

(χα1
, 1)Q

, φ2

)

. (4.16)

By a careful calculation, we obtain the following directional derivative

dsUnh (φ∗1 + sψ, φ⋆2)|s=0 =
1

D1τ

(

−∆−1
h (φ⋆1 − φn1 ) , ψ

)

Q
+ (δφ1

S (φ⋆1, φ
⋆
2) , ψ)Q

+ (δφ1
K̃ (φ⋆1, φ

⋆
2) , ψ) + (δφ1

H (φn1 , φ
n
2 ) , ψ)Q , ∀ψ ∈ S̊h.

(4.17)

This time, due to (φ∗1 + sψ, φ⋆2) ∈ Ah,δ, let us pick the direction

ψ = δα0
− C2δα1

, C2 =
area(Dα0

)

area(Dα1
)
, (4.18)

where δα0
and δα1

are the basis functions on Pα0
and Pα1

, Dα0
and Dα1

are the support of δα0
and

δα1
, respectively.

For the first term appearing in (4.17), an application of Lemma 4.1 gives

1

D1τ
(−∆−1

h (φ⋆1 − φn1 ), ψ)Q =
1

D1τ

∑

e∈Th

△e

3

3
∑

j=1

(−∆−1
h )(φ⋆1 − φn1 )ψ(Pe,j) (4.19)

=
1

3D1τ
(area(Dα0

)(−∆−1
h )(φ⋆1−φn1 )|α0

−C2 area(Dα1
)(−∆−1

h )(φ⋆1−φn1 )|α1
)

=
1

3D1τ
area(Dα0

)
(

(−∆−1
h )(φ⋆1 − φn1 )|α0

− (−∆−1
h )(φ⋆1 − φn1 )|α1

)

≤ 2C1

3D1τ
area(Dα0

).

For the second term, we see that

(δφ1
S(φ⋆1, φ

⋆
2), ψ)Q =

(

1

γ
ln(

αφ⋆1
γ

)− ln(1 − φ⋆1 − φ⋆2), ψ

)

Q

(4.20)

=
∑

e∈Th





1

3
△e

3
∑

j=1

(

1

γ
ln(

αφ⋆1
γ

)− ln(1− φ⋆1 − φ⋆2)

)

ψ(Pe,j)





=
1

3
area(Dα0

)

((

1

γ
ln(

αφ⋆1
γ

)− ln(1− φ⋆1 − φ⋆2)

)

|α0

−
(

1

γ
ln(

αφ⋆1
γ

)− ln(1− φ⋆1 − φ⋆2)

)

|α1

)

=
1

3
area(Dα0

)

(

ln
(φ⋆1)

1

γ

1− φ⋆1 − φ⋆2
|α0

− ln
(φ⋆1)

1

γ

1− φ⋆1 − φ⋆2
|α1

)

≤ 1

3
area(Dα0

)

(

ln
(g(δ))

1

γ

δ
− ln

(φ̄01)
1

γ

1− δ

)
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≤ 1

3
area(Dα0

)

(

ln
(g(δ))

1

γ

δ
− ln(φ̄01)

1

γ

)

.

For the third term, we have

(δφ1
K̃ (φ⋆1, φ

⋆
2) , ψ) =

(

− a21|∇φ⋆1|2

36(A(φ⋆1))
2 , ψ

)

+

(

a21∇φ⋆1
18A(φ⋆1)

,∇ψ
)

(4.21)

+

(

a23 |∇ (1− φ⋆1 − φ⋆2)|2

36 (A(1− φ⋆1 − φ⋆2))
2 , ψ

)

−
(

a23∇ (1− φ⋆1 − φ⋆2)

18A (1− φ⋆1 − φ⋆2)
,∇ψ

)

.

By Lemma 4.4,
(

− a21|∇φ⋆1|2

36(A(φ⋆1))
2 , ψ

)

+

(

a21∇φ⋆1
18A(φ⋆1)

,∇ψ
)

≤ a21CT

8

∑

e∈Th

A(δα0
)|e +

3a21C2CT

8

∑

e∈Th

A(δα1
)|e (4.22)

=
a21CT

24

∑

e∈Dα0

1 +
a21C2CT

8

∑

e∈Dα1

1.

Similarly,
(

a23 |∇ (1− φ⋆1 − φ⋆2)|2

36 (A(1 − φ⋆1 − φ⋆2))
2 , ψ

)

−
(

a23∇ (1− φ⋆1 − φ⋆2)

18A (1− φ⋆1 − φ⋆2)
,∇ψ

)

≤ a23CT

8

∑

e∈Dα0

1 +
a23C2CT

24

∑

e∈Dα1

1. (4.23)

Then the term δφ1
K̃ can be bounded by

(δφ1
K̃ (φ⋆1, φ

⋆
2) , ψ) ≤

(a21 + 3a23)CT

24

∑

e∈Dα0

1 +
(3a21 + a23)C2CT

24

∑

e∈Dα1

1. (4.24)

For the numerical solution φn1 at the previous time step, the a-priori assumption 0 < φn1 < 1 indicates

that

−1 ≤ φn1 (Pα0
)− φn1 (Pα1

) ≤ 1.

For the last term, we have

(δφ1
H (φn1 , φ

n
2 ) , ψ)Q = (χ13 − 2χ13φ

n
1 + (χ12 − χ13 − χ23)φ2, ψ)Q (4.25)

=
∑

e∈Th

1

3
△e





3
∑

j=1

(χ13 − 2χ13φ
n
1 − (χ12 − χ13 − χ23)φ

n
2 )ψ(Pe,j)





=
1

3
area(Dα0

) (−2χ13(φ
n
1 |α0

− φn1 |α1
)− (χ12 − χ13 − χ23)(φ

n
2 |α0

− φn2 |α1
))

≤ 1

3
area(Dα0

)(χ12 + 3χ13 + χ23).

To sum up, the following inequality is available

dsUnh (φ∗1 + sψ, φ⋆2)|s=0 ≤ 1

3
area(Dα0

) ln
(g(δ))

1

γ

δ
+ r0, (4.26)

in which r0 =
area(Dα0

)

3

(

2C1

D1τ
− ln(φ̄01)

1

γ +χ12+3χ13+χ23

)

+
(a21+3a2

3)CT

24

∑

e∈Dα0

1+
(3a21+a

2

3)C2CT

24

∑

e∈Dα1

1.

Note that r0 is a constant for a fixed τ, h, while it becomes singular as τ −→ 0. For any fixed τ , we

could choose g(δ) sufficiently small so that

1

3
area(Dα0

) ln
(g(δ))

1

γ

δ
+ r0 < 0, (4.27)

such as g(δ) =
(

δ exp
(

− 3(r0+1)
area(Dα0

)

))γ

. This in turn shows that

dsUnh (φ⋆1 + sψ, φ⋆2) |s=0 < 0, for g(δ) satisfying (4.27).
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This contradicts the assumption that J n
h has a minimum at (φ⋆1, φ

⋆
2), since the directional derivative is

negative in a direction pointing into (Ah,δ)
◦, the interior of Ah,δ.

Case 2: Using similar arguments as in Case 1, we can also prove that, the global minimum of J n
h

over Ah,δ could not occur on the boundary section of φ2,α0
= g(δ), for any grid node number α0, if g(δ)

is small enough.

Case 3: We set the minimization point as (φ⋆1, φ
⋆
2), with φ

⋆
1,α0

+ φ⋆2,α0
= 1 − δ, where α0 represents

α0-th grid node number, and assume that φ1,α0
≥ 1

3 . In addition, (φ1 + φ2, 1) = φ01 + φ02, there

exists one grid point α1 = (i1, j1), so that φ⋆1 + φ⋆2 reaches the maximum value. It is obvious that

φ⋆1,α1
+ φ⋆2,α1

≤ φ⋆1 + φ⋆2 = φ01 + φ02. Similarly, the variable φ1,α1
could be viewed as the N2

p -th one in

the hyperplane V , with the condition

φ1,α1
=

(φ01, 1)Q −∑Np

i6=α1
(φ1,i, χi)Q

(χα1
, 1)Q

. (4.28)

In more details, the following alternate function is introduced

Unh
(

(φ1,i)|i6=α1

, φ2

)

:= J n
h

(

·, (φ1)α1
, φ2
)

= J n
h

(

·,
(φ01, 1)Q −∑Np

i6=α1
(φ1,i, χi)Q

(χα1
, 1)Q

, φ2

)

. (4.29)

Again, a careful calculation implies the following directional derivative

dsUnh (φ∗1 + sψ, φ⋆2)|s=0 =
1

D1τ

(

−∆−1
h (φ⋆1 − φn1 ) , ψ

)

Q
+ (δφ1

S (φ⋆1, φ
⋆
2) , ψ)Q

+ (δφ1
K̃ (φ⋆1, φ

⋆
2) , ψ) + (δφ1

H (φn1 , φ
n
2 ) , ψ)Q , ∀ψ ∈ S̊h.

(4.30)

In this case, since (φ∗1 + sψ, φ⋆2) ∈ Ah,δ, we pick the direction

ψ = C2δα1
− δα0

, C2 =
area(Dα0

)

area(Dα1
)
. (4.31)

For the first term in (4.30), an application of Lemma 4.1 leads to

1

D1τ
(−∆−1

h (φ⋆1 − φn1 ), ψ)Q =
1

D1τ

∑

e∈Th

1

3
△e

3
∑

j=1

∆−1
h (φ⋆1 − φn1 )ψ(Pe,j) (4.32)

=
1

3D1τ
(C2 area(Dα1

)(−∆−1
h )(φ⋆1−φn1 )|α1

−area(Dα0
)(−∆−1

h )(φ⋆1−φn1 )|α0
)

=
1

3D1τ
area(Dα0

)
(

(−∆−1
h )(φ⋆1 − φn1 )|α1

− (−∆−1
h )(φ⋆1 − φn1 )|α0

)

≤ 2C1

3D1τ
area(Dα0

).

For the second term, a similar inequality could be derived

(δφ1
S(φ⋆1, φ

⋆
2), ψ)Q =

(

1

γ
ln(

αφ⋆1
γ

)− ln(1 − φ⋆1 − φ⋆2), ψ

)

Q

(4.33)

=
∑

e∈Th





1

3
△e

3
∑

j=1

(

1

γ
ln(

αφ⋆1
γ

)− ln(1− φ⋆1 − φ⋆2)

)

ψ(Pe,j)





= −1

3
area(Dα0

)

((

1

γ
ln(

αφ⋆1
γ

)− ln(1− φ⋆1 − φ⋆2)

)

|α1

−
(

1

γ
ln(

αφ⋆1
γ

)− ln(1− φ⋆1 − φ⋆2)

)

|α0

)

= −1

3
area(Dα0

)

(

ln
(φ⋆1)

1

γ

1− φ⋆1 − φ⋆2
|α1

− ln
(φ⋆1)

1

γ

1− φ⋆1 − φ⋆2
|α0

)
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≤ 1

3
area(Dα0

)

(

ln
1

1− φ̄01 − φ̄02
− ln

1
3

1/γ

δ

)

.

For the third term, we have the following expansion as in (4.24):

(δφ1
K̃ (φ⋆1, φ

⋆
2) , ψ) ≤

(3a21 + a23)CT

24

∑

e∈Dα0

1 +
(a21 + 3a23)C2CT

24

∑

e∈Dα1

1. (4.34)

For the last term in (4.30), since the numerical solution at the previous time step is involved, the

a-priori assumption 0 < φn1 < 1 indicates that

−1 ≤ φn1,α0
− φn1,α1

≤ 1,

which in turn results in the following inequality

(δφ1
H (φn1 , φ

n
2 ) , ψ)Q = (χ13 − 2χ13φ

n
1 + (χ12 − χ13 − χ23)φ2, ψ)Q (4.35)

=
∑

e∈Th

1

3
△e





3
∑

j=1

(χ13 − 2χ13φ
n
1 − (χ12 − χ13 − χ23)φ

n
2 )ψ(Pe,j)





=
1

3
area(Dα0

) (−2χ13(φ
n
1 |α1

− φn1 |α0
)− (χ12 − χ13 − χ23)(φ

n
2 |α1

− φn2 |α0
))

≤ 1

3
area(Dα0

)(χ12 + 3χ13 + χ23).

In turn, a summation of the above estimates yields

dsUnh (φ∗1 + sψ, φ⋆2)|s=0 ≤ 1

3
area(Dα0

) ln δ + r1, (4.36)

in which r1 = 1
3 area(Dα0

)( 2C1

D1τ
+ 1

γ ln 3 + ln 1
1+φ̄0

1
+φ̄0

2

+ χ12 + 3χ13 + χ23) +
(3a2

1
+a2

3
)CT

24

∑

e∈Dα0

1 +

(a2
1
+3a2

3
)C2CT

24

∑

e∈Dα1

1. Again, r1 is a constant for a fixed τ and h, we could choose δ sufficiently small

so that
1

3
area(Dα0

) ln δ + r1 < 0, (4.37)

such as δ = exp
(

− 3(r1+1)
area(Dα0

)

)

. This in turn demonstrates that

dsUnh (φ⋆1 + sψ, φ⋆2) |s=0 < 0, for g(δ) satisfy (4.37),

which contradicts the assumption that J n
h has a minimum at (φ⋆1, φ

⋆
2), since the directional derivative

is negative in a direction pointing into (Ah,δ)
◦, the interior of Ah,δ.

Case 4: Using similar arguments, we can also prove that, the global minimum of J n
h over Ah,δ could

not occur on the boundary section where φ⋆1,α0
+ φ⋆2,α0

= 1 − δ, if δ is sufficiently small, for any point

index α0. The details are left to the interested readers.

Finally, a combination of these four cases shows that, the global minimizer of J n
h (φ1, φ2) could

only possibly occur at interior point of (Ah,δ)
0 ⊂ (Ah)

0. We conclude that there must be a solution

(φ1, φ2) ∈ (Ah)
0 that minimizes J n

h (φ1, φ2) over Ah, which is equivalent to the numerical solution

of (3.17). The existence of the numerical solution is established.

In addition, since J n
h (φ1, φ2) is a strictly convex function over Ah, the uniqueness analysis for this

numerical solution is straightforward. The proof of Theorem 4.1 is complete. �

5. The energy stability

An unconditional energy stability for the proposed numerical scheme (3.17) is stated below.

Theorem 5.1. (energy stability) The unique solution of the mass lumped fully-discrete scheme (3.17)

is unconditionally energy stable, i.e., for any time step size τ > 0, the following estimate is valid:

Ê(φn+1
1h , φn+1

2h ) ≤ Ê(φn1h, φ
n
2h). (5.1)
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Proof. The energy stability of the mass lumped scheme (3.17) is a direct consequence of Lemma 3.4.

For w1, w2 ∈ S̊h, we denote v1 = (−∆h)
−1w1, v2 = (−∆h)

−1w2, and obtain

(

φn+1
1h − φn1h
D1τ

, (−∆h)
−1w1

)

Q

+
(

δφ1
K̃(φn+1

1h , φn+1
2h ), w1

)

+

(

∂

∂φ1
S(φn+1

1h , φn+1
2h ) +

∂

∂φ1
H(φn+1

1h , φn+1
2h ), w1

)

Q

= 0,

(

φn+1
2h − φn2h
D2τ

, (−∆h)
−1w2

)

Q

+
(

δφ2
K̃(φn+1

1h , φn+1
2h ), w2

)

+

(

∂

∂φ2
S(φn+1

1h , φn+1
2h ) +

∂

∂φ2
H(φn+1

1h , φn+1
2h ), w2

)

Q

= 0.

(5.2)

In turn, by setting w1 = φn+1
1h − φn1h, w2 = φn+1

2h − φn2h, and applying Lemma 3.4, we arrive at

0 =
1

D1τ
‖φn+1

1h − φn1h‖2−1,Q +

(

∂

∂φ1
S(φn+1

1h , φn+1
2h ) +

∂

∂φ1
H(φn+1

1h , φn+1
2h ), φn+1

1h − φn1h

)

Q

+
1

D2τ
‖φn+1

2h − φn2h‖2−1,Q +

(

∂

∂φ2
S(φn+1

1h , φn+1
2h ) +

∂

∂φ2
H(φn+1

1h , φn+1
2h ), φn+1

2h − φn2h

)

Q

+
(

δφ1
K̃(φn+1

1h , φn+1
2h ), φn+1

1h − φn1h

)

+
(

δφ2
K̃(φn+1

1h , φn+1
2h ), φn+1

2h − φn2h

)

≥ 1

D1τ
‖φn+1

1h − φn1h‖2−1,Q +
1

D2τ
‖φn+1

2h − φn2h‖2−1,Q + Ê(φn+1
1h , φn+1

2h )− Ê(φn1h, φ
n
2h)

≥ Ê(φn+1
1h , φn+1

2h )− Ê(φn1h, φ
n
2h).

This finishes the proof of Theorem 5.1. �

6. Numerical results

In this section, we perform some numerical simulations using the proposed scheme (3.17). In [32],

the authors simulated several numerical examples for solving three-component MMC-TDGL equations

by the SAV method and showed some phase transition processes, with different initial concentrations

as well as the statistical segment lengths ai, i = 1, 2, 3, consistent with an earlier work [34]. The

statistical segment lengths ai in the deGennes interfacial gradient terms, 1
36

∑3
i=1

a2i
φi
|∇φi|2, i = 1, 2, 3,

determine the interface thickness. Now, the default parameter of MMC-TDGL is selected to make Fe
convex; see Table 1. In fact, these parameters are only used for the numerical experiments, to validate

the effectiveness of the proposed finite element scheme. In the numerical simulation of more realistic

physical problems, these parameters could be easily adjusted, and no essential pattern difference is

expected for the computational results with the parameter modification.

Parameter D1 D2 χ12 χ13 χ23 γ N a1 a2 a3
Value 1 1 4 10 1.6 0.16 5.12 1 1 1
Table 1. The values of the parameters in the simulation

The first example is aimed to test the numerical convergence. The second one simulates a periodic

structure on a large domain. In addition, the third one is designed to show some realistic results

associated with the evolution of macromolecular microsphere hydrogels. For convenience, we only

consider the periodic boundary condition, and the case of homogeneous Neumann boundary condition

could be similarly handled.
16



Example 6.1. Let parameter a1 = a2 = a3 = 0.3, while keeping the other default parameters constant.

Consider the MMC-TDGL equation over the domain Ω = (0, 1)2, with the initial data given by

φ1(x, y, 0) = 0.1 + 0.01 cos(2πx) cos(2πy),

φ2(x, y, 0) = 0.5 + 0.01 cos(2πx) cos(2πy).
(6.1)

We use the triangular mesh with size h = 1/256 for partition of the domain. Since the exact solution

is unknown, we compute the errors by adjacent time step in the numerical accuracy test. Figure 6.1

presents the L∞ and L2 numerical errors of the three-phase variables, φ1, φ2, φ3, as well as a reference

line at the terminal time T = 0.02. In turn, the time step size is determined by the formula τ = T
NT

,

in which NT stands for the total number of time steps. Due to the O(h2) approximation in space, the

spatial error is negligible. The expected temporal numerical accuracy assumption e = Cτ indicates that

ln |e| = ln(CT ) − lnNT , so that we plot ln |e| versus. lnNT to demonstrate the temporal convergence

order. The reference line has an exact slope of -1, while the least square approximation to the L2 error

curves has approximate slopes -1.0466, -1.0122, -1.0154, for the variables φ1, φ2 and φ3, respectively.

In other words, a perfect first order temporal convergence rate is reported.
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Figure 6.1. The L∞ and L2 numerical errors versus temporal resolution NT , at the

final time T = 0.02 in Example 6.1, by fixing h = 1/256. The time step size is

given by τ = T
NT

. The reference line has an exact slope of -1, while the least square

approximation to the L2 error curves has approximate slopes -1.0466, -1.0122, -1.0154,

for the variables φ1, φ2 and φ3, respectively.

In the accuracy test for the spatial convergence order, we set the time size as τ = 7.8125e− 6, so

that the temporal error is negligible. A sequence of spatial resolutions are taken, with h = 1
N0

. The

expected temporal numerical accuracy assumption e = Ch2 indicates that ln |e| = lnC − 2 lnN0, so

that we plot ln |e| versus lnN0 to demonstrate the temporal convergence order. Similarly, Figure 6.2

presents the L∞ and L2 numerical errors of the three-phase variables, as well as a reference line at

the terminal time T = 0.02, for this spatial convergence order test. The reference line has an exact

slope of -2, while the least square approximation to the L2 error curves has approximate slopes -2.0532,

-2.0476, -2.0480, for the variables φ1, φ2 and φ3, respectively. Therefore, a perfect second order spatial

convergence rate is reported.
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Figure 6.2. The L∞ and L2 numerical errors versus spatial resolution N0, at the final

time T = 0.02 in Example 6.1, by fixing τ = 7.8125e − 6. The spatial mesh size is

given by h = 1
N0

. The reference line has an exact slope of -2, while the least square

approximation to the L2 error curves has approximate slopes -2.0532, -2.0476, -2.0480,

for the variables φ1, φ2 and φ3, respectively.

Example 6.2. Consider the MMC-TDGL equation over the domain Ω = (0, 64)2, with the initial data

given by

φ1(x, y, 0) = 0.1 + 0.01 cos(3πx/32) cos(3πy/32),

φ2(x, y, 0) = 0.5 + 0.01 cos(3πx/32) cos(3πy/32).
(6.2)

We use the triangular mesh with size h = 1/4 for partition of the domain, and take the time step

size as τ = 0.01. Figure 6.3 displays the configuration of the simulated solution φ2 at a sequence of time

instants, t=0, 5, 8, 10, 15 and 20, respectively. It is observed that the phase structures have a drastic

change in time, and then asymptotically evolve to a steady state, which is consistent with the energy

evolution plotted in Figure 6.7. In addition, the configuration of all three phase variables are presented

in Figure 6.4, at a sequence of later time instants, t=25, 80, and 200, respectively. The corresponding

evolutions of the mass, as well as the maximum and minimum values of the phase variables, are displayed

in Figures 6.5, 6.6, respectively. The mass conservation and the positivity property are observed to be

preserved in these evolution figures.

Example 6.3. Considered the MMC-TDGL equations over the domain Ω = (0, 50)2, with the initial

data given by

φ1(x, y, 0) = 0.1 + ri,j ,

φ2(x, y, 0) = 0.5 + ri,j ,
(6.3)

where the ri,j are uniformly distributed random numbers in [−0.01, 0.01].

We use the uniform triangular mesh with size h = 1/4, take the time step size as τ = 0.01, and

focus on the φ2 variable, which reflects the polymer chain distribution. In this example, the initial

concentration of polymer segments reaches 0.5+ ri,j, every MMS can be joined by polymer chains since

there are enough segments to grow. Thus the reticular structure can be obtained. Figure 6.8 displays

the plot of the φ2 variable at a sequence of time instants, t=0, 3.6, 6.52, 8, 10, 26, 85, 278 and 500,
18



Figure 6.3. The simulated solution φ2, at t=0, 5, 8, 10, 15 and 20 respectively, in

Example 6.2

respectively. It is observed that the red area in the third row becomes larger, that is, the structure is

tighter, which is consistent with [32, 34].

The evolution of the corresponding energy is plotted in Figure 6.9, which indicates a monotone

decrease in time. Figures 6.10 and 6.11 display the maximum and minimum value of the phase variables

and the mass. Again, the positivity-preserving property and mass conversation have been perfectly

demonstrated in the numerical simulation.

7. Concluding remarks

In this paper, we have developed a positivity-preserving and energy stable finite element scheme

for the three-component Cahn-Hilliard flow model involved in macromolecular microsphere composite

hydrogels, with the Flory-Huggins-deGennes energy potential in the ternary system. A convex-concave

decomposition of the energy functional in multi-phase space is recalled, which in turn leads to an implicit

treatment of the logarithmic and the nonlinear surface diffusion terms, as well as an explicit update

of the concave expansive linear terms. In the spatial discretization, the mass lumped finite element

approximation is applied. Both the positivity preserving property and the unconditional energy stability

are theoretically justified, which will be the first such results for a finite element scheme applied to the

ternary MMC system. A few numerical examples are presented, which demonstrate the robustness and

accuracy of the proposed numerical scheme.
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Figure 6.4. The phase variables plot in Example 6.2, at t=25, 80 and 200
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Figure 6.5. Mass evolution of the phase variables in Example 6.2
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