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Temporally semidiscrete approximation of a
Dirichlet boundary control for a

fractional/normal evolution equation with a
final observation ∗

Qin Zhou†and Binjie Li‡

School of Mathematics, Sichuan University.

Abstract

Optimal Dirichlet boundary control for a fractional/normal evolution
with a final observation is considered. The unique existence of the solution
and the first-order optimality condition of the optimal control problem are
derived. The convergence of a temporally semidiscrete approximation is
rigorously established, where the control is not explicitly discretized and
the state equation is discretized by a discontinuous Galerkin method in
time. Numerical results are provided to verify the theoretical results.

Keywords: Dirichlet boundary control; fractional evolution equation; discon-
tinuous Galerkin method; convergence.

1 Introduction

There is an extensive literature on the numerical optimization with PDE con-
straints. So far, most of the literature focuses on the distributed control prob-
lems, and the works on the Dirichlet boundary control problems are rather
limited. Compared with the distributed control problems, the Dirichlet bound-
ary control problems are more challenging in the following senses. Firstly, the
solution of the state equation of a Dirichlet boundary control problem is of sig-
nificantly lower regularity than that of a distributed control problem, and this
increases the difficulty in both theoretical and numerical analysis. Secondly,
in the weak form of the solution of the state equation of a Dirichlet boundary
control problem, the test function space is more regular than the trial func-
tion space, and hence the weak form is not appropriate for the discretization.
Thirdly, since the normal derivative of the adjoint state occurs in the first-order
optimality condition, the discrete first-order optimality condition will essen-
tially involve the discrete normal derivative of the discrete adjoint state, and
this increases the implementation difficulty.

∗This work was supported by National Natural Science Foundation of China (11901410).
†Email:zqmath@aliyun.com
‡Corresponding author. Email: libinjie@scu.edu.cn
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We summarize the works on the parabolic Dirichlet boundary control prob-
lems briefly as follows. Using an integral representation formula derived by
the semigroup theory (cf. [3, Section 4.12] and [30]), Lasiecka [29, 31] analyzed
spatial Galerkin approximations of an optimal Dirichlet boundary control prob-
lem and a time optimal Dirichlet boundary control problem for the parabolic
equations. Kunisch and Vexler [28] analyzed constrained Dirichlet boundary
control problems for a class of parabolic equations and derived the convergence
of the PDAS strategy for two Dirichlet boundary control problems. Applying
the Robin penalization method to a Dirichlet boundary control problem for
a parabolic equation with a final observation, Belgacem et al. [4] obtained a
penalized Robin boundary control problem. Gong et al. [16] analyzed a finite
element approximation of a Dirichlet boundary control for a parabolic equa-
tion, where the variational discretization approach [19] was used and the state
equation was discretized by the usual H1-conforming P1-element in space and
discretized by the dG(0) scheme in time. Recently, Gong and Li [17] improved
the spatial accuracy derived in [16], using the maximal Lp-regularity theory. We
note that, for the state equation with rough Dirichlet boundary data, [29, 31]
used the semigroup theory to define the solution whereas [16, 17, 28] used the
transposition technique to define the solution (called the very weak solution).

For the numerical analysis of parabolic Neumann/Robin boundary control
problems, we refer the reader to [1, 7, 27, 44]. For the numerical analysis of
other optimal control problems for parabolic equations, we refer the reader to
[8, 15, 34, 35, 47, 48, 49, 50] and the references therein. Although the spatial
discretization is not considered in this paper, we would like to refer the reader
to [5, 13, 14, 32] for the numerical analysis of elliptic and parabolic equations
with rough Dirichlet boundary data.

To our best knowledge, no convergence result is available for the Galerkin-
type approximations of the Dirichlet boundary control problems governed by the
parabolic equations with final observations. The fractional evolution equation is
an extension of the normal evolution equation, widely used to describe the phys-
ical phenomena with memory effect [55]. Recently, Harbir et al. [2] studied an
optimal distributed control problem for a space-time fractional diffusion equa-
tion. For the numerical analysis of the optimal distributed problems governed
by the time fractional diffusion equations, we refer the reader to [18, 26, 38, 61].
To our knowledge, no numerical analysis is available for the Dirichlet boundary
control problems governed by the fractional evolution equations. Hence, this pa-
per tries to analyze the Dirichlet boundary control problems for the fractional
and normal evolution equations in a unified way.

In this paper, we establish the convergence of a temporally semidiscrete
approximation of an abstract optimal control problem governed by a fraction-
al/normal evolution equation with a final observation. This approximation uses
the variational discretization concept [19] and uses a discontinuous Galerkin
method to discretize the state equation in time. The discontinuous Galerkin
method is the famous dG(0) scheme for the normal evolution equation, and is
equivalent to the well-known L1 scheme [39] with uniform temporal grids for
the fractional evolution equations. The derived numerical analysis is applied to
a Dirichlet boundary control problem. We note that there are many works (see
[20, 21, 22, 23, 25, 36, 41, 43] and the references therein) devoted to the numer-
ical analysis of the fractional diffusion equations with rough initial value and
source term, but, to our knowledge, no numerical analysis is available for the
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fractional diffusion equation with rough Dirichlet boundary value. This paper
also fills in this gap.

The rest of this paper is organized as follows. Section 2 establishes the
convergence of a temporally semidiscrete approximation of an abstract optimal
control problem. Section 3 applies the theory developed in the previous section
to a Dirichlet boundary control problem. Section 4 performs three numerical
experiments to confirm the theoretical results.

2 An abstract optimal control problem

2.1 Preliminaries

We will use the following conventions: for each linear vector space, the field of
the scalars is C; for a Hilbert space X , we use (·, ·)X to denote its inner product;
for a Banach space B, we use 〈·, ·〉B to denote a duality paring between B∗ (the
dual space of B) and B; for a linear operator A, ρ(A) denotes the resolvent set
of A and R(z, A) denotes the inverse of z−A for each z ∈ ρ(A); for two Banach
spaces B1 and B2, L(B1,B2) is the set of all bounded linear operators from B1

to B2, and L(B1,B1) is abbreviated to L(B1); I denotes the identity map; for
a Lebesgue measurable subset D ⊂ Rl, 1 6 l 6 4, 〈p, q〉D means the integral∫
D
pq, where q is the conjugate of q; for a function v defined on (0, T ), by v(t−),

0 < t 6 T , we mean the limit lims→t− v(s); the notation C× means a positive
constant, depending only on its subscript(s), and its value may differ at each
occurrence; for any 0 < θ < π, define

Σθ := {reiγ : r > 0,−θ < γ < θ}, (1)

Γθ := {re−iθ : r > 0} ∪ {reiθ : r > 0} (2)

Υθ := {z ∈ Γθ : −π 6 ℑz 6 π}, (3)

where i is the imaginary unit and Γθ and Υθ are so oriented that the negative
real axis is to their left.

2.1.1 Time fractional Sobolev spaces

Assume that −∞ < a < b <∞ and B is a Banach space. Define

0H
1(a, b;B) :=

{
v ∈ L2(a, b;B) : v′ ∈ L2(a, b;B), v(a) = 0

}
,

0H1(a, b;B) :=
{
v ∈ L2(a, b;B) : v′ ∈ L2(a, b;B), v(b) = 0

}
,

and endow them with the two norms

‖v‖
0H1(a,b;B) := ‖v′‖L2(a,b;B) ∀v ∈ 0H

1(a, b;B),
‖v‖0H1(a,b;B) := ‖v′‖L2(a,b;B) ∀v ∈ 0H1(a, b;B),

respectively, where v′ is the first-order weak derivative of v.
For each 0 < γ < 1, define

0H
γ(a, b;B) := (L2(a, b;B), 0H1(a, b;B))γ,2,

0Hγ(a, b;B) := (L2(a, b;B), 0H1(a, b;B))γ,2,
where (·, ·)γ,2 means the interpolation space defined by the K-method (cf. [42]).
For convenience, the spaces 0H

γ(a, b;C) and 0Hγ(a, b;C) will be abbreviated to

0H
γ(a, b) and 0Hγ(a, b), respectively.
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2.1.2 Riemann-Liouville fractional calculus operators

Assume that −∞ < a < b < ∞ and X is a separable Hilbert space. For any
0 < γ < 1, define

(
D−γ

a+ v
)
(t) :=

1

Γ(γ)

∫ t

a

(t− s)γ−1v(s) ds, a.e. t ∈ (a, b),

(
D−γ

b− v
)
(t) :=

1

Γ(γ)

∫ b

t

(s− t)γ−1v(s) ds, a.e. t ∈ (a, b),

for all v ∈ L1(a, b;X ), where Γ(·) is the gamma function. In addition, let D0
a+

and D0
b− be the identity operator on L1(a, b;X ). For any 0 < γ 6 1, define

Dγ
a+ v := D Dγ−1

a+ v,

Dγ
b− v := −D Dγ−1

b− v,

for all v ∈ L1(a, b;X ), where D is the first-order differential operator in the
distribution sense.

Assume that 0 < γ < 1. For any v ∈ 0H
γ(a, b;X ) and w ∈ 0Hγ(a, b;X ), we

have

C1‖v‖0Hγ (a,b;X ) 6 ‖Dγ
a+ v‖L2(a,b;X ) 6 C2‖v‖0Hγ (a,b;X ),

C1‖w‖0Hγ (a,b;X ) 6 ‖Dγ
b− w‖L2(a,b;X ) 6 C2‖w‖0Hγ (a,b;X ),

where C1 and C2 are two positive constants depending only on γ. Let X ∗ be
the dual space of X . For any v ∈ 0H

γ/2(a, b;X ∗) and w ∈ 0Hγ/2(a, b;X ), the
equality ∫ T

0

〈Dγ
a+ v, w〉X dt =

∫ T

0

〈v,Dγ
b− w〉X dt (4)

holds for the following two cases: v ∈ 0H
γ(a, b;X ∗) and w ∈ 0Hγ(a, b;X );

Dγ
a+ v ∈ L2/(1+γ)(a, b;X ∗) and Dγ

b− v ∈ L2/(1+γ)(a, b;X ). For the above theo-
retical results, we refer the reader to [11, 43].

2.1.3 Definitions of A and A∗

Assume that X and Y are two separable Hilbert spaces such that X is contin-
uously embedded into Y and X is dense in Y . We will regard Y as a subspace
of X∗, the dual space of X , in the sense that

〈v, w〉X := (v, w)Y for all v ∈ Y and w ∈ X.

Let A and A∗ be two bounded linear operators from X to Y satisfying that




ρ(A) ⊃ Σω0 ∪ {0}, ρ(A∗) ⊃ Σω0 ∪ {0}, (5a)

‖R(z,A)‖L(Y ) 6
M0

1 + |z| ∀z ∈ Σω0 , (5b)

‖R(z,A∗)‖L(Y ) 6
M0

1 + |z| ∀z ∈ Σω0 , (5c)

(Av, w)Y = (v,A∗w)Y ∀v, w ∈ X, (5d)

c0‖v‖X 6 ‖Av‖Y 6 c1‖v‖X ∀v ∈ X, (5e)

c0‖v‖X 6 ‖A∗v‖Y 6 c1‖v‖X ∀v ∈ X, (5f)

(Av, v)Y > 0 ∀v ∈ X, (5g)
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where π/2 < ω0 < π, c0, c1 and M0 are four positive constants. By the trans-
position technique, A and A∗ can be extended as two bounded linear operators
from Y to X∗ by

〈Av, w〉X := (v,A∗w)Y , (6)

〈A∗v, w〉X := (v,Aw)Y , (7)

for all v ∈ Y and w ∈ X .
For each 0 6 θ 6 1, let [X∗, Y ]θ and [X,Y ]θ be the interpolation spaces

defined by the famous complex interpolation method (cf. [42, Chapter 2]). We
have that [X∗, Y ]θ is the dual space of [X,Y ]θ and vice versa (cf. [6]). By (5e),
(5f) and [42, Theorem 2.6], a straightforward computation gives that

‖A‖L([X,Y ]θ,[X∗,Y ]1−θ) 6 c1 for all 0 6 θ 6 1. (8)

Lemma 2.1. Assume that 0 6 θ 6 1 and z ∈ Σω0 . Then

‖R(z,A)‖L(Y,[X,Y ]θ) 6
Cc0,M0

1 + |z|θ , (9)

‖R(z,A∗)‖L(Y,[X,Y ]θ) 6
Cc0,M0

1 + |z|θ , (10)

‖R(z,A)‖L([X∗,Y ]θ,Y ) 6
Cc0,M0

1 + |z|θ , (11)

‖R(z,A∗)‖L([X∗,Y ]θ,Y ) 6
Cc0,M0

1 + |z|θ . (12)

Moreover, for any 0 6 ǫ 6 1,

‖R(z,A)‖L([X∗,Y ]θ,[X,Y ]1−(1−ǫ)θ ) 6
Cc0,M0,ǫ,θ

1 + |z|ǫθ . (13)

Proof. A straightforward computation gives

‖AR(z,A)‖L(Y ) = ‖zR(z,A)− I‖L(Y ) 6 |z|‖R(z,A)‖L(Y ) + 1 6 1 +M0,

by (5b), so that (5e) implies

‖R(z,A)‖L(Y,X) 6
1 +M0

c0
.

By this estimate and (5b), using [42, Theorem 2.6] yields (9). Estimate (10)
can be proved analogously.

Then let us prove (11). We first consider the following problem: seek v ∈ Y
such that

(v, (z −A∗)ϕ)Y = 〈g, ϕ〉X ∀ϕ ∈ X, (14)

where g ∈ X∗ is arbitrary but fixed. By (5f) and the fact that X is continuously
embedded into Y , we conclude that (·, (z−A∗)·)Y is a continuous bilinear form
on Y ×X . Inserting θ = 0 into (10) implies that, for any v ∈ Y \ {0},

sup
ϕ∈X\{0}

|(v, (z −A∗)ϕ)Y |
‖ϕ‖X

>
‖v‖2Y

‖R(z,A∗)v‖X
> Cc0,M0‖v‖Y .
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Since z ∈ ρ(A∗), it is evident that, for any ϕ ∈ X \ {0},

sup
v∈Y

|(v, (z −A∗)ϕ)Y | > 0.

Consequently, the Babuska-Lax-Milgram theorem yields that problem (14) ad-
mits a unique solution v ∈ Y and ‖v‖Y 6 Cc0,M0‖g‖X∗. Since (6) and (14)
imply v = R(z,A)g, this indicates that

‖R(z, A)g‖Y 6 Cc0,M0‖g‖X∗ ∀g ∈ X∗,

and hence
‖R(z, A)‖L(X∗,Y ) 6 Cc0,M0 . (15)

By (5b) and (15), using [42, Theorem 2.6] yields (11). Estimate (12) is derived
similarly.

Finally, let us prove (13). Inserting θ = ǫ and θ = 0 into (9) and (11)
respectively yields

‖R(z,A)‖L(Y,[X,Y ]ǫ) 6
Cc0,M0

1 + |z|ǫ , ‖R(z,A)‖L(X∗,Y ) 6 Cc0,M0 .

Using [42, Theorem 2.6] then gives

‖R(z,A)‖L([X∗,Y ]θ,[Y,[X,Y ]ǫ]θ) 6
Cc0,M0

1 + |z|ǫθ .

Hence, by the fact that (cf. [6])

[Y, [X,Y ]ǫ]θ = [X,Y ]1−(1−ǫ)θ with equivalent norms,

we readily obtain (13). This completes the proof. �

Remark 2.1. For any z ∈ Σω0 ,

‖R(z,A)‖L(X∗) = ‖z−1(z −A+A)R(z,A)‖L(X∗)

= ‖I +AR(z,A)‖L(X∗)/|z|

6
1 + ‖AR(z,A)‖L(X∗)

|z|

6
1 + c1‖R(z,A)‖L(X∗,Y )

|z| (by inserting θ = 1 into (8))

6
Cc0,c1,M0

|z| (by inserting θ = 0 into (11)).

Also, we have

‖R(z,A)‖L(X∗) = ‖AA−1R(z,A)‖L(X∗)

6 c1‖A−1R(z,A)‖L(X∗,Y ) (by inserting θ = 1 into (8))

6 Cc1,M0‖R(z,A)‖L(X∗,Y ) (by (5b))

6 Cc0,c1,M0 (by inserting θ = 0 into (11)).

Consequently,

‖R(z,A)‖L(X∗) 6
Cc0,c1,M0

1 + |z| ∀z ∈ Σω0 . (16)
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2.1.4 Definitions of Eα and E∗
α

For any 0 < α 6 1 and t > 0, define

Eα(t) :=
1

2πi

∫

Γω0

etzR(zα,A) dz, (17)

E∗
α(t) :=

1

2πi

∫

Γω0

etzR(zα,A∗) dz. (18)

For any v ∈ X∗ and w ∈ Y , by the definitions of A and A∗ and Lemma 2.1 we
have that

(R(z,A)v, w)Y = 〈v,R(z,A∗)w〉X ∀z ∈ Σω0 ,

and hence from (17) and (18) we obtain

(Eα(t)v, w)Y = 〈v, E∗
α(t)w〉X ∀t > 0. (19)

Furthermore, by Lemma 2.1, a routine calculation (cf. [59, 23]) yields the fol-
lowing lemma.

Lemma 2.2. Assume that 0 < α 6 1, 0 6 θ 6 1, t > 0, and G = Eα or E∗
α.

Then

‖G(t)‖L(Y,[X,Y ]θ) 6 Cc0,ω0,M0t
θα−1, (20)

‖G(t)‖L([X∗,Y ]θ,Y ) 6 Cc0,ω0,M0t
θα−1, (21)

‖G′(t)‖L(Y,[X,Y ]θ) 6 Cc0,ω0,M0t
θα−2, (22)

‖G′(t)‖L([X∗,Y ]θ,Y ) 6 Cc0,ω0,M0t
θα−2. (23)

Moreover, for any 0 6 ǫ 6 1,

Eα ∈ C((0,∞);L([X∗, Y ]θ, [X,Y ]1−(1−ǫ)θ) (24)

and
‖Eα(t)‖L([X∗,Y ]θ,[X,Y ]1−(1−ǫ)θ ) 6 Cc0,ω0,M0,ǫ,θ t

ǫθα−1. (25)

Remark 2.2. By (16) we have

‖Eα(t)‖L(X∗) 6 Cc0,c1,ω0,M0t
α−1, ∀t > 0.

2.1.5 Solutions of the fractional evolution equations

Following the mild solution theory of fractional/normal evolution equations in
[54, 41, 46, 23], we introduce the following mild solutions. Assume that 0 < α 6

1 and 0 < T <∞. For any

g ∈ L1(0, T ; [X∗, Y ]θ) with 0 6 θ 6 1,

we call

(Sαg)(t) :=

∫ t

0

Eα(t− s)g(s) ds, a.e. 0 < t 6 T, (26)

the mild solution to the following fractional evolution equation:

(Dα
0+ −A)w = g, w(0) = 0. (27)
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For any v ∈ [X∗, Y ]θ, 0 6 θ 6 1, we call

(Sα(vδ0))(t) := Eα(t)v, 0 < t 6 T, (28)

the mild solution to (27) with g = vδ0, where δ0 is the Dirac measure in time
concentrated at t = 0. Symmetrically, for any

g ∈ L1(0, T ; [X∗, Y ]θ) with 0 6 θ 6 1,

we call

(S∗
αg)(t) :=

∫ T

t

E∗
α(s− t)g(s) ds, a.e. 0 < t < T, (29)

the mild solution to the following backward fractional evolution equation:

(Dα
T− −A∗)w = g, w(T ) = 0. (30)

For any v ∈ [X∗, Y ]θ, 0 6 θ 6 1, we call

(S∗
α(vδT ))(t) := E∗

α(T − t)v, 0 < t 6 T, (31)

the mild solution to equation (30) with g = vδT , where δT is the Dirac measure
in time concentrated at t = T .

Lemma 2.3. Assume that 0 < α, θ 6 1 and q > 1/(θα). Then

Sα ∈ L(L2(0, T ; [X∗, Y ]θ), L
2(0, T ;Y )), (32)

Sα ∈ L(Lq(0, T ; [X∗, Y ]θ), C([0, T ];Y )). (33)

Moreover, for any g ∈ Lq(0, T ; [X∗, Y ]θ) and v ∈ Y ,

((Sαg)(T ), v)Y =

∫ T

0

〈g(t), (S∗
α(vδT ))(t)〉X dt. (34)

Proof. By (21) and (26), a routine argument (cf. [9, Theorem 2.6]) yields (32)
and (33). Note that (26) and (33) imply

(Sαg)(T ) =

∫ T

0

Eα(T − t)g(t) dt,

and hence

((Sαg)(T ), v)Y =

(∫ T

0

Eα(T − t)g(t) dt, v

)

Y

=

∫ T

0

(Eα(T − t)g(t), v)Y dt

=

∫ T

0

〈g(t), E∗
α(T − t)v〉X dt (by (19))

=

∫ T

0

〈g(t), (S∗
α(vδT ))(t)〉X dt (by (31)).

This proves (34) and hence this lemma. �

Lemma 2.4. For any 0 < θ 6 1,

lim
α→1−

‖Sα − S1‖L(L1(0,T ;[X∗,Y ]θ), L1(0,T ;Y )) = 0, (35)

lim
α→1−

‖Sα − S1‖L(L∞(0,T ;[X∗,Y ]θ), C([0,T ];Y )) = 0. (36)
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Proof. Since

R(z,A)−R(zα,A) = (zα − z)R(z,A)R(zα,A) for all z ∈ Σω0 ,

a straightforward calculation gives, by (17) and Lemma 2.1, that

‖(Eα − E1)(t)‖L([X∗,Y ]θ,Y ) 6 Cc0,M0

∫ ∞

0

et cosω0r |reiω0 − (reiω0)α|
(1 + r)(1 + rθα)

dr

for all t > 0. It follows that

‖Eα − E1‖L1(0,T ;L([X∗,Y ]θ,Y )) 6 Cc0,ω0,M0

∫ ∞

0

|reiω0 − (reiω0)α|
r(1 + r)(1 + rθα)

dr.

Then Lebesgue’s dominated convergence theorem yields

lim
α→1−

‖Eα − E1‖L1(0,T ;L([X∗,Y ]θ,Y )) = 0. (37)

Since Young’s inequality implies

‖Sα − S1‖L(L1(0,T ;[X∗,Y ]θ),L1(0,T ;Y ) 6 ‖Eα − E1‖L1(0,T ;L([X∗,Y ]θ)),

by (37) we readily obtain (35). Moreover, by (26) and (33) we have

‖Sα − S1‖L(L∞(0,T ;[X∗,Y ]θ,Y ),C([0,T ];Y )) 6 ‖Eα − E1‖L1(0,T ;L([X∗,Y ]θ,Y )),

so that (37) proves (36). This completes the proof. �

Lemma 2.5. Assume that 0 < α, θ 6 1. Then for any g ∈ C([0, T ]; [X∗, Y ]θ)
we have

(Dα
0+ −A)Sαg = g (38)

and
‖Dα

0+ Sαg‖C([0,T ];[X∗,Y ](1−ǫ)θ ) + ‖ASαg‖C([0,T ];[X∗,Y ](1−ǫ)θ)

6 c‖g‖C([0,T ];[X∗,Y ]θ),
(39)

where 0 < ǫ < 1 and c is a positive constant independent of g.

Proof. Since a complete rigorous proof of this lemma is tedious but standard
(cf. [54]), we only present briefly the key ingredients of the proof.

Step 1. Define

η(t) :=
1

2πi

∫

Γω0

etzzα−1R(zα,A) dz, t > 0. (40)

A straightforward computation gives that, for any 0 < t 6 T ,

η(t) =
1

2πi

∫

Γω0

etzz−1(zα −A+A)R(zα,A) dz

=
1

2πi

∫

Γω0

etzz−1I dz +
1

2πi

∫

Γω0

etzz−1AR(zα,A) dz

= I +
1

2πi
A
∫

Γω0

etzz−1R(zα,A) dz,

9



where Γω0 is deformed so that the origin is to its left. Hence, we conclude from
(8) and Lemma 2.1 the following properties:

η ∈ C([0, T ];L([X∗, Y ]θ, X
∗)) ∩C1((0, T ];L([X∗, Y ]θ, X

∗));

η(0) = I;

η′(t) =
1

2πi
A
∫

Γω0

etzR(zα,A) dz, t > 0;

‖η′(t)‖L([X∗,Y ]θ,X∗) 6 Cc0,c1,ω0,M0t
θα−1, t > 0.

Step 2. By the theory of Laplace transform, from (26) we obtain that

(Dα−1
0+ Sαg)(t) =

∫ t

0

η(t− s)g(s) ds, 0 < t 6 T. (41)

Hence, by the properties of η presented in Step 1,

(Dα
0+ Sαg)(t) =

d

dt
(Dα−1

0+ Sαg)(t) =
d

dt

∫ t

0

η(t− s)g(s) ds

= g(t) +

∫ t

0

η′(t− s)g(s) ds

= g(t) +A
∫ t

0

1

2πi

∫

Γω0

e(t−s)zR(zα,A) dz g(s) ds

= g(t) +A
∫ t

0

Eα(t− s)g(s) ds (by (17))

= g(t) +A(Sαg)(t) (by (26))

for each 0 6 t 6 T . This implies equality (38).
Step 3. For convenience, we will use c to denote a positive constant, whose

value is independent of g but may differ at each occurrence. A routine calcula-
tion gives, by (24), (25) and (26), that

‖Sαg‖C([0,T ];[X,Y ]1−(1−ǫ)θ) 6 c‖g‖C([0,T ];[X∗,Y ]θ),

so that (8) implies

‖ASαg‖C([0,T ];[X∗,Y ](1−ǫ)θ) 6 c‖g‖C([0,T ];[X∗,Y ]θ). (42)

Since [X∗, Y ]θ is continuously embedded into [X∗, Y ](1−ǫ)θ, we have

‖g‖C([0,T ];[X∗,Y ](1−ǫ)θ) 6 c‖g‖C([0,T ];[X∗,Y ]θ). (43)

Combining (38), (42) and (43) proves (39) and thus concludes the proof. �

2.2 Continuous problem

Let Z be a Hilbert space and let Uad ⊂ L∞(0, T ;Z) be a convex, bounded and
closed subset of L2(0, T ;Z). We consider the following abstract optimal control
problem:

min
u∈Uad

Jα(u) :=
1

2
‖(SαRθ0u)(T )− yd‖2Y +

ν

2
‖u‖2L2(0,T ;Z), (44)
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where 0 < α 6 1, yd ∈ Y , ν > 0 is a regularization parameter, and Rθ0 : Z →
[X∗, Y ]θ0 is a bounded linear operator for some 0 < θ0 6 1.

Define R∗
θ0

: [X,Y ]θ0 → Z by

(R∗
θ0v, w)Z := 〈Rθ0w, v〉[X,Y ]θ0

for all v ∈ [X,Y ]θ0 and w ∈ Z. Assume that q > max{1/(θ0α), 2}. By (33),
(SαRθ0 ·)(T ) is a bounded linear operator from Lq(0, T ;Z) to Y . Clearly, Jα in
(44) is a strictly convex functional on Lq(0, T ;Z), and Uad is a convex, bounded
and closed subset of Lq(0, T ;Z). By (34), a routine argument (cf. [60, Theorems
2.14 and 2.21]) yields the following theorem.

Theorem 2.1. Problem (44) admits a unique solution u ∈ Uad, and the follow-
ing first-order optimality condition holds:





y = SαRθ0u, (45a)

p = S∗
α

(
(y(T )− yd)δT

)
, (45b)

∫ T

0

(
R∗

θ0p(t) + νu(t), v(t)− u(t)
)
Z
dt > 0 for all v ∈ Uad. (45c)

2.3 Temporally discrete problem

Let J > 1 be an integer and define tj := jτ for each j = 0, 1, 2, . . . , J , where
τ := T/J . For each Banach space X , define

Wτ (X ) := {V ∈ L∞(0, T ;X ) : V is constant on (tj−1, tj) ∀1 6 j 6 J}.

For any 0 < α < 1 and g ∈ L1(0, T ;X∗), define Sα,τg ∈ Wτ (Y ) and S∗
α,τg ∈

Wτ (Y ), respectively, by that

∫ T

0

〈(Dα
0+ −A)Sα,τg, V 〉X dt =

∫ T

0

〈g, V 〉X dt, (46)

∫ T

0

〈(Dα
T− −A∗)S∗

α,τg, V 〉X dt =

∫ T

0

〈g, V 〉X dt, (47)

for all V ∈ Wτ (X). For any g ∈ L1(0, T ;X∗), define S1,τg ∈ Wτ (Y ) and
S∗
1,τg ∈ Wτ (Y ), respectively, by that

(
(S1,τg)(0+), V (0+)

)
Y
+

J−1∑

j=1

(
(S1,τg)(tj+)− (S1,τg)(tj−), V (tj+)

)
Y

−
∫ T

0

〈AS1,τg, V 〉X dt =

∫ T

0

〈g, V 〉X dt, (48)

(
(S∗

1,τg)(T−), V (T−)
)
Y
+

J−1∑

j=1

(
(S∗

1,τg)(tj−)− (S∗
1,τg)(tj+), V (tj−)

)
Y

−
∫ T

0

〈A∗S∗
1,τg, V 〉X dt =

∫ T

0

〈g, V 〉X dt, (49)

for all V ∈ Wτ (X). We will present some properties of Sα,τ , 0 < α 6 1, in
Section 2.4.
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Remark 2.3. Scheme (48) is a famous discontinuous Galerkin method for
parabolic equations (cf. [10]), and this scheme is a variant of the backward Euler
difference scheme.

Remark 2.4. We note that the idea of using the Galerkin methods to dis-
cretize the time fractional calculus operators was firstly developed by McLean
and Mustapha [45, 52, 53, 51]. The L1 scheme [39, 57] is widely used for the
discretizations of the fractional diffusion equations. Jin et al. [24, Remark 3]
discovered that the L1 scheme is equivalent to discretization (46) with uniform
temporal grids. For the numerical analysis of discretization (46) with nonuni-
form temporal grids, we refer the reader to [36, 37].

Using the variational discretization concept proposed in [19], we consider the
following temporally discrete problem:

min
U∈Uad

Jα,τ (U) :=
1

2
‖(Sα,τRθ0U)(T−)− yd‖2Y +

ν

2
‖U‖2L2(0,T ;Z). (50)

Note that (56) implies that (Sα,τRθ0 ·)(T−) is a bounded linear operator from
L2(0, T ;Z) to Y . In addition, Uad is a convex, bounded and closed subset of
L2(0, T ;Z). Hence, applying [60, Theorems 2.14 and 2.21] to problem (50)
yields the following theorem, by Lemma 2.6.

Theorem 2.2. Problem (50) admits a unique solution U ∈ Uad, and the fol-
lowing first-order optimality condition holds:





Y = Sα,τRθ0U, (51a)

P = S∗
α,τ

(
(Y (T−)− yd)δ̂T

)
, (51b)

∫ T

0

(
R∗

θ0P (t) + νU(t), V (t)− U(t)
)
Z
dt > 0 for all V ∈ Uad, (51c)

where

δ̂T :=

{
0 if 0 < t < T − τ,

τ−1 if T − τ < t < T.
(52)

A simple modification of the proof of [38, Theorem 4.3] yields the following
error estimate, by Lemma 2.7.

Theorem 2.3. Assume that 0 < α 6 1. Let u and y be defined in Theorem 2.1,
and let U and Y be defined in Theorem 2.2. Then

‖(y − Y )(T−)‖Y +
√
ν‖u− U‖L2(0,T ;Z)

6 Cc0,ω0,M0,T

(
‖yd‖Y + ‖Rθ0‖L(Z,[X∗,Y ]θ0 )

‖u‖L∞(0,T ;Z)

)
×

(
1/(θ0α) +

√
ε(α, θ0, J) + ε(α, θ0, J)τ

θ0α/2
)
τθ0α/2.

(53)

where

ε(α, θ, J) :=

{
1
θα + 1−Jθα−1

1−θα if θα 6= 1,

ln J if θα = 1.
(54)
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2.4 Properties of Sα,τ

Assume that 0 < α 6 1 and g ∈ L1(0, T ;X∗). Define {Wj}Jj=1 ⊂ Y as follows:
for any 1 6 k 6 J ,

b1Wk +

k−1∑

j=1

(bk−j+1 − 2bk−j + bk−j−1)Wj − ταAWk = τα−1

∫ tk

tk−1

g(t) dt (55)

in X∗, where bj := j1−α/Γ(2 − α) for each 0 6 j 6 J . A straightforward
computation yields that (cf. [24, Remark 3])

(Sα,τg)(tj−) =Wj ∀1 6 j 6 J.

Hence, we conclude from (55) and Lemma 2.1 that, for any 0 6 β 6 1,

Sα,τ ∈ L
(
L1(0, T ; [X∗, Y ]1−β), L

∞(0, T ; [X,Y ]β)
)

(56)

and
lim

α→1−
‖Sα,τ − S1,τ‖L(L1(0,T ;[X∗,Y ]1−β), L∞(0,T ;[X,Y ]β)) = 0. (57)

Symmetrically, for any 0 6 β 6 1 we have that

S∗
α,τ ∈ L

(
L1(0, T ; [X∗, Y ]1−β), L

∞(0, T ; [X,Y ]β)
)

(58)

and
lim

α→1−
‖S∗

α,τ − S∗
1,τ‖L(L1(0,T ;[X∗,Y ]1−β), L∞(0,T ;[X,Y ]β)) = 0. (59)

Lemma 2.6. Assume that 0 < α 6 1. For any f ∈ L1(0, T ;X∗) and g ∈
L1(0, T ;Y ), ∫ T

0

(Sα,τf, g)Y dt =

∫ T

0

〈f, S∗
α,τg〉X dt. (60)

Proof. Assume that 0 < α < 1. By (58) we have S∗
α,τg ∈Wτ (X), and then (47)

and the density of X in Y yield that

∫ T

0

(
(Dα

T− −A∗)S∗
α,τg, V

)
Y
dt =

∫ T

0

(g, V )Y dt (61)

for all V ∈ Wτ (Y ). Hence,

∫ T

0

(Sα,τf, g)Y dt =

∫ T

0

(
Sα,τf, (D

α
T− −A∗)S∗

α,τg
)
Y
dt

=

∫ T

0

〈(Dα
0+ −A)Sα,τf, S∗

α,τg〉X dt (by (4) and (6))

=

∫ T

0

〈f, S∗
α,τg〉X dt (by (46)).

This proves (60) for 0 < α < 1. For the proof of (60) with α = 1, we refer the
reader to [59, Chapter 12]. �
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Lemma 2.7. Assume that 0 < α, θ 6 1 and p ∈ {1,∞}. For any g ∈
Lp(0, T ; [X∗, Y ]θ) we have

‖(Sα − Sα,τ )g‖Lp(0,T ;Y ) 6 Cc0,ω0,M0ε(α, θ, J)τ
θα‖g‖Lp(0,T ;[X∗,Y ]θ), (62)

and for any v ∈ Y we have

‖Sα(vδ0)− Sα,τ (vδ̂0)‖L1(0,T ;[X,Y ]θ)
6 Cc0,ω0,M0ε(α, θ, J)τ

θα‖v‖Y , (63)

where ε(·, ·, ·) is defined by (54) and

δ̂0(t) :=

{
t−1
1 if 0 < t < t1,

0 if t1 < t < T.
(64)

The main task of the rest of this subsection is to prove Lemma 2.7. Firstly,
we summarize some auxiliary results in [38]. Assume that 0 < α < 1. For any
z ∈ C \ {0} with −π 6 ℑz 6 π, define

ψα(z) := (ez − 1)2
∞∑

k=−∞

(z + 2kπi)α−2. (65)

There exists π/2 < ω∗ 6 ω0, depending only on ω0, such that

e−zψα(z) ∈ Σω0 for all z ∈ Σω∗ with −π 6 ℑz 6 π (66)

and that, for any z ∈ Υω∗ \ {0},

|e−zψα(z)| > Cω0 |z|α, (67)

|ψα(z)− zα| 6 Cω0 |z|α+1. (68)

Define
Eα(t) := τ−1Eα,⌊t/τ⌋, t > 0, (69)

where ⌊·⌋ is the floor function and

Eα,j :=
1

2πi

∫

Υω∗

ejzR(τ−αe−zψα(z),A) dz, j ∈ N. (70)

Following the proof of [38, Lemma 3.5], we obtain that, for any g ∈ L1(0, T ;Y ),

(Sα,τg)(tj−) =

∫ tj

0

Eα(tj − t)g(t) dt ∀1 6 j 6 J. (71)

Since (11), (66), (67), (69) and (70) imply ‖Eα‖L∞(0,T ;L(X∗,Y )) <∞, from (56)
and the fact that L1(0, T ;Y ) is dense in L1(0, T ;X∗) we conclude that (71)
holds for all g ∈ L1(0, T ;X∗).

Secondly, we present some auxiliary estimates in the following three lemmas.

Lemma 2.8. For any 0 < α < 1, 0 6 θ 6 1 and z ∈ Υω∗ \ {0},

‖ezR(τ−αzα,A)−R(τ−αe−zψα(z),A)‖L(Y,[X,Y ]θ) 6
Cc0,ω0,M0 |z|

1 + (τ−α|z|α)θ
, (72)

‖ezR(τ−αzα,A)−R(τ−αe−zψα(z),A)‖L([X∗,Y ]θ,Y ) 6
Cc0,ω0,M0 |z|

1 + (τ−α|z|α)θ
. (73)
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Proof. A straightforward computation gives

ezR(τ−αzα,A)−R(τ−αe−zψα(z),A)

=
(
τ−α

(
ψα(z)− zα) + (1− ez)A

)
R(τ−αzα,A)R(τ−αe−zψα(z),A)

= I1 + I2,

where

I1 := τ−α(ψα(z)− zα)R(τ−αzα,A)R(τ−αe−zψα(z),A),

I2 := (1 − ez)AR(τ−αzα,A)R(τ−αe−zψα(z),A).

We conclude from (9), (66) and (67) that, for any 0 6 β 6 1,

‖R(τ−αzα,A)‖L(Y,[X,Y ]β) 6 CM0(1 + (τ−α|z|α)β)−1, (74)

‖R(τ−αe−zψα(z),A)‖L(Y,[X,Y ]β) 6 Cc0,ω0,M0(1 + (τ−α|z|α)β)−1. (75)

For I1 we have, by (68), (74) and (75),

‖I1‖L(Y,[X,Y ]θ)

6 Cω0τ
−α|z|α+1‖R(τ−αzα,A)‖L(Y,[X,Y ]θ)‖R(τ

−αe−zψα(z),A)‖L(Y )

6
Cc0,ω0,M0τ

−α|z|α+1

(
1 + τ−α|z|α

)(
1 + (τ−α|z|α)θ

) 6
Cc0,ω0,M0 |z|

1 + (τ−α|z|α)θ
.

Since

‖AR(τ−αzα,A)R(τ−αe−zψα(z),A)‖L(Y,[X,Y ]θ)

= ‖(τ−αzαR(τ−αzα,A)− I)R(τ−αe−zψα(z),A)‖L(Y,[X,Y ]θ)

6 ‖τ−αzαR(τ−αzα,A)‖L(Y,[X,Y ]θ)‖R(τ−αe−zψα(z),A)‖L(Y )

+ ‖R(τ−αe−zψα(z),A)‖(Y,[X,Y ]θ)

6
Cc0,ω0,M0

1 + (τ−α|z|α)θ (by (74) and (75)),

we obtain

‖I2‖L(Y,[X,Y ]θ) 6
Cc0,ω0,M0 |z|

1 + (τ−α|z|α)θ .

Combining the above estimates of I1 and I2 proves (72). Since (73) can be
derived analogously, this completes the proof. �

Lemma 2.9. Assume that 0 < α < 1 and 0 6 θ 6 1. Then

max
16j6J

j2−θα‖Eα(tj)− Eα(tj−)‖L(Y,[X,Y ]θ) 6 Cc0,ω0,M0τ
θα−1, (76)

max
16j6J

j2−θα‖Eα(tj)− Eα(tj−)‖L([X∗,Y ]θ,Y ) 6 Cc0,ω0,M0τ
θα−1. (77)

Proof. For each 1 6 j 6 J , inserting t = tj into (17) yields

Eα(tj) =
1

2πi

∫

Γω∗

etjzR(zα,A) dz =
τ−1

2πi

∫

Γω∗

ejzR(τ−αzα,A) dz,
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and so we conclude from (69) and (70) that

Eα(tj)− Eα(tj−) = I1 + I2,

where

I1 :=
τ−1

2πi

∫

Γω∗\Υω∗

ejzR(τ−αzα,A) dz,

I2 :=
τ−1

2πi

∫

Υω∗

e(j−1)z
(
ezR(τ−αzα,A)−R(τ−αe−zψα(z),A)

)
dz.

A straightforward computation gives

‖I1‖L(Y,[X,Y ]θ)

6 Cc0,M0τ
−1

∫ ∞

π/ sinω∗

ej cosω
∗r
(
1 + (τ−αrα)θ

)−1
dr (by (9))

< Cc0,M0τ
θα−1

∫ ∞

π/ sinω∗

ej cosω
∗rr−θα dr

< Cc0,M0τ
θα−1

∫ ∞

π/ sinω∗

ej cosω
∗r dr

< Cc0,ω0,M0τ
θα−1j−1ejπ cotω∗

and

‖I2‖L(Y,[X,Y ]θ)

< Cc0,ω0,M0τ
−1

∫ π/ sinω∗

0

e(j−1) cosω∗rr(1 + (τ−αrα)θ)−1 dr (by (72))

< Cc0,ω0,M0τ
θα−1

∫ π/ sinω∗

0

e(j−1) cosω∗rr1−θα dr

< Cc0,ω0,M0τ
θα−1jθα−2.

Together the above estimates of I1 and I2 yields (76). Since (77) can be proved
analogously by (11) and (73), this completes the proof. �

Lemma 2.10. For any 0 < α < 1 and 0 < θ 6 1,

‖Eα − Eα‖L1(0,T ;L(Y,[X,Y ]θ)) 6 Cc0,ω0,M0

( 1

θα
+

1− Jθα−1

1− θα

)
τθα, (78)

‖Eα − Eα‖L1(0,T ;L([X∗,Y ]θ,Y )) 6 Cc0,ω0,M0

( 1

θα
+

1− Jθα−1

1− θα

)
τθα. (79)

Proof. By (20) we have

‖Eα − Eα(t1)‖L1(0,t1;L(Y,[X,Y ]θ)) < Cc0,ω0,M0τ
θα/(θα), (80)

and a straightforward calculation gives

J∑

j=2

‖Eα − Eα(tj)‖L1(tj−1,tj ;L(Y,[X,Y ]θ))

6 τ‖E′
α‖L1(t1,T ;L(Y,[X,Y ]θ))

6 Cc0,ω0,M0τ

∫ T

t1

tθα−2 dt (by (22))

= Cc0,ω0,M0τ
θα(1− Jθα−1)/(1− θα). (81)
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It follows that
J∑

j=1

‖Eα − Eα(tj)‖L1(tj−1,tj ;L(Y,[X,Y ]θ))

6 Cc0,ω0,M0

( 1

θα
+

1− Jθα−1

1− θα

)
τ θα.

In addition, by (76),

J∑

j=1

τ‖Eα(tj)− Eα(tj−)‖L(Y,[X,Y ]θ) 6 Cc0,ω0,M0τ
θα

J∑

j=1

jθα−2

6 Cc0,ω0,M0τ
θα(1− Jθα−1)/(1− θα).

Consequently,

‖Eα − Eα‖L1(0,T ;L(Y,[X,Y ]θ))

6

J∑

j=1

(
‖Eα − Eα(tj)‖L1(tj−1,tj ;L(Y,[X,Y ]θ)) +

τ‖Eα(tj)− Eα(tj−)‖L1(tj−1,tj ;L(Y,[X,Y ]θ))

)

6 Cc0,ω0,M0

( 1

θα
+

1− Jθα−1

1− θα

)
τθα,

which proves (78). Since (79) can be proved analogously by (21), (23) and (77),
this completes the proof. �

Thirdly, we prove that (62) holds for 0 < α < 1 and p = 1.

Lemma 2.11. Assume that 0 < α < 1 and 0 < θ 6 1. For any g ∈
L1(0, T ; [X∗, Y ]θ), we have

‖(Sα − Sα,τ )g‖L1(0,T ;Y ) 6 Cc0,ω0,M0

( 1

θα
+

1− Jθα−1

1− θα

)
τθα‖g‖L1(0,T ;[X∗,Y ]θ).

(82)

Proof. Step 1. Let us prove
∫ T

0

∥∥∥∥
∫ t

0

(Eα(t− s)− Eα(t− s+ τ))g(s) ds

∥∥∥∥
Y

dt

6 Cc0,ω0,M0

(
1

θα
+

1− Jθα−1

1− θα

)
τθα‖g‖L1(0,T ;[X∗,Y ]θ).

(83)

A straightforward computation gives
∫ τ

0

‖Eα(t)− Eα(t+ τ)‖L([X∗,Y ]θ,Y ) dt 6 Cc0,ω0,M0τ
θα/(θα) (by (21))

and
∫ T

τ

‖Eα(t)− Eα(t+ τ)‖L([X∗,Y ]θ,Y ) dt

6 Cc0,ω0,M0τ

∫ T

τ

tθα−2 dt (by (23))

6 Cc0,ω0,M0τ
θα(1− Jθα−1)/(1− θα).
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It follows that

∫ T

0

‖Eα(t)− Eα(t+ τ)‖L([X∗,Y ]θ,Y ) 6 Cc0,ω0,M0

(
1

θα
+

1− Jθα−1

1− θα

)
τθα.

Hence, (83) follows from the estimate

∫ T

0

∥∥∥
∫ t

0

(
Eα(t− s)− Eα(t− s+ τ)

)
g(s) ds

∥∥∥
Y
dt

6

∫ T

0

∫ t

0

‖Eα(t− s)− Eα(t− s+ τ)‖L([X∗,Y ]θ,Y )‖g(s)‖[X∗,Y ]θ ds dt

=

∫ T

0

∫ T

s

‖Eα(t− s)− Eα(t− s+ τ)‖L([X∗,Y ]θ,Y )‖g(s)‖[X∗,Y ]θ dt ds

=

∫ T

0

∫ T−s

0

‖Eα(r)− Eα(r + τ)‖L([X∗,Y ]θ,Y ) dr ‖g(s)‖[X∗,Y ]θ ds

6 ‖g‖L1(0,T ;[X∗,Y ]θ)

∫ T

0

‖Eα(r) − Eα(r + τ)‖L([X∗,Y ]θ,Y ) ds.

Step 2. Let us prove that

∫ T

0

∥∥∥
∫ t

0

Eα(t− s+ τ )g(s)−G(t)
∥∥∥
Y
dt 6 Cc0,ω0,M0

1− Jθα−1

1− θα
τ θα‖g‖L1(0,T ;[X∗,Y ]θ)

,

(84)

where G ∈ Wτ (Y ) is defined by

G(tj−) :=

j∑

k=1

Eα(tj − tk + τ)

∫ tk

tk−1

g(s) ds, 1 6 j 6 J. (85)

For any tj−1 < t < tj with 1 6 j 6 J , by (21) we have

∥∥∥
∫ t

tj−1

Eα(t− s+ τ)g(s) ds − Eα(τ)

∫ tj

tj−1

g(s) ds
∥∥∥
Y

6 Cc0,ω0,M0τ
θα−1‖g‖L1(tj−1,tj ;[X∗,Y ]θ),

and by (23) we have

∥∥∥
j−1∑

k=1

∫ tk

tk−1

(
Eα(t− s+ τ)− Eα(tj − tk + τ)

)
g(s) ds

∥∥∥
Y

6 Cc0,ω0,M0

j−1∑

k=1

τ(tj − tk + τ)θα−2‖g‖L1(tk−1,tk;[X∗,Y ]θ)

= Cc0,ω0,M0τ
θα−1

j−1∑

k=1

(j − k + 1)θα−2‖g‖L1(tk−1,tk;[X∗,Y ]θ).
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Hence, for each tj−1 < t < tj with 1 6 j 6 J ,

∥∥∥
∫ t

0

Eα(t− s+ τ)g(s) ds−G(tj−)
∥∥∥
Y

6

∥∥∥
∫ t

tj−1

Eα(t− s+ τ)g(s) ds − Eα(τ)

∫ tj

tj−1

g(s) ds
∥∥∥
Y
+

+

∥∥∥∥∥

j−1∑

k=1

∫ tk

tk−1

(
Eα(t− s+ τ)− Eα(tj − tk + τ)

)
g(s) ds

∥∥∥∥∥
Y

(by (85))

6 Cc0,ω0,M0τ
θα−1

j∑

k=1

(j − k + 1)θα−2‖g‖L1(tk−1,tk;[X∗,Y ]θ).

It follows that, for each 1 6 j 6 J ,

∫ tj

tj−1

∥∥∥
∫ t

0

Eα(t+ τ − s)g(s) ds−G(t)
∥∥∥
Y
dt

6 Cc0,ω0,M0τ
θα

j∑

k=1

(j − k + 1)θα−2‖g‖L1(tk−1,tk;[X∗,Y ]θ).

Therefore,

∫ T

0

∥∥∥
∫ t

0

Eα(t+ τ − s)g(s) ds−G(t)
∥∥∥
Y
dt

6 Cc0,ω0,M0τ
θα

J∑

j=1

j∑

k=1

(j − k + 1)θα−2‖g‖L1(tk−1,tk;[X∗,Y ]θ)

= Cc0,ω0,M0τ
θα

J∑

k=1

J∑

j=k

(j − k + 1)θα−2‖g‖L1(tk−1,tk;[X∗,Y ]θ)

6 Cc0,ω0,M0τ
θα‖g‖L1(0,T ;[X∗,Y ]θ)

J∑

m=1

mθα−2.

The desired estimate (84) then follows from the simple inequality

J∑

m=1

mθα−2 < 1 +
1− Jθα−1

1− θα
. (86)

Step 3. Let us prove that

∫ T

0

‖(Sα,τg)(t)−G(t)‖Y dt 6 Cc0,ω0,M0

1− Jθα−1

1− θα
τθα‖g‖L1(0,T ;[X∗,Y ]θ). (87)
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Noting that Sα,τg and G are piecewise constant, we have

∫ T

0

‖(Sα,τg)(t)−G(t)‖
Y

dt

=

J∑

j=1

τ ‖(Sα,τg)(tj−)−G(tj−)‖Y

6

J∑

j=1

τ
∥∥∥

j∑

k=1

(
Eα((tj−tk+τ )−)− Eα(tj−tk+τ )

) ∫ tk

tk−1

g(s) ds
∥∥∥
Y
(by (71) and (85))

6

J∑

j=1

τ

j∑

k=1

‖Eα((tj − tk + τ )−)− Eα(tj − tk + τ )‖L([X∗,Y ]θ,Y )

∫ tk

tk−1

‖g(s)‖[X∗,Y ]θ ds

=τ
J∑

k=1

J∑

j=k

‖Eα((tj − tk + τ )−)−Eα(tj − tk + τ )‖L([X∗,Y ]θ,Y )

∫ tk

tk−1

‖g(s)‖[X∗,Y ]θ ds

6 τ‖g‖L1(0,T ;[X∗,Y ]θ)

J∑

m=1

‖Eα(tm−)− E(tm)‖L([X∗,Y ]θ,Y )

6 Cc0,ω0,M0τ
θα‖g‖L1(0,T ;[X∗,Y ]θ)

J∑

m=1

mθα−2 (by (77)).

Hence, (87) follows from (86).
Step 4. By (26) we have

‖(Sα − Sα,τ )g‖L1(0,T ;Y )

6

∫ T

0

∥∥∥
∫ t

0

(Eα(t− s)− Eα(t− s+ τ))g(s) ds
∥∥∥
Y
dt

+

∫ T

0

∥∥∥
∫ t

0

Eα(t− s+ τ)g(s) ds −G(t)‖Y dt

+

∫ T

0

‖(Sα,τg)(t)−G(t)‖Y dt.

Therefore, combining (83), (84) and (87) proves (82) and thus concludes the
proof. �

Fourthly, let us prove that (62) holds for 0 < α < 1 and p = ∞.

Lemma 2.12. Assume that 0 < α < 1 and 0 < θ 6 1. For any g ∈
L∞(0, T ; [X∗, Y ]θ) we have

‖(Sα − Sα,τ )g‖L∞(0,T ;Y )

6 Cc0,ω0,M0

(
1

θα
+

1− Jθα−1

1− θα

)
τθα‖g‖L∞(0,T ;[X∗,Y ]θ).

(88)

Proof. By virtue of (26) and (71) we have that

max
16j6J

‖(Sαg)(tj)− (Sα,τg)(tj−)‖Y

6 ‖Eα − Eα‖L1(0,T ;L([X∗,Y ]θ,Y ))‖g‖L∞(0,T ;[X∗,Y ]θ),
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so that (79) implies that

max
16j6J

‖(Sαg)(tj)− (Sα,τg)(tj−)‖Y

6 Cc0,ω0,M0

(
1

θα
+

1− Jθα−1

1− θα

)
‖g‖L∞(0,T ;[X∗,Y ]θ).

It remains therefore to prove that

max
16j6J

‖Sαg − (Sαg)(tj)‖L∞(tj−1,tj ;Y )

6 Cc0,ω0,M0

(
1

θα
+

1− Jθα−1

1− θα

)
τθα‖g‖L∞(0,T ;[X∗,Y ]θ).

But this is easily derived by (21), (23) and (26); see the proof of [9, Thoerem
2.6] for the relevant techniques. This completes the proof. �

Finally, we are in a position to conclude the proof of Lemma 2.7 as follows.

Proof of Lemma 2.7. Let us first prove (62). By Lemmas 2.11 and 2.12 we
have that (62) holds for all 0 < α < 1 and p ∈ {1,∞}, so that passing to the
limit α → 1 yields, by Lemma 2.4 and (57), that (62) holds for all 0 < α 6 1
and p ∈ {1,∞}.

Then let us prove (63). Assume that 0 < α < 1. Combining (64) and (71)
gives that

(Sα,τ (vδ̂0))(tj−) = Eα(tj−)v, 1 6 j 6 J,

and so (28) implies

‖Sα(vδ0)− Sα,τ (vδ̂0)‖L1(0,T ;[X,Y ]θ)

6 ‖Eα − Eα‖L1(0,T ;L(Y,[X,Y ]θ))‖v‖Y .

Therefore, (78) proves that (63) holds for each 0 < α < 1. A simple modification
of the proof of (37) gives

lim
α→1−

‖Eα − E1‖L1(0,T ;L(Y,[X,Y ]θ)) = 0,

so that (28) implies

lim
α→1−

‖Sα(vδ0)− S1(vδ0)‖L1(0,T ;[X,Y ]θ) = 0.

Moreover, (57) yields

lim
α→1−

‖Sα,τ (vδ̂0)− S1,τ (vδ̂0)‖L1(0,T ;[X,Y ]θ) = 0.

Therefore, passing to the limit α → 1− in (63) yields that (63) holds with α = 1.
This completes the proof of Lemma 2.7. �
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3 A Dirichlet boundary control problem

Assume that 0 < α 6 1, 0 < T < ∞, and Ω ⊂ Rd (d = 2, 3) is a bounded
convex polygonal domain with boundary ∂Ω. Define

Uad :=
{
v ∈ L2(0, T ;L2(∂Ω)) : u∗ 6 v(x, t) 6 u∗ for a.e. (x, t) ∈ ∂Ω× (0, T )

}
,

where u∗ and u∗ are two given constants. For any y ∈ C((0, T ];L2(Ω)) and
u ∈ L2(0, T ;L2(∂Ω)), define

Jα(y, u) :=
1

2
‖y(T )− yd‖2L2(Ω) +

ν

2
‖u‖2L2(0,T ;L2(∂Ω)), (89)

where yd ∈ L2(Ω) and ν > 0 is a regularization parameter. We are concerned
with the following optimal Dirichlet boundary control problem:

Minimize Jα(y, u) subject to u ∈ Uad and




(∂α0+ −∆)y = 0 in Ω× (0, T )

y = u on ∂Ω× (0, T )

y(·, 0) = 0 in Ω.

(90)

Here, ∂α0+, a fractional partial differential operator, is the scalar-valued version
of Dα

0+ with respect to the time variable t.
To apply the theory in the previous section to problem (90), we will use the

following settings:

A := ∆; A∗ := ∆; X := H1
0 (Ω) ∩H2(Ω); Y := L2(Ω); Z := L2(∂Ω);

the operator Rθ0 : Z → [X∗, Y ]θ0 , 0 < θ0 < 1/4, is defined by that

〈Rθ0w, v〉[X,Y ]θ0
:= −〈w, ∂nv〉∂Ω (91)

for all w ∈ Z and v ∈ [X,Y ]θ0 , where ∂nv is the outward normal derivative of
v on ∂Ω. By the well-known trace inequality that

‖v‖Z 6
CΩ√
ǫ
‖v‖[X,Y ]3/4−ǫ

for all v ∈ [X,Y ]3/4−ǫ with 0 < ǫ 6 3/4, (92)

we readily conclude that, for any 0 < θ0 < 1/4,

‖Rθ0‖L(Z,[X∗,Y ]θ0)
6

CΩ√
1− 4θ0

. (93)

Remark 3.1. For the techniques to prove (92), we refer the reader to [56, 3,
Ch. VI], [58, Lemmas 16.1 and 23.1] and [42, Corollary 4.37].

Let u and y be defined in Theorem 2.1, and let U and Y be defined in
Theorem 2.2. A straightforward calculation gives, by (53) and (93), that

‖(y − Y )(T−)‖Y +
√
ν‖u− U‖L2(0,T ;Z)

6 Cu∗,u∗,T,Ω

(
‖yd‖Y + (1 − 4θ0)

−1/2
)
(θ0α)

−1τθ0α/2
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for all 0 < θ0 < 1/4. Assuming τ < exp(−4) and inserting θ0 = 1/4−1/ ln(1/τ)
into the above inequality, we then obtain

‖(y − Y )(T−)‖Y +
√
ν‖u− U‖L2(0,T ;Z)

6 Cu∗,u∗,T,Ω α
−1
(
‖yd‖L2(Ω) +

√
ln(1/τ)

)
τα/8.

(94)

Remark 3.2. For the case α = 1, [29, 30, 33, 31, 32] used

−A
∫ t

0

E1(t− s)(−A)−1Rθ0u(s) ds, 0 6 t 6 T,

as the solution of the state equation of problem (90) with u ∈ L2(0, T ;Z). It is
evident that the above solution is exactly S1Rθ0u.

It remains to prove that SαRθ0u is a sensible solution to the state equation
of problem (90) for each u ∈ L2(0, T ;Z). To this end, we first introduce the
very weak solution concept of the state equation, following the idea in [40]. For
any 0 < α < 1 and g ∈ L2(0, T ;Y ), there exists a unique w ∈ 0Hα(0, T ;Y ) ∩
L2(0, T ;X) such that (cf. [36, 43])

(Dα
T− −A)w = g

and
‖w‖0Hα(0,T ;Y ) + ‖w‖L2(0,T ;X) 6 Cα‖g‖L2(0,T ;L2(Ω)).

For α = 1 the above results are standard (cf. [12]). Hence, by the method of
transposition (cf. [40]), we define the very weak solution y ∈ L2(0, T ;Y ) to the
state equation of problem (90) with u ∈ L2(0, T ;Z) by that

∫ T

0

(
y, (Dα

T− −A)ϕ
)
Y
dt = −〈u, ∂nϕ〉∂Ω×(0,T )

for all ϕ ∈ 0Hα(0, T ;Y ) ∩ L2(0, T ;X).
Then we will prove that, for any 0 < θ0 < 1/4 and u ∈ L2(0, T ;Z), SαRθ0u

is identical to the very weak solution to the state equation of problem (90), and
hence the application of the theory in the previous section to problem (90) is
reasonable.

Lemma 3.1. Assume that 0 < α 6 1 and 0 < θ0 < 1/4. Then SαRθ0u is the
very weak solution to the state equation of problem (90) for each u ∈ L2(0, T ;Z).

Proof. We only prove the case 0 < α < 1, the proof of the case α = 1 being
easier. Assume first that u ∈ C([0, T ];Z). By Lemma 2.5 we have

(Dα
0+ −A)SαRθ0u = Rθ0u

and
Dα

0+ SαRθ0u, ASαRθ0u ∈ C([0, T ];X∗). (95)

Hence, for any ϕ ∈ 0Hα(0, T ;Y ) ∩ L2(0, T ;X) we have

∫ T

0

〈(Dα
0+ −A)SαRθ0u, ϕ〉X dt =

∫ T

0

〈Rθ0u, ϕ〉X dt. (96)
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Because (95) implies Dα
0+ SαRθ0u ∈ L2(0, T ;X∗), by [43, Lemma 3.4] we have

SαRθ0u ∈ 0H
α(0, T ;X∗).

Also, (95) and (15) imply

SαRθ0u ∈ L2(0, T ;Y ).

Consequently, by (4) we have

∫ T

0

〈Dα
0+ SαRθ0u, ϕ〉X dt =

∫ T

0

(SαRθ0u, D
α
T− ϕ)Y dt,

and it is evident by (6) that

∫ T

0

〈−ASαRθ0u, ϕ〉X dt =

∫ T

0

(SαRθ0u,−A∗ϕ)Y dt.

Combining (96) and the above two equations gives

∫ T

0

(
SαRθ0u, (D

α
T− −A∗)ϕ

)
Y
dt =

∫ T

0

〈Rθ0u, ϕ〉X dt.

The arbitrariness of ϕ ∈ 0Hα(0, T ;Y )∩L2(0, T ;X) proves that SαRθ0u is indeed
the very weak solution. The general case u ∈ L2(0, T ;Z) then follows from a
standard density argument by

SαRθ0 ∈ L(L2(0, T ;Z), L2(0, T ;Y )),

which is a direct consequence of (32) and the fact Rθ0 ∈ L(Z, [X∗, Y ]θ0). This
completes the proof. �

4 Numerical results

This section performs three numerical experiments in two-dimensional space to
verify the theoretical results. We will use the following settings: Ω := (0, 1) ×
(0, 1); T = 0.1; X , Y , Z, Rθ0 and Uad are defined as in Section 3.

Experiment 1. Define

g(t) :=

{
1 if 0 < t < 2/3T,

3 if 2/3T < t < T,

v(x, y) :=

{
y−1/2 if (x, y) ∈ {(0, y) : 0 < y < 1},
0 if (x, y) ∈ ∂Ω \ {(0, y) : 0 < y < 1}.

To approximate SαRθ0(gv), we use discretization (46)(0 < α < 1) or (48)(α =
1) in time and use the usual H1(Ω)-conforming P1-element method in space.
Let UM be the corresponding numerical approximation with time step τ =
T/2M and spatial mesh size h = 2−9. Estimates (62) and (93) predict that
‖UM − U13‖L∞(0,T ;L2(Ω)) is close to O(τ0.125) for α = 0.5 and close to O(τ0.25)
for α = 1, and this is confirmed by the numerical results in Table 1.

24



α = 0.5 α = 1

M ‖UM − U13‖L∞(L2) Order ‖UM − U13‖L∞(L2) Order

4 6.93e-1 – 4.34e-1 –
6 6.26e-1 0.07 3.23e-1 0.21
8 5.51e-1 0.09 2.24e-1 0.26
10 4.96e-1 0.08 1.62e-1 0.24

Table 1: ‖·‖L∞(L2) means the norm ‖·‖L∞(0,T ;L2(Ω))

Experiment 2. Define

v(x, y) := x−1/2 for all (x, y) ∈ Ω.

To approximate Sα(vδ0), we use discretization (46)(0 < α < 1) or (48)(α = 1)
in time and use the usual H1(Ω)-conforming P1-element method in space. Let
UM be the corresponding numerical approximation with time step τ = T/2M

and spatial mesh size h = 2−9. Table 2 illustrates that ‖UM − U13‖L1(0,T ;H1
0 (Ω))

is close to O(τ0.25) for α = 0.5 and close to O(τ0.5) for α = 1, which agrees well
with estimate (63).

α = 0.5 α = 1

M ‖UM − U13‖L1(H1
0 )

Order ‖UM − U13‖L1(H1
0 )

Order

4 1.71e-0 – 4.24e-1 –
5 1.46e-0 0.23 3.01e-1 0.49
6 1.23e-0 0.25 2.10e-1 0.52
7 1.02e-0 0.27 1.45e-1 0.54

Table 2: ‖·‖L1(H1
0 )

means the norm ‖·‖L1(0,T ;H1
0 (Ω))

Experiment 3. Let ν := 10, u∗ := 0, u∗ := 20 and

yd(x, y) := 1 for all (x, y) ∈ Ω.

To approximate problem (90), we will use the temporal discretization in Sec-
tion 2.3 and the H1(Ω)-conforming P1-element method to discretize the state
equation in time and space, respectively; see [16] for the implementation details.
Let UM be the corresponding numerical solution with time step τ = T/2M

and spatial mesh size h = 2−8. The numerical results in Table 3 show that
‖UM − U13‖L2(0,T ;L2(∂Ω)) is close to O(τ

0.125), which agrees with error estimate
(94).

M ‖UM − U12‖L2(0,T ;L2(∂Ω)) Order

4 2.44e-1 –
5 2.08e-1 0.23
6 1.88e-1 0.15
7 1.66e-1 0.18

Table 3: Numerical results for Experiment 3 with α = 1
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