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Abstract

Spectral approximation based on Hermite-Fourier expansion of the Vlasov-Poisson model for a collisionless plasma in the electro-

static limit is provided, by including high-order artificial collision operators of Lenard-Bernstein type. These differential operators

are suitably designed in order to preserve the physically-meaningful invariants (number of particles, momentum, energy). In view

of time-discretization, stability results in appropriate norms are presented. In this study, necessary conditions link the magnitude of

the artificial collision term, the number of spectral modes of the discretization, as well as the time-step. The analysis, carried out

in full for the Hermite discretization of a simple linear problem in one-dimension, is then partly extended to cover the complete

nonlinear Vlasov-Poisson model.
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1. Introduction

The numerical approximation of physical systems described by kinetic equations is a formidable challenge [32].

These equations are, indeed, highly dimensional, strongly non-linear, and describe phenomena that are extremely

multi-scale, as the behavior of the physical system at macroscopic scales is influenced by the microscopic particle

dynamics. In plasma physics, scale separation occurs at the kinetic level because of the difference in mass between

electrons and ions [18]. Other important applications that may be worth mentioning can be found in fluid dynamics,

particularly, atmospheric and climate research [1], and multidimensional radiative transfer problems [24]. In all these

fields, performing macroscale simulations that accurately include effects from the underlying microscale particle

dynamics is still an open challenge.

In this work, we focus on the numerical approximation of the kinetics equation describing the behavior of electri-

cally charged particle in a noncollisional plasmas, also known as the Vlasov equation. Such equation governs the time

evolution of the distribution function of the plasma particles, through the action of an electromagnetic field generated

by the charge and current densities of the same moving particles. The resulting coupling through Maxwell’s equa-

tions (or the Poisson’s equation in the electrostatic limit) is highly nonlinear since the electromagnetic sources in such

equations, i.e., charge and current densities, depend on the same distribution functions [15].

http://arxiv.org/abs/2103.00691v1


In his historical and pioneering paper, cf. [16], Grad proposed to expand the velocity distribution function of a

noncollisional plasma at equilibrium using Hermite functions. Hermite functions are Hermite polynomials multiplied

by the Gaussian exponential function, w(v) = exp(−v2), where v is the velocity of the plasma particles. Such a

weight w is indeed the velocity distribution of a plasma at equilibrium and is a steady state solution of the Vlasov

equation. Since a plasma at equilibrium is described by the first mode of the Hermite expansion, we expect that only

a few modes may be needed to describe a plasma in a perturbed state but still close to the equilibrium. Moreover,

when the solution of the Vlasov equation is expanded on the Hermite basis functions, the equations for the first three

coefficients correspond to the conservation laws for the number of particles, momentum and energy, and determine

the macroscopic (i.e., fluid) behavior of a plasma. The following terms of the Hermite expansion introduces kinetics

effects in the model in a very straighforward manner, thus providing a strategy to realize the coupling between micro-

and macro-physics. Thus, the micro/macro coupling is an intrinsic and specific feature of the Hermite approach, which

cannot be replicated if we choose a different set of basis functions. For these reasons, Hermite functions are a sort of

“ideal” basis for solving numerically Vlasov-based models of noncollisional plasmas.

Since late sixties throughout the last five decades, Grad’s idea has extensively been applied to the development of

plasma simulators; see, for example, [2, 14, 20, 19, 35, 6, 33], where the Hermite basis for velocity is coupled with

the Fourier basis in space. A renewed interest has been manifested in very recent years towards these approximation

methods [4, 5, 9, 10], as the excellent properties mentioned above make them the natural numerical framework of

high resolution and computationally efficient solvers [39, 34]. Moreover, the accuracy of Hermite’s approximations

can be improved by order of magnitudes by introducing a translation factor, u, and a scaling factor, α, in the so-called

generalized weight,w(v) = exp
(
−((v−u)/α)2

)
, cf. [37]. Empirical evidence that a convenient choice of the scaling

factor α can improve the accuracy in Hermite discretizations of the Vlasov equation was shown in [35]. Generalized

basis function of Hermite type has been investigated for solving time-dependent parabolic problems in [25] and, more

recently, in [11] for the approximation of the Vlasov phase space. An adaptive strategy is currently under investigation,

see [31], where both u and α may change through momentum and energy following how the plasma evolves in time

during a numerical simulation. Such adaptive strategy is sought to improve the computational efficiency by using only

a few spectral modes where a macroscopic description of the system is appropriate and adding more modes where the

microscopic physics is important [38]. This aspect offers the possibility of selecting the most meaningful number of

spectral modes for a given resolution in phase space.

The strong point in favour of spectral schemes is that such schemes can be extremely accurate because of their

exceptional convergence rate, see, for example, the books referenced in [8, 7, 3, 13, 12, 36]. Their stability for Vlasov-

based systems can be ensured in different ways. If we assume that the velocity domain remains bounded during a

plasma simulation, we can use the different basis provided by Legendre polynomials and stability can be enforced

somehow through a penalty technique acting on boundary terms, see for example [28, 29]. Relaxing this assumption

yields an unbounded velocity domain and this approach is no longer feasible. In the more general case, the Vlasov

equation describe a collisionless transport phenomenon in a six-dimensional phase space, and a straightforward way to

enforce numerical stability to the discretization of an advection equation is by adding a suitable artificial dissipation

to its, otherwise zero, right-hand side. However, in the case of the Vlasov equation, using an artificial dissipation

term introduces a major issue because such modification must not destroy the conservation properties of the original

method. Discrete analogs of the total number of particles (also proportional to mass and charge of the plasma particles),

the total momentum and the total energy may indeed exist in spectral-based discretizations using, for the space term,

the Fourier expansion [19, 35, 5, 9], or the discontinuous Galerkin method [27, 26, 30, 21, 22] Conservation properties

are fundamental in long-time integration runs since they provide physically meaningful constraints on the numerical

approximation of the plasma behavior. Such constraints are strongly related to significant properties like the well-

posedness and robustness of the method, and the reliability of the numerical simulation. This fact justifies the great

effort that has been devoted in design spectral methods with such discrete conservation properties.

In the spectral discretizations of the Vlasov equation using Hermite basis functions, the conservation of number of

particles, momentum and energy is strictly related to the lowest-order modes and can be destroyed by the numerical

dissipation term. A possible way to maintain a perfect preservation of low modes, is to design such dissipation terms

through Lenard-Bernstein-like operators (see [23]) of order 2k, with integer k ≥ 1. In this case, the 1D− 1D Vlasov-

Poisson system of equations takes the form
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∂f

∂t
+ v

∂f

∂x
− E

∂f

∂v
= −(−1)kνL̃(k)L(k)f in Ω× [0, T ], (1)

∂E

∂x
= 1−

∫

Ωv

f dv in Ω× [0, T ], (2)

where f is the distribution function, E the electric field, L̃(k) and L(k) are the Lenard-Bernstein-like operators only

acting onto the velocity variable v. The positive parameter ν is a sort of artificial viscosity used to tune the action of

the differential operator L̃(k)L(k) on f . The combination L̃(k)L(k) is the Lenard-Bernstein-like operator of order 2k
and introduces a sort of artificial collisional term, i.e., a numerical dissipation, in the equation. This kind of dissipation

terms were proposed in previous works to control the filamentation process based on an empirical argument, cf. [4,

5, 9, 10, 28, 29].

Commonly, there are two different choices of Hermite functions, which are Hermite polynomials multiplied by a

suitable weight function. The classical polynomial orthogonality weighted by w(v) = e−v2

leads to the so called

asymmetrically weighted (AW) case, whereas the orthogonality of Hermite functions, each one weighted by w(v) =

e−v2/2, leads to the symmetrically weighted (SW) case. This terminology will be better clarified in the coming sec-

tions. Accordingly, we have two different definitions of the Lenard-Bernstein differential operators L̃(k) and L(k). In

both cases, the basis elements are eigenfunctions of the combined operator, and the corresponding eigenvalues are

zero regarding the first k− 1 modes. This actually says that the action of these operators does not modify such modes,

or, in other words, L̃(k)L(k) induces dissipation only for the modes starting from k. Despite these common properties,

the two discrete formulations resulting from using AW and SW Hermite functions are substantially different. In fact,

it turns out that, concerning time-discretization, the SW formulation can easily be proven to be algebraically stable

with or without the diffusive term (see [19, 35]), while for the AW formulation the issue is far more delicate. More

precisely, the stability result in the L2(Ω) norm that we are interested to investigate reads as

d

dt

∣∣∣∣f(·, ·, t)
∣∣∣∣2
L2(Ω)

≤ 0.

This inequality trivially implies the boundedness in time of f . The main criticism to the SW formulation is that,

although stable, it does not effectively preserve the lowest modes during time evolution. On the contrary, the AW

formulation perfectly conserves all the basic invariants, but its stability needs a deeper analysis. What we are able to

prove in our work is an L2(Ω) stability result when ν is sufficiently large thanks to a suitable extension of the Poincarè

inequality in weighted norms defined on the real line. The property of stability then follows by classical estimates for

bilinear forms in Sobolev spaces. When instead ν is small, the result is certainly not true in the continuous case, but

still holds in the framework of numerical discretizations, by suitably linking ν to the time discretization parameter

∆t, the final time T , and the maximum integer N used for the Hermite truncation in the variable v. We show how

to get these relations for a simple linear advection-diffusion model problem, and successively we partly extend our

arguments to equation (1).

A stability result for the Hermite approximation of 1D − 1V Vlasov-Poisson model was provided in [14], where

L2 boundedness is proven with respect to the parameter N . However, that paper fails in proving absolute stability

with respect to t, since the estimate there provided contains an exponential growth in time on the right-hand side of

the estimate inequality. The major result of our work is in achieving a stability estimate where boundedness in time is

guaranteed for all t.

The outline of the paper is as follows. In Section 2, we introduce the Hermite-based discretization framework and

discuss some useful relations. In Sections 3 and 4, we introduce the Lenard-Bernstein-like operators for the spec-

tral method using the asymmetrically weighted (AW) Hermite functions, and study their actions on the conservation

property of the Vlasov-Poisson system. In Sections 5 and 6, we do the same for the spectral method using the sym-

metrically weighted (SW) Hermite functions. In Section 7 we introduce the SW and AW Hermite discretization of the

advection problem

∂f

∂t
− ∂f

∂v
= −(−1)kνL̃(k)L(k)f, (3)

for the unknown scalar field f(v, t), with the initial condition f(v, 0) = f0(v), and in Section 8, we study how

the stabilization operator L̃(k)L(k) impact on its spectral discretization. In Section 9, we apply the implicit time
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discretization to the system of coefficient resulting from the Hermite discretization and investigate its stability using a

suitable weighted norm. In Section 10, we extend our approach to the full spectral discretization of the Vlasov-Poisson

system of equations, and derive sufficient condition to guarantee the stability of the method. In Section 11 we offer

our final remarks and conclusions.

2. Preliminary properties of the Hermite polynomials

We start by pointing out some well-known relations concerning Hermite polynomials, that, as usual, are denoted by

Hn(v) and we consider as functions of the independent variable v ∈ R, the integer number n being the degree of the

polynomial. First of all, we have the three-point recursion formula that links Hn+1 to Hn and Hn−1:

H0 = 1, H1 = 2v, (4)

Hn+1 = 2vHn − 2nHn−1, n ≥ 1 (5)

and the differential equation for Hn

H ′′

n − 2vH ′

n + 2nHn = 0, (6)

which holds for n ∈ N and where ′ and ′′ denote the first and second derivatives with respect to v. Moreover, the next

formulas link Hermite polynomials of different degrees n:

H ′

n = 2vHn −Hn+1, (7)

H ′

0 = 0 and H ′

n = 2nHn−1, ∀n ≥ 1. (8)

The relation between the Hermite polynomials and their first derivative in (8) can recursively be generalized as follows:

H(m)
n =





0 n < m,

2m
n!

(n−m)!
Hn−m n ≥ m.

(9)

Hermite polynomials are orthogonal with respect to the weight function e−v2

and are normalized in such a way

that: ∫

R

H2
ne

−v2

dv =
√
π 2n n!. (10)

By examining relation (8), it turns out that the derivatives of the Hermite polynomials are also orthogonal with

respect to the weight e−v2

. Using (8) and (10) for n ≥ 1, we can find that:
∫

R

(
H ′

n

)2
e−v2

dv = 4n2

∫

R

(
Hn−1

)2
e−v2

dv = 4n2√π 2n−1 (n− 1)!

= 2n
√
π 2n n! = 2n

∫

R

H2
ne

−v2

dv. (11)

The above relation is trivially satisfied also for n = 0. For n > m, we recursively find that
∫

R

(
H(m)

n

)2
e−v2

dv = 2m
n!

(n−m)!

∫

R

H2
ne

−v2

dv. (12)

Consider the generic function ϕ that can be expanded as a series of Hermite polynomials ϕ =
∑

∞

n=0 CnHn and its

first derivative ϕ′ =
∑

∞

n=1 CnH
′

n. The Fourier coefficients Cn of ϕ are obtained as usual:

Cn =
1√

π 2n n!

∫

R

ϕHne
−v2

dv. (13)
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Of course, ϕ has to be such that all the above integrals are finite. From the orthogonality of Hermite polynomials and

their derivatives, it follows that:
∫

R

ϕ2e−v2

dv =

∞∑

n=0

C2
n

∫

R

H2
ne

−v2

dv,

∫

R

(ϕ′)2e−v2

dv =

∞∑

n=0

C2
n

∫

R

(H ′

n)
2e−v2

dv.

The last summation can also start from n = 1 since H ′

0 = 0.

We show a few inequalities that will be used later in this paper. By isolating the effect of the first Fourier coefficients,

we can prove Poincaré-type inequalities for a linear combination of Hermite polynomials and their first derivatives

with respect to the norm induced by the weighted L2 inner product where the weight is equal to e−v2

. Indeed, the

orthogonality of the first derivatives of the Hermite polynomials, equation (11), and the fact that 2n ≥ 2 for n ≥ 1,

imply that:

∫

R

(
ϕ′
)2
e−v2

dv =

∫

R

( ∞∑

n=1

CnH
′

n

)2
e−v2

dv =

∞∑

n=1

C2
n

∫

R

(
H ′

n

)2
e−v2

dv

=

∞∑

n=1

C2
n 2n

∫

R

H2
ne

−v2

dv ≥ 2

∞∑

n=1

C2
n

∫

R

H2
ne

−v2

dv, (14)

where all summations start from n = 1 since H0 = 1 and H ′

0 = 0. Then, we add and subtract the weighted integral

of the zeroth-order mode, i.e, C2
0H

2
0 , to the last member of inequality (14) and use the expansion of ϕ, so to have

∫

R

(
ϕ′
)2
e−v2

dv ≥ 2

∞∑

n=0

C2
n

∫

R

H2
ne

−v2

dv − 2C2
0

∫

R

H2
0e

−v2

dv

= 2

∫

R

ϕ2e−v2

dv − 2
√
πC2

0 . (15)

By reversing this inequality we find that
∫

R

ϕ2e−v2

dv ≤ 1

2

∫

R

(
ϕ′
)2
e−v2

dv +
√
πC2

0 . (16)

This inequality can be generalized to derivatives of order m > 1. Since H
(m)
n = 0 for n < m, using formulas (9)

and (12), we find that

∫

R

(
ϕ(m)

)2
e−v2

dv =

∫

R

( ∞∑

n=m

CnH
(m)
n

)2
e−v2

dv =

∞∑

n=m

C2
n

∫

R

(
H(m)

n

)2
e−v2

dv

=
∞∑

n=m

C2
n 2m

n!

(n−m)!

∫

R

H2
ne

−v2

dv ≥ 2mm!
∞∑

n=m

C2
n

∫

R

H2
ne

−v2

dv, (17)

as n!/(n−m)! ≥ m! when n ≥ m. Now, we add and subtract the weighted integral of the first m modes, i.e.,(
CℓHℓ

)2
, ℓ = 0, . . . ,m− 1, to the last member of (17), and use the normalization of the Hermite polynomials to find

that
∫

R

(
ϕ(m)

)2
e−v2

dv ≥ 2mm!

(
∞∑

n=0

C2
n

∫

R

H2
ne

−v2

dv −
m−1∑

ℓ=0

C2
ℓ

∫

R

H2
ℓ e

−v2

dv

)

= 2mm!

(∫

R

ϕ2e−v2

dv −
√
π

m−1∑

ℓ=0

2ℓ ℓ!C2
ℓ

)
. (18)
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By reversing this inequality we find that

∫

R

ϕ2e−v2

dv ≤ 1

2mm!

∫

R

(
ϕ(m)

)2
e−v2

dv +
√
π

m−1∑

ℓ=0

2ℓ ℓ!C2
ℓ . (19)

The most general Poincaré-type inequality is the one involving derivatives of order m and p. Assuming that m > p

and noting that Hm = H(p+(m−p)) =
(
H(p)

)(m−p)
, a straightforward calculation exploiting the orthogonality of the

derivatives of the Hermite polynomials yields

∫

R

(
ϕ(m)

)2
e−v2

dv =

∫

R

( ∞∑

n=m

CnH
(m)
n

)2
e−v2

dv =

∫

R

( ∞∑

n=m

CnH
(p+(m−p))
n

)2
e−v2

dv

=

∞∑

n=m

C2
n 2

m−p n!

(n− (m− p))!

∫

R

(
H(p)

n

)2
e−v2

dv

≥ 2m−p (m− p)!
∞∑

n=m

C2
n

∫

R

(
H(p)

n

)2
e−v2

dv, (20)

where we also used the fact that n!/(n− (m− p))! > (m − p)! for n > 1. Then, we add and subtract the weighted

integrals of C2
ℓ

(
H

(p)
ℓ

)2
for ℓ = p, . . . , p+ (m− p)− 1, to the last member of (20) and we repeat the same argument

as above to obtain
∫

R

(
ϕ(p)

)2
e−v2

dv ≤ 1

2m−p (m− p)!

∫

R

(
ϕ(m)

)2
e−v2

dv +
m−1∑

ℓ=p

C2
ℓ

∫

R

(
H

(p)
ℓ

)2
e−v2

dv

=
1

2m−p (m− p)!

∫

R

(
ϕ(m)

)2
e−v2

dv +

m−1∑

ℓ=p

C2
ℓ 2

p ℓ!

(ℓ − p)!

∫

R

H2
ℓ e

−v2

dv

=
1

2m−p (m− p)!

∫

R

(
ϕ(m)

)2
e−v2

dv + 2p
√
π

m−1∑

ℓ=p

2ℓ
(ℓ!)2

(ℓ − p)!
C2

ℓ . (21)

In particular, if ϕ belongs to the space of polynomials of degree at most N , we have 2n ≤ 2N , so that the relations

in (14) can be adjusted to obtain the so called inverse inequality
∫

R

(
ϕ′
)2
e−v2

dv ≤ 2N

∫

R

ϕ2e−v2

dv. (22)

Another useful inequality can be derived as follows. First of all, from (7) and (8), we know that:

2vHn = H ′

n +Hn+1 = 2nHn−1 +Hn+1 ∀n ≥ 1. (23)

Afterwords, we start by showing that:
∫

R

v2H2
ne

−v2

dv =

∫

R

n2H2
n−1e

−v2

dv +
1

4

∫

R

H2
n+1e

−v2

dv

=
√
π

[
n2 2n−1 (n− 1)! +

1

4
2n+1 (n+ 1)!

]
=

√
π
[
2n−1 nn! + 2n−1(n+ 1)n!

]

=
√
π2n−1(2n+ 1)n! ≤

√
π
3

4
2n+1 nn! =

3

4

∫

R

(
H ′

n

)2
e−v2

dv, ∀n ≥ 1, (24)

where we noted that 2n+ 1 ≤ 2n+ n = 3n, since n ≥ 1. The last equality follows from (11). In short, we can write:
∫

R

v2H2
ne

−v2

dv ≤ 3

4

∫

R

(
H ′

n

)2
e−v2

dv, ∀n ≥ 1. (25)

6



In general, let us suppose that ϕ is a polynomial of degree N with C0 = 0. Thus, ϕ has an expansion of the type

ϕ =
∑N

n=1 CnHn. For a given set of values αn, the following relation is a consequence of the Schwartz inequality:

(
N∑

n=1

αn

)2

=

(
N∑

n=1

1 · αn

)2

≤
N∑

n=1

12
N∑

n=1

α2
n = N

N∑

n=1

α2
n. (26)

With the help of the above inequality, the orthogonality of the Hermite polynomials implies that:

∫

R

v2ϕ2e−v2

dv =

∫

R

v2
( N∑

n=1

CnHn

)2
e−v2

dv ≤ N

N∑

n=1

C2
n

∫

R

v2H2
ne

−v2

dv

≤ 3

4
N

N∑

n=1

C2
n

∫

R

(
H ′

n

)2
e−v2

dv =
3

4
N

∫

R

(
ϕ′
)2
e−v2

dv, (27)

which holds for every polynomial ϕ with degree less or equal to N and C0 = 0.

We end this preliminary section by introducing a few definitions concerning the Hermite functions, i.e., those func-

tions that can be written as a linear combination (finite or infinite) of the elements of the Hermite basis functions {ψn}.

Following the current literature, we will adopt a suitable notation in order to distinguish the so-called symmetrically-

weighted (SW) case, from the asymmetrically-weighted (AW) one. The reason of this setting will be made clear as we

proceed with the exposition. We then consider the following definition:

ψn(v) =

{
γSW
n Hn(v)e

−v2/2 symmetrically-weighted case,

γAW
n Hn(v)e

−v2

asymmetrically-weighted case,
(28)

for some suitable choice of the real scalar coefficients γSW
n and γAW

n (see below). Besides, we introduce the dual

basis functions defined by:

ψn(v) =

{
γ̃SW
n Hn(v)e

−v2/2 symmetrically-weighted case,

γ̃AW
n Hn(v) asymmetrically-weighted case.

(29)

The coefficients γ̃SW
n and γ̃AW

n are obtained from the orthogonality relation:

〈ψn, ψ
m〉 = δn,m. (30)

We have:

γSW
n = γ̃SW

n = (
√
π2n n!)−

1
2 , (31)

and

γAW
n = (π2n n!)−

1
2 , γ̃AW

n = (2n n!)−
1
2 . (32)

3. Diffusive operators in the AW case

Throughout the paper we will use indifferently the notation ∂f/∂v and f ′ to denote the partial derivative of func-

tions like f(v) or f(t, v), regardless of their possible dependence on time.

We begin with the study of the second-order (k = 1) differential operator that appears in the Vlasov equation (1)

and the simplified model equation (3). In the asymmetric case, this operator can be decomposed as the functional

product of the two first-order operators:

L =
1

2

∂

∂v
+ vI, L̃ =

∂

∂v
, (33)

with I the identity operator. The second operator, i.e., L̃, is just the derivative with respect to the variable v.

We investigate the action of L̃L on Hermite functions that we write in the form:

f(v) = h(v)e−v2

, (34)

7



where h is a generic polynomial. For the operator L, we have:

Lf =

(
1

2

∂

∂v
+ vI

)
f =

1

2
h′e−v2 − vhe−v2

+ vhe−v2

=
1

2
h′e−v2

. (35)

Clearly, Lf is identically zero if h is a constant. Therefore, by taking h = 1 we find that L(e−v2

) = 0.

Similarly, for k = 2 we have

L2f = L(Lf) = L

(
1

2
h′e−v2

)
=

1

4
h′′e−v2 − 1

2
vh′e−v2

+
1

2
vh′e−v2

=
1

4
h′′e−v2

, (36)

and, in general, for k ≥ 2 we have

Lkf = L(Lk−1f) =
1

2k
h(k)e−v2

. (37)

Equation (37) can be proved recursively by using (35) for the first step, assuming that Lk−1 = (1/2k−1)h(k−1)e−v2

and applying the definition of L given in (33) to derive the relation at step k.

The combination of L and L̃ provides the so called second-order Lenard-Bernstein-like operator [23]:

L̃Lf = L̃

(
1

2

∂

∂v
+ vI

)
f = L̃

(
1

2
h′e−v2

)
=

1

2
h′′e−v2 − h′ve−v2

. (38)

Within the space of polynomials, L̃Lf is zero if and only if h is constant. The combined operator is diffusive. To

prove this statement, we consider the time dependent problem for the unknown function f(v, t) = h(v, t)e−v2

:

∂f

∂t
− L̃Lf =

∂f

∂t
− ∂Lf

∂v
= 0, (39)

where again we assume that h is a polynomial with respect to v. We multiply (39) by h, integrate overR, and, then,

integrate by parts the second integrand. The boundary terms are zero since they can be expressed as a polynomial

multiplied by e−v2

, which tends to zero for |v| → ∞. Considering the expression of Lf given in (35), we obtain:

0 =

∫

R

(
∂f

∂t
− L̃Lf

)
h dv =

∫

R

(
∂f

∂t
− ∂Lf

∂v

)
h dv =

∫

R

∂f

∂t
h+

∫

R

(
Lf
)
h′ dv −

[(
Lf
)
h
]+∞

−∞

=
1

2

d

dt

∫

R

h2e−v2

dv +
1

2

∫

R

(
h′
)2
e−v2

dv. (40)

From the equation above it follows that:

d

dt

∫

R

h2e−v2

dv = −
∫

R

(
h′
)2
e−v2

dv ≤ 0, (41)

so that L̃Lf can be considered a dissipative operator for the weighted L2(R) norm.

Next, we repeat the same analysis for the fourth-order operator (k = 2). Consider again f(v, t) = h(v, t)e−v2

with

h polynomial, and the time dependent problem:

∂f

∂t
+ L̃2L2f =

∂f

∂t
+
∂2L2f

∂v2
= 0 (42)

(note the change of sign with respect to Eq. (39)). As before, we multiply (42) by h and integrate over R. Using the

integration by parts (twice), we note that all the boundary terms are zero since they always consist of a polynomial

function in v multiplied by the Gaussian function e−v2

, which tends to zero for |v| → ∞. Omitting the boundary

terms and using (36) in the next calculation, we obtain:

0 =

∫

R

(
∂f

∂t
+
∂2L2f

∂v2

)
h dv =

1

2

d

dt

∫

R

h2e−v2

dv +

∫

R

(
L2f

)
h′′ dv

=
1

2

d

dt

∫

R

h2e−v2

dv +
1

4

∫

R

(
h′′
)2
e−v2

dv. (43)
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The equations above imply that −L̃2L2f plays the role of a diffusive term, since:

d

dt

∫

R

h2e−v2

dv = −1

2

∫

R

(
h′′
)2
e−v2

dv ≤ 0. (44)

The general case can be handled in a very similar way. We write the time-dependent problem with the 2k-th order

operator as follows:

∂f

∂t
+ (−1)kL̃kLkf =

∂f

∂t
+ (−1)k

∂kLkf

∂vk
= 0 (k ≥ 1). (45)

Repeating the same arguments it follows that −(−1)kL̃kLkf is a diffusive operator. Indeed, applying the integration

by parts (k times) and recalling (37), yields:

−(−1)k
∫

R

(
L̃kLkf

)
h dv = −(−1)k

∫

R

∂kLkf

∂vk
h dv

= −(−1)k(−1)k
∫

R

(
Lkf

)
h(k) dv = − 1

2k

∫

R

(
h(k)

)2
e−v2

dv ≤ 0, (46)

where h(k) is the k-th derivative of h with respect to v. The operators of order 2k for k ≥ 1 so far examined are not

strictly negative definite, since their kernel is not empty.

4. Action of the diffusive operators in the AW Hermite case

Consider (38) in terms of the Hermite functions’ basis. A direct calculation yields:

L̃Lψn = L̃L
(
γAW
n Hne

−v2)
=
γAW
n

2

(
H ′′

n − 2vH ′

n

)
e−v2

=
γAW
n

2

(
− 2nHne

−v2)

= −nγAW
n Hne

−v2

= −nψn, (47)

where we used the differential equation (6). In other words, the function ψn is the eigenfunction of the differential

operator L̃L with eigenvalue −n. As the corresponding eigenvalue is zero for n = 0, it follows that L̃L acts on

Hermite functions without altering the equation for the first Hermite coefficient C0. This is a further confirmation of

the diffusive nature of the operator regarding the Hermite modes that are higher than 1.

A similar relation holds also for L̃2L2 and for the more general operator L̃kLk. First, we consider the case k = 2.

Using (36) with h = Hn, a straightforward calculation yields:

L̃2L2ψn = L̃2L2
(
γAW
n Hne

−v2)
= L̃2

(
γAW
n

1

4
H ′′

ne
−v2
)
=
γAW
n

4

(
H ′′

ne
−v2
)′′
. (48)

To compute the last term in the equation above, we proceed in two steps, starting from the first derivative of H ′′e−v2

.

Using (6), we have that:
(
H ′′

ne
−v2
)′

=
((

2vH ′

n − 2nHn

)
e−v2

)′

= (2H ′

n + 2vH ′′

n − 2nH ′

n) e
−v2 − 2v (2vH ′

n − 2nHn) e
−v2

= (2H ′

n + 2vH ′′

n − 2nH ′

n) e
−v2 − 2vH ′′

ne
−v2

= 2(1− n)H ′

ne
−v2

. (49)

Using again (6), we have that:
(
H ′

ne
−v2
)′

= H ′′

ne
−v2 − 2vH ′

ne
−v2

= (H ′′

n − 2vH ′

n) e
−v2

= −2nHne
−v2

. (50)
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Hence, the second derivative of H ′′e−v2

with respect to v is readily given by collecting the results of (49) and (50),

and reads as:

(
H ′′

ne
−v2
)′′

=

((
H ′′

ne
−v2
)′)′

=
(
2(1− n)H ′

ne
−v2
)′

= 4n(n− 1)Hne
−v2

. (51)

Replacing (51) in (48), finally yields:

L̃2L2ψn =
γAW
n

4
4n(n− 1)Hne

−v2

= n(n− 1) γAW
n Hne

−v2

= n(n− 1)ψn, (52)

which shows that ψn is an eigenfunction of L̃2L2 corresponding to the eigenvalue n(n−1). Note that such eigenvalue

is zero for n = 0 and n = 1, which means that the fourth-order operator L̃2L2 does not modify the equations for the

first two modes of the AW Hermite expansion of f .

Repeating the same argument for a general integer k ≥ 1, we find out that:

L̃kLkψn = (−1)k n(n− 1) . . . (n− (k − 1))ψn = (−1)k
n!

(n− k)!
ψn. (53)

Therefore, we conclude that every element of the AW Hermite function’s basis is an eigenfunction of the 2k-th

operator L̃kLk with eigenvalue (−1)k n!/(n− k)!, which takes the value of zero for 0 ≤ n ≤ k − 1.

We conclude this section by investigating the action of the Lenard-Bernstein-like operators on Hermite functions ex-

pressed as linear combinations of the AW Hermite functions’ basis and the implications on the conservation properties

of the discretization. Similar topics were considered in the more specific context of Vlasov-based models, cf. [9, 4].

To this end, we consider again the expansion f(v) = h(v)e−v2

, where the polynomial function is given by

(see (13)):

h =

∞∑

n=0

CnHn. (54)

By multiplying and dividing by the normalization factor γAW
n , and, then, using the definition of the AW basis (see (28)-

(29)) we find that:

f = he−v2

=

(
∞∑

n=0

CnHn

)
e−v2

=

∞∑

n=0

Cn

γAW
n

(
γAW
n Hne

−v2
)
=

∞∑

n=0

C⋆
nψn, (55)

where C⋆
n = Cn/γ

AW
n . Since ψn is an eigenfunction of the generalized Lenard-Bernstein operators, we obtain the

following relations:

L̃Lf =
∞∑

n=0

C⋆
nL̃Lψn =

∞∑

n=0

(−n)C⋆
nψn, (56)

L̃2L2f2 =

∞∑

n=0

C⋆
nL̃

2L2ψn =

∞∑

n=0

n(n− 1)C⋆
nψn, (57)

. . .

L̃kLkf =

∞∑

n=0

C⋆
nL̃

kLkψn =

∞∑

n=0

(−1)k
n!

(n− k)!
C⋆

nψn. (58)

From the identities above, it follows immediately that:
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L̃Lf =
∞∑

n=0

D(1)
n ψn with D(1)

n = −nC⋆
n, (59)

L̃2L2f =

∞∑

n=0

D(2)
n ψn with D(2)

n = n(n− 1)C⋆
n, (60)

. . .

L̃kLkf =

∞∑

n=0

D(k)
n ψn with D(k)

n = (−1)k
n!

(n− k)!
C⋆

n. (61)

By definition, it holds that D
(k)
0 = D

(k)
1 = . . . = D

(k)
k−1 = 0 for a generic k ≥ 1. The case k = 3 corresponds to the

operator used in Refs. [5, 9].

Using the properties that we have established so far, we are able to prove some conservation properties for problems

of parabolic type like those considered in (39) (using L̃Lf ), (42) (using −L̃2L2f ), (45) (using −(−1)kL̃kLkf ). The

mass conservation for a distribution function f(t, v) is expressed by:

d

dt

∫

R

f dv = 0. (62)

In the first case, we integrate (62) on R, use (39), apply the fundamental theorem of calculus and substitute the

expression of Lf in (35) to obtain:

d

dt

∫

R

f dv =

∫

R

L̃Lf dv =

∫

R

∂Lf

∂v
dv = [Lf ]∞

−∞
=

1

2

[
h′e−v2

]∞
−∞

= 0, (63)

since e−v2

times a polynomial of any degree tends to zero for v → ±∞.

In the second case, we integrate (62) onR, use (42), and apply the fundamental theorem of calculus to obtain:

d

dt

∫

R

f dv = −
∫

R

L̃2L2f dv = −
∫

R

∂

∂v
(L̃L2f) dv = −

[
L̃L2f

]∞
−∞

. (64)

Furthermore, by using (36), we find that:

L̃L2f =
∂L2f

∂v
=

1

4

∂

∂v

(
h′′e−v2

)
=

1

4

(
h′′′ − 2vh′′

)
e−v2

. (65)

Therefore, the last term above provides zero in (64), since the Gaussian function e−v2

multiplied by any polynomial

tends to zero for v → ±∞.

Finally, to obtain the general result for L̃kLkf , we integrate (62) onR, use (45), and apply the fundamental theorem

of calculus. We obtain:

d

dt

∫

R

f dv = −(−1)k
∫

R

L̃kLkf dv = −(−1)k
∫

R

∂

∂v
(L̃k−1Lkf) dv

= −(−1)k
[
L̃k−1Lkf

]∞
−∞

= 0, (66)

since we can prove recursively that L̃k−1Lkf is equal to a polynomial times e−v2

, which tends to zero for v → ±∞.

Another important issue is the momentum conservation, which is expressed by:

d

dt

∫

R

vf dv = 0. (67)

We start by noting that there is no momentum conservation for the operator L̃L. We then consider the two other cases

in which f is the solution of (42) (using−L̃2L2f ), and (45) (using −(−1)kL̃kLkf ).
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In the first case, momentum conservation is achieved because, in view of (42), we know that:

d

dt

∫

R

vf dv = −
∫

R

v
∂2L2f

∂v2
dv. (68)

Then, we integrate by parts the right-hand side, apply the fundamental theorem of calculus and arrive at:

d

dt

∫

R

vf dv =

∫

R

∂L2f

∂v
dv −

[
v
∂L2f

∂v

]∞

−∞

=
[
L2f

]∞
−∞

−
[
v
∂L2f

∂v

]∞

−∞

= 0, (69)

As in the previous situations, the arguments in the square brackets are of the form of a polynomial multiplied by the

Gaussian function e−v2

.

Through very similar steps, we can easily arrive at a general statement regarding the conservation of the m-th

moment, m ≥ 1. Indeed, we have:

d

dt

∫

R

vmf dv = 0 (70)

in presence of the operator L̃kLkf , and provided that the condition k > m is satisfied. The conservation of the velocity

moments of the distribution function f implies the conservation of physical quantities such as momentum and energy

in Vlasov models. We will discuss this topic at the beginning of Section 10.

5. Diffusive operators in the SW case

Differently from the AW case, the generalized Lenard-Bernstein operators that we consider in the SW case read as

follows:

L =
∂

∂v
+ vI, L̃ =

∂

∂v
− vI. (71)

We investigate the action of the L̃L operator on Hermite functions of the form f = he−v2/2, where h is once again a

polynomial in v. The weighted L2 inner product for such functions is:

(
f, g
)
=

∫

R

fg dv =

∫

R

hfhge
−v2

dv, (72)

where f = hfe
−v2/2 and g = hge

−v2/2, and hf and hg are polynomials. This somehow justifies the adoption of the

term “symmetric”.

The results will be analogous to those presented in the previous sections. We briefly review the main points. From

straightforward calculations it follows that:

Lf = f ′ + vf = h′e−v2/2 − vhe−v2/2 + vhe−v2/2 = h′e−v2/2, (73)

L̃Lf = L̃
(
h′e−v2/2

)
=
(
h′′ − 2vh′

)
e−v2/2. (74)

These relations imply that the operator L̃L is diffusive. In fact, consider again the time dependent problem:

∂f

∂t
− L̃Lf = 0, (75)

where, now, we choose f(v, t) = h(v, t)e−v2/2. We multiply equation (75) by f and integrate overR. Thus, we end

up with the equality:
∫

R

(
∂f

∂t
− L̃Lf

)
f dv = 0, (76)

and using the definition of L̃ given in (71), we have that

1

2

∫

R

∂

∂t

(
h2e−v2)

dv −
∫

R

(
(Lf)′ − vLf

)
f dv = 0, (77)
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where again we denoted the derivative with respect to v of Lf by (Lf)′. Then, we integrate by parts the second

integral of (77) and note again that the boundary terms for v → ±∞ are zero. This leads us to:

0 =
1

2

d

dt

∫

R

h2e−v2

dv +

∫

R

(
Lf
)
f ′ dv − [(Lf)f ]∞

−∞
+

∫

R

v
(
Lf
)
f dv

=
1

2

d

dt

∫

R

h2e−v2

dv +

∫

R

(
Lf
)(
f ′ + vf

)
dv =

1

2

d

dt

∫

R

h2e−v2

dv +

∫

R

(
Lf
)2
dv. (78)

The last relation shows that the operator L̃L introduces a dissipation.

The same result holds for the fourth-order operator and the related time dependent problem:

∂f

∂t
+ L̃2L2f = 0. (79)

Here, the proof is a bit more involved, but still elementary. We first note that L̃2g = L̃(L̃g) = L̃(g′− vg), from which

it follows that:

L̃2g = (g′ − vg)′ − v(g′ − vg) = g′′ − 2vg′ + (v2 − 1)g, (80)

and

L2f = f ′′ + 2vf ′ + (v2 + 1)f = f ′′ + 2
(
vf
)′
+ (v2 − 1)f. (81)

By multiplying equation (79) by f and integrating overR, we find that:

1

2

d

dt

∫

R

h2e−v2

dv +

∫

R

(
L̃2L2f

)
f dv = 0. (82)

From straightforward calculations using integration by parts, (80) (with g = L2f ) and (81), we get the following

relation: ∫

R

(
L̃2L2f

)
f dv =

∫

R

((
L2f

)′′ − 2v
(
L2f

)′
+ (v2 − 1)L2f

)
f dv

=

∫

R

(
L2f

)
f ′′ dv + 2

∫

R

(
L2f

) (
vf
)′
dv +

∫

R

(v2 − 1)
(
L2f

)
f dv

=

∫

R

(
L2f

)(
f ′′ + 2

(
vf
)′
+ (v2 − 1)f

)
dv =

∫

R

(
L2f

)2
dv. (83)

Therefore, also this time-dependent equation is dissipative, from the viewepoint of the L2(R)-weighted norm.

In general, we may consider the time dependent problem:

∂f

∂t
+ (−1)kL̃kLkf = 0. (84)

With the same considerations as above, we find the relation:

d

dt

∫

R

h2e−v2

dv = −
∫

R

(
Lkf

)2
dv ≤ 0, (85)

which shows the dissipative nature of the second term of (84).

Regarding the expansion in the Hermite basis functions, after the application of the diffusive operators, we also

obtain straightforward results. First, we write the function f(v) = h(v)e−v2/2 in the SW Hermite basis, by using the

expansion:

h =

∞∑

n=0

CnHn, with Cn = γSW
n γ̃SW

n

∫

R

hHne
−v2

dv. (86)

The corresponding coefficients D
(1)
m are such that:

L̃Lf = L̃

(
∞∑

n=0

CnH
′

ne
−v2/2

)
=

∞∑

m=1

D(1)
m Hme

−v2/2, (87)

13



which allows us to express L̃Lf in terms of Hermite functions. In practice:

L̃L
(
Hne

−v2/2
)
= L̃

(
H ′

ne
−v2/2

)
= H ′′

ne
−v2/2 − vH ′

ne
−v2/2 − vH ′

ne
−v2/2

=
(
H ′′

n − 2vH ′

n

)
e−v2/2 = −2nHne

−v2/2, (88)

where we used again the differential equation for Hermite polynomials (see (6)). Therefore, we obtain:

D(1)
m = −2mCm for m ≥ 1, (89)

Going to the general case, we want to compute the coefficients D
(k)
m such that:

L̃kLkf =
∞∑

m=0

D(k)
m Hme

−v2/2, (90)

One finally obtains:

D(k)
m = (−1)k2km(m− 1) · · · (m− k)Cm = (−1)k2k

m!

(m− k − 1)!
Cm for m ≥ 0. (91)

As for the AW case, the first k + 1 coefficients are automatically zero.

6. Action of the diffusive operators in the SW Hermite case

We recall thatL = ∂/∂v+vI and L̃ = ∂/∂v−vI. Consider the SW Hermite basis functions:ψn = γSW
n Hne

−v2/2.

A straightforward calculation yields:

Lψn = γSW
n

(
∂

∂v
+ vI

)
Hne

−v2/2

= γSW
n

(
H ′

ne
−v2/2 − vHne

−v2/2 + vHne
−v2/2

)
= γSW

n H ′

ne
−v2/2. (92)

Using the result above we obtain:

L2ψn = L
(
Lψn

)
= L

(
γSW
n H ′

ne
−v2/2

)
= γSW

n

(
∂

∂v
+ vI

)
H ′

ne
−v2/2

= γSW
n

(
H ′′

ne
−v2/2 − vH ′

ne
−v2/2 + vH ′

ne
−v2/2

)
= γSW

n H ′′

ne
−v2/2. (93)

A simple recursive argument allows us to prove the formula for a generic k:

Lkψn = γSW
n H(k)

n e−v2/2, (94)

where we recall thatH
(k)
n = dkHn/dv

k. Indeed, we have already proved that the formula is true for k = 1 and k = 2.

Since Lk−1ψn = γSW
n H

(k−1)
n e−v2/2, a straightforward calculation yields:

Lkψn = L
(
L(k−1)ψn

)
= L

(
γSW
n H(k−1)

n e−v2/2
)
= γSW

n

(
∂

∂v
+ vI

)
(H(k−1)

n e−v2/2)

= γSW
n

(
H(k)

n e−v2/2 − vH(k−1)
n e−v2/2 + vH(k−1)

n e−v2/2
)
= γSW

n H(k)
n e−v2/2. (95)

Now, we compute the action of L̃, L̃2, and L̃k on Lψn, L2ψn, and L̃kψn, respectively. In the first case, we recover

the relation:

L̃Lψn = γSW
n

(
∂

∂v
− vI

)
(H ′

ne
−v2/2) = γSW

n

(
H ′′

ne
−v2/2 − vH ′

ne
−v2/2 − vH ′

ne
−v2/2

)

= γSW
n (H ′′

n − 2vH ′

n) e
−v2/2 = γSW

n (−2n)Hne
−v2/2 = −2nψn, n ≥ 1. (96)
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In the second case, first we obtain:

L̃L2ψn = γSW
n

(
∂

∂v
− vI

)
(H ′′

ne
−v2/2) = γSW

n

((
H ′′

n

)′
e−v2/2 − vH ′′

ne
−v2/2 − vH ′′

ne
−v2/2

)

= γSW
n

((
H ′′

n

)′ − 2vH ′′

n

)
e−v2/2 = γSW

n

((
2vH ′

n − 2nHn

)′ − 2vH ′′

n

)
e−v2/2

= γSW
n (2H ′

n + 2vH ′′

n − 2nH ′

n − 2vH ′′

n) e
−v2/2 = γSW

n 2(1− n)H ′

ne
−v2/2, n ≥ 2, (97)

and then:

L̃2L2ψn = L̃(L̃L2ψn) = L̃
(
γSW
n 2(1− n)H ′

ne
−v2/2

)

= γSW
n 2(1− n)

(
∂

∂v
− vI

)
(H ′

ne
−v2/2) = γSW

n 2(1− n) (H ′′

n − vH ′

n − vH ′

n) e
−v2/2

= γSW
n 2(1− n) (H ′′

n − 2vH ′

n) e
−v2/2 = γSW

n 2(1− n)(−2n)Hne
−v2/2 = 4n(n− 1)ψn. (98)

The final case, for a generic k, follows by a recursive argument, allowing us to prove that:

L̃kLkψn = (−1)k 2k
n!

(n− k)!
ψn, n ≥ k. (99)

Except for the factor 2k, this expression is the same as that in (53). Therefore, we conclude that every element of the

SW Hermite functions’ basis is an eigenfunction of the 2k-th operator L̃kLk with eigenvalue (−1)k2k n!/(n− k)!,
for n ≥ k. The eigenvalue is zero for 0 ≤ n ≤ k − 1. We can similarly conclude that the 2k-th operator does not

modify the equations for the first k modes of the expansion of f .

We end this section by investigating the action of the generalized Lenard-Bernstein operators on Hermite functions

expressed as linear combinations of SW Hermite basis functions. To this purpose, we consider the expansion:

f = he−v2/2 =

[
∞∑

n=0

CnHn

]
e−v2/2 =

∞∑

n=0

Cn

γSW
n

[
γSW
n Hne

−v2/2
]
=

∞∑

n=0

C⋆
nψn, (100)

where C⋆
n = Cn/γ

SW
n . Since ψn is an eigenfunction of the generalized Lenard-Bernstein operators, we readily find

the following relations:

L̃Lf =
∞∑

n=0

C⋆
nL̃Lψn =

∞∑

n=0

(−2n)C⋆
nψn, (101)

L̃2L2f =

∞∑

n=0

C⋆
nL̃

2L2ψn =

∞∑

n=0

4n(n− 1)C⋆
nψn, (102)

. . .

L̃kLkf =

∞∑

n=0

C⋆
nL̃

kLkψn =

∞∑

n=0

(−1)k2k
n!

(n− k)!
C⋆

nψn, (103)

from which we deduce that:

L̃Lf =
∞∑

n=0

D(1)
n ψn with D(1)

n = −2nC⋆
n, (104)

L̃2L2f =

∞∑

n=0

D(2)
n ψn with D(2)

n = 4n(n− 1)C⋆
n, (105)

. . .

L̃kLkf =

∞∑

n=0

D(k)
n ψn with D(k)

n = (−1)k2k
n!

(n− k)!
C⋆

n. (106)
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By definition, it holds that D
(k)
0 = D

(k)
1 = . . . = D

(k)
k−1 = 0 for a generic k ≥ 1.

As far as mass and momentum conservations are concerned, we do not have the same results of the AW Hermite

discretization. Indeed, we can check that equations (62) and (70) do not hold anymore in the symmetric case. Instead,

we can prove the conservation of the weighted integrals:
∫

R

f(v, t)e−v2/2 dv and

∫

R

vf(v, t)e−v2/2 dv,

which however are not associated with physical, conserved quantities of interest in the continuous setting.

7. Hermite approximations of the advection equation

We take into account the following time-dependent problem for the unknown scalar field f(v, t):

∂f

∂t
− ∂f

∂v
= 0, (107)

supplemented with the initial condition:

f(v, 0) = f0(v). (108)

We start with the study of the stability of the SW Hermite variational formulation of equation (107). To this end,

we set f(v, t) = h(v, t)e−v2/2 (where h is a polynomial in v). Take f as the test function, and integrate over R. We

obtain:

0 =

∫

R

(
∂f

∂t
− ∂f

∂v

)
f dv =

∫

R

(
∂

∂t

(
f2

2

)
− ∂

∂v

(
f2

2

))
dv =

1

2

d

dt

∫

R

h2e−v2

dv, (109)

since the integral of ∂f2/∂v is zero because f(v, t) → 0 for v → ±∞. The relation above shows that the weighted

norm of the function f , solving equation (107) in weak form, is conserved (i.e. it does not change in time).

The same is not going to be true for the AW case. In fact, we may try to study the stability with the same approach

followed before. This time we set f(v, t) = h(v, t)e−v2

(where h is a polynomial in v). We then take h as test function

and integrate overR. We obtain:

0 =

∫

R

(
∂f

∂t
− ∂f

∂v

)
h dv =

∫

R

h
∂h

∂t
e−v2

dv −
∫

R

h
∂f

∂v
dv. (110)

Successively, we integrate by parts the last term, substitute f = he−v2

and integrate by parts again. All the boundary

terms are zero since they involve a polynomial in v multiplied by a decaying exponential and are omitted. This

procedure yields:

−
∫

R

h
∂f

∂v
dv =

∫

R

f
∂h

∂v
dv =

∫

R

∂h

∂v
he−v2

dv =

∫

R

∂

∂v

(
h2

2

)
e−v2

dv =

∫

R

h2 v e−v2

dv. (111)

Finally, we find that:

0 =
d

dt

∫

R

h2

2
e−v2

dv +

∫

R

v h2e−v2

dv. (112)

Since v ∈ R can assume positive or negative values, the sign of the second integral is undetermined, and therefore,

the AW Hermite variational formulation is not absolutely stable in the weighted L2(R) norm. Note, however, that the

weighted norm in the AW case does not have a direct physical meaning as in the SW case. In both the continuous

case and its SW Hermite discretization, the quantity
∫
R

f2dv is preserved. This quantity is not preserved in the AW

discretization. In fact, we are in the situation in which neither the weighted L2-norm nor the unweighted one are

preserved.

Now, we derive the recursive equation for the coefficients of the Hermite expansion in both AW and SW cases.

In order to simplify the notation, in the expressions below, we set γn = γSW
n when we deal with the SW case or

γn = γAW
n when we deal with the AW case (we recall that these coefficients are defined in (31) and (32)). Also, we
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use the notation C⋆
n = Cn/γn to denote the coefficients of the expansion in the Hermite functions ψn. As usual, we

have:

f(v, t) =
∞∑

n=0

Cn(t)Hn(v)e
−v2

=
∞∑

n=0

C⋆
n(t)ψn(v). (113)

Accordingly, the initial condition is set through the relation:

∞∑

n=0

Cn,0Hn(v)e
−v2

=
∞∑

n=0

C⋆
n,0ψn(v) = f0(v). (114)

To derive the system of equations for the coefficients C⋆
n related to the solution of (107), we multiply (107) by

ψm and integrate in v overR. All integrals can easily be computed using the orthogonality of the Hermite functions’

basis. In view of expansion (113), we have that:

0 =

∫

R

(
∂f

∂t
− ∂f

∂v

)
ψm dv =

∞∑

n=0

.
C

⋆

n(t)

∫

R

ψnψ
m dv −

∞∑

n=0

C⋆
n(t)

∫

R

dψn

dv
ψm dv

=
.
C

⋆

m(t)−
∞∑

n=0

C⋆
n(t)

∫

R

dψn

dv
ψm dv, (115)

where the upper dot indicates the derivative with respect to t. The equation for each coefficientC⋆
n(t) can be recovered

by reformulating dψn/dv in terms of the basis functions ψn and using the orthogonality against ψm. We discuss the

two cases for the AW and SW Hermite approximation in the following subsections.

7.1. Symmetrically-weighted case

To ease the notation in the developments of this section, we continue using the symbol γn instead of γSW
n , which

is defined in (31). For n ≥ 1, using (7)-(8), we compute dψn/dv as follows:

dψn

dv
=

d

dv

(
γnHne

−v2/2
)
= γn (H

′

n − vHn) e
−v2/2 = γn

(
1

2
H ′

n +
1

2
H ′

n − vHn

)
e−v2/2

= γn

(
nHn−1 −

1

2
Hn+1

)
e−v2/2 =

nγn
γn−1

ψn−1 −
1

2

γn
γn+1

ψn+1. (116)

Thus, equation (115) implies that:

.
C

⋆

n(t) =
(n+ 1)γn+1

γn
C⋆

n+1(t)−
1

2

γn−1

γn
C⋆

n−1(t), (117)

that we supplement with the initial condition C⋆
n(0) = C⋆

n,0. Equivalently, one has for n ≥ 1:

.
Cn(t) = (n+ 1)Cn+1(t)−

1

2
Cn−1(t), (118)

with the (obvious) initial condition Cn(0) = Cn,0. The case n = 0 can be treated separately, by observing that:

dψ0

dv
=

d

dv

(
γ0H0e

−v2/2
)
= −γ0ve−v2/2 = − γ0

2γ1

(
γ1 2ve

−v2/2
)
= − γ0

2γ1

(
γ1H1e

−v2/2
)

= − γ0
2γ1

ψ1 = − 1√
2
ψ1 ⇒

∫

R

dψ0

dv
ψ0 dv = 0,

since H0(v) = 1, H1(v) = 2v, and γ0/γ1 =
√
2, so obtaining from (115) that

.
C0(t) = 0 ⇒ C0(t) = C0,0 ∀t. (119)

We proved above that the system associated with equations (117)-(119) is stable in the L2-weighted norm.
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7.2. Asymmetrically-weighted case

As in the previous section we ease the notation by writing the symbol γn instead of γAW
n , which is defined in (32).

In this case, using (7), multiplying and dividing by γn+1, and using the definition of ψn+1, we have:

dψn

dv
=

d

dv

[
γnHne

−v2
]
= γn (H

′

n − 2vHn) e
−v2

= −γnHn+1e
−v2

= − γn
γn+1

ψn+1, (120)

which now provides the differential equation, for n ≥ 1:

.
C

⋆

n(t) = −γn−1

γn
C⋆

n−1(t), (121)

supplemented with the initial condition C⋆
n(0) = C⋆

n,0. This is equivalent to:

.
Cn(t) = −Cn−1(t) (122)

For n = 0 we have again (119). Moreover we have the initial conditions Cn(0) = Cn,0; hence, C0(t) = C0,0 for

every t ≥ 0.

We now provide a solution to such a system of equations. For instance, when n = 1, we need to solve:
.
C1(t) = −C0(t) ⇒ C1(t) = C1,0 − C0,0t. (123)

Clearly, this coefficient grows in magnitude with t. By successive integrations, one can prove that the n-th coefficient

behaves as tn. In practice, it is possible to find numbers α
(n)
ℓ in such a way that:

Cn(t) = γnC
⋆
n(t) =

n∑

ℓ=0

α
(n)
ℓ tℓ, (124)

which is clearly unbounded for t tending to infinity. We already proved that the Galerkin approximation of the advec-

tion problem in the AW case is not unconditionally stable in the L2(R)-weighted norm. For a polynomial of degree

at most N , such a norm with respect to t is given by the sum
(∑N

n=0

(
C⋆

n(t)
)2)1/2

. A way to stabilize the approx-

imation scheme is to introduce some numerical dissipation. We note, however, that this may not be the only option.

We will study this problem in the next section.

7.3. Some additional considerations on the SW and AW Hermite approximations

We consider two exact solutions of equation (107) that are well-suited for the treatment with Hermite functions

(in the SW case and the AW case, respectively) and see how their expansion coefficients look like, in particular with

respect to the time variable t. It has to be remarked, however, that the truncated series of an exact solution does not

coincide, in general, with the discrete solution obtained by the Galerkin process. So, the purpose of the following

computation is only to illustrate why the approximations based on the SW or the AW Hermite functions may behave

rather differently.

First, we consider the exact solution of (107) given by f(v, t) = e−
(v+t)2

2 and denote its coefficients with respect

to the SW Hermite functions by CSW,ex
n , where the superscript “ex” stands for “exact”. At t = 0, only one coefficient

is nonzero, i.e., CSW,ex
0 (0) = π

1
4 . For a generic t > 0, the expansion coefficients of f are, for n ≥ 0:

CSW,ex
n (t) =

∫

R

e−
(v+t)2

2 ψn(v) dv = γSW
n e−

t
2

4

∫

R

e−(v+
t

2 )
2

Hn(v) dv =
√
π2nγSW

n

(
− t

2

)n

e−
t
2

4 , (125)

where, for the integration, we used the convolution formula [17]:
∫

R

e−(x−y)2Hn(x) dx =
√
π2nyn. (126)

Formula (125) shows that all the expansion coefficientsCSW,ex
n (t) converge to zero for t→ ∞ including the one with

n = 0 (note that the coefficient provided by the Galerkin approximation, namely C0(0), is instead constant in time).
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For the AW case we consider the exact solution of (107) given by f(v, t) = e−(v+t)2 and we similarly denote its

expansion coefficients as CAW,ex
n (t). The expansion of f on the AW Hermite basis functions still contains only one

coefficient at the initial time t = 0, i.e., CAW,ex
0 (0) =

√
π. The new coefficients look as follows:

CAW,ex
n (t) =

∫

R

e−(v+t)2ψn(v) dv =
√
π2nγAW

n (−t)n , (127)

where, for the integration, we used again formula (126). Formula (127) shows that the expansion coefficientsCAW,ex
n (t)

diverge to ±∞ when t→ ∞, the sign depending on n being even or odd. Of course, in these circumstances a remedy

can be easily found by introducing a shift in the Hermite basis as mentioned in the introduction. The fact that the

expansion needs to be centered and rescaled properly has been known for a long time but complicates the analysis and

so it will be considered in future work.

8. The advection equation with the stabilization term in the AW case

We start our analysis by adding the second-order (k = 1) operator νL̃L to the right-hand side of the advection

equation:

∂f

∂t
− ∂f

∂v
= νL̃Lf, (128)

which we solve for f(v, t). We will prove that the new term acts like a stabilization term. To this end, we set f =

he−v2

, take h as the test function, (we assume that h is a polynomial in v at every time), and integrate (128) overR.

We substitute the stabilization term νL̃Lf with the expression given in (40) (or (46) with k = 1) to obtain:
∫

R

(
∂f

∂t
− ∂f

∂v

)
h dv = ν

∫

R

(
L̃Lf

)
h dv = −ν

2

∫

R

(
h′
)2
e−v2

dv. (129)

We integrate by parts the second integral term and apply the Young inequality (with constant σ) to obtain:

1

2

d

dt

∫

R

h2e−v2

dv = −
∫

R

h′he−v2

dv − ν

2

∫

R

(
h′
)2
e−v2

dv

≤
∣∣∣∣
∫

R

h′he−v2

dv

∣∣∣∣−
ν

2

∫

R

(
h′
)2
e−v2

dv

≤ 1

2σ

∫

R

h2e−v2

dv +
1

2
(σ − ν)

∫

R

(
h′
)2
e−v2

dv, (130)

where we used the fact that the boundary contributions from the integration by parts are zero. From the Poincarè

inequality (16) (take ϕ = h) we have that

−1

2

∫

R

(
h′
)2
e−v2

dv ≤ −
∫

R

h2e−v2

dv +
√
πC2

0 . (131)

Using this inequality with ν > σ, we find that

1

2

d

dt

∫

R

h2e−v2

dv ≤
(

1

2σ
− (ν − σ)

)∫

R

h2e−v2

dv + (ν − σ)
√
πC2

0 . (132)

The coefficient
(
1/(2σ)− (ν − σ)

)
is negative if ν > σ + 1/(2σ). For example, by taking σ = 1 and ν > 3/2, we

find:

1

2

d

dt

∫

R

h2e−v2

dv ≤ −
(
ν − 3

2

)∫

R

h2e−v2

dv + (ν − 1)
√
πC2

0 . (133)

Now, we consider C0(t) = C0(0) = C0,0 and introduce the quantities:

K =
ν − 1

ν − 3
2

√
πC2

0,0 and Y (t) =

∫

R

h2e−v2

dv −K, (134)
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so we can rewrite (133) as

1

2

d

dt
Y (t) ≤ −

(
ν − 3

2

)
Y (t) (135)

since K is constant. Note that for t = 0 we have

Y (0) =

∫

R

h20 dv −K, (136)

where h0 = h(v, 0), which is provided by the expansion of the initial solution f0. Finally, an application of the

Gronwall’s inequality yields

Y (t) ≤ Y (0) exp

(
−2
(
ν − 3

2

)
t

)
≤ Y (0), (137)

since the argument of the exponential is negative. Using the expression of Y (t) and Y (0), respectively given in (134)

and (136), the condition Y (t) ≤ Y (0) implies that
∫

R

h2e−v2

dv ≤
∫

R

h20 dv =

∫

R

h(v, 0)2 dv, (138)

which is the stability in the weightedL2 norm. Note that ν > 3
2 is a sufficient but not necessary conditions for stability.

Concerning the case k > 1, a proof of stability for ν sufficiently large, can be given following the same steps of the

case for k = 1. We just provide here a sketch of the main steps for the classical L2-weighted norm. Thanks to (46),

formula (129) can be rewritten as
∫

R

(
∂f

∂t
− ∂f

∂v

)
h dv = −(−1)kν

∫

R

(
L̃(k)L(k)f

)
h dv = − ν

2k

∫

R

(
h(k)

)2
e−v2

dv. (139)

As in (130) we use the Schwarz and Young inequality; then, we estimate the right-hand side of (139) by using (21)

with p = 1 and m = k. By using (131), we arrive at

1

2

d

dt

∫

R

h2e−v2

dv ≤ Φ1

∫

R

h2e−v2

dv +Φ2 (140)

where

Φ1 =
1

2σ
− ν(k − 1)! + σ and Φ2 =

(
ν(k − 1)!− σ

)√
πC2

0 + ν(k − 1)!
√
π

k−1∑

ℓ=1

2ℓ
(ℓ!)2

(ℓ− 1)!
C2

ℓ . (141)

Now, we redefine

K =

(
ν(k − 1)!− σ

)

ν(k − 1)!− σ − 1
2σ

√
πC2

0 and Y (t) =

∫

R

h20 dv −K, (142)

so that

1

2

d

dt
Y (t) ≤ Φ1Y (t) + Ψ1(t), where Ψ1(t) = ν(k − 1)!

√
π

k−1∑

ℓ=1

2ℓ
(ℓ!)2

(ℓ− 1)!
C2

ℓ , (143)

since C0 = C0,0 is independent of t. An application of the Gronwall’s Lemma leads to

Y (t) ≤ Y (0)e−2Φ1t +

∫ t

0

Ψ1(τ)dτ

Choosing, for example, σ = 1 and taking ν(k − 1)! > 3/2, it is easy now to get the stability estimate that

generalizes (137) to any k ≥ 1. We also note that the diffusion parameter ν is now multiplied by (k − 1)!. So, if we

increase k, the numerical diffusion due to the Lenard-Bernstein operators acts only on higher terms in the expansion

of f and we may probably take smaller values for ν.

We confirm the stability result for k = 1 by deriving the explicit recursive formula for the Hermite expansion

coefficients and providing their explicit form. To this end, we consider the second expansion of f given in (113) and
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repeat the calculation of Section 7.2 by including now the stabilization term νL̃Lf , which can be treated in the AW

case with the help of (47):

0 =

∫

R

(
∂f

∂t
− ∂f

∂v
− νL̃Lf

)
ψm dv

=

∞∑

n=0

.
C⋆

n(t)

∫

R

ψnψ
m dv −

∞∑

n=0

C⋆
n(t)

∫

R

dψn

dv
ψm dv + ν

∞∑

n=0

nC⋆
n(t)

∫

R

ψnψ
m dv

=
.
C

⋆

m(t)−
∞∑

n=0

C⋆
n(t)

∫

R

dψn

dv
ψm dv + νmC⋆

m(t). (144)

We compute the last integral using again (120) to obtain:

.
C

⋆

n(t) = −γn−1

γn
C⋆

n−1(t)− νnC⋆
n(t), (145)

which holds for n ≥ 1, while for n = 0 we find that C⋆
0 (t) = C⋆

0,0 is constant. We rewrite the above system of

equations as follows (compare with (122)):
.
Cn(t) = −Cn−1(t)− νnCn(t). (146)

For instance, for n = 1, we find the ordinary differential equation:
.
C1(t) = −C0(t)− νC1(t) = −C0,0 − νC1(t), (147)

the solution of which is:

C1(t) =

(
C1,0 +

1

ν
C0,0

)
e−νt − 1

ν
C0,0. (148)

Since ν is positive, C1(t) is clearly bounded with respect to t.
It is not hard to show that, for a generic n, the expression of the n-th coefficient takes the form:

Cn(t) =

n∑

ℓ=0

α
(n)
ℓ e−ℓνt, (149)

where the constants α
(n)
ℓ depend on n and the diffusion parameter ν. It is important to analyze such a dependence on

the diffusion parameter. Indeed, using (149) in (146) for n ≥ 1 and 0 ≤ ℓ ≤ n− 1 yields the recursive relation

α
(n)
ℓ = − 1

ν(n− ℓ)
α
(n−1)
ℓ ,

from which a straightforward calculation yields:

α
(n)
ℓ =

(−1)n−ℓ

(n− ℓ)! νn−ℓ
α
(ℓ)
ℓ .

From the initial condition

Cn,0 = Cn(0) =
n∑

ℓ=0

α
(n)
ℓ = α(n)

n +
n−1∑

ℓ=0

α
(n)
ℓ ,

we find the expression of α
(n)
n , which is given by

α(n)
n = Cn,0 −

n−1∑

ℓ=0

α
(n)
ℓ = Cn,0 +

n−1∑

ℓ=0

(−1)n−ℓ

(n− ℓ)! νn−ℓ
α
(ℓ)
ℓ .

For example, starting from α0
0 = C0,0, for n = 1, we find that α

(1)
1 = C1,0 − α0

0/ν = C1,0 − C0,0/ν. Similarly,

α
(2)
2 is computed from α

(0)
0 and α

(1)
1 , and the following coefficients are obtained from the ones that have already been

computed. One can realize that ν appears at the denominator to the n-th power. It turns out that the coefficientsCn(t)
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in (149) are of the formCn(0) plus a dissipative term. The stronger dissipation is obtained when ℓ = 1, which provides

a contribution like e−νt/ν (see (148)). If we do not want this dissipation to be too heavy so that the perturbation is of

order ε when we integrate until the final time T , we can consider e−νT ≈ νε and take T ≈ |ln(νǫ)| /ν.

9. Time discretization of the 1-D problem

We study the numerical approximation of the system of differential equations in (146). We use an implicit conser-

vative method in time such as the trapezoidal rule. For a time-step ∆t > 0, we write for j ≥ 1:

Cj
n − Cj−1

n

∆t
= −C

j
n−1 + Cj−1

n−1

2
− νn

Cj
n + Cj−1

n

2
, (150)

with the initial condition C0
n = Cn,0. For n = 0 we have instead Cj

0 = C0,0, ∀j ≥ 0. For instance, we can make the

formula explicit for n = 1:

Cj
1

(
1 +

ν

2
∆t
)
= Cj−1

1

(
1− ν

2
∆t
)
−∆tC0,0. (151)

After defining χn = (1− 1
2νn∆t)/(1+

1
2νn∆t), n ≥ 1, we get |χn| < 1. By recursive arguments, one can show that

the expression for Cj
1 takes the form of a linear combination of powers of χ1, i.e.:

Cj
1 =

j∑

ℓ=0

(χ1)
ℓαℓ, (152)

where the numbers αℓ depend on ν and ∆t. This expression is inserted in (150) in order to compute the sequence

Cj
2 , ∀j ≥ 0, and so on.

We may assume that the solution h = fev
2

of (128) belongs to the space of polynomials of degree less or equal to

N . When n reaches the value N , the expression of the corresponding coefficients Cj
N , ∀j ≥ 0 is a combination of all

the powers (χn)
ℓ with 1 ≤ n ≤ N and 0 ≤ ℓ ≤ j.

Since |χN | < 1, the discretization method is always unconditionally stable. However, a wise relation between the

parameters N , ν and ∆t should be set up in order to avoid unpleasant numerical effects due to the stiffness of the

originating differential system (146) for N large. A rule of thumb is to require that the product νN∆t is of the order

of unity. Actually, if we analyze (149) when n = N , the most significant term is that given by the exponential e−Nνt,

displaying a very steep tangent for t = 0. Although there are in principle no restrictions on ∆t for the trapezoidal

scheme, such quick variations in time are well resolved only if the time-step is maintained suitably small.

The last arguments show that stability holds for any ν > 0, whereas in (138) the proof was only provided for

ν > 3/2. Indeed, we conjecture that the stability in the L2-weighted norm is not verified for values of ν less than

a certain constant. However, it is possible to construct milder weighted norms where a result of stability can still

be achieved for any ν. We show how to do this by starting from the differential system (146). For any n ≥ 1, we

multiply (146) by the Hermite coefficient Cn and use the Young inequality on the right-hand side to obtain

1

2

d

dt
C2

n = −CnCn−1 − νnC2
n ≤ 1

2σn
C2

n +
σn
2
C2

n−1 − νnC2
n. (153)

The family of parameters σn > 0 will be decided later on. We multiply both sides of the inequality above by a weight

wn > 0 and sum over index n, so obtaining

1

2

d

dt

∞∑

n=1

wnC
2
n ≤

∞∑

n=1

1

2σn
wnC

2
n +

∞∑

n=1

σn
2
wnC

2
n−1 −

∞∑

n=1

νnwnC
2
n. (154)

By shifting the index in the sum containing Cn−1 and collecting the corresponding terms under the same symbol of

summation, we get

1

2

d

dt

∞∑

n=1

wnC
2
n ≤

∞∑

n=1

[( 1

2σn
− νn

)
wn +

σn+1

2
wn+1

]
C2

n +
σ1
2
w1C

2
0 . (155)
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For example, we can consider to choose σn = 1/(νn). Successively, we impose that the expression in the square

brackets is equal to −(ν/4)wn, which implies that

wn+1 = ν2(n+ 1)

(
n− 1

2

)
wn, (156)

and starting for example from w1 = 1 provides the full weight sequence (altough a different starting value produce a

different sequence of coefficients wn, our argument is independent of such starting):

1

2

d

dt

∞∑

n=1

wnC
2
n ≤ −ν

4

∞∑

n=1

wnC
2
n +

1

2ν
w1C

2
0 . (157)

Finally, by setting

Y (t) =

∞∑

n=1

wnC
2
n −

(
2/ν2

)
w1C

2
0 , (158)

we obtain

1

2
Y ′(t) ≤ −ν

4
Y (t). (159)

Thus, by applying the Gronwall’s lemma, we conclude with the estimate

Y (t) ≤ Y (0)e−(ν/2)t ≤ Y (0), (160)

for all t ≥ 0, from which we can find our stability result

∞∑

n=1

wnC
2
n(t) ≤

∞∑

n=1

wnC
2
n(0),

since the term
(
2/ν2

)
w1C

2
0 in (158) is independent of time and can be removed.

The next step is to characterize the weights wn which are required to satisfy the recursive relation (156). Assuming

that w1 = 1, from a straightforward calculation, we find

wn =
(
2ν2
)n−1

n!
(2n− 3)!

2n−2 (n− 2)!
= 2
(
ν2
)n−1

n(n− 1) (2n− 3)! (161)

By substituting into (158), we are finally able to give an expression to the stability norm. Note that it depends on ν.

We can go ahead with our computations by noting that

wn ≥ 2
(
ν2
)n−1

n(n− 1)2n−2 (n− 2)! =
1

2

(
ν2
)n−1

2n n! (162)

Therefore, if ν ≥ 1, and, hence, ν2n ≥ 1 , we discover that

Y (t) =

∞∑

n=1

wnC
2
n +

2

ν2
C2

0 ≥ 1

2

∞∑

n=1

(ν2)n−12n n!C2
n +

2

ν2
C2

0 ≥ 1

2ν2

∞∑

n=1

ν2n2n n!C2
n +

1

2ν2
C2

0

≥ 1

2
√
πν2

(
√
π

∞∑

n=0

2n n!C2
n

)
. (163)

Thus, if we can bound Y , we automatically bound the last term in parenthesis, which corresponds to the square of

the classical L2-weighted norm of the solution f expanded as in (113). This confirms that, if ν is sufficiently large,

stability is ensured in the standard way. On the other hand, when ν < 1, we can only rely on the stability result

involving the weights wn.

If we are in finite dimension (n ≤ N ), the norms are equivalent for any ν > 0, but with constants heavily dependent

on N . For example, for ν ≤ 1, which implies that (ν2)n−1 ≥ (ν2)N−1, we can write

Y (t) =

N∑

n=1

wnC
2
n +

2

ν2
C2

0 ≥
(
ν2
)N−1

2

N∑

n=1

2n n!C2
n +

2

ν2
C2

0 ≥
(
ν2
)N−1

2
√
π

(
√
π

N∑

n=0

2n n!C2
n

)
. (164)
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This shows that, when Y is bounded by a constant, the classical L2-weighted norm of the solution f is bounded by

that constant multiplied by a factor behaving as the inverse of ν2N . If we choose ν < 1, such a constant grows to

infinity as O(ν2N ), and the stability control on the L2-weighted norm of the solution f provided by inequality (164)

is lost.

10. Full discretization of the Vlasov-Poisson equation

We consider the AW Hermite-based discretization of the Vlasov-Poisson problem (1)-(2) for the distribution func-

tion f(x, v, t) = h(x, v, t)e−v2

stabilized by the Lenard-Bernstein-like operator of order 2k with k ≥ 1, which we

rewrite here for convenience of exposition:

∂f

∂t
+ v

∂f

∂x
− E

∂f

∂v
= −(−1)kνL̃(k)L(k)f in Ω× [0, T ], (165)

∂E

∂x
= 1−

∫

Ωv

f dv in Ω× [0, T ]. (166)

System (165)-(166) is completed by assigning a sufficiently regular initial solution f(x,v, 0) = f0(x, v). We

specialize the discussion to periodic boundary conditions in space, i.e., at the boundaries of Ωx.

Some of the reasons for approaching the Vlasov problem by Hermite discretizations have been pointed out in the

introduction. The AW context is the one that guarantees a large number of conservation properties, even with the

addition of the diffusion term discussed so far. By the way, from the practical viewpoint the use of the viscous term

should not just be interpreted as a way to improve the time-stability of the schemes, but has an important role in the

reduction of the negative phenomenon known as filamentation, cf. [4], which shows up as a polluting effect on the

computed solutions, due to the nonlinearity of the problem in conjunction with the truncation of the high modes.

To discretize the Vlasov-Poisson equations in time, we integrate equation (165) with respect to the independent

unknown t between tj−1 and tj by applying the trapezoidal rule and we evaluate equation (166) at tj . To ease the

exposition, we assume a constant time step ∆t = tj − tj−1. At the timestep j ≥ 1, system (165)-(166) yields

f j − f j−1

∆t
+ v

∂

∂x

(
f j + f j−1

2

)
− Ej + Ej−1

2

∂

∂v

(
f j + f j−1

2

)

= −(−1)kνL̃(k)L(k)

(
f j + f j−1

2

)
(167)

∂Ej

∂x
= 1−

∫

Ωv

f j dv. (168)

For j = 0 we impose the value of f at time t = 0 as initial datum.

Following the guidelines of the previous section, a proof of the absolute stability in time of this scheme can be

provided for a sufficiently large parameter ν. The situation gets more technically involved if ν is relatively small. We

remind you that in Section 8 we distinguished between ν ≥ 1 and ν < 1. In the latter case, stability is achieved in a

suitable norm and the generalization of this proof to the Vlasov-Poisson system becomes rather complicated.

Here, our goal is to derive stability conditions that relate the time step ∆t, the collisional factor ν and the degree

of the Hermite polynomial N . To this end, we write (167) in operator form by collecting all the terms involving the

unknown variable f j on the left-hand side and denoting all other terms that are computable from what is known from

the previous time step in the right-hand side term gj−1:
[
I +

∆t

2
v
∂

∂x
− ∆t

2

(
Ej + Ej−1

2

)
∂

∂v
+ (−1)k

∆t

2
νL̃(k)L(k)

]
f j = gj−1. (169)

In this preliminary analysis, we will not take into consideration that the problem is actually nonlinear. Indeed, the

value Ej has still to be computed, since it is strictly linked to f j through the relation (168).

We first set f j = hje−v2

. To simplify the exposition, we remove the label j from hj and introduce the notation:
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A(x) =

(∫

Ωv

h2e−v2

dv

) 1
2

, A =

(∫

Ωx

A2 dx

) 1
2

, (170)

B(x) =
(∫

Ωv

∣∣∣∣
∂h

∂v

∣∣∣∣
2

e−v2

dv

) 1
2

, B =

(∫

Ωx

B2 dx

) 1
2

. (171)

Then, we rewrite problem (169) in weak form. To this end, we multiply (169) by the test function φ, integrate over

domain Ω = Ωx × Ωv, and define the bilinear form:

B(h, φ) =

∫

Ω

hφe−v2

dv dx+
∆t

2

∫

Ω

φv

(
∂h

∂x

)
e−v2

dv dx

− ∆t

4

∫

Ωx

(
Ej + Ej−1

)
[∫

Ωv

∂
(
he−v2)

∂v
φ dv

]
dx+

ν∆t

2k+1

∫

Ω

∂kh

∂vk
∂kφ

∂vk
e−v2

dv dx, (172)

where the last term is obtained after successive integration by parts as done in (46) and using formula (37) for L(k)f .

Now, we consider the problem of finding f = he−v2

such that:

B(h, φ) =

∫

Ω

gj−1φdv dx, (173)

for every φ. Both h and φ will be represented as a suitable expansion (finite or infinite) of Hermite polynomials. We

skip the details concerning the formulation in the proper functional spaces, since this aspect is not relevant for the

analysis we are carrying out in this paper.

We want the bilinear form B to be positive definite. First, we discuss the case k = 1, and note that the last integral

term in (172) can be transformed as follows

ν∆t

4

∫

Ω

∂h

∂v

∂h

∂v
e−v2

dv dx =
ν∆t

4
B2
. (174)

In this way, we get:

B(h, h) = A2
+

∫

Ωv

∆t

2
v

(
1

2

∫

Ωx

∂h2

∂x
dx

)

︸ ︷︷ ︸
=0

e−v2

dv

− ∆t

4

∫

Ωx

(
Ej + Ej−1

) [∫

Ωv

∂

∂v

(
he−v2

)
h dv

]
dx+ ν

∆t

4
B2
, (175)

where we noted that the integral of ∂h2/∂x over Ωx is zero because we assumed periodicity in space. We successively

integrate by parts the third term on the right:

− ∆t

4

∫

Ωx

(
Ej + Ej−1

) [∫

Ωv

∂

∂v

(
he−v2

)
h dv

]
dx =

∆t

4

∫

Ωx

(
Ej + Ej−1

) [∫

Ωv

h
∂h

∂v
e−v2

dv

]
dx. (176)

Let us now define:

M = max
x∈Ωx

∣∣Ej + Ej−1
∣∣ . (177)

Since M depends on Ej (and, consequently, on f j through (168), we may assume that for ∆t sufficiently small,

Ej ≈ Ej−1. Thus, M ≈ 2maxx∈Ωx

∣∣Ej−1
∣∣. This makes the following evaluation of ∆t practically possible (see the

estimate in (183) below).

We estimate (176) by applying the Schwartz and Young inequalities as follows:
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− ∆t

4

∫

Ωx

(
Ej + Ej−1

) [∫

Ωv

h
∂h

∂v
e−v2

dv

]
dx

≥ −∆t

4

∫

Ωx

∣∣Ej + Ej−1
∣∣
[∫

Ωv

h2e−v2

dv

] 1
2

[∫

Ωv

(
∂h

∂v

)2

e−v2

dv

] 1
2

dx

≥ −∆t

4
M
∫

Ωx

AB dx ≥ −∆t

4
M
∫

Ωx

(
σ

2
A2 +

1

2σ
B2

)
dx

= −∆t

4
M
(
σ

2
A2

+
1

2σ
B2
)
, (178)

where σ > 0 is an arbitrary parameter. Using this estimate in (175), we find the inequality

B(h, h) ≥ A2
+ ν

∆t

4
B2 − ∆t

4
M
(
σ

2
A2

+
1

2σ
B2
)
. (179)

To derive sufficient conditions for the positivity of the bilinear form B(·, ·), i.e., B(h, h) ≥ 0, we can proceed in

different ways. First, for every strictly positive quantity σ, we can impose that

∆t

4
M
(
σ

2
A2

+
1

2σ
B2
)

≤ A2
+ ν

∆t

4
B2
. (180)

To this end, we note that:

σ

2
A2

+
1

2σ
B2

=
σ

2

(
A2

+
1

σ2
B2
)
.

Comparing the expression above with the right-hand side of inequality (180), suggests us to set 1/σ2 = ν∆t/4, or,

equivalently that σ = 2/
√
ν∆t. We set this value of σ back into inequality (180) to find that

∆t

4
M σ

2
A2

+
1

2σ
B2

=
∆tM
4
√
ν∆t

(
A2

+ ν
∆t

4
B2
)

≤
(
A2

+ ν
∆t

4
B2
)
, (181)

from which we immediately have the condition:

∆tM
4
√
ν∆t

≤ 1, (182)

that we can rewrite as

∆t ≤ 16ν

M2
, (183)

after renormalizing the factor
√
∆t in the denominator of (182) and squaring the resulting inequality. Such a constraint

on ∆t constitutes a sufficient condition to realize the invertibility of problem (169) for k = 1. Unfortunately, we are

unable to provide a similar result in the case when k > 1. The problem is that inequality (180) becomes of the form:

∆t

4
M
(
σ

2
A2

+
1

2σ
B2
)

≤ A2
+
ν∆t

2k+1

∫

Ω

(
∂kh

∂vk

)2

e−v2

dv dx. (184)

We can bound B, that contains only first derivatives, by an expression containing higher order derivatives, only if a

certain number of low modes of h is set to zero. This is certainly not consistent with the freedom we would like to

leave to these coefficients.

To recover an alternative estimate of the time step ∆t that does not involve the diffusion parameter ν, we suppose

that h is a linear combination of a finite number of Hermite polynomials. In practice, h is going to be a polynomial of

degree less than or equal to N . In this situation, we can rely on the inverse type inequality:

B ≤
√
2N A, (185)

26



which is easily deducible from (22). Thus, to control the last term at the end of (179) we proceed by writing:

−∆t

4
M
(
σ

2
A2

+
1

2σ
B2
)

≥ −∆t

4
M
(
σ

2
+
N

σ

)
A2

= −∆t

4
M

√
2N A2

, (186)

where we noticed that the absolute value of the term in the middle is minimized by the choice σ =
√
2N . In this way,

the positivity of the bilinear form is realized by requiring that the last term in (186) is less than A2
+ 1

4ν∆tB
2
. This

is true by choosing:

∆t ≤ 4

M
√
2N

, (187)

and, now, the bound on ∆t depends on N but not on ν. Moreover, this calculation does not involve any explicit

expression from the Lenard-Bernestein diffusion operators on the right-hand side of (172) since this term was just

eliminated because of its positivity for φ = h. This means that this time the relation betweenN , ∆t, and M holds for

any value of k ≥ 1.

We can make further considerations by putting together inequalities (183) and (187). If ∆t is chosen in order to be

consistent with both of them, we get:

∆t ≈ 16ν

M2
and ∆t ≈ 4

M
√
2N

imply that ν ≈ M
4
√
2N

. (188)

Similarly, setting 1/M =
√
2N∆t/4 in ∆t ≈ 16ν/M2 above implies that

∆t ≈ 16ν
1

M2
= 16ν

2N∆t2

16
= 2Nν∆t2, (189)

from which we derive the relation

νN∆t ≈ 1

2
. (190)

The last relation agrees with the suggestion, made in the previous section, that the product Nν∆t should be of order

of the unity.

We can say something more if the electric field is treated explicitly, i.e.: (Ej + Ej−1)/2 ≈ Ej−1, with M =
2maxx∈Ωx

|Ej−1|. The maximum norm can be bounded through the first derivative. This is done in the following

way:

M2 ≤ |Ωx|
∫

Ωx

(
∂Ej−1

∂x

)2

dx = |Ωx|
∫

Ωx

(
2−

∫

Ωv

f j−1dv

)2

dx, (191)

where |Ωx| denotes the measure of Ωx. Next, we use a standard inequality and the Schwartz inequality to obtain:

M2

|Ωx|
≤
∫

Ωx

(
2−

∫

Ωv

f j−1dv

)2

dx ≤ 2

∫

Ωx

[
4 +

(∫

Ωv

f j−1dv

)2
]
dx

≤ 8|Ωx|+
∫

Ωx

[∫

Ωv

(f j−1)2ev
2

dv

∫

Ωv

e−v2

dv

]
dx

≤ 8|Ωx|+
√
π

∫

Ωx

∫

Ωv

(hj−1)2e−v2

dvdx = 8|Ωx|+
√
πH, (192)

where we denoted the last integral by H. Then, we consider again inequality (179) from which we remove the non-

negative term ν∆tB2
/4 to obtain a sufficient condition that is independent of ν. Using (192) in the right-hand side

of (186), we end up with

∆t

4
|Ωx|1/2

(
8|Ωx|+

√
πH
)1/2 √

2NA2 ≤ A2
, (193)
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which implies

∆t|Ωx|1/2
(
8|Ωx|+

√
πH
)1/2 ≤ 4√

2N
, (194)

This last condition is substantially similar to (187). However, this derivation implies that having a knowledge of either

M or H at the step j − 1, we have an idea on how to set up the new time-step for the successive iteration.

In the final part of our study, we put together what we have learned in the previous sections, and investigate the

interplay between time stability and conservation properties. We consider, first, the conservation of the mass, which

is the zero-th order moment of the Vlasov distribution function f . After discretization in time, we assume that f j is

expanded on the Hermite functions’ basis:

f j(x, v) =

∞∑

n=0

C⋆,j
n (x)ψn(v). (195)

The variational formulation for the expansion coefficients C⋆,j
n is obtained by substituting (195) in (167), multiplying

by the test function ψm and integrating on Ω = Ωx × Ωv:

∞∑

n=0

[∫

Ω

C⋆,j
n − C⋆,j−1

n

∆t
ψnψ

mdxdv

]
+

∞∑

n=0

[∫

Ω

∂

∂x

(
C⋆,j

n + C⋆,j−1
n

2

)
vψnψ

mdxdv

]

−
∞∑

n=0

[∫

Ω

Ej + Ej−1

2

C⋆,j
n + C⋆,j−1

n

2

∂ψn

∂v
ψmdxdv

]

+ (−1)kν
∞∑

n=0

[∫

Ω

L̃(k)L(k)

(
C⋆,j

n + C⋆,j−1
n

2

)
ψnψ

mdxdv

]
= 0. (196)

We separate the integration with respect to x from that with respect to v, obtaining:
∫

Ωx

C⋆,j
m − C⋆,j−1

m

∆t
dx+

∞∑

n=0

[∫

Ωx

∂

∂x

(
C⋆,j

n + C⋆,j−1
n

2

)
dx

∫

Ωv

vψnψ
mdv

]

+
γm
γm+1

∫

Ωx

Ej + Ej−1

2

C⋆,j
m−1 + C⋆,j−1

m−1

2
dx

−m(m− 1) · · · (m− k + 1)ν

∫

Ωx

C⋆,j
m + C⋆,j−1

m

2
dx = 0. (197)

We further note that, due to the periodic boundary conditions, the integral in the variable x of the second term is zero.

In terms of the coefficients in the Hermite polynomial basis, Eq. (197) becomes:
∫

Ωx

Cj
n − Cj−1

n

∆t
dx+

√
n+ 1

n

∫

Ωx

Ej + Ej−1

2

Cj
n−1 + Cj−1

n−1

2
dx

− n(n− 1) · · · (n− k + 1)ν

∫

Ωx

Cj
n + Cj−1

n

2
dx = 0. (198)

This system of equations is coupled with (168). As a consequence of the orthogonality, we have:
∫

Ωv

f j dv =
∞∑

n=0

∫

Ωv

Cj
nHne

−v2

=
√
π Cj

0 . (199)

Thus, the discretized Poisson equation takes the form:

∂Ej

∂x
= 1−

√
π Cj

0 . (200)

By integrating this last relation with respect to x and using the boundary conditions forEj , we discover that
∫
Ωx

Cj
0dx

is constant for all j ≥ 0. This condition is maintained by the scheme (198), whatever is k ≥ 1. More in general,
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conservation of momenta
∫
Ω
vmf jdxdv, j ≥ 0, is guaranteed up tom ≤ k−1. This corresponds to the generalization

for arbitrary k of the conservation properties that were proven in Ref. [5] for k=3.

11. Conclusion

We investigated the role of Lenard-Bernstein-like pseudo-collisional operators in conjunction with spectral approx-

imations of the Vlasov equation for a collisionless plasma in the electrostatic limit. In particular, we analyzed the

spectral approximation of some one-dimensional, simplified model problems based on different families of Hermite

basis functions using the symmetric and the asymmetric formulations. In the asymmetric case, we were able to prove

the absolute stability in time in an L2-weighted norm, a problem that has been unresolved for many years. The results

have partially been extended to the case of the full Vlasov-Poisson model.
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