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Abstract This paper considers the generalized continuation Newton method and the
trust-region updating strategy for the underdetermined system of nonlinear equations.
Moreover, in order to improve its computational efficiency, the new method will not
update the Jacobian matrix when the current Jacobian matrix performs well. The
numerical results show that the new method is more robust and faster than the tra-
ditional optimization method such as the Levenberg-Marquardt method (a variant of
trust-region methods, the built-in subroutine fsolve.m of the MATLAB R2020a envi-
ronment). The computational time of the new method is about 1/8 to 1/50 of that of
fsolve. Furthermore, it also proves the global convergence and the local superlinear
convergence of the new method under some standard assumptions.
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1 Introduction

In engineering fields, we often need to solve the underdetermined system of equations
as follows:

F(x) = 0, (1)
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where F : ℜn → ℜm and m < n. For example, this problem arises from finding the
initial feasible point of the following differential-algebraic equations [3,6,19,27,31]:

dx
dt

= h(x, y), (2)

g(x) = 0. (3)

Another case comes from the feasible direction method for solving the following
nonlinearly constrained optimization problem [44,50]

min
xℜn

r(x) subject to c(x) = 0, (4)

where r : ℜn→ℜ and c : ℜn→ℜm, m < n.

The main difficulty of the undertermined system is the singularity J(x)T J(x) [13,
17,47,53], where J = F ′ is the Jacobian function of F . When m = n and the Jacobian
matrix J(x) is nonsingular, there are many popular traditional optimization methods
[7,11,21,26,44,54] and the classical homotopy continuation methods [2,12,45,52]
to solve it.

For the traditional optimization methods such as the trust-region methods and the
line search methods, the solution x∗ of the nonlinear system (1) is found via solving
the following equivalent nonlinear least-squares problem

min
x∈ℜn

f (x) =
1
2
‖F(x)‖2, (5)

where ‖ ·‖ denotes the Euclidean vector norm or its induced matrix norm throughout
this paper. Generally speaking, the traditional optimization methods based on the
merit function (5) are efficient for the large-scale problems when J(xk)

T J(xk)(k =
0, 1, . . .) are nonsingular, since they have the local superlinear convergence near the
solution x∗ [7,44].

However, the line search method based on the classical Gauss-Newton method
will confront some problems when J(xk)

T J(xk) is singular, since it obtains the search
direction dk by solving the following linear equations:

J(xk)
T J(xk)dk =−J(xk)

T F(xk).

Furthermore, the termination condition

‖∇ f (xk)‖= ‖J(xk)
T F(xk)‖< ε, (6)

may lead the methods based on the merit function (5) to early stop far away from the
solution x∗. This can be illustrated as follows. We consider

F(x) = Ax = 0, A =

[
1 0
0 10−6

]
. (7)

It is not difficult to know that the linear system (7) has a unique solution x∗ = (0, 0).
If we set ε = 10−6, the traditional optimization methods will early stop far away from
x∗ provided that xk = (0, c), c < 106.
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For the classical homotopy methods, the solution x∗ of the nonlinear system (1)
is found via constructing the following homotopy function

H(x, λ ) = (1−λ )G(x)+λF(x), (8)

and attempting to trace an implicitly defined curve λ (t) ∈ H−1(0) from the starting
point (x0, 0) to a solution (x∗, 1) by the predictor-corrector methods [2,12], where the
zero point of the artificial smooth function G(x) is known. Generally speaking, the
homotopy continuation methods are more reliable than the merit-function methods
and they are very popular in engineering fields [29]. The disadvantage of the classical
homotopy methods is that they require significantly more function and derivative
evaluations, and linear algebra operations than the merit-function methods since they
need to solve many auxiliary nonlinear systems during the intermediate continuation
process.

In order to overcome this shortcoming of the traditional homotopy methods, we
consider the special continuation method based on the following generalized Newton
flow [4,5,8,37,51]

dx(t)
dt

=−J(x)+F(x), x(t0) = x0, (9)

where J(x)+ is the Moore-Penrose generalized inverse of the Jacobian matrix J(x)
(p. 11, [50] or p. 290, [16]). Then, we construct a special ODE method with the
adaptively time-stepping scheme based on the trust-region updating strategy to trace
the trajectory of the generalized Newton flow (9). Consequently, we obtain a solution
x∗ of the underdetermined nonlinear system (1).

The rest of this article is organized as follows. In the next section, we consider the
generalized continuation Newton method with the adaptively time-stepping scheme
and the updating technique of the Jacobian matrix based on the trust-region updating
strategy for the underdetermined system of nonlinear equations. In section 3, under
the standard assumptions, we prove the global convergence and the local superlinear
convergence of the new method. In section 4, some promising numerical results of
the new method are also reported, in comparison to the Levenberg-Marquardt method
(a variant of the trust-region methods, the built-in subroutine fsolve.m of the MAT-
LAB R2020a environment) [13,28,40,41,42,53]). Finally, some conclusions and the
discussions are given in section 5. Throughout this article, we assume that F(·) exists
the zero point x∗.

2 Continuation Newton methods

In this section, based on the trust-region updating strategy, we construct an adaptively
time-stepping scheme for the continuation Newton method to trace the trajectory of
the generalized Newton flow and obtain its equilibrium point x∗.



4 Luo, Xiao

2.1 The generalized continuous Newton flow

If we consider the damped Newton method with the line search strategy for the non-
linear system (1) [25,44], we have

xk+1 = xk−αkJ(xk)
+F(xk). (10)

We denote o(α) as the higher-order infinitesimal of α , that is to say,

lim
α→0

o(α)

α
= 0.

In equation (10), if we regard xk = x(tk) and xk+1 = x(tk +αk)+ o(αk), we obtain
the continuous Newton flow (9) when αk→ 0. Actually, if we apply an iteration with
the explicit Euler method [49] to the generalized Newton flow (9), we also obtain the
damped Newton method (10). Since the rank of the Jacobian matrix J(x) may be not
full, we reformulate the generalized Newton flow (9) as the more general formula:

−J(x)
dx(t)

dt
= F(x), x(t0) = x0. (11)

The continuous Newton flow (11) is an old method and can be backtracked to
Davidenko’s work [8] in 1953. After that, it was investigated by Branin [5], Deufl-
hard et al [10], Tanabe [51] and Kalaba et al [23] in 1970s, and applied to nonlinear
boundary problems by Axelsson and Sysala [4] recently. The continuous and even
growing interest in this method originates from its some nice properties. One of them
is that the solution x(t) of the continuous Newton flow converges to the steady-state
solution x∗ from any initial point x0, as described by the following property 1.

Property 1 (Branin [5] and Tanabe [51]) Assume that x(t) is the solution of the con-
tinuous Newton flow (11), then f (x(t)) = ‖F(x)‖2 converges to zero when t → ∞.
That is to say, for every limit point x∗ of x(t), it is also a solution of the underdeter-
mined system (1). Furthermore, every element F i(x) of F(x) has the same conver-
gence rate e−t and x(t) can not converge to the solution x∗ of the underdetermined
system (1) on the finite interval when the initial point x0 is not a solution of the un-
derdetermined system (1).

Proof. Assume that x(t) is the solution of the continuous Newton flow (11), then
we have

d
dt

(
etF(x)

)
= etJ(x)

dx(t)
dt

+ etF(x) = 0.

Consequently, we obtain

F(x(t)) = F(x0)e−t . (12)

From equation (12), it is not difficult to know that every element F i(x) of F(x) con-
verges to zero with the linear convergence rate e−t when t→ ∞. Thus, if the solution
x(t) of the continuous Newton flow (11) belongs to a compact set, it has a limit point
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x∗ when t → ∞, and this limit point x∗ is also a solution of the underdetermined
system (1).

If we assume that the solution x(t) of the continuous Newton flow (11) converges
to the solution x∗ of the underdetermined system (1) on the finite interval (0, T ], from
equation (12), we have

F(x∗) = F(x0)e−T . (13)

Since x∗ is a solution of the underdetermined system (1), we have F(x∗) = 0. By
substituting it into equation (13), we obtain

F(x0) = 0.

Thus, it contradicts the assumption that x0 is not a solution of the underdetermined
system (1). Consequently, the solution x(t) of the continuous Newton flow (11) can
not converge to the solution x∗ of the underdetermined system (1) on the finite inter-
val. ut

Remark 1 The inverse J(x)−1 of the Jacobian matrix J(x) can be regarded as the
preconditioner of F(x) such that the solution elements xi(t)(i = 1, 2, . . . ,n) of the
continuous Newton flow (9) have the roughly same convergence rates and it mitigates
the stiff property of the ODE (9) (the definition of the stiff problem can be found in
[19] and references therein). This property is very useful since it makes us adopt the
explicit ODE method to trace the trajectory of the Newton flow.

Actually, if we consider F(x) = Ax, from the ODE (11), we have

A
dx
dt

=−Ax, x(0) = x0. (14)

By integrating the linear ODE (14), we obtain

x(t) = e−tx0. (15)

From equation (15), we know that the solution x(t) of the ODE (14) converges to zero
exponentially with the same rate e−t when t tends to infinity.

2.2 The generalized continuation Newton method

From subsection 2.1, we know that the solution x(t) of the generalized continuous
Newton flow (11) has the nice global convergence property. On the other hand, when
the Jacobian matrix J(x) is singular or nearly singular, the ODE (11) is the system
of differential-algebraic equations (DAEs) and its trajectory can not be efficiently
followed by the general ODE method such as the backward differentiation formu-
las (the built-in subroutine ode15s.m of the MATLAB environment [3,6,19,40,49]).
Thus, we need to construct the special method to handle this problem.

Since the continuous Newton flow (11) is intrinsically a nonlinear diminishing
system for the energy function f (x(t))= ‖F(x(t))‖2, it can be integrated by the strong
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stability preserving methods [14,15] and the steady-state solution x∗ can be obtained
after the long time integration. Here, we consider another approach based on the tra-
ditional optimization methods for problem (11). We expect that the new method has
the global convergence as the homotopy continuation method and the fast conver-
gence rate near the steady-state solution x∗ as the merit-function method. In order to
achieve these two aims, we construct the special continuation Newton method with
the new step size αk = ∆ tk/(1+∆ tk) and the time step size ∆ tk is adaptively adjusted
by the trust-region updating strategy for problem (11).

Firstly, we apply the implicit Euler method to the continuous Newton flow (11)
[3,6], then we obtain

J(xk+1)
xk+1− xk

∆ tk
=−F(xk+1). (16)

The scheme (16) is an implicit method and it needs to solve a system of nonlin-
ear equations at every iteration. To avoid solving the system of nonlinear equations,
we replace J(xk+1) with J(xk) and substitute F(xk+1) with its linear approximation
F(xk)+ J(xk)(xk+1− xk) in equation (16). Thus, we obtain the generalized continua-
tion Newton method as follows:

J(xk)sN
k =−F(xk), xk+1 = xk +

∆ tk
1+∆ tk

sN
k . (17)

The linear system (17) is underdetermined. That is to say, the row rank of J(xk) is
less than the number of the variable sN

k . Thus, the linear system (17) may have many
solutions or no solution. For simplicity, we assume that the Jacobian matrix J(xk) is
full row rank. That is to say, the row rank of J(xk) equals m. In order to obtain the
nearest point xk+1 of xk under the constraint (17), we solve the following shortest
distance problem:

min
sN∈ℜn

∥∥sN∥∥2
, subject to JksN =−Fk, (18)

where Jk equals J(xk) or its approximation and Fk = F(xk). By using the Lagrangian
multiplier method [50], it is not difficult to obtain the solution sN

k of problem (18) as
follows:

sN
k =−J+k Fk, J+k = JT

k
(
JkJT

k
)−1

, (19)

where J+k is the pseudo-inverse of Jk. Thus, from equations (17) and (19), we obtain
the generalized continuation Newton method for the underdetermined system (1) as
follows:

xk+1 = xk−
∆ tk

1+∆ tk
J+k Fk. (20)

The matrix JkJT
k may be ill-conditioned. Thus, the Cholesky factorization method

may fail to solve the linear system (19) for the large-scale problem. Therefore, we use
the QR decomposition (pp. 247-248, [16]) to solve it as follows:

JT
k = QkRk, RT

k dk =−Fk, sN
k = Qkdk, sk =

∆ tk
1+∆ tk

sN
k , (21)
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where Qk ∈ℜn×m satisfies QT
k Qk = I and Rk ∈ℜm×m is an upper triangle matrix.

Remark 2 The generalized continuation Newton method (20) is similar to the damped
Newton method (10) if we let αk = ∆ tk/(1+∆ tk) in equation (20). However, from
the view of the ODE method, they are different. The damped Newton method (10)
is obtained by the explicit Euler scheme applied to the generalized continuous New-
ton flow (11), and its time step size αk is restricted by the numerical stability [19,
49]. That is to say, for the linear test equation dx/dt = −λx, its time step size αk is
restricted by the stable region |1−λαk| ≤ 1. Therefore, the large time step can not
be adopted in the steady-state phase. The generalized continuation Newton method
(20) is obtained by the implicit Euler method and its linear approximation applied to
the continuous Newton flow (11), and its time step size ∆ tk is not restricted by the
numerical stability. Therefore, the large time step can be adopted in the steady-state
phase and it mimics the generalized Newton method near the solution x∗ such that it
has the fast local convergence rate. The most of all, αk = ∆ tk/(∆ tk + 1) in equation
(20) is favourable to adopt the trust-region updating strategy for adaptively adjust-
ing the time step size ∆ tk such that the generalized continuation Newton method
(20) accurately traces the trajectory of the generalized continuous Newton flow in
the transient-state phase and achieves the fast convergence rate near the equilibrium
point x∗.

Remark 3 We denote r(x) = ‖F(x)‖ and the generalized Newton direction sN
k as

sN
k =−J(xk)

+F(xk). (22)

Then, when F(xk) 6= 0, we have

∇r(xk)
T sN

k =−F(xk)
T J(xk)

‖F(xk)‖
(
J(xk)

+F(xk)
)
=−‖F(xk)‖< 0. (23)

That is to say, the generalized Newton direction sN
k is a descent direction of r(xk).

2.3 The trust-region updating strategy

Another issue is how to adaptively adjust the time step size ∆ tk at every iteration.
There is a popular way to control the time step size based on the trust-region updating
strategy [7,9,21,33,34,35,36,38,55]. Its main idea is that the time step size ∆ tk+1
will be enlarged when the linear model F(xk)+ Jksk approximates F(xk + sk) well,
and ∆ tk+1 will be reduced when F(xk)+ Jksk approximates F(xk + sk) badly.

In practice, we enlarge or reduce the time step size ∆ tk at every iteration according
to the following ratio:

ρk =
‖F(xk)‖−‖F(xk + sk)‖
‖F(xk)‖−‖F(xk)+ Jksk‖

. (24)
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From the computational formula (20) of the search step sk, we can save the computa-
tional time of the predicted model F(xk)+ Jksk by the following simplified formula:

F(xk)+ Jksk = F(xk)−
∆ tk

1+∆ tk
F(xk) =

1
1+∆ tk

F(xk). (25)

Thus, from equations (24)-(25), we rewrite the computational formula (24) of ρk as

ρk =
‖F(xk)‖−‖F(xk + sk)‖
(∆ tk/(1+∆ tk))‖F(xk)‖

. (26)

Therefore, according to the computation formula (26) of ρk between the actual re-
duction and the predicted reduction, we give a particular adjustment strategy of ∆ tk
as follows:

∆ tk+1 =


γ1∆ tk, if |1−ρk| ≤ η1,

∆ tk, else if η1 < |1−ρk|< η2,

γ2∆ tk, others,
(27)

where the constants are selected as γ1 = 2, γ2 = 0.5, η1 = 0.25, η2 = 0.75, according
to our numerical experiments.

Remark 4 This new time-stepping scheme based on the trust-region updating strat-
egy has some advantages compared to the traditional line search strategy [32]. If we
use the line search strategy and the damped Newton method (10) to track the trajec-
tory z(t) of the generalized continuous Newton flow (11), in order to achieve the fast
convergence rate in the steady-state phase, the time step size αk of the damped New-
ton method is tried from 1 and reduced by half with many times at every iteration.
Since the linear model F(xk)+ J(xk)sk may not approximate F(xk + sk) well in the
transient-state phase, the time step size αk will be small. Consequently, the line search
strategy consumes the unnecessary trial steps in the transient-state phase. However,
the selection scheme of the time step size based on the trust-region updating strategy
(26)-(27) can overcome this shortcoming.

2.4 The updating technique of the Jacobian matrix

For a system of nonlinear equations, the computational time of the Jacobian matrix
is heavy if we update the Jacobian matrix J(xk) at every iteration. In order to save the
computational time of the Jacobian evaluation, similarly to the switching precondi-
tioned technique [39], we set Jk+1 = Jk when Fk +Jksk approximates F(xk + sk) well.
Otherwise, we update Jk+1 = J(xk+1). An effective updating strategy is give by

Jk+1 =

{
Jk, if |1−ρk| ≤ η1,

J(xk+1), otherwise,
(28)

where ρk is defined by equation (26) and η1 = 0.25. In practice, in order to save
the computational time of decomposing the matrix Jk when Jk−1 performs well, i.e.
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|1−ρk| ≤ η1, according to the updating formula (28), we set Rk = Rk−1 and Qk =
Qk−1 in equation (21).

For a real-world problem, the analytical Jacobian J(xk) may not be offered. Thus,
in practice, we replace the Jacobian matrix J(xk) with its difference approximation as
follows:

J(xk)≈
[

F(xk + εe1)−F(xk)

ε
, . . . ,

F(xk + εen)−F(xk)

ε

]
, (29)

where ei represents the unit vector whose elements equal zeros except for the i-th
element which equals 1, and the parameter ε can be selected as 10−6 according to
our numerical experiments.

According to the above discussions, we give the detailed implementation of the
generalized continuation Newton method with the trust-region updating strategy for
the underdetermined system of nonlinear equations in Algorithm 1.

3 Algorithm analysis

In this section, we discuss some theoretical properties of Algorithm 1. Firstly, we es-
timate the lower bound of the predicted reduction ‖F(xk)‖−‖F(xk)+Jksk‖, which is
similar to that of the trust-region method for the unconstrained optimization problem
[46].

According to the theorem of the singular value decomposition (pp. 76, [16]), for
the matrix Jk ∈ ℜm×n, there exist orthogonal matrices Uk ∈ ℜm×m and Vk ∈ ℜn×n

such that

UT
k JkVk = Σk = diag

(
σ

1
k , . . . , σ

m
k
)
∈ℜ

m×n, (30)

where σ1
k ≥ σ2

k ≥ ·· · ≥ σm
k ≥ 0.

Lemma 1 Assume that it exists a positive constant cσ such that

σ
min
k ≥ cσ (31)

holds for all k = 0, 1, . . ., where σmin
k = σm

k is the smallest singular value of Jk ∈
ℜm×n. Furthermore, we suppose that sk is the solution of the generalized continuation
Newton method (19)-(20). Then, we have the following estimation

‖F(xk)‖−‖F(xk)+ Jksk‖=
∆ tk

1+∆ tk
‖F(xk)‖. (32)

Proof. From equations (30)-(31), we have

J+k = JT
k
(
JkJT

k
)−1

=V T
k Σ
−1
k Uk, Σ

−1
k = diag

(
1/σ

1
k , . . . , 1/σ

m
k
)
∈ℜ

n×m. (33)
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Algorithm 1 Generalized continuation Newton methods and the trust-region updat-
ing strategy for the underdetermined system (The GCNMTr method)
Input:

Function F : ℜn→ℜm, m≤ n, the initial point x0 (optional), and the tolerance ε (optional).
Output:

An approximation solution x∗ of nonlinear equations.
1: Set the default x0 = ones(n, 1) and ε = 10−6 when x0 or ε is not provided by the calling subroutine.
2: Initialize the parameters: ηa = 10−6, η1 = 0.25, γ1 = 2, η2 = 0.75, γ2 = 0.5, maxit = 400.
3: Set ∆ t0 = 10−2, flag success trialstep = 1, itc = 0, k = 0.
4: Evaluate Fk = F(xk) and Jk = J(xk).
5: By using the qr decomposition [Qk,Rk] = qr(JT

k ) of JT
k , we obtain the orthogonal matrix Qk and the

upper triangle matrix Rk .
6: Set ρk = 1.
7: while (itc < maxit) do
8: if (flag success trialstep == 1) then
9: Set itc = itc + 1.

10: Compute Resk = ‖Fk‖∞.
11: if (Resk < ε) then
12: break;
13: end if
14: if (|1−ρk|> 0.25) then
15: Evaluate Jk = J(xk).
16: By using the qr decomposition [Qk,Rk] = qr(JT

k ) of JT
k , we obtain the orthogonal matrix Qk

and the upper triangle matrix Rk .
17: end if
18: By solving RT

k bk =−Fk and sN
k = Qkbk , we obtain the Newton step sN

k .
19: end if
20: Set sk = ∆ tk/(1+∆ tk)sN

k , xk+1 = xk + sk .
21: Evaluate F(xk+1).
22: if (‖Fk‖< ‖Fk + Jksk‖) then
23: ρk =−1;
24: else
25: Compute the ratio ρk from equation (26).
26: end if
27: Adjust the time step size ∆ tk+1 according to the trust-region updating strategy (27).
28: if (ρk ≥ ηa) then
29: Accept the trial point xk+1. Set flag success trialstep = 1.
30: else
31: Set xk+1 = xk , Fk+1 = Fk , sN

k+1 = sN
k , flag success trialstep = 0.

32: end if
33: Set ρk+1 = ρk , Rk+1 = Rk , Qk+1 = Qk .
34: Set k←− k+1.
35: end while

Thus, from equations (20), (30) and (33), we have

‖F(xk)+ Jksk‖= ‖Jksk +Fk‖=
∥∥∥∥− ∆ tk

1+∆ tk
JkJ+k Fk +Fk

∥∥∥∥= 1
1+∆ tk

‖Fk‖. (34)

Therefore, from equation (34), we obtain the estimation (32). ut

In order to prove that the sequence {‖F(xk)‖} converges to zero when k tends to
infinity, we also need to estimate the lower bound of the time step size ∆ tk.
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Lemma 2 Assume that F : ℜn→ℜm is continuously differentiable and its Jacobian
function J is Lipschitz continuous. That is to say, it exists a positive number L such
that

‖J(x)− J(y)‖ ≤ L‖x− y‖, ∀x, y ∈ℜ
n. (35)

Furthermore, we suppose that the sequence {xk} is generated by Algorithm 1 and the
condition (31) holds for all Jk (k = 0, 1, . . .). Then, there exists a positive number δ∆ t
such that

∆ tk ≥ γ2δ∆ t > 0 (36)

holds for k = 0, 1, 2, . . ., where ∆ tk is adaptively adjusted by formulas (26)-(27).

Proof. We prove this result by distinguishing two different cases, i.e. Jk = J(xk) or
Jk = Jk−1. (i) Firstly, we consider the case of Jk = J(xk). From the Lipschitz continu-
ous assumption (35) of J(·), we have

‖F(xk + sk)−F(xk)− J(xk)sk‖=
∥∥∥∥∫ 1

0
J(xk + tsk)skdt− J(xk)sk

∥∥∥∥
=

∥∥∥∥∫ 1

0
(J(xk + tsk)− J(xk))skdt

∥∥∥∥≤ ∫ 1

0
‖(J(xk + tsk)− J(xk))sk‖dt

≤
∫ 1

0
‖J(xk + tsk)− J(xk)‖‖sk‖dt ≤

∫ 1

0
L‖sk‖2tdt =

1
2

L‖sk‖2. (37)

On the other hand, from equations (19), (31) and (33), we have

‖sk‖=
∆ tk

1+∆ tk

∥∥−J+k Fk
∥∥≤ ∆ tk

cσ (1+∆ tk)
‖Fk‖. (38)

Thus, from equations (37)-(38), we obtain

‖F(xk + sk)−F(xk)− J(xk)sk‖ ≤
L

2c2
σ

(
∆ tk

1+∆ tk

)2

‖Fk‖2. (39)

From the definition (26) of ρk, the estimation (32), and equation (39), we obtain

|ρk−1|=
∣∣∣∣ ‖F(xk)‖−‖F(xk + sk)‖
‖F(xk)‖−‖F(xk)+ J(xk)sk‖

−1
∣∣∣∣

≤ ‖F(xk + sk)−F(xk)− J(xk)sk‖
‖F(xk)‖−‖F(xk)+ J(xk)sk‖

≤ L
2c2

σ

∆ tk
1+∆ tk

‖Fk‖ ≤
L

2c2
σ

‖Fk‖. (40)

According to Algorithm 1, we know that the sequence {‖F(xk)‖} is monotonically
decreasing. Consequently, we have ‖F(xk)‖ ≤ ‖F(x0)‖, k = 1, 2, . . . . We denote

δ∆ t , min
{

2c2
σ

‖F(x0)‖L
η1, ∆ t0

}
. (41)

Thus, from equations (40)-(41), we obtain |ρk − 1| ≤ η1 when ∆ tk ≤ δ∆ t . Conse-
quently, according to the time-stepping scheme (27), ∆ tk+1 will be enlarged.
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(ii) The other case is Jk = Jk−1. When Jk = Jk−1, from equation (28), we know
|1−ρk−1| ≤ η1. Consequently, according to the time-stepping scheme (27), ∆ tk will
be greater than ∆ tk−1, i.e. ∆ tk = γ1∆ tk−1.

Assume that K is the first index such that ∆ tK ≤ δ∆ t . Then, from equation (28)
and the above discussions, we know that JK = J(xK). Otherwise, from the discussion
of the case (ii), we know ∆ tK−1 < ∆ tK , which contradicts the assumption that K is the
first index such that ∆ tK ≤ δ∆ t . Therefore, from equations (40)-(41), we obtain |ρK−
1| ≤ η1. Consequently, ∆ tK+1 will be enlarged according to the adaptive adjustment
scheme (27). Consequently, ∆ tk ≥ γ2δ∆ t holds for all k = 0, 1, 2, . . . . ut

By using the estimate results of Lemma 1 and Lemma 2, we can prove that the
sequence {‖F(xk)‖} converges to zero when k tends to infinity.

Theorem 1 Assume that F : ℜn → ℜm is continuously differentiable and its Jaco-
bian function J satisfies the Lipschitz condition (35). Furthermore, we suppose that
the sequence {xk} is generated by Algorithm 1 and the Jacobian matrix Jk satisfies
the condition (31). Then, we have

lim
k→∞

inf ‖F(xk)‖= 0. (42)

Proof. According to Algorithm 1 and Lemma 2, we know that there exists an infi-
nite subsequence {xkl} such that

‖F(xkl )‖−‖F(xkl + skl )‖
‖F(xkl )‖−‖F(xkl )+ Jkl skl‖

≥ η2 (43)

holds for all l = 0, 1, 2, . . .. Otherwise, all steps are rejected after a given iteration
index, then the time step size will keep decreasing, which contradicts equation (36).

From equations (32), (43) and (36), we have

‖F(xkl )‖−‖F(xkl + skl )‖ ≥ η2
∆ tkl

1+∆ tkl

‖F(xkl )‖ ≥ η2
γ2δ∆ t

1+ γ2δ∆ t
‖F(xkl )‖. (44)

Therefore, from equation (44) and ‖F(xk+1)‖ ≤ ‖F(xk)‖, we have

‖F(x0)‖ ≥ ‖F(x0)‖− lim
k→∞
‖F(xk)‖=

∞

∑
k=0

(‖F(xk)‖−‖F(xk+1)‖)

≥
∞

∑
l=0

(‖F(xkl )‖−‖F(xkl + skl )‖)≥ η2
γ2δ∆ t

1+ γ2δ∆ t

∞

∑
l=0
‖F(xkl )‖. (45)

Consequently, from equation (45), we obtain

lim
l→∞
‖F(xkl )‖= 0.

That is to say, the result (42) is true. ut

Under the full row rank of J(x∗) and the local Lipschitz continuity (35), we an-
alyze the local superlinear convergence of Algorithm 1 near the solution x∗. The
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framework of its proof can be roughly described as follows. Firstly, we prove that the
sequence {xk} converges to x∗ when x0 comes close enough to the solution x∗. Then,
we prove limk→∞ ∆ tk = ∞. Finally, we prove that the search step sk approximates the
Newton step sN

k . Consequently, the sequence {xk} superlinearly converges to x∗.

For convenience, we define the neighbourhood Bδ (x∗) of x∗ as

Bδ (x
∗) = {x : ‖x− x∗‖ ≤ δ}. (46)

Lemma 3 Assume that F : ℜn→ℜm is continuously differentiable and F(x∗) = 0.
Furthermore, we suppose that its Jacobian function J satisfies the Lipschitz continu-
ity (35) and the condition (31) when x ∈ Bδ (x∗). Then, there exists a neighborhood
Br(x∗) of x∗ such that the sequence {xk} generated by Algorithm 1 with x0 ∈ Br(x∗)
converges to x∗.

Proof. From equations (30)-(31), we obtain the generalized inverse J+k in equation
(33) and its estimation ∥∥J+k

∥∥≤ 1/cσ , k = 0, 1, 2, . . . . (47)

We denote ek = xk−x∗. When sk is not an accepted step, we obviously have ek+1 = ek.
Therefore, we consider the case that sk is an accepted step. When sk is an accepted
step, from the generalized continuation Newton method (20), we have

ek+1 = ek + sk = ek +
∆ tk

1+∆ tk
J+k (F(xk)−F(x∗))

= ek +
∆ tk

1+∆ tk
J+k

∫ 1

0
J(x∗+ tek)ekdt. (48)

By rearranging the above equation (48), we obtain

ek+1 =
1

1+∆ tk
ek +

∆ tk
1+∆ tk

J+k

∫ 1

0
(J(x∗+ tek)− J(xk))ekdt.

By using the Lipschitz continuity (35) of J and the estimation (47), we have

‖ek+1‖ ≤
1

1+∆ tk
‖ek‖+

∆ tk
1+∆ tk

∥∥J+k
∥∥∫ 1

0
‖J(x∗+ tek)− J(xk)‖‖ek‖dt

≤ 1
1+∆ tk

‖ek‖+
∆ tk

1+∆ tk

L
2cσ

‖ek‖2 =
1+L/(2cσ )‖ek‖∆ tk

1+∆ tk
‖ek‖. (49)

We denote

qk ,
1+L/(2cσ )‖ek‖∆ tk

1+∆ tk
, (50)

and select x0 ∈ Bδ (x∗) to satisfy

‖e0‖<
cσ

L
. (51)
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We denote r = min{δ , 2cσ/L}. When x0 ∈ Br(x∗), from equations (49)-(51), by in-
duction, we have

‖ek+1‖ ≤ qk‖ek‖, qk <
1+(1/2)∆ tk

1+∆ tk
< 1. (52)

It is not difficult to know that f (t), (1+αt)/(1+t) is monotonically decreasing
when 0≤α < 1. Thus, from the estimation (36) of the time step size ∆ tk and equation
(52), we obtain

‖ek+1‖ ≤ qk‖ek‖ ≤ q‖ek‖, q ,
1+(1/2)γ2δ∆ t

1+ γ2δ∆ t
< 1. (53)

Consequently, from equation (53), we know that ek+1 ≤ ek holds for all k =
0, 1, 2, . . ., since ek+1 = ek when sk is not an accepted step. According to Algorithm
?? and Lemma 2, we know that there exists an infinite subsequence {xkl} such that
skl (l = 0, 1, . . .) are all accepted steps. Otherwise, all steps are rejected after a given
iteration index, then the time step size will keep decreasing, which contradicts equa-
tion (36). Therefore, from equation (53) and ek ≤ ek+1, we have

ekl ≤ qekl−1 ≤ ·· · ≤ qlek0 .

That is to say, we have liml→∞ ekl = 0. By combining it with ek+1 ≤ ek, we obtain
limk→∞ xk = x∗. ut

Lemma 4 Assume that F : ℜn→ℜm is continuously differentiable and F(x∗) = 0.
Furthermore, we suppose that its Jacobian function J satisfies the Lipschitz continu-
ity (35) and the condition (31) when x ∈ Bδ (x∗). Then, there exists a neighborhood
Br(x∗) of x∗ such that the sequence {xk} generated by Algorithm 1 with x0 ∈ Br(x∗)
converges to x∗ and the generated time step ∆ tk tends to infinity.

Proof. The first part of the lemma is proved in Lemma 3, i.e. limk→∞ xk = x∗. Now,
we prove the second part of the lemma, i.e. limk→∞ ∆ tk = ∞.

We can assume that there exists an infinite subsequence {xkl} such that Jkl =
J(xkl ) holds for all l = 0, 1, . . .. Otherwise, according to equation (28), all Jacobian
matrices Jk (k=K+1, K+2, . . .) equal JK and |ρk−1| ≤η1 (k=K, K+2, . . .) after a
given iteration index K. Then, according to the time-stepping scheme (27), we obtain
∆ tk+1 = γ1∆ tk (k = K, K+1, . . .). Consequently, we have limk→∞ ∆ tk = ∞. That is to
say, for this case, the second part of the lemma also is proved.

Since Jkl = J(xkl ), from equations (20) and (47), we have

‖skl‖=
∆ tkl

1+∆ tkl

∥∥∥J+kl
F(xkl )

∥∥∥≤ ∆ tkl

1+∆ tkl

‖J+kl
‖‖F(xkl )‖

≤
∆ tkl

cσ (1+∆ tkl )
‖F(xkl )‖. (54)
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Similarly to the estimation (40), from the definition (26) of ρkl , inequalities (32) and
(54), we have

|ρkl −1|=
∣∣∣∣ ‖F(xkl )‖−‖F(xkl + skl )‖
‖F(xkl )‖−‖F(xkl )+ J(xkl )skl‖

−1
∣∣∣∣

≤ L
2c2

σ

(
∆ tkl

1+∆ tkl

)
‖F(xkl )‖ ≤

L
2c2

σ

‖F(xkl )‖. (55)

Since limk→∞ xk = x∗ and F(x∗) = 0, we can select a sufficiently large number K such
that

‖F(xK)‖ ≤
2η1c2

σ

3L
. (56)

From inequalities (55)-(56) and the monotonically decreasing property ‖F(xk+1)‖ ≤
‖F(xk)‖, we have |ρkl −1| ≤ η1 when kl ≥ K. This means ∆ tkl+1 = γ1∆ tkl according
to the time-stepping scheme (27).

Now, we consider the (kl + 1)-th iteration. From equation (28), we know that
Jkl+1 = Jkl = J(xkl ). Then, from the definition (26) of ρkl+1, equation (32) and the
Lipschitz continuity (35), we have

|ρkl+1−1|=
∣∣∣∣ ‖F(xkl+1)‖−‖F(xkl+1 + skl+1)‖
‖F(xkl+1)‖−‖F(xkl+1)+ Jkl+1skl+1‖

−1
∣∣∣∣

≤
‖F(xkl+1 + skl+1)−F(xkl+1)− Jkl+1skl+1‖
‖F(xkl+1)‖−‖F(xkl+1)+ Jkl+1skl+1‖

=
‖
∫ 1

0 (J(xkl+1 + tskl+1)− J(xkl ))skl+1dt‖
‖F(xkl+1)‖−‖F(xkl+1)+ Jkl+1skl+1‖

≤
1+∆ tkl+1

∆ tkl+1

L
(
0.5‖skl+1‖2 +‖skl+1‖‖skl‖

)
‖F(xkl+1)‖

. (57)

By substituting equation (54) into equation (57), we obtain

|ρkl+1−1| ≤
L ∆ tkl+1

c2
σ (1+∆ tkl+1)

(
0.5‖F(xkl+1)‖+‖F(xkl )‖

)
≤ 3L

2c2
σ

‖F(xkl )‖, (58)

where the property ‖F(xkl+1)‖ ≤ ‖F(xkl )‖ is used in the last inequality.

From equations (56) and (58), we have |ρkl+1− 1| ≤ η1. This means ∆ tkl+2 =
γ1∆ tkl+1 = γ2

1 ∆ tkl according to the time-stepping scheme (27). Thus, for the (kl +2)
iteration, when |ρkl+2 − 1| > η1, according to the time-stepping scheme (27), we
have ∆ tkl+3 ≥ γ2γ2

1 ∆ tkl = γ1∆ tkl (Here, we select γ1 = 2 and γ2 = 1/2). Furthermore,
from equation (28), we know Jkl+3 = J(xkl+3) at the (kl + 3)-th iteration. Similarly
to the estimation |ρkl −1| ≤ η1 of Jkl = J(xkl ), we have |ρkl+3−1| ≤ η1. This means
∆ tkl+4 = γ1∆ tkl+3 ≥ γ2

1 ∆ tkl according to the time-stepping scheme (27). Thus, the
subsequent iterations start a new cycle for the time step size.

When |ρkl+2 − 1| ≤ η1, according to the time-stepping scheme (27), we have
∆ tkl+3 = γ1∆ tkl+2 = γ3

1 ∆ tkl and the time steps keep increasing until |ρkl+m− 1| >
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η1 (m = 3, 4, . . .). Then, the subsequent iterations start a new cycle for the time step
size.

By combining the above discussions of two cases |ρkl+2−1|>η1 or |ρkl+2−1| ≤
η1, we know ∆ tkl ≥ γ1∆ tkl+1 and ∆ tkl+m ≥ ∆ tkl when 0 ≤ m ≤ kl+1 − kl . Conse-
quently, we obtain liml→∞ ∆ tkl = ∞. By combining the property ∆ tkl+m ≥ ∆ tkl (0 ≤
m≤ kl+1− kl), we obtain limk→∞ ∆ tk = ∞. ut

Theorem 2 Assume that F : ℜn→ℜm is continuously differentiable and F(x∗) = 0.
Furthermore, we suppose that its Jacobian function J satisfies the Lipschitz continu-
ity (35) and the condition (31) when x ∈ Bδ (x∗). Then, there exists a neighborhood
Br(x∗) of x∗ such that the sequence {xk} generated by Algorithm 1 with x0 ∈ Br(x∗)
converges superlinearly to x∗.

Proof. From Lemma 3 and Lemma 4, we know limk→∞ xk = x∗ and limk→∞ ∆ tk =
∞. Firstly, we prove that there are only finite steps which are rejected. That is to say,
all steps are accepted after a given iteration index.

We assume that there exist the infinite rejected steps. Since limk→∞ xk = x∗ and
F(x∗) = 0, we can select a sufficiently large number K1 such that

‖F(xK1)‖ ≤
η1c2

σ

L
. (59)

Furthermore, there exists a positive K2 such that

‖xk− xl‖ ≤
η1cσ

2L
, ∀k, l ≥ K2. (60)

We denote K = max{K1, K2}. For the k-th iteration, we assume that sl−1 (l ≤ k) is
the step such that |ρl−1− 1| < η1 holds and its index l is the closest to k. Then, we
have Jk = Jl = J(xl) according to equation (28).

Similarly to the estimation (57), from the definition (26) of ρk, equation (20) and
the Lipschitz continuity (35), we have

|ρk−1| ≤ 1+∆ tk
∆ tk

L
(
0.5‖sk‖2 +‖sk‖‖xk− xl‖

)
‖F(xk)‖

. (61)

By substituting equation (38) into equation (61), we obtain

|ρk−1| ≤ L
cσ

(
1

2cσ

∆ tk
1+∆ tk

‖F(xk)‖+‖xk− xl‖
)

≤ L
cσ

(
1

2cσ

‖F(xk)‖+‖xk− xl‖
)
. (62)

By substituting inequalities (59)-(60) and the monotonically decreasing property
‖F(xk+1)‖ ≤ ‖F(xk)‖ into equation (62), we have |ρk− 1| ≤ η1 when k ≥ K. This
means ∆ tk+1 = γ1∆ tk according to the time-stepping scheme (27). Thus, we know
that all steps sk (k ≥ K) are the accepted steps, which contradicts the assumption of
the infinite rejected steps. Therefore, there exist only finite rejected steps.
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We denote ek = xk−x∗. Then, similarly to the estimation (49), from the Lipschitz
continuity (35) and the estimation (47), we have

‖ek+1‖
‖ek‖

≤ 1
1+∆ tk

+
∆ tk

1+∆ tk

L
2cσ

‖ek‖ ≤
1

1+∆ tk
+

L
2cσ

‖ek‖, k ≥ K. (63)

By substituting limk→∞ ∆ tk = ∞ and limk→∞ ‖ek‖= 0 into equation (63), we obtain

lim
k→∞

‖ek+1‖
‖ek‖

= 0.

That is to say, the sequence {xk} superlinearly converges to x∗. ut

4 Numerical experiments

Since the classical Homotopy continuation method such as HOMPACK90 [52] can
not effectively tackle the underdetermined system of nonlinear equations, we only
compare Algorithm 1 (GCNMTr) with the traditional optimization method such as
the Levenberg-Marquardt method (the built-in subroutine fsolve.m of the MATLAB
R2020a environment [13,22,28,35,40,41,42]). The Jacobian matrix J(x) of Algo-
rithm 1 is approximated by the difference formula (29). The codes are executed by
a HP notebook with the Intel quad-core CPU and 8Gb memory in the MATLAB
R2020a environment [40].

At every iteration, in order to obtain the accepted trial step sk, the Levenberg-
Marquardt method [40,42] needs to solve several linear least-squares problems as
follows: [

Jk√
λDk

]
≈−

[
Fk
0

]
, (64)

such that ‖sk(λ )‖ ≈ ∆k, where ∆k is the trust-region radius and the scaled matrix Dk
is usually selected as a diagonal matrix as follows [42]:

Dk = diag
(

d(k)
1 , . . . , d(k)

n

)
,

d(k)
i = max{d(k−1)

i , ‖J(xk)i‖}, i = 1, 2, . . . , n.

The test underdetermined problems of nonlinear equations are derived from [1,
30,43,48]. We preserve the first m elements of the gradient g(x) of the unconstrained
optimization function f (·) as the test underdetermined system, i.e.

F(x) = [g1(x), . . . , gm(x)]T ,

where g(x) = ∇ f (x), x ∈ℜn. Their dimensions are all set by (n = 2000, m = n−1),
(n = 2000, m = 10) and (n = 2000, m = n). The initial point of the test problem is
set by x0 = ones(n, 1) when ones(n, 1) is not the zero point of F(x). Otherwise, the
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initial point is set x0 = 2× ones(n, 1). The tolerable errors of two methods are both
set by

‖F(xit)‖∞ ≤ 10−6. (65)

The numerical results are arranged in Tables 1-3. NJ stands for the number of
the Jacobian evaluations required for convergence in Tables 1-3. The computational
time of GCNMTr and fsolve is illustrated by Figures 1-3. From Tables 1-3, we find
that GCNMTr performs well for those test problems, and the levenberg-marquardt
method (fsolve) fails to solve some problems.

Furthermore, from Figures 1-3 and Tables 1-3, we also find that GCNMTr is faster
than the Levenberg-Marquardt method (fsolve) and the computational time of GCN-
MTr is about 1/8 to 1/50 of that of fsolve. One of the reasons is that GCNMTr does
not need to update the Jacobian matrix Jk and decompose it when it performs well.
This strategy can save much computational time, in comparison to that of the updating
the Jacobian matrix J(xk) at every iteration for the traditional Levenberg-Marquardt
method. The other reason is that fsolve uses the QR decomposition to solve the linear
system (64), which requires 2n2(2n/3+m) flops (p. 264, [16]). However, GCNMTr
uses the QR decomposition to solve the linear systems of equation (21), which only
requires 2m2(n−m/3) flops and about the half of that of fsolve.
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Problem (m = 10, n = 2000)
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Fig. 1: The computational time of GCNMTr and fsolve for the underdetermined prob-
lems with m = 10, n = 2000.



Generalized continuation Newton methods and the trust-region updating strategy 19

Table 1: Numerical results of GCNMTr and fsolve for the underdetermined problems
with m = 10, n = 2000.

Problems GCNMTr fsolve.m (levenberg-marquardt)
NJ (Iteration, time/s) ||F(xit )||∞ Iteration (time/s) ||F(xit )||∞

1. Trid Function [48]
(m = 10, n = 2000) 2 (14, 0.1127s) 1.6495E-08 5 (12.2854s) 2.8635E-11

2. Grewank Function [48]
(m = 10, n=2000) 2 (11, 0.2816s) 5.6776E-07 10 (27.3960s) 5.0238E-16

3. Dixon Price Function [48]
(m = 10, n = 2000) 5 (20, 0.3500s) 5.2291E-07 7 (16.4054s) 1.2434E-14

4. Rosenbrock Function [43]
(m = 10, n = 2000) 5 (24, 0.3274s) 4.1377E-07 7 (16.7926s) 6.1729E-11

5. Trigonometric Function [43]
(m = 10, n = 2000) 2 (11, 0.2375s) 1.4611E-07 3 (7.2162s) 8.5720E-12

6. Singular Broyden Function [30]
(m = 10, n = 2000) 19 (35, 1.1180s) 4.3241E-07 12 (25.7608s) 0.0213

(failed)
7. Extended Powell Singular Function [43]

(m = 10, n = 2000) 10 (25, 0.8116s) 7.7570E-07 12 (27.7080s) 7.5422E-07

8. Tridiagonal System Function [30]
(m = 10, n = 2000) 6 (20, 0.3157s) 4.8995E-07 8 (14.2731s) 2.2095E-08

9. Discrete Boundary-Value Function [30]
(m = 10, n = 2000) 2 (13, 0.7122s) 6.8392E-07 5 (14.7863s) 7.5662E-13

10. Broyden Tridiagonal Function [30]
(m = 10, n = 2000) 2 (15, 0.1398s) 1.9205E-07 5 (10.4810s) 1.5421E-10

11. Extended Wood Function [1]
(m = 10, n = 2000) 6 (22, 0.3264s) 7.0474E-08 8 (19.7991s) 5.8124E-09

12. Extended Cliff Function [1]
(m = 10, n = 2000) 6 (21, 0.3839s) 9.6747E-07 10 (21.7415s) 1.5466E-08

13. Extended Hiebert Function [1]
(m = 10, n = 2000) 2 (13, 0.0650s) 1.4634E-08 2 (4.7399s) 5.0164E-12

14. Extended Maratos Function [1]
(m = 10, n = 2000) 16 (37, 0.7660s) 7.4567E-07 199 (623.0145s) 0.1757

(failed)
15. Extended Psc1 Function [1]

(m = 10, n = 2000) 5 (20, 0.8269s) 6.1415E-07 7 (15.4128s) 2.3426E-14

16. Extended Quadratic Penalty QP 1
Function [1] (m = 10, n = 2000) 2 (18, 0.1863s) 6.1455E-08 3 (6.8182s) 1.1303E-14

17. Extended Quadratic Penalty QP 2
Function [1] (m = 10, n = 2000) 2 (20, 0.2924s) 5.7408E-07 3 (6.9848s) 6.5782E-12

18. Extended TET Function [1]
(m = 10, n = 2000) 7 (22, 1.4268s) 2.1258E-07 8 (19.1292s) 7.8478E-11

19. EG2 Function [1]
(m = 10, n = 2000) 2 (16, 0.5359s) 6.3057E-08 4 (9.3791s) 6.1195E-13

20. Extended BD1 Function [1]
(m = 10, n = 2000) 5 (19, 0.6993s) 1.1822E-07 6 (13.2805s) 1.4782E-08

5 Conclusions

In this article, we consider the generalized continuation Newton method with the
trust-region updating strategy and the new updating technique of the Jacobian matrix
for the underdetermined system (GCNMTr). For some large-scale underdetermined
and determined problems, numerical results show that GCNMTr is more robust and
faster than the traditional optimization method such as the Levenberg-Marquardt
method (the subroutine fsolve.m of the MATLAB R2020a environment). The com-
putational time of GCNMTr is about 1/8 to 1/50 of that of fsolve. We also analyze
the global convergence and the local superlinear convergence of the new method un-
der the standard assumptions. From our point of view, the generalized continuation
Newton method (Algorithm 1) can be regarded as an alternative workhorse for the
nonlinear equations and we will extend it to the constrained nonlinear programming
problems.
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Table 2: Numerical results of GCNMTr and fsolve for the underdetermined problems
with m = 1999, n = 2000.

Problems GCNMTr fsolve.m (levenberg-marquardt)
NJ (Iteration, time/s) ||F(xit )||∞ Iteration (time/s) ||F(xit )||∞

1. Trid Function [48]
(m = 1999, n = 2000) 2 (14, 1.2698s) 1.6764E-08 14 (87.1366s) 2.5611E-09

2. Grewank Function [48]
(m = 1999, n=2000) 12 (29, 9.7008s) 2.1524E-07 36 (308.7068s) 4.9506E-16

3. Dixon Price Function [48]
(m = 1999, n = 2000) 6 (21, 4.4584s) 8.6397E-09 7 (37.1861s) 1.5824E-08

4. Rosenbrock Function [43]
(m = 1999, n = 2000) 6 (22, 4.5985s) 4.8484E-09 7 (36.7351s) 1.2921E-09

5. Trigonometric Function [43]
(m = 1999, n = 2000) 13 (30, 3.2750s) 3.1687E-07 70 (605.1742s) 2.2600e-05

(failed)
6. Singular Broyden Function [30]

(m = 1999, n = 2000) 19 (35, 13.0141s) 5.2082E-07 12 (63.8643s) 0.0213
(failed)

7. Extended Powell Singular Function [43]
(m = 1999, n = 2000) 10 (25, 7.3242s) 7.7570E-07 11 (60.1272s) 7.5422E-07

8. Tridiagonal System Function [30]
(m = 1999, n = 2000) 6 (20, 4.4418s) 5.3380E-07 8 (41.2931s) 1.6009E-14

9. Discrete Boundary-Value Function [30]
(m = 1999, n = 2000) 2 (13, 1.8657s) 1.8195E-07 6 (79.6152s) 1.5319E-12

10. Broyden Tridiagonal Function [30]
(m = 1999, n = 2000) 2 (15, 1.8283s) 3.0495E-07 5 (25.6165s) 1.4704E-10

11. Extended Wood Function [1]
(m = 1999, n = 2000) 6 (22, 4.5732s) 7.0474E-08 8 (41.4228s) 5.8341E-09

12. Extended Cliff Function [1]
(m = 1999, n = 2000) 6 (21, 4.6795s) 9.6747E-07 10 (98.8046s) 1.5507E-08

13. Extended Hiebert Function [1]
(m = 1999, n = 2000) 2 (16, 1.2882s) 1.4830E-08 2 (10.4330s) 8.0231E-10

14. Extended Maratos Function [1]
(m = 1999, n = 2000) 16 (37, 10.5885s) 7.4568E-07 199 (1612.5726s) 0.1757

(failed)
15. Extended Psc1 Function [1]

(m = 1999, n = 2000) 5 (22, 4.3262s) 2.0538E-07 7 (37.6980s) 8.4970E-13

16. Extended Quadratic Penalty QP 1
Function [1] (m = 1999, n = 2000) 10 (26, 7.4105s) 2.2681E-07 11 (60.6542s) 1.5642E-04

(failed)
17. Extended Quadratic Penalty QP 2

Function [1] (m = 1999, n = 2000) 7 (32, 6.6672s) 4.6757E-08 8 (42.7976s) 1.2390E-05
(failed)

18. Extended TET Function [1]
(m = 1999, n = 2000) 7 (24, 5.9189s) 1.4731E-07 8 (41.0473s) 7.8525E-11

19. EG2 Function [1]
(m = 1999, n = 2000) 5 (22, 4.5872s) 3.1190E-08 153 (1225.0636s) 1.3816E-10

20. Extended BD1 Function [1]
(m = 1999, n = 2000) 5 (19, 3.9460s) 7.2238E-07 7 (38.3996s) 1.0549E-14
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Table 3: Numerical results of GCNMTr and fsolve for the determined problems with
m = 2000, n = 2000.

Problems GCNMTr fsolve.m (levenberg-marquardt)
NJ (Iteration, time/s) ||F(xit )||∞ Iteration (time/s) ||F(xit )||∞

1. Trid Function [48]
(m = 2000, n = 2000) 2 (14, 1.1696s) 1.6764E-08 15 (84.5851s) 2.3283E-10

2. Grewank Function [48]
(m = 2000, n=2000) 37 (64, 26.9887s) 3.5969E-07 36 (299.4471s) 4.9853E-16

3. Dixon Price Function [48]
(m = 2000, n = 2000) 6 (21, 4.0241s) 8.6667E-09 7 (41.3923s) 1.5895E-08

4. Rosenbrock Function [43]
(m = 2000, n = 2000) 6 (22, 4.9494s) 6.5022E-08 199 (1671.5553s) 0.0043

(failed)
5. Trigonometric Function [43]

(m = 2000, n = 2000) 4 (13, 3.0073s) 3.4463E-07 44 (420.8693s) 2.2750E-05
(failed)

6. Singular Broyden Function [30]
(m = 2000, n = 2000) 19 (35, 11.6583s) 5.5066E-07 12 (75.0792s) 0.0226

(failed)
7. Extended Powell Singular Function [43]

(m = 2000, n = 2000) 10 (25, 6.9210s) 7.7570E-07 12 (73.0282s) 7.5422E-07

8. Tridiagonal System Function [30]
(m = 2000, n = 2000) 6 (20, 4.2114s) 1.7450E-07 7 (40.8813s) 1.8865E-11

9. Discrete Boundary-Value Function [30]
(m = 2000, n = 2000) 2 (13, 1.8843s) 6.8400E-07 13 (88.6350s) 1.0325E-11

10. Broyden Tridiagonal Function [30]
(m = 2000, n = 2000) 3 (15, 1.7556s) 8.1420E-07 5 (31.1220s) 1.3323E-15

11. Extended Wood Function [1]
(m = 2000, n = 2000) 6 (22, 4.2280s) 7.0474E-08 8 (49.8806s) 5.8341E-09

12. Extended Cliff Function [1]
(m = 2000, n = 2000) 6 (21, 4.4264s) 9.6747E-07 10 (102.9089s) 1.5507E-08

13. Extended Hiebert Function [1]
(m = 2000, n = 2000) 2 (16, 1.2165s) 1.4634E-08 2 (11.2343s) 5.0164E-12

14. Extended Maratos Function [1]
(m = 2000, n = 2000) 16 (37, 10.0705s) 7.4567E-07 199 (1692.7199s) 0.1757

(failed)
15. Extended Psc1 Function [1]

(m = 2000, n = 2000) 5 (20, 3.8124s) 6.1415E-07 7 (39.2547s) 2.4758E-14

16. Extended Quadratic Penalty QP 1
Function [1] (m = 2000, n = 2000) 11 (27, 6.6775s) 7.5538E-08 11 (60.9623s) 5.2307E-04

(failed)
17. Extended Quadratic Penalty QP 2

Function [1] (m = 2000, n = 2000) 10 (32, 7.3550s) 3.4402E-09 10 (115.7199s) 0.2043
(failed)

18. Extended TET Function [1]
(m = 2000, n = 2000) 7 (22, 5.2577s) 2.1258E-07 8 (45.2060s) 7.8525E-11

19. EG2 Function [1]
(m = 2000, n = 2000) 5 (22, 4.2430s) 3.1007E-08 153 (1264.3533s) 1.2457E-10

20. Extended BD1 Function [1]
(m = 2000, n = 2000) 5 (19, 3.6184s) 1.1822E-07 6 (33.3613s) 1.4783E-08

Availability of data and material (data transparency): If it is requested, we will
provide the test data.

Code availability (software application or custom code): If it is requested, we will
provide the code.
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